# National Semiconductor

# DM7450 Expandable Dual 2-Wide 2-Input AND-OR-INVERT Gate

### **General Description**

This device contains two independent combinations of gates, each of which perform the logic AND-OR-INVERT function. One set of gates has an expander node.

## **Connection Diagram**



TL/F/9778-1

Order Number DM7450N See NS Package Number N14A

50

#### Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage                       | 7V              |
|--------------------------------------|-----------------|
| Input Voltage                        | 5.5V            |
| Operating Free Air Temperature Range |                 |
| DM74                                 | 0°C to +70°C    |
| Storage Temperature Range            | -65°C to +150°C |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

### **Recommended Operating Conditions**

| Symbol          | Parameter                      | DM7450 |     |      | Units |
|-----------------|--------------------------------|--------|-----|------|-------|
|                 |                                | Min    | Nom | Max  | onito |
| V <sub>CC</sub> | Supply Voltage                 | 4.75   | 5   | 5.25 | V     |
| V <sub>IH</sub> | High Level Input Voltage       | 2      |     |      | V     |
| VIL             | Low Level Input Voltage        |        |     | 0.8  | V     |
| ЮН              | High Level Output Current      |        |     | -0.4 | mA    |
| loL             | Low Level Output Current       |        |     | 16   | mA    |
| TA              | Free Air Operating Temperature | 0      |     | 70   | °C    |

#### **Electrical Characteristics**

Over recommended operating free air temperature range (unless otherwise noted)

| Symbol             | Parameter                                      | Conditions                                                                                                  | Min  | Typ<br>(Note 1) | Max  | Units |
|--------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------|-----------------|------|-------|
| VI                 | Input Clamp Voltage                            | $V_{CC} = Min$ , $I_I = -12 \text{ mA}$                                                                     |      |                 | -1.5 | v     |
| V <sub>OH</sub>    | High Level Output<br>Voltage                   | $V_{CC} = Min, I_{OH} = -400 \ \mu A$<br>$V_{IL} = Max$                                                     | 2.4  | 3.4             |      | ν     |
| V <sub>OL</sub>    | Low Level Output<br>Voltage                    | $V_{CC} = Min, I_{OL} = Max$<br>$V_{IH} = Max$                                                              |      | 0.2             | 0.4  | v     |
| կ                  | Input Current @ Max<br>Input Voltage           | $V_{CC} = Max, V_I = 5.5V$                                                                                  |      |                 | 1    | mA    |
| ١ <sub>X</sub>     | Expander Current                               | $\begin{array}{l} V1 = 0.4V, I_{OL} = 16 \text{ mA} \\ V_{CC} = \text{Min}, T_{A} = \text{Min} \end{array}$ |      |                 | 3.1  | mA    |
| IIH                | High Level Input Current                       | $V_{CC} = Max, V_1 = 2.4V$                                                                                  |      |                 | 40   | μΑ    |
| կլ                 | Low Level Input Current                        | $V_{CC} = Max, V_I = 0.4V$                                                                                  |      |                 | -1.6 | mA    |
| los                | Short Circuit<br>Output Current                | V <sub>CC</sub> = Max (Note 2)                                                                              | - 18 |                 | -57  | mA    |
| ICCH               | Supply Current with<br>Outputs High            | V <sub>CC</sub> = Max                                                                                       |      |                 | 8    | mA    |
| ICCL               | Supply Current with<br>Outputs Low             | V <sub>CC</sub> = Max                                                                                       |      |                 | 14   | mA    |
| V <sub>BE(Q)</sub> | Base-Emitter Voltage<br>of Output Transistor Q | I1 = 0.62  mA<br>$I_{OL} = 16 \text{ mA}$<br>$R_1 = 0\Omega$                                                |      |                 | 1.0  | v     |

50

| Symbol                | Parameter                                          | Conditions                           | Min | Max | Units |
|-----------------------|----------------------------------------------------|--------------------------------------|-----|-----|-------|
| t <sub>PLH</sub>      | Propagation Delay Time<br>Low to High Level Output | $C_L = 15  pF$<br>$R_L = 400 \Omega$ |     | 22  | ns    |
| tPHL                  | Propagation Delay Time<br>High to Low Level Output |                                      |     | 15  | ns    |
|                       | e at $V_{CC} = 5V$ , $T_A = 25^{\circ}C$ .         |                                      |     |     |       |
| Note 2: Not more that | n one output should be shorted at a time.          |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       | ,                                                  |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       | <i>,</i>                                           |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |
|                       |                                                    |                                      |     |     |       |