

TTL MSI

DM7200/DM8200 four bit comparator

general description

The DM7200/DM8200 is a monolithic TTL (Transistor-Transistor Logic) circuit which is used to compare the numerical values of two four-bit binary numbers. Outputs indicate (1) whether number A is greater than number B, (2) whether number B is greater than number A, or (3) whether the two numbers are equal. A strobe input overrides all other inputs and places the outputs in a definite state. The design chosen provides maximum speed with minimum circuit complexity. Numerical comparisons of words longer than four bits may be made by using additional DM7200/ DM8200's only.

Features Include:

	Sarias	54/74	Com	patible
-	Series	34//4	COIII	patible

■ Typical Noise Immunity

- 1V

Guaranteed Noise Immunity

400 mV

Typical Propagation Delay

20 ns

■ Typical Power Dissipation

175 mW

The DM7200/DM8200 has applications in:

- Digital stepping-motor control applications
- Convergence applications
- Summing junction for digital servo systems

logic and connection diagram

logic table

	Output				
Number A ₄ A ₃ A ₂ A ₁		Number B ₄ B ₃ B ₂ B ₁	Strobe	×	Υ
Α	>	В	0	1	0
Α	<	В	0	0	1
Α	=	В	0	1	1
Α	≥	В	. 1	0	0

absolute maximum ratings

Supply Voltage

7V 5.5V

Input Voltage

DM7200 -55°C t

Operating Temperature Range

-55°C to +125°C 0°C to +70°C

DM8200

-65°C to +150°C

Storage Temperature Range

10 · 150 C

Lead Temperature (Soldering, 10 sec.)

300°C

electrical characteristics (Note 1)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	DM7200 DM8200	$V_{CC} = 4.5V$ $V_{CC} = 4.75V$, - it-	2.0			٧
Logical "0" Input Voltage	DM7200 DM8200	$V_{CC} = 4.5V$ $V_{CC} = 4.75V$		110		.8	V
Logical "1" Output Voltage	DM7200 DM8200	$V_{CC} = 4.5V$ $V_{CC} = 4.75V$	Ι _{ΟΟΤ} = -400 μΑ	2.4			V
Logical "0" Output Voltage -	DM7200 DM8200	$V_{CC} = 4.5V$ $V_{CC} = 4.75V$	I _{OUT} = 16 mA			.4	V
Logical "1" Input Current	DM7200 DM8200	$V_{CC} = 5.5V$ $V_{CC} = 5.25V$	V _{IN} = 2.4V			80	μΑ
Logical "0" Input Current -	DM7200 DM8200	$V_{CC} = 5.5V$ $V_{CC} = 5.25V$	V _{IN} = 0.4V			-3.2	mA
Logical "1" Input Current -	DM7200 DM8200	$V_{CC} = 5.5V$ $V_{CC} = 5.25V$	V _{IN} = 5.5V			1	mA
Output Short Circuit Current (Note 2)	DM7200 DM8200	$V_{CC} = 5.5V$ $V_{CC} = 5.25V$		-20 -18		-55 - 5 5	mA
Supply Current -	DM7200 DM8200	$V_{CC} = 5.5V$ $V_{CC} = 5.25V$	1		35	53	mA
Propagation Delay to a Logical "1" from Any Data Input to Output t _{pd 1}			= 5.0V = 25°C	,	24	40	ns
Propagation Delay to a Logical "0" from Any Data Input to Output tpd o			; = 5.0V = 25°C		17	30	ns
Propagation Delay to a Logical "1" from Strobe Input to Output t _{pd 1}	. (= 5.0V = 25°C		15	27	ns
Propagation Delay to a Logical "0" from Strobe Input to Output tpd o			= 5.0V = 25°C		8	18	ns
Time Prior to Removal of Strobe that Data Inputs Must Be Stabilized; t _{SET UP}			= 5.0V = 25°C		0	10	ns
Time After Activation of Strobe that Data Inputs Must be Held; thou			= 5.0V = 25°C		-10	0	ns

Note 1: Unless otherwise specified, limits shown apply from -55° C to $+125^{\circ}$ C for the DM7200 and 0° C to $+70^{\circ}$ C for the DM8200. Typical values apply to supply voltages of 5.0V.

Note 2: Only one output should be shorted at a time.

typical output characteristics

Logic "1" Output Voltage vs Source Current

data input waveforms

switching time waveforms

ac test circuit

DIODES: FD100

^{*}The Data Input waveforms shown may not necessarily represent the actual direction of the transition for a particular Data Input pin. The transitions shown indicate also what an Output would do if it weren't for the Strobe input. In all c.ses the worst case input-to-output path is specified regardless of the transitions shown.