DM9318 Priority Encoders

General Description

These TTL encoders feature priority decoding of the input data to ensure that only the highest-order data line is encoded. All inputs are buffered to represent one normalized Series 54/74 load. The DM9318 and DM8318 encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input E1 and enable output E0) has been provided to allow octal expansion without the need for external circuitry. For all types, data inputs and outputs are active at the low logic level.

Features

- Pin for pin with popular DM54148/74148
- Encodes 8 data lines to 3-line binary (octal)

TL/F/6607-1

- Applications include: N-bit encoding Code converters and generators
- Typical data delay 10 ns
- Typical power dissipation 190 mW

Connection Diagram

Order Number DM9318J, DM9318N or DM9318W See NS Package Number J16A, N16E or W16A

Function Table

	Inputs					Outputs							
E1	0	1	2	3	4	5	6	7	A2	A1	A0	GS	EO
н	x	х	х	х	х	х	х	х	н	н	н	н	н
L	н	н	н	н	н	н	н	н	н	н	н	н	L
L	X	х	х	х	х	х	х	L	L	L	L	L	н
L	x	х	х	х	х	х	L	н	L	L	н	L	н
L	x	х	х	х	Х	L	н	н	L	н	L	L	н
L	x	х	х	х	L	н	н	н	L	н	н	L	н
L	X	х	х	L	н	н	н	Η.	н	L	L	L	н
L	x	х	L	н	н	н	н	н	н	L	н	L	н
L	X	L	н	н	н	н	н	н	н	н	L	L	н
L	L	н	н	н	н	н	н	н	н	н	н	L	н
H - High				vol X - D	on't Caro				•			·	

c Level, X

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
Military	-55°C to +125°C
Commercial	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Military			Commercia	al	Unite
Cymbol	T arameter	Min	Nom	Max	Min	Nom	Max	Onito
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High Level Input Voltage	2			2			v
VIL	Low Level Input Voltage			0.8			0.8	v
I _{OH}	High Level Output Current			-0.8			-0.8	mA
IOL	Low Level Output Current			16			16	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Condit	ions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I =	= - 12 mA			-1.5	v
V _{OH}	High Level Output Voltage	V _{CC} = Min, I _{OF} V _{IL} = Max, V _{IH}	_i = Max = Min	2.4			v
V _{OL}	Low Level Output Voltage	V _{CC} = Min, I _{OL} V _{IH} = Min, V _{IL}	= Max = Max			0.4	v
11	Input Current @ Max Input Voltage	V _{CC} = Max, V _I	= 5.5V			1	mA
lін	High Level Input	V _{CC} = Max	0 Input			40	μA
	Current	$V_{I} = 2.4V$	Others			80	μ
Ι _Ι	Low Level Input	V _{CC} = Max	0 Input			-1.6	mΔ
	Current	$V_{I} = 0.4V$	Others			-3.2	11// \
los	Short Circuit	V _{CC} = Max	MIL	-35		-85	m۵
	Output Current	(Note 2)	СОМ	-35		-85	
ICC1	Supply Current Condition 1	V _{CC} = Max, (N	ote 3)		35	55	mA
ICC2	Supply Current Condition 2	V _{CC} = Max, (N	ote 4)		40	60	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time.

Note 3: I_{CC1} is measured with all inputs and outputs open.

Note 4: I_{CC2} is measured with inputs 7 and EI grounded and outputs open.

Symbol	Parameter	From (Input)	$R_L = 400\Omega$	Imite	
	Falancici	To (Output)	Min	Max	
t _{PLH}	Propagation Delay Time Low to High Level Output	0 thru 7 to ABCD In Phase		15	ns
tPHL	Propagation Delay Time High to Low Level Output	0 thru 7 to ABCD In Phase		14	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	0 thru 7 to ABCD Out of Phase		19	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	0 thru 7 to ABCD Out of Phase		19	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	0 thru 7 to E0 Out of Phase		9	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	0 thru 7 to E0 Out of Phase		21	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	0 thru 7 to GS In Phase		27	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	0 thru 7 to GS In Phase		21	ns
^t PLH	Propagation Delay Time Low to High Level Output	El to A0, 1, 2 In Phase		15	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	El to A0, 1, 2 In Phase		15	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	El to GS In Phase		12	ns
^t PHL	Propagation Delay Time High to Low Level Output	El to GS In Phase		15	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	El to E0 In Phase		15	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	EI to E0 In Phase		26	ns

9318

