

Interface Gates

DM8810 quad two-input TTL-MOS interface gate DM8811 quad two-input TTL-MOS interface gate DM8812 TTL-MOS hex inverter

general description

These Series 74 compatible gates are high output voltage versions of the DM7401 (SN7401), DM7403 (SN7403), and DM7405 (SN7405). Their open-collector outputs may be "pulled-up" to +14 volts in the logical "1" state thus providing guaranteed interface between TTL and MOS logic

In addition the devices may be used in applications where it is desirable to drive low current relays or lamps that require up to 14 volts.

schematic and connection diagrams

DM8810 and DM8811

DM8810

DM8812

absolute maximum ratings

V_{CC}
Input Voltage
Output Voltage
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

7V 5.5V 14.V 0°C to 70°C -65°C to +150°C 300°C

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Diode Clamp Voltage	$V_{CC} = 5.0V$, $T_A = 25^{\circ}C$ $I_{IN} = -12 \text{ mA}$			-1.5	V
Logical "1" Input Voltage	V _{CC} = 4.75V	2.0			V
Logical "0" Input Voltage	V _{CC} = 4.75V			8.0	V
Logical "1" Output Current	$V_{CC} = 4.75V$ $V_{OUT} = 10V$ $V_{IN} = 0.8V$ $V_{IN} = 0.0V$			250 40	μΑ μΑ
Logical "1" Output Breakdown Voltage	$V_{CC} = 4.75V, V_{IN} = 0V$ $I_{OUT} = 1 \text{ mA}$	14			V
Logical "0" Output Voltage	$V_{CC} = 4.75V$, $V_{IN} = 2.0V$ $I_{OUT} = 16 \text{ mA}$			0.4	V
Logical "1" Input Current	$V_{CC} = 5.25V, V_{1N} = 2.4V$			40	μΑ
Logical "1" Input Current	$V_{CC} = 5.25V, V_{1N} = 5.5V$			1	mA
Logical "0" Input Current	$V_{CC} = 5.25V, V_{IN} = 0.4V$			-1.6	mA
Supply Current — Logical "0" (Each Gate)	$V_{CC} = 5.25V, V_{IN} = 5.0V$		3.0	5.1	mA
Supply Current — Logical "1" (Each Gate)	$V_{CC} = 5.25V, V_{IN} = 0V$		1.0	1.8	mA
Propagation Delay Time to a Logical "0", t _{pd0}	$V_{CC} = 5.0V$, $T_A = 25^{\circ}C$ $C_{OUT} = 15 \text{ pF}$, $R_L = 1 \text{k}$	4	12	18	ns
Propagation Delay Time to a Logical "1", t _{pd1}	$V_{CC} = 5.0V$, $T_A = 25^{\circ}C$ $C_{OUT} = 15 pF$, $R_L = 1k$	18	29	45	ns

Note 1: Min/Max units apply across the guaranteed temperature range of 0° C to 70° C unless otherwise specified. All typicals are given for V_{CC} = 5.0V and T_{A} = 25° C.

typical performance characteristics

Transition Time to a Logical "O" (tpdO) vs Temperature

24
21
22
24
21
25
26
27
28
29
30
40
50
60
70
80
90
TEMPERATURE (°C)

ac test circuit

switching time waveform

typical applications

