National Semiconductor

DM74LS534 Octal D-Type Flip-Flop (With TRI-STATE® Outputs)

General Description

The 'LS534 is a high speed, low power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and TRI-STATE outputs for bus oriented applications. A buffered Clock (CP) and Output Enable (\overline{OE}) is common to all flip-flops. The 'LS534 is the same as the 'LS374 except that the outputs are inverted.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

-	
Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM74LS534			Units
		Min	Nom	Max	
V _{CC}	Supply Voltage	4.75	5	5.25	V
VIH	High Level Input Voltage	2			V
VIL	Low Level Input Voltage			0.8	V
V _{OH}	High Level Output Current			-2.6	mA
IOL	Low Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C
t _s (H) t _s (L)	Setup Time HIGH or LOW D _n to CP	20 20			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW D _n to CP	0 0			ns
t _w (H) t _w (L)	CP Pulse Width HIGH or LOW	15 15			ns

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_1 = -18 \text{ mA}$			-1.5	٧
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max V_{IH} = Min$	2.4	3.3		v
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{array}{l} V_{CC} = Min, I_{OL} = Max \\ V_{IL} = Max, V_{IH} = Min \end{array}$		0.35	0.5	v
		$I_{OL} = 12 \text{ mA}, V_{CC} = \text{Min}$		0.25	0.4	
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μA
կլ	Low Level Input Current	$V_{CC} = Max, V_I = 0.5V$			-20	μΑ
l _{OZH}	Off-State Output Current with High Level Output Voltage Applied	$V_{CC} = Max, V_O = 2.4V$ $V_{IH} = Min, V_{IL} = Max$			20	μA
I _{OZL}	Off-State Output Current with Low Level Output Voltage Applied	$V_{CC} = Max, V_O = 0.4V$ $V_{IH} = Min, V_{IL} = Max$			-20	μΑ
los	Short Circuit Output Current	V _{CC} = Max (Note 2)	-20		-100	mA
lcc	Supply Current	V _{CC} = Max (Note 3)		45		mA

Note 1: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V.

Switching Characteristics $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$ (See Section 1 for test waveforms and output loads)

Symbol	Parameter	$R_L = 2 k\Omega$	Units	
		Min	Max	onito
f _{max}	Maximum Clock Frequency	35		MHz
t _{PLH} t _{PHL}	Propagation Delay CP to Q _n		28 28	ns
t _{PZH} t _{PZL}	Output Enable Time		28 28	ns
t _{PHZ} t _{PLZ}	Output Disable Time		20 25	ns

Functional Description

The '534 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transistion. With the Output Enable (OE) LOW, the contents of the eight flip-flops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flip-flops.

Truth Table

Inputs		Outputs		
Dn	СР	OE	On	
н	~	L	L	
L	~	L	н	
x	x	н	Z	

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Logic Diagram

