
DP8344B

DP8344B Biphase Communications Processor-BCP(RM)

Literature Number: SNOSC22A

TL/F/9336

D
P
8
3
4
4
B

B
ip

h
a
s
e

C
o
m

m
u
n
ic

a
tio

n
s

P
ro

c
e
s
s
o
rÐ

B
C

P

November 1991

DP8344B Biphase Communications ProcessorÐBCPÉ
General Description
The DP8344B BCP is a communications processor de-

signed to efficiently process IBMÉ 3270, 3299 and 5250

communications protocols. A general purpose 8-bit protocol

is also supported.

The BCP integrates a 20 MHz 8-bit Harvard architecture

RISC processor, and an intelligent, software-configurable

transceiver on the same low power microCMOS chip. The

transceiver is capable of operating without significant proc-

essor interaction, releasing processor power for other tasks.

Fast and flexible interrupt and subroutine capabilities with

on-chip stacks make this power readily available.

The transceiver is mapped into the processor’s register

space, communicating with the processor via an asynchro-

nous interface which enables both sections of the chip to

run from different clock sources. The transmitter and receiv-

er run at the same basic clock frequency although the re-

ceiver extracts a clock from the incoming data stream to

ensure timing accuracy.

The BCP is designed to stand alone and is capable of imple-

menting a complete communications interface, using the

processor’s spare power to control the complete system.

Alternatively, the BCP can be interfaced to another proces-

sor with an on-chip interface controller arbitrating access to

data memory. Access to program memory is also possible,

providing the ability to download BCP code.

A simple line interface connects the BCP to the communica-

tions line. The receiver includes an on-chip analog compar-

ator, suitable for use in a transformer-coupled environment,

although a TTL-level serial input is also provided for applica-

tions where an external comparator is preferred.

A typical system is shown below. Both coax and twinax line

interfaces are shown, as well as an example of the (option-

al) remote processor interface.

Features
Transceiver
Y Software configurable for 3270, 3299, 5250 and general

8-bit protocols
Y Fully registered status and control
Y On-chip analog line receiver

Processor
Y 20 MHz clock (50 ns T-states)
Y Max. instruction cycle: 200 ns
Y 33 instruction types (50 total opcodes)
Y ALU and barrel shifter
Y 64k x 8 data memory address range
Y 64k x 16 program memory address range

(note: typical system requires k2k program memory)
Y Programmable wait states
Y Soft-loadable program memory
Y Interrupt and subroutine capability
Y Stand alone or host operation
Y Flexible bus interface with on-chip arbitration logic

General
Y Low power microCMOS; typ. ICC e 25 mA at 20 MHz
Y 84-pin plastic leaded chip carrier (PLCC) package

Block Diagram
Typical BCP System

TL/F/9336–51
FIGURE 1

BCPÉ and TRI-STATEÉ are registered trademarks of National Semiconductor Corporation.
IBMÉ is a registered trademark of International Business Machines Corporation.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.

Obs
ole

te

The DP8344B is an enhanced version of the DP8344A, exhibiting improved switching performance and additional

functionality. The device has been been characterized in a number of applications and found to be a compatible

replacement for the DP8344A. Differences between the DP8344A and DP8344B are noted by shading of the text on the

pages of this data sheet. For more information, refer to Section 6.6.

Note: In this document [XXX] denotes a control or status bit in a register, ÀYYYÓ denotes a register.

Table of Contents

1.0 COMMUNICATIONS PROCESSOR OVERVIEW

1.1 Communications Protocols

1.2 Internal Architecture Overview

1.3 Timing Overview

1.4 Data Flow

1.5 Remote Interface Overview

2.0 CPU DESCRIPTION

2.1 CPU Architectural Description

2.1.1 Register Set

2.1.1.1 Banked Registers

2.1.1.2 Timing Control Registers

2.1.1.3 Interrupt Control Registers

2.1.1.4 Timer Registers

2.1.1.5 Transceiver Registers

2.1.1.6 Condition Code/Remote Handshaking

Register

2.1.1.7 Index Registers

2.1.1.8 Stack Registers

2.1.2 Timer

2.1.2.1 Timer Operation

2.1.3 Instruction Set

2.1.3.1 Harvard Architecture Implications

2.1.3.2 Addressing Modes

2.1.3.3 Instruction Set Overview

2.2 Functional Description

2.2.1 ALU

2.2.2 Timing

2.2.3 Interrupts

2.2.4 Oscillator

3.0 TRANSCEIVER

3.1 Transceiver Architectural Description

3.1.1 Protocols

3.1.1.1 IBM 3270

3.1.1.2 IBM 3299

3.1.1.3 IBM 5250

3.1.1.4 General Purpose 8-Bit

3.2 Transceiver Functional Description

3.2.1 Transmitter

3.2.2 Receiver

3.2.3 Transceiver Interrupts

3.2.4 Protocol Modes

3.2.5 Line Interface

3.2.5.1 3270 Line Interface

3.2.5.2 5250 Line Interface

4.0 REMOTE INTERFACE AND ARBITRATION SYSTEM

(RIAS)

4.1 RIAS Architectural Description

4.1.1 Remote Arbitration Phases

4.1.2 Access Types

4.1.3 Interface Modes

4.1.4 Execution Control

4.2 RIAS Functional Description

4.2.1 Buffered Read

4.2.2 Latched Read

4.2.3 Slow Buffered Write

4.2.4 Fast Buffered Write

4.2.5 Latched Write

4.2.6 Remote Rest Time

2

Obs
ole

te

Table of Contents (Continued)

5.0 DEVICE SPECIFICATIONS

5.1 Pin Description

5.1.1 Timing/Control Signals

5.1.2 Instruction Memory Interface

5.1.3 Data Memory Interface

5.1.4 Transceiver Interface

5.1.5 Remote Interface

5.1.6 External Interrupts

5.2 Absolute Maximum Ratings

5.3 Operating Conditions

5.4 Electrical Characteristics

5.5 Switching Characteristics

5.5.1 Definitions

5.5.2 Timing Tables and Figures

6.0 REFERENCE SECTION

6.1 Instruction Set Reference

6.2 Register Set Reference

6.2.1 Bit Index

6.2.2 Register Description

6.2.3 Bit Definition Tables

6.2.3.1 Processor

6.2.3.2 Transceiver

6.3 Remote Interface Reference

6.4 Development Tools

6.4.1 Assembler System

6.4.2 Development Kit

6.4.3 Multi-Protocol Adapter Design/Evaluation Kit

6.4.4 Inverse Assembler

6.5 3rd Party Suppliers

6.5.1 Crystal

6.5.2 System Development Tools

6.6 DP8344A Compatibility Guide

6.6.1 CPU Timing Changes

6.6.2 Additional Functionality

6.6.2.1 4 T-state Read

6.6.2.2 A/AD Reset State

6.6.2.3 RIC

6.6.2.4 Transceiver

6.7 Reported Bugs

6.7.1 History

6.7.2 LJMP, LCALL Address Decode

6.7.2.1 Suggested Work-around

6.8 Glossary

6.9 Physical Dimensions

3

Obs
ole

te

List of Illustrations

Block Diagram of Typical BCP System ÀÀ1

Biphase EncodingÀÀ1-1

IBM 3270 Message FormatÀÀ1-2

Simplified Block DiagramÀÀ1-3

Memory Configuration ÀÀ1-4

Effect of Memory Wait States on TimingÀÀÀ1-5

Register to Register Internal Data Flow ÀÀ1-6a

Data Memory WRITE Data Flow ÀÀ1-6b

Data Memory READ Data Flow ÀÀÀ1-6c

WRITE to Transmitter Data Flow ÀÀ1-6d

READ from Receiver Data FlowÀÀÀ1-6e

Load Immediate Data Data FlowÀÀÀ1-6f

Basic Remote Interface ÀÀÀ1-7

Register Map ÀÀ2-1

Timer Block Diagram ÀÀÀ2-2

Timer Interrupt DiagramÀÀÀ2-3

Index Register MapÀÀÀ2-4

Coding Examples of Equivalent Conditional Jump Instructions ÀÀÀ2-5

JRMK Instruction Example ÀÀ2-6

Condition Code Register ALU Flags ÀÀ2-7

Carry and Overflow Calculations ÀÀÀ2-8

Shifts’ Effect on Carry ÀÀ2-9

Rotates’ Effect on Carry ÀÀÀ2-10

Multi-Byte Arithmetic Instruction Sequences ÀÀ2-11

CPU-CLK Synchronization with X1 ÀÀ2-12

Changing from OCLK/2 to OCLKÀÀ2-13

Two T-state Instruction ÀÀ2-14

Three T-state Instruction ÀÀÀ2-15

Three T-state Data Memory Write Instruction ÀÀÀ2-16

Three T-state Data Memory Read Instruction ÀÀÀ2-17

Four T-state Data Memory Read Instruction ÀÀ2-18

Four T-state Program Control Instruction ÀÀÀ2-19

Four T-state Two Word Instruction ÀÀ2-20

Data Memory Write with One Wait State ÀÀÀ2-21

Data Memory Read with One Wait State ÀÀÀ2-22

Data Memory Read with Two Wait States ÀÀ2-23

Two T-state Instruction with Two Wait States ÀÀÀ2-24

Four T-state Instruction with One Wait State ÀÀ2-25

Data Memory Access Wait TimingÀÀÀ2-26

Two T-state Instruction WAIT Timing ÀÀ2-27

Three T-state Program Control Instruction WAIT Timing ÀÀ2-28

Four T-state Program Control Instruction WAIT Timing ÀÀÀ2-29

LOCK Timing ÀÀÀ2-30

LOCK Timing with One Wait StateÀÀÀ2-31

CPU Start-Up Timing ÀÀ2-32

Functional State Diagram of CPU Timing ÀÀÀ2-33

Interrupt TimingÀÀÀ2-34

DP8344B Operation with Crystal ÀÀ2-35

DP8344B Operation with External Clock ÀÀÀ2-36

4

Obs
ole

te

List of Illustrations (Continued)

System Block Diagram, Showing Details of Line Interface ÀÀÀ3-1

Biphase EncodingÀÀ3-2

3270/3299 Protocol Framing Format ÀÀÀ3-3

5250 Protocol Framing FormatÀÀÀ3-4

General Purpose 8-Bit Protocol Framing FormatÀÀ3-5

Block Diagram of Transceiver, Showing CPU Interface ÀÀ3-6

Transmitter Output ÀÀÀ3-7

Timing of Receiver Flags Relative to Incoming Data ÀÀ3-8

3270, 3299 Frame Assembly/Disassembly DescriptionÀÀ3-9

5250 Frame Assembly/Disassembly Description ÀÀ3-10

General Purpose 8-Bit Frame Assembly/Disassembly DescriptionÀÀÀ3-11

BCP Receiver DesignÀÀ3-12

BCP Driver Design ÀÀ3-13

BCP Coax/Twisted Pair Front End ÀÀ3-14

5250 Line Interface SchematicÀÀ3-15

Remote Interface ProcessorÀÀÀ4-1

Remote Interface Control Register ÀÀÀ4-2

Generic Remote Access ÀÀ4-3

Generic RIC Access ÀÀ4-4

Memory Select Bits in ÀRICÓÀÀÀ4-5

Generic DMEM Access ÀÀÀ4-6

Generic PC AccessÀÀÀ4-7

Generic IMEM Access ÀÀ4-8

Read from Remote Processor ÀÀÀ4-9

Buffered Write from Remote Processor ÀÀ4-10

Latched Write from Remote ProcessorÀÀÀ4-11

Minimum BCP/Remote Processor Interface ÀÀ4-12

Interface Mode Bits ÀÀÀ4-13

Flow Chart of Buffered Read ModeÀÀ4-14

Buffered Read of Data Memory by Remote Processor ÀÀÀ4-15

Flow Chart of Latched Read Mode ÀÀ4-16

Latched Read of Data Memory by Remote ProcessorÀÀ4-17

Flow Chart of Slow Buffered Write Mode ÀÀÀ4-18

Slow Buffered Write to Data Memory by Remote ProcessorÀÀÀ4-19

Flow Chart of Fast Buffered Write ModeÀÀ4-20

Fast Buffered Write to Data Memory by Remote Processor ÀÀÀ4-21

Flow Chart of Latched Write Mode ÀÀ4-22

Latched Write to Data Memory by Remote Processor ÀÀ4-23

Mistaking Two Remote Accesses as Only OneÀÀ4-24

Remote Rest Time for All Modes Except Latched Write ÀÀ4-25

Rest Time for Latched Write Mode ÀÀ4-26

DP8344B Top ViewÀÀÀ5-1

Switching Characteristic Measurement Waveforms ÀÀÀ5-2

Data Memory Read Timing ÀÀ5-3

Data Memory Write Timing ÀÀ5-4

Instruction Memory Timing ÀÀ5-5

Clock Timing ÀÀ5-6

5

Obs
ole

te

List of Illustrations (Continued)

Transceiver Timing ÀÀÀ5-7

Analog and DATA-IN TimingÀÀÀ5-8

Interrupt Timing ÀÀ5-9

Control Pin Timing ÀÀ5-10

Buffered Read of PC, RIC ÀÀ5-11

Buffered Read of DMEM ÀÀÀ5-12

Buffered Read of IMEMÀÀ5-13

Latched Read of PC, RIC ÀÀ5-14

Latched Read of DMEM ÀÀÀ5-15

Latched Read of IMEM ÀÀ5-16

Slow Buffered Write of PC, RIC ÀÀÀ5-17

Slow Buffered Write of DMEM ÀÀ5-18

Slow Buffered Write of IMEM ÀÀÀ5-19

Fast Buffered Write of PC, RICÀÀ5-20

Fast Buffered Write of DMEMÀÀÀ5-21

Fast Buffered Write of IMEM ÀÀÀ5-22

Latched Write of PC, RICÀÀÀ5-23

Latched Write of DMEM ÀÀÀ5-24

Latched Write of IMEM ÀÀ5-25

Remote Rest Times ÀÀÀ5-26

Remote Interface WAIT Timing ÀÀÀ5-27

WAIT Timing after Remote Access ÀÀ5-28

Instruction Memory Bus Timing for 2 T-state Instructions ÀÀ6-1

Instruction Memory Bus Timing for 3 T-state Instructions ÀÀ6-2

Instruction Memory Bus Timing for (2a2) T-state InstructionsÀÀ6-3

Instruction Memory Bus Timing for 4 T-state Instructions ÀÀ6-4

Instruction/Data Memory Bus Timing for Data Memory Read [4TR] e 0ÀÀÀ6-5

Instruction/Data Memory Bus Timing for Data Memory Read [4TR] e 1ÀÀÀ6-6

Instruction/Data Memory Bus Timing for Data Memory WriteÀÀÀ6-7

List of Tables
Register Addressing Mode Notations ÀÀÀ2-1

Immediate Addressing Mode Notations ÀÀÀ2-2

Index Register Addressing Mode NotationsÀÀ2-3

Relative Index Register Mode NotationsÀÀÀ2-4

Data Movement NotationsÀÀÀ2-5

Integer Arithmetic Instruction ÀÀ2-6

Logic Instructions ÀÀ2-7

Shift and Rotate InstructionsÀÀÀ2-8

Comparison Instructions ÀÀ2-9

Unconditional Jump Instructions ÀÀ2-10

Conditional Relative Jump InstructionsÀÀÀ2-11

‘‘f’’ FlagsÀÀÀ2-12

‘‘cc’’ Conditions Tested ÀÀ2-13

Conditional Absolute Jump Instructions ÀÀ2-14

JRMK Instruction ÀÀÀ2-15

Unconditional Call InstructionsÀÀ2-16

Conditional Call Instructions ÀÀ2-17

Unconditional Return Instruction ÀÀ2-18

Conditional Return Instruction ÀÀ2-19

TRAP InstructionÀÀ2-20

EXX Instruction ÀÀÀ2-21

6

Obs
ole

te

List of Tables (Continued)

Unsigned Comparison Results ÀÀ2-22

Signed Comparison Results ÀÀ2-23

Data Memory Wait States ÀÀ2-24

Instruction Memory Wait States ÀÀÀ2-25

BIRQ Control Summary ÀÀ2-26

ÀICRÓ Interrupt Mask Bits and Interrupt PriorityÀÀ2-27

Interrupt Vector Generation ÀÀ2-28

Recommended Crystal ParametersÀÀ2-29

Protocol Mode Definitions ÀÀÀ3-1

Transceiver Interrupts ÀÀ3-2

Receiver Interrupts ÀÀÀ3-3

Decode of 3270 Coax CommandsÀÀ3-4

RIAS Inputs and Outputs ÀÀ4-1

Note: To match Timing table number with appropriate Timing illustration, Tables 5-1 and 5-2 are purposely omitted.

Data Memory Read Timing ÀÀ5-3

Data Memory Write Timing ÀÀ5-4

Instruction Memory Timing ÀÀ5-5

Clock Timing ÀÀ5-6

Transceiver Timing ÀÀÀ5-7

Analog and DATA-IN TimingÀÀÀ5-8

Interrupt Timing ÀÀ5-9

Control Pin Timing ÀÀ5-10

Buffered Read of PC, RIC ÀÀ5-11

Buffered Read of DMEM ÀÀÀ5-12

Buffered Read of IMEMÀÀ5-13

Latched Read of PC, RIC ÀÀ5-14

Latched Read of DMEM ÀÀÀ5-15

Latched Read of IMEM ÀÀ5-16

Slow Buffered Write of PC, RIC ÀÀÀ5-17

Slow Buffered Write of DMEM ÀÀ5-18

Slow Buffered Write of IMEM ÀÀÀ5-19

Fast Buffered Write of PC, RICÀÀ5-20

Fast Buffered Write of DMEMÀÀÀ5-21

Fast Buffered Write of IMEM ÀÀÀ5-22

Latched Write of PC, RICÀÀÀ5-23

Latched Write of DMEM ÀÀÀ5-24

Latched Write of IMEM ÀÀ5-25

Remote Rest Times ÀÀÀ5-26

Remote Interface WAIT Timing ÀÀÀ5-27

WAIT Timing after Remote Access ÀÀ5-28

Notational Conventions for Instruction SetÀÀÀ6-1

Instructions vs T-states, Affected Flags and Bus Timing ÀÀÀ6-2

Instruction Opcodes ÀÀ6-3

DP8344B Application Notes ÀÀÀ6-4

7

Obs
ole

te

1.0 Communications Processor Introduction
The increased demand for computer connectivity has driven

National Semiconductor to develop the next generation of

special purpose microprocessors. The DP8344B is the first

example of a ‘‘Communications Processor’’ for the IBM en-

vironment. It integrates a very fast, full function microproc-

essor with highly specialized transceiver circuitry. The com-

bination of speed, power, and features allows the designer

to easily implement a state-of-the-art communications inter-

face. Typical applications for a communications processor

are terminal emulation boards for PCs, stand-alone termi-

nals, printer interfaces, and cluster controllers.

The transceiver is designed to simplify the handling of spe-

cific communication protocols. This feature makes it possi-

ble to quickly develop interfaces and software with little con-

cern for the ‘‘housekeeping’’ details of the protocol being

used.

1.1 COMMUNICATIONS PROTOCOLS

A communication protocol is a set of rules which defines the

physical, electrical, and software specifications required to

successfully transfer data between two systems.

The physical specification includes the network architec-

ture, as well as the type of connecting medium, the connec-

tors used, and the maximum distance between connections.

Networks may be configured in ‘‘loops,’’ ‘‘stars,’’ or ‘‘daisy

chains,’’ and they often use standard coaxial or twisted-pair

cable.

The electrical specification includes the polarity and ampli-

tude of the signal, the frequency (bit rate), and encoding

technique. One common method of encoding is called ‘‘bi-

phase’’ or ‘‘Manchester II.’’ This technique combines the

clock and data information into one transmission by encod-

ing data as a ‘‘mid-bit’’ transition. Figure 1-1 shows how the

data transition is related to the bit boundary in a typical

transmission. The polarity of the ‘‘mid-bit’’ transition en-

codes the data value, other transitions lie on bit boundaries.

Bit boundaries are not always indicated by transitions, so

techniques employing start sequences and sync bits are

used with bi-phase transmissions to ensure proper frame

alignment and synchronization.

The software specification covers the use of start se-

quences and sync bits, as well as defining the message

format. Parity bits may be used to ensure data integrity. The

message format is the ‘‘language’’ that is used to exchange

information across the connecting medium. It defines com-

mand and control words, response times, and expected re-

sponses.

The DP8344B Bi-phase Communications Processor sup-

ports both the IBM 3270 and 5250 communication proto-

cols, as well as IBM 3299 and a general purpose 8-bit proto-

col. The specialized transceiver is combined with a micro-

processor whose instruction set is optimized for use in a

communications environment. This makes the DP8344 a

powerful single-chip solution to a wide range of communica-

tion applications.

An example of an IBM 3270 message is shown in Figure
1-2 . The transmission begins with a very specific start se-

quence and sync pulse for synchronization. This is followed

by the data, command, and parity bits. Finally, the end se-

quence defines the end of the transmission.

The IBM 3270 and 5250 are two widely used protocols. The

3270 protocol was developed for the 370 class mainframe,

and it employs coaxial cable in a ‘‘star’’ configuration. The

5250 protocol was developed for the System/3x machines,

and it uses a ‘‘daisy-chain’’ of twin-ax cable. A good over-

view of both of these environments may be found in the

‘‘Multi-Protocol Adapter System User Guide’’ from National

Semiconductor, and in the Transceiver section of this docu-

ment.

TL/F/9336–B7

FIGURE 1-1. Biphase Encoding

TL/F/9336–B8

FIGURE 1-2. IBM 3270 Message Format

8

Obs
ole

te

1.0 Communications Processor Introduction (Continued)

1.2 INTERNAL ARCHITECTURE INTRODUCTION

The DP8344B Biphase Communications Processor (BCP) is

divided into three major functional blocks: the Transceiver,

the Central Processing Unit (CPU), and the Remote Inter-

face and Arbitration System, RIAS. Figure 1-3 shows how

these blocks are related to each other and to other system

components.

The transceiver consists of an asynchronous transmitter

and receiver which can communicate across a serial data

path. The transmitter takes parallel data from the CPU and

appends to it the appropriate framing information. The re-

sulting message is shifted out and is available as a serial

data stream on two output pins. The receiver shifts in serial

messages, strips off the framing information, and makes the

data available in parallel form to the CPU. The framing infor-

mation supplied by the BCP provides the proper message

format for several popular communication protocols. These

include IBM 3270, 3299, and 5250, as well as a general

purpose 8-bit mode.

The transceiver clock may be derived from the internal os-

cillator, either directly or through internal divide-down circuit-

ry. There is also an input for an external transceiver clock,

thus allowing complete flexibility in the choice of data rates.

The receiver input can come from three possible sources.

There is a built-in differential amplifier which is suitable for

most line interfaces, a single-ended digital input for use with

an external comparator, and an internal loopback path for

self testing. Refer to the Transceiver section for a detailed

description of all transmitter and receiver functions, and to

the application note on coax interfaces for the proper use of

the differential amplifier.

The CPU is a general purpose, 8-bit microprocessor capa-

ble of 20 MHz operation. It has a reduced instruction set

which is optimized for transceiver and data handling per-

formance. It also has a full function arithmetic/logic unit

(ALU) which performs addition, subtraction, Boolean opera-

tions, rotations and shifts. Separate instruction and data

memory systems are supported, each with 16-bit address

buses, for a total of 64k address space in each.

There are 44 internal registers accessible to the CPU.

These include special configuration and control registers for

the transceiver and processor, four 16-bit indices to data

memory, and 20 8-bit general purpose registers. There is

also a 16-bit timer and a 16-byte deep LIFO data stack

which are accessible in the register address space. For

more detailed information, see the specific sections on the

Register set, the Timer, and the ALU.

The BCP can operate independently or with another proces-

sor as the host system. If such a system is required, com-

munication with the BCP is possible by sharing data memo-

ry. The Remote Interface controls bus arbitration and ac-

cess to data memory, as well as program up-loading and

execution. For example, it is possible for a host system to

load the BCP’s instruction memory and begin program exe-

cution, then pass data back and forth through data memory

accesses. The section on the Remote Interface and Arbitra-

tion System provides all of the necessary timing and control

information to implement an interface between a BCP and a

remote system.

As shown in Figure 1-4, the BCP uses two entirely separate

memory systems, one for program storage and the other for

data storage. This type of memory arrangement is referred

to as Harvard architecture. Each system has 16 address

lines, for a maximum of 64k words in each, and its own set

of data lines. The instruction (program) memory is two bytes

(16 bits) wide, and the data memory is one byte (8 bits)

wide.

In order to reduce the number of pins required for these

signals, the address and data lines for data memory are

multiplexed together. This requires an external latch and the

Address Latch Enable signal (ALE) for de-multiplexing.

TL/F/9336–B9

FIGURE 1-3. Simplified Block Diagram

9

Obs
ole

te

1.0 Communications Processor Introduction (Continued)

Simultaneous access to both data and program memory,

and instruction pipelining greatly enhance the speed per-

formance of the BCP, making it well suited for real-time pro-

cessing. The pipeline allows the next instruction to be re-

trieved from program memory while the current instruction is

being executed.

1.3 TIMING INTRODUCTION

The timing of all CPU operations, instruction execution and

memory access is related to the CPU clock. This clock is

usually generated by a crystal and the internal oscillator,

with optional divide by two circuitry. The period of the result-

ing CPU clock is referred to as a T-state; for example, a

20 MHz CPU clock yields a 50 ns T-state. Most CPU func-

tions, such as arithmetic and logical operations, shifts and

rotates, and register moves, require only two T-states.

Branching instructions and data memory accesses require

three to four T-states.

Each memory system has a separate, programmable num-

ber of wait states to allow the use of slower memory devic-

es. Instruction memory wait states are inserted into all in-

structions, as shown in Figure 1-5, thus they affect the

overall speed of program execution. Instruction memory

wait states can also apply when the Remote Interface is

loading a program into instruction memory. Data memory

wait states are only inserted into data memory access in-

structions, hence there is less degradation in overall pro-

gram execution. Refer to the Timing section for detailed ex-

amples of all BCP instruction and data memory timing.

TL/F/9336–C1

FIGURE 1-4. Memory Configuration

TL/F/9336–C2

FIGURE 1-5. Effect of Memory Wait States on Timing

10

Obs
ole

te

1.0 Communications Processor Introduction (Continued)

1.4 DATA FLOW

The CPU registers are all dual port, that is, they have sepa-

rate input and output paths. This arrangement allows a sin-

gle register to function as both a source and a destination

within the same instruction.

Figures 1-6a through 1-6f show the internal data flow path

for the BCP. The CPU registers are a central element to this

path. When a register functions as an output, its contents

are placed on the Source bus. When a register is an input,

data from the Destination bus is written into that register.

The other key element in the data path is the ALU. This unit

does all of the arithmetic and data manipulation operations,

but it also has bus multiplexing capabilities. Both the Data

Memory bus and a portion of the Instruction Memory bus

are routed to this unit and serve as alternative sources of

data. Since the data flow is always through this unit, most

data moves may include arithmetic manipulations with no

penalty in execution time.

Figure 1-6a shows the data path for all arithmetic instruc-

tions and register to register moves. The source register

contents are placed on the Source bus, routed through the

TL/F/9336–C3 TL/F/9336–C4

TL/F/9336–C5

FIGURE 1-6a. Register to Register FIGURE 1-6b. Data Memory WRITE FIGURE 1-6c. Data Memory READ

TL/F/9336–C6 TL/F/9336–C7 TL/F/9336–C8

FIGURE 1-6d. WRITE to Transmitter FIGURE 1-6e. READ from Receiver FIGURE 1-6f. Load Immediate Data

11

Obs
ole

te

1.0 Communications Processor Introduction (Continued)

ALU/MUX, and then placed on the destination bus. This

data is then stored into the appropriate destination register.

Figures 1-6b and 1-6c show the data path for data memory

accesses. For a WRITE operation, the source register con-

tents follow the same path through the ALU/MUX, but the

Destination bus is routed to output pins and on to data

memory. For a READ operation, incoming data is routed

onto the Destination bus by the ALU/MUX, and then stored

in a register. The address for all data memory accesses is

provided by one of four 16-bit index registers which can

operate in a variety of automatic increment and decrement

modes.

Transfer of the data byte between the CPU and the Trans-

ceiver is accomplished through a register location. This reg-

ister, ÀRTRÓ, appears as a normal CPU register, but writing

to it automatically transfers data to the transmitter FIFO,

and reading from it retrieves data from the receiver FIFO.

These paths are illustrated in Figures 1-6d and 1-6e.

It is also possible to load immediate data into a CPU regis-

ter. This data is supplied by the program and is usually a

constant such as a pointer or character. As shown in Figure
1-6f, a portion of the Instruction bus is routed through the

ALU/MUX for this purpose.

1.5 REMOTE INTERFACE AND ARBITRATION SYSTEM

INTRODUCTION

The BCP is designed to serve as a complete, stand alone

communications interface. Alternately, it can be interfaced

with another processor by means of the Remote Interface

and Arbitration System. Communication between the BCP

and the remote processor is possible by sharing data mem-

ory. Harvard architecture allows the remote system to ac-

cess any BCP data memory location while the BCP contin-

ues to fetch and execute instructions, thereby minimizing

performance degradation.

Figure 1-7 shows a simplified remote processor interface.

This includes tri-state buffers on the address and data bus-

es of the BCP’s Data Memory, and all of the control and

handshaking signals required to communicate between the

BCP and the host system.

There is an 8-bit control register, Remote Interface Control
ÀRICÓ, accessible only to the remote system, which is used

to control a variety of features, including the types of memo-

ry accesses, interface speeds, single step program execu-

tion, CPU start/stop, instruction memory loads, and so forth.

Detailed information on all interface options is provided in

the section on Remote Interface and Arbitration System,

and in the related Reference section.

TL/F/9336–C9

FIGURE 1-7. Basic Remote Interface

12

Obs
ole

te

2.0 CPU Description
The CPU is a general purpose, 8-bit microprocessor capa-

ble of 20 MHz operation. It contains a large register set for

standard CPU operations and control of the transceiver.

The reduced instruction set is optimized for the communica-

tions environment. The following sections are an architec-

tural and functional description of the DP8344B CPU.

2.1 CPU ARCHITECTURAL DESCRIPTION

2.1.1 Register Set

This section describes the BCP’s internal CPU registers. It is

a general overview of the register structure and the func-

tions mapped into the CPU register space. It is not a de-

tailed or exhaustive description of every bit. For such a de-

scription, please refer to Section 6.2, Register Set Refer-

ence. Also, the Remote Interface Configuration register,
ÀRICÓ, is not accessible to the BCP (being accessible only

by the remote system) and is described in Section 6.3, Re-

mote Interface Reference.

The register set of the BCP provides for a compliment of

both special function and general purpose registers. The

special function registers provide access to on-chip periph-

erals (transceiver, timer, interrupt control, etc.) while the

general purpose registers maximize CPU throughput by min-

imizing accesses to external data memory. The CPU can

address a total of 44 8-bit registers, providing access to:

20 general purpose registers

8 configuration and control registers

4 transceiver access registers

2 8-bit accumulators

4 16-bit pointers

16-bit timer

16 byte data stack

address and data stack pointers

The CPU addresses internal registers with a 5-bit field, ad-

dressing 32 locations generically named R0 through R31.

The first twelve locations (R0–R11) are further organized by

function as two groups of banked registers (A and B) as

shown in Figure 2-1. Each group contains both a main and

an alternate bank. Only one bank is active for group A and

one for bank B and thus accessible during program execu-

tion. Switching between the banks is performed by the ex-

change instruction EXX which selects whether Main A or

Alternate A occupies R0–R3 and whether Main B or Alter-

nate B occupies R4–R11.

TL/F/9336–32

FIGURE 2-1. Register Map

13

Obs
ole

te

2.0 CPU Description (Continued)

Registers in the R0–R11 address space are allocated in a

manner that minimizes the need to switch banks:

Main A: CPU control and transceiver status

Alternate A: CPU and transceiver configuration

Main B: 8 general purpose

Alternate B: 4 transceiver access, 4 general purpose

Most of the BCP’s instructions with register operand(s) can

access all 32 register locations. Only instructions with an

immediate operand are limited to the first sixteen register

locations (R0–R15). These instructions, however, still have

access to all registers required for transceiver operation,

CPU status and control registers, 12 general purpose regis-

ters, and two of the index registers.

The general purpose registers are used for the majority of

BCP operations. There are 8 general purpose registers in

Main Bank B (R4–R11), 4 in Alternate Bank B (R8–R11),

and 8 more (R20–R27) that are always accessible but are

outside the limited register range. Since these registers are

internal to the BCP, they can be accessed without data

memory wait states, speeding up processing time. The in-

dex registers may also be used as general purpose registers

if required.

For those instructions that require two operands, an accu-

mulator (R8, one in each bank) serves as the second oper-

and. The result of such an operation is stored back in the

accumulator only if it is specified as the destination, thus

allowing three operand operations such as R5 a

R8xR20. See Section 2.1.3 Instruction Set for further ex-

planation.

Most registers have a predetermined state following a reset

to the BCP. Refer to Section 6.2, Register Set Reference for

a detailed summary.

2.1.1.1 Banked Registers

The CPU register set was designed to optimize CPU per-

formance in an environment which supports multiple tasks.

Generally the most important and time critical of these tasks

will be maintaining the serial link (servicing the transceiver

section) which often requires real time processing of com-

mands and data. Therefore, all transceiver functions have

been mapped into special function registers which the CPU

can access quickly and easily. Switching between this task

and other tasks has been facilitated by dedicating a register

bank (Alternate B) to transceiver functions. Alternate Bank

B provides access to all transceiver status, control, and

data, in addition to four general purpose registers for proto-

col related storage. Main Bank B contains eight general pur-

pose registers for use by other tasks. Having general pur-

pose registers in both B banks allows for quick context

switching and also helps eliminate some of the overhead of

saving general purpose registers. The main objective of this

banked register structure is to expedite servicing of the

transceiver as a background (interrupt driven) task allowing

the CPU to efficiently interleave that function with other

background and foreground operations.

To facilitate using the transceiver in a polled fashion (in-

stead of using interrupts), many of the status flags neces-

sary to handshake with the transceiver are built into the

conditional jump instructions, with others available in the

Main A bank (normally active) so that Alternate Bank B does

not have to be switched in to poll the transceiver. Timer and

BIRQ tasks may also be run using polling techniques to

Main A bank.

In general, the registers have been arranged within the

banks so as to minimize the need to switch banks. The pow-

er-up state is Alternate bank A, Alternate bank B allowing

access to configuration registers. Again, the banks switch

by using the EXX instruction which explicitly specifies which

bank is active (Main or Alternate) for each register group (A

and B). The EXX instruction allows selecting any of four

possible bank settings with a single two T-state instruction.

This instruction also has the option of enabling or disabling

the maskable interrupts.

The contents of the special function registers can be divid-

ed into several groups for general discussionÐtiming/con-

trol, interrupt control, the transceiver, the condition codes,

the index registers, the timer, the stacks, and remote inter-

face.

2.1.1.2 Timing/Control Registers

The BCP provides a means to configure its external timing

through setting bits in the Device Control Register, ÀDCRÓ,

and the Auxiliary Control Register, ÀACRÓ. One of the first

configuration registers to be initialized on power-up/reset is
ÀDCRÓ which defines the hardware environment in which

the BCP is functioning. Specifically, ÀDCRÓ controls the

clock select logic for both the CPU and transceiver, in addi-

tion to the number of wait states to be used for instruction

and data memory accesses.

The BCP allows either one clock source operation for the

CPU and the transceiver from the on-chip oscillator, or an

independent clock source can run the transceiver from the

eXternal Transceiver CLocK input, X-TCLK. The Transceiv-

er Clock Select bits, [TCS1,0], select the clock source for

the transceiver which is either the on-chip Oscillator CLocK,

OCLK, or X-TCLK. Options for selecting divisions of the on-

chip oscillator frequency are also provided (see the descrip-

tion of ÀDCRÓ in Section 6.2, Register Set Reference. The

CPU Clock Select bit, [CCS], allows the CPU to run at the

OCLK frequency or at half that speed. The clock output at

the pin CLK-OUT, however, is never divided and always re-

flects the crystal frequency OCLK. The frequency selected

for the transceiver (referred to as TCLK) should always be

eight times the desired serial data rate. The frequency se-

lected for the CPU defines the length of each T-state (e.g.,

20 MHz implies 50 ns T-states).

There are two independent fields for defining wait states,

one for instruction memory access (nIW) and one for data

memory access (nDW). These fields specify to the BCP how

many wait states to insert to meet the access time require-

ments of both memory systems. The Instruction memory

Wait-state select bits, [IW1,0], and the Data memory Wait-

state select bits, [DW2–0], control the number of inserted

wait states for instruction and data memory, respectively.

After a reset, the maximum number of wait states are set in
ÀDCRÓ, nIW e 3 T-states and nDW e 7 T-states. Wait-

states are discussed in more detail in Section 2.2.2, Timing.

For a complete discussion on choosing your memory and

determining the number of wait states required, please refer

to the application note Choosing Your RAM for the Biphase
Communication Processor.

14

Obs
ole

te

2.0 CPU Description (Continued)

Another control bit in the ÀACRÓ register is the Clock Out

Disable bit, [COD]. When [COD] is asserted, the buffered

clock output at pin CLK-OUT is tri-stated.

2.1.1.3 Interrupt Control Registers

The configuration bank (Alternate Bank A) includes an Inter-

rupt Base Register, ÀIBRÓ, which defines the high byte of all

interrupt and trap vector addresses. Thus, the interrupt vec-

tor table can be located in any 256 byte page of the 64k

range of instruction addresses. The interrupt base is nor-

mally initialized once on reset before interrupts are enabled

or any traps are executed. Since NMI is nonmaskable and

may occur before ÀIBRÓ is initialized, the power-up/reset

value of ÀIBRÓ (00h) should be used to accommodate NMI

during initialization. In other words, if NMI is used in the

system, the absolute address 001Ch (the NMI vector)

should contain a jump to an NMI service routine.

The Interrupt Control Register, ÀICRÓ, provides individual

masks [IM4–0] for each of the maskable interrupts. The

Global Interrupt Enable bit, [GIE], located in ÀACRÓ works

in conjunction with these individual masks to control each of

the maskable interrupts.

The external pin called BIRQ is a Bidirectional Interrupt

ReQuest. BIRQ is defined as an input or an output by the

Bidirectional Interrupt Control bit, [BIC], in ÀACRÓ. [IM3]
functions as BIRQ’s interrupt mask if BIRQ is an input as

defines by [BIC]. When [BIC] defines BIRQ as an output,
[IM3] controls the output state of BIRQ.

Section 2.2.3, Interrupts provides a further description of

these registers.

2.1.1.4 Timer Registers

The timer block interfaces with the CPU via two registers,

TimeR Low byte, ÀTRLÓ, and TimeR High byte, ÀTRHÓ,

which form the input/output ports to the timer. Writing to
ÀTRLÓ and ÀTRHÓ stores the low and high byte, respective-

ly, of a 16-bit time-out value into two holding registers. The

word stored in the holding registers is the value that the

timer will be loaded with via [TLD]. Also, the timer will auto-

matically reload this word upon timing out. Reading ÀTRLÓ

and ÀTRHÓ provides access to the count down status of the

timer.

Control of timer operation is maintained via three bits in the

Auxiliary Control Register ÀACRÓ. Timer STart [TST], bit 7

in ÀACRÓ, is the start/stop control bit. Writing a one to
[TST] allows the timer to start counting down from its cur-

rent value. When low, the timer stops and the timer interrupt

is cleared. Timer Load [TLD], bit 6 in ÀACRÓ, is the load

control of the timer. After writing the desired values into
ÀTRLÓ and ÀTRHÓ, writing a one to [TLD] will load the 16-bit

word in the holding registers into the timer and initialize the

timer clock to zero in preparation to start counting. Upon

completing the load operation, [TLD] is automatically

cleared. Timer Clock Selection [TCS], bit 5 in ÀACRÓ, deter-

mines the clock frequency of the timer count down. When

low, the timer divides the CPU clock by sixteen to form the

clock for the down counter. When [TCS] is high, the timer

divides the CPU clock by two. The input clock to the timer is

the CPU clock and should not be confused with the oscilla-

tor clock, OCLK. The rate of the CPU clock will be either

equal to OCLK or one-half of OCLK depending on the value

of bit 7 in the Device Control Register, ÀDCRÓ.

When the timer reaches a count of zero, the timer interrupt

is generated, the Time Out flag, [TO], (bit 7 in the Condition

Code Register ÀCCRÓ), goes high, and the timer reloads the

16-bit word stored in the holding registers to recycle through

a count down. The timer interrupt and [TO] can be cleared

by either writing a one to [TO] in ÀCCRÓ or stopping the

timer by writing a zero to [TST] in ÀACRÓ. Refer to Section

2.1.2, Timer for more information on the timer operation.

2.1.1.5 Transceiver Registers

Two registers in the Alternate A bank initialize transceiver

functions. The Auxiliary Transceiver Register, ÀATRÓ, speci-

fies a station address used by the address recognition logic

within the transceiver when using the non-promiscuous

5250 and 8-bit protocol modes. In 5250 modes, ÀATRÓ also

defines how long the TX-ACT pin stays asserted after the

end of a transmitted message. The Fill Bit Register, ÀFBRÓ,

specifies the number of optional fill bits inserted between

frames in a multiframe 5250 message.

ÀICRÓ contains the Receiver Interrupt Select bits, [RIS1,0].
These bits determine the receiver interrupt source selection.

The source may be either Receiver FIFO Full, Data Avail-

able, or Receiver Active.

The Receive/Transmit Register, ÀRTRÓ, is the input/output

port to both the transmitter and receiver FIFO’s. It appears

to the BCP CPU like any other register. The ÀRTRÓ register

provides the least significant eight bits of data in both re-

ceived and transmitted messages.

The Transceiver Mode Register, ÀTMRÓ, contains bits used

to set the configuration of the transceiver. As long as the

Transceiver RESet bit, [TRES], is high, the transceiver re-

mains in reset. Internal LOOP-back operation of the trans-

ceiver can be selected by asserting [LOOP]. The RePeat

ENable bit, [RPEN], allows the receiver to be active at the

same time as the transmitter. When the Receiver INvert bit,
[RIN], is set, all data sent to the receiver is inverted. The

Transmitter INvert bit, [TIN], is analogous to [RIN] except it

is for the transmitter. The protocol that the transceiver is

using is selected with the Protocol Select bits, [PS2–0].
The Transceiver Command Register, ÀTCRÓ, controls the

workings of the transmitter. To generate 5.5 line quiesce

pulses at the start of a transmission rather than 5, the Ad-

vance Transmitter Active bit, [ATA], must be set high. Parity

is automatically generated on a transmission and the Odd

Word Parity bit, [OWP], determines whether that parity is

even or odd. Bits 2–0 of ÀTCRÓ make up part of the Trans-

mitter FIFO [TF10–8] along with ÀRTRÓ. Whenever a write

is made to ÀRTRÓ, [TF10–8] are automatically pushed on

the FIFO with the 8 bits written to ÀRTRÓ.

Other bits in ÀTCRÓ control the operation of the on-chip

receiver. The number of line quiesce bits the receiver must

detect to recognize a valid message is determined by the

Receive Line Quiesce bit, [RLQ]. The BCP has its own inter-

nal analog comparator, but an off-chip one may be connect-

ed to DATA-IN. The receiver source is determined by the

Select Line Receiver bit, [SLR]. To view transceiver errors

in the Error Code Register, ÀECRÓ, the Select Error Codes,
[SEC], bit in ÀTCRÓ must be set high. When [SEC] is high,

Alternate Bank B R4 is remapped from ÀRTRÓ to ÀECRÓ so

that ÀECRÓ can be read.

15

Obs
ole

te

2.0 CPU Description (Continued)

Just as [TF10–8] bits get pushed onto the transmitter FIFO

when a write to ÀRTRÓ occurs, the Receiver FIFO bits,
[RF10–8], in the Transceiver Status Register, ÀTSRÓ, re-

flect the state of the top word of the receive FIFO. ÀTSRÓ

also contains flags that show Transmit FIFO Full, [TFF],
Transmitter Active, [TA], Receiver Error, [RE], Receiver Ac-

tive, [RA], and Data AVailable, [DAV]. These flags may be

polled to determine the state of the transceiver. For in-

stance, during a Receiver Active interrupt, the BCP can que-

ry the [DAV] bit to determine whether data is ready in the

receiver FIFO yet.

The Error Code Register, ÀECRÓ, contains flags for receiver

errors. As previously stated, the [SEC] bit in ÀTRCÓ must be

set high to read this register. Reading ÀECRÓ or resetting

the transceiver with [TRES] will clear all the errors that are

present. The receiver OVerFlow flag, [OVF], is set when the

receiver attempts to add another word to the FIFO when it is

full. If internally checked parity and parity transmitted with a

3270 message conflict, then the PARity error bit, [PAR], is

set high. The Invalid Ending Sequence bit, [IES], is set

when the ending sequence in a 3270, 3299, or 8-bit mes-

sage is incorrect. When the expected mid-bit transition in

the Manchester waveform does not occur, a Loss of Mid-Bit

Transition occurs ([LMBT]). Finally, if the transmitter is acti-

vated while the receiver is active, the Receiver DISabled

while active flag, [RDIS], will be set unless [RPEN] is as-

serted.

The second register in Main A bank is called the Network

Command Flag register, ÀNCFÓ, and contains information

about the transceiver which is useful for polling the trans-

ceiver (during other tasks for example) to see if it needs

servicing. These flags include bits to indicate Transmit FIFO

Empty [TFE], Receive FIFO Full [RFF], Line Active [LA],
and a Line Turn Around [LTA]. [LTA] indicates that a mes-

sage has been received without error and a valid ending

sequence has occurred. These flags facilitate polling of the

transceiver section when transceiver interrupts are not

used. Also included in this register is a bit called [DEME]
(Data Error/Message End). In 3270/3299 modes, this bit

indicates a mismatch between received and locally generat-

ed byte parity. In 5250 modes, [DEME] decodes an end of

message indicator (111 in the address field). Three other

bits: Received Auto Response [RAR], Acknowledge [ACK]
and Poll [POLL] are decoded from a received message (at

the output of the receive FIFO) and are valid only in 3270/

3299 modes where response time is critical.

Section 3.0 Transceiver provides comprehensive coverage

of this on-chip peripheral.

2.1.1.6 Condition Codes/Remote Handshaking Register

The ALU condition codes are available in the Condition

Code Register ÀCCRÓ. The [Z] bit is set when a zero result

is generated by an arithmetic, logical, or shift instruction.

Similarly, [N] indicates the Negative result of the same op-

erations. An oVerflow condition from an arithmetic instruc-

tion sets the [V] bit in ÀCCRÓ. The Carry bit [C] indicates a

carry or borrow result from an arithmetic instruction. See

Section 2.2.2, ALU for more information.

The Condition Code Register, ÀCCRÓ, also contains [BIRQ],
a status bit which reflects the logic level of the bidirectional

interrupt input pin BIRQ. Hence, this pin can be used as a

general purpose input/output port as well as a bidirectional

interrupt request as defined by bits in ÀACRÓ and ÀICRÓ. If a

remote CPU is present and shares data memory (dual port

memory) with the BCP, handshaking can be accomplished

by using the two status bits in ÀCCRÓ called [RR] and [RW],
which indicate Remote Read and Remote Write accesses,

respectively.

In ÀACRÓ, a lock bit, [LOR], is available to lock out all host

accesses. When this bit is set, all host accesses are dis-

abled. Locking out remote accesses is often done during

interrupts to ensure quick response times.

The Remote Interface Configuration register, ÀRICÓ, is not

available to the BCP internally. The Remote Interface Refer-

ence section provides further detail on ÀRICÓ and interfac-

ing a remote processor.

2.1.1.7 Index Registers

Four index registers called IW, IX, IY, and IZ provide 16-bit

addressing for both data memory and instruction memory.

Each of these index registers is actually a pair of 8-bit regis-

ters which are individually addressable just like any other

CPU register. They occupy register addresses R12 through

R19. Thus, the first two pointers IW and IX (comprising

R12–R15) can be accessed with immediate mode instruc-

tions (which can access only R0 to R15). Refer to Section

2.1.3.2, Addressing Modes to see how the index registers

are formed from R12–R19.

Accessing data memory requires the use of one of the four

index registers. All such instructions allow you to specify

which pointer is to be used, except the immediate-relative

moves: MOVE rs,[IZan] and MOVE [IZan],rd. These in-

structions always use the IZ pointer. Register indirect opera-

tions have options to alter the value of the index register;

the options include pre-increment, post-increment, and

post-decrement. These options facilitate block moves,

searches, etc. Refer to Section 2.1.3, Instruction Set for

more information about data moves.

Since the BCP’s ALU is 8 bits wide, all code that manipu-

lates the index registers must act on them eight bits at a

time.

The index registers can also be used in register indirect

jumps (LJMP [Ir]), useful in implementing relocatable code.

Any one of the index registers can be specified to provide

the 16-bit instruction address for the indirect jump.

2.1.1.8 Stack Registers

The last two register addresses (R30,R31) are dedicated to

provide access to the two on-chip stacksÐthe data stack

and the address stack. The data stack is 8 bits wide and 16

words deep. It is a Last In First Out (LIFO) type and provides

high speed storage for variables, pointers, etc. The address

stack is 23 bits wide and 12 words deep, providing twelve

levels of nesting of subroutines and interrupts. It is also a

LIFO structure and stores processor status as well as return

addresses from CALL instructions, TRAP instructions, and

interrupts. The seven bits of processor status consist of the

four ALU flags, ([C], [N], [V], and [Z]), the current bank

setting (two bits), and [GIE].
Stack pointers for both the on-chip stacks are provided in

R30, the Internal Stack Pointer register, ÀISPÓ. The lower

four bits are the pointer for the data stack and the upper

four bits are the pointer for the address stack. Both internal

stacks are circular. For example if 16 bytes are written to

16

Obs
ole

te

2.0 CPU Description (Continued)

the data stack, the next byte pushed will overwrite the first.
ÀISPÓ can be read and written to like any other register, but

after a write, the BCP must execute one instruction before

reading the stack whose pointer was modified.

The Data Stack register, ÀDSÓ, is the input/output port for

the data stack. This port is accessed like any other register,

but a write to it will ‘‘push’’ a byte onto the stack and a read

from it will ‘‘pop’’ a byte from the stack. The data stack

pointer is updated when a read or write of ÀDSÓ occurs.

Information bits in the instruction address stack are not

mapped into the CPU’s register space and, therefore, are

not directly accessible. A remote system running a monitor

program can access this information by forcing the BCP to

single-step through a return instruction and then reading the

program counter. Since the stack pointers are writeable, the

remote system can access any location (return address) in

the address stack to trace program flow and then restore

the stack pointer to its original position.

2.1.2 Timer

The BCP has an internal 16-bit timer that can be used in a

variety of ways. The timer counts independently of the CPU,

eliminating the waste of valuable processor bandwidth. The

timer can be used in a polled or interrupt driven configura-

tion for user software flexibility.

The timer interfaces with the CPU via two registers, TimeR

Low byte, ÀTRLÓ, and TimeR High byte, ÀTRHÓ, which form

the input/output ports to the timer. Writing to ÀTRLÓ and
ÀTRHÓ stores the low and high byte, respectively, of a 16-bit

time-out value into two holding registers. The word stored in

the holding registers is the value that the timer will be load-

ed with via [TLD]. Also, the timer will automatically reload

this word upon timing out. Reading ÀTRLÓ and ÀTRHÓ pro-

vides access to the count down status of the timer.

Control of timer operation is maintained via three bits in the

Auxiliary Control Register ÀACRÓ. Timer STart [TST], bit 7

in ÀACRÓ, is the start/stop control bit. Writing a one to
[TST] allows the timer to start counting down from its cur-

rent value. When low, the timer stops and the timer interrupt

is cleared. Timer Load [TLD], bit 6 in ÀACRÓ, is the load

control of the timer. After writing the desired values into
ÀTRLÓ and ÀTRHÓ, writing a one to [TLD] will load the 16-bit

word in the holding registers into the timer and initialize the

timer clock to zero in preparation to start counting. Upon

completing the load operation, [TLD] is automatically

cleared. Timer Clock Selection [TCS], bit 5 in ÀACRÓ, deter-

mines the clock frequency of the timer count down. When

low, the timer divides the CPU clock by sixteen to form the

clock for the down counter. When [TCS] is high, the timer

divides the CPU clock by two. The input clock to the timer is

the CPU clock and should not be confused with the oscilla-

tor clock, OCLK. The rate of the CPU clock will be either

equal to OCLK or one-half of OCLK depending on the value

of bit 7 in the Device Control Register, ÀDCRÓ.

When the timer reaches a count of zero, the timer interrupt

is generated, the Time Out flag, [TO], (bit 7 in the Condition

Code Register ÀCCRÓ), goes high, and the timer reloads the

16-bit word stored in the holding registers to recycle through

a count down. The timer interrupt and [TO] can be cleared

by either writing a one to [TO] in ÀCCRÓ or stopping the

timer by writing a zero to [TST] in ÀACRÓ. A block diagram

of the timer is shown in Figure 2-2.

TL/F/9336–D1

FIGURE 2-2. Timer Block Diagram

17

Obs
ole

te

2.0 CPU Description (Continued)

2.1.2.1 Timer Operation

After the desired 16-bit time-out value is written into ÀTRLÓ

and ÀTRHÓ, the start, load, and clock selection can be

achieved in a single write to ÀACRÓ. A restriction exists on

changing the timer clock frequency in that [TCS] should not

be changed while the timer is running (i.e., [TST] is high).

After a write to ÀACRÓ to load and start the timer, the timer

begins counting down at the selected frequency from the

value in ÀTRLÓ and ÀTRHÓ. Upon reaching a count of zero,

the timer interrupt is generated and, the timer reloads the

current word from ÀTRLÓ and ÀTRHÓ to cycle through a

countdown again. The timing waveforms shown in Figure
2-3 show a write to ÀACRÓ that loads, starts, selects the

CPU clock rate/2 for the countdown rate, and asserts the

Global Interrupt Enable [GIE]. Prior to the write to ÀACRÓ,
ÀTRLÓ and ÀTRHÓ were loaded with 00h and 01h respec-

tively, the timer interrupt was unmasked in the Interrupt

Control Register ÀICRÓ by clearing bit 4, and zero instruc-

tion wait states were selected in ÀDCRÓ. Since the write to
ÀACRÓ asserted [GIE], the timer interrupt is enabled and

the CPU will vector to the timer interrupt service routine

address when the timer reaches a count of zero. The timer

interrupt is the lowest priority interrupt and is latched and

maintained until it is cleared in software. (See CPU Inter-

rupts section). For very long time intervals, time-outs can be

accumulated under software control by writing a one to [TO]
in ÀCCRÓ allowing the timer to recycle its count down with

no other intervention. For time-outs attainable with one

count down, stopping the timer will clear the interrupt and
[TO]. When the timer interrupt is enabled, the call to the

interrupt service routine occurs at different instruction

boundaries depending on when the timer interrupt occurs in

the instruction cycle. If the timer times out prior to T2, where

T2 is the last T-state of an instruction cycle, the call to the

interrupt service routine will occur in the next instruction.

When the time-out occurs in T2, the call to the interrupt

service routine will not occur in the next instruction. It occurs

in the second instruction following T2.

The count status of the timer can be monitored by reading
ÀTRLÓ and/or ÀTRHÓ. When the registers are read, the out-

put of the timer, not the value in the input holding registers,

is presented to the ALU. Some applications might require

monitoring the count status of the timer while it is counting

down. Since the timer can time-out between reads of ÀTRLÓ

and ÀTRHÓ, the software should take this fact into consider-

ation. To read back what was written to ÀTRLÓ and ÀTRHÓ,

the timer must first be loaded via [TLD] without starting the

timer followed by a one instruction delay before reading
ÀTRLÓ and ÀTRHÓ to allow the output registers to be updat-

ed from the load operation.

To determine the time-out delay for a given value in ÀTRLÓ

and ÀTRHÓ other than 0000h, the following equation can be

used:

TD e(value in ÀTRHÓÀTRLÓ) * T * k

where:

k e 2 when [TCS] e 1 or 16 when [TCS] e 0

T e The period of the CPU clock

TD e The amount of time delay after the end of the in-

struction that asserts [TST] in ÀACRÓ

When the value of 0000h is loaded in the timer, the maxi-

mum time-out is obtained and is calculated as follows:

TD e65536 * T * k

With the CPU running full speed with an 18.8 MHz crystal,

the maximum single loop time delay attainable would be

55.6 ms ([TCS] e 0). The minimum time delay with the

same constraints is 106 ns ([TCS] e 1). For accumulating

time-out intervals, the total time delay is simply the number

of loops accumulated multiplied by the calculated time de-

lay. The equations above do not account for any overhead

for processing the timer interrupt. The added overhead of

processing the interrupt may need to be included for preci-

sion timing.

18

Obs
ole

te

2.0 CPU Description (Continued)

T
L
/
F
/
9
3
3
6
–
D

2

F
IG

U
R

E
2
-3

.
T
im

e
r
In

te
rr

u
p
t
D

ia
g
ra

m

19

Obs
ole

te

2.0 CPU Description (Continued)

2.1.3 Instruction Set

The followng paragraphs introduce the BCP’s architecture

by discussing addressing modes and briefly discussing the

Instruction Set. For detailed explanations and examples of

each instruction, refer to the Instruction Set Reference Sec-

tion.

2.1.3.1 Harvard Architecture Implications

The BCP utilizes a true Harvard Architecture, where the in-

struction and data memory are organized into two indepen-

dent memory banks, each with their own address and data

buses. Both the Instruction Address Bus and the Instruction

Bus are 16 bits wide with the Instruction Address Bus ad-

dressing memory by words. (A word of memory is 16 bits

long; i.e., 1 word e 2 bytes.) Most of the instructions are

one word long. The exceptions are two words long, contain-

ing a word of instruction followed by a word of immediate

data. The combination of word sized instructions and a word

based instruction address bus eliminates the typical instruc-

tion alignment problems faced by many CPU’s.

The Data Address Bus is 16 bits wide (with the low order 8

bits multiplexed on the Data Bus), and the Data Bus is 8 bits

wide (i.e., one byte wide). The Data Address Bus addresses

memory by bytes. Most of the BCP’s instructions operate on

byte-sized operands.

Note that although both instruction addresses and data ad-

dresses are 16 bits long, these addresses are for two differ-

ent buses and, therefore, have two different numerical

meanings, (i.e., byte address or word address.) Each in-

struction determines whether the meaning of a 16-bit ad-

dress is that of an instruction word address or a data byte

address. Little confusion exists though because only the

program flow instructions interpret 16-bit addresses as in-

struction addresses.

2.1.3.2 Addressing Modes

An addressing mode is the mechanism by which an instruc-

tion accesses its operand(s). The BCP’s architecture sup-

ports five basic addressing modes: register, immediate, in-

dexed, immediate-relative, and register-relative. The first

two allow instructions to execute the fastest because they

require no memory access beyond instruction fetch. The

remaining three addressing modes point to data or instruc-

tion memory. Typical of a RISC processor, most of the in-

structions only support the first three addressing modes,

with one of the operands always limited to the register ad-

dressing mode.

Register Addressing Modes

There are two terminologies for the register addressing

modes: Register and Limited Register. Instructions that al-

low Register operands can access all the registers in the

CPU. Note that only 32 of the 44 CPU registers are available

at any given point in time because the lower 12 register

locations (R0–R11) access one of two switchable register

banks each. (See Section 2.1.1.1, Banked Registers for

more information on the CPU register banks.) Instructions

that allow the Limited Register operands can access just

the first 28 registers of the CPU. Again, note that only 16 of

these 28 registers are available at any given point in time.

Table 2-1 shows the notations used for the Register and

Limited Register operands. Some instructions also imply the

use of certain registers, for example the accumulators. This

is noted in the discussions of those instructions.

Immediate Addressing Modes

The two types of the immediate addressing modes available

are: Immediate numbers and Absolute numbers. Immediate

numbers are 8 bits of data, (one data byte), that code direct-

ly into the instruction word. Immediate numbers may repre-

sent data, data address displacements, or relative instruc-

tion addresses. Absolute numbers are 16-bit numbers. They

code into the second word of two word instructions and they

represent absolute instruction addresses. Table 2-2 shows

the notations used for both of these addressing modes.

TABLE 2-1. Register Addressing Mode Notations

Notation Type of Register Operand Registers Allowed

Rs Source Register R0–R31

Rd Destination Register R0–R31

Rsd Register is both a Source & Destination R0–R31

rs Limited Source Register R0–R15

rd Limited Destination Register R0–R15

rsd Limited Register is both a Source & Destination R0–R15

TABLE 2-2. Immediate Addressing Mode Notations

Notation Type of Immediate Operand Size

n Immediate Number 8 Bits

nn Absolute Number 16 Bits

20

Obs
ole

te

2.0 CPU Description (Continued)

Indexed Addressing Modes

Indexed operands involve one of four possible CPU register

pairs referred to as the index registers. Figure 2-4 illustrates

how the index registers map into the CPU Register Set.

Note that the index registers are 16 bits wide.

Index registers allow for indirect memory addressing and

usually contain data memory addresses, although, the

LJMP instruction can use index registers to hold instruction

memory addresses. Most of the instructions that allow

memory indirect addressing, (i.e. the use of index registers),

also allow pre-incrementing, post-incrementing, or post-dec-

rementing of the index register contents during instruction

execution, if desired. Table 2-3 lists the notations used for

the index register modes.

The index registers are set to zero when the BCP’s RESET

pin is asserted.

Index CPU Register Pair Forming Index Register

Register (MSB) (LSB)

IW R13 R12

15 8 7 0

IX R15 R14

15 8 7 0

IY R17 R16

15 8 7 0

IZ R19 R18

15 8 7 0
FIGURE 2-4. Index Register Map

Immediate-Relative and Register-Relative

Address Modes

The Immediate-Relative mode adds an unsigned 8-bit im-

mediate number to the index register IZ forming a data byte

address. The Register-Relative mode adds the unsigned

8-bit value in the current accumulator, A, to any one of the

index registers forming a data byte address. Both of these

indirect memory addressing modes are available only on the

MOVE instruction. Table 2-4 shows the notation used for

these two addressing modes.

2.1.3.3 Instruction Set Overview

The BCP’s RISC instruction set contains seven categories

of instructions: Data Movement, Integer Arithmetic, Logic,

Shift-Rotate, Comparison, Program Flow, and Miscellane-

ous.

Data Movement Instructions

The MOVE instruction is responsible for all the data transfer

operations that the BCP can perform. Moving one byte at a

time, five different types of transfer are allowed: register to

register, data memory to register, register to data memory,

instruction memory to register, and instruction memory to

data memory. Table 2-5 lists all the variations of the MOVE

instruction.

TABLE 2-3. Index Register Addressing Mode Notations

Notation Meaning

[Ir] Index Register, Contents Not Changed
[Irb] Index Register, Contents Post-Decremented
[Ira] Index Register, Contents Post-Incremented
[aIr] Index Register, Contents Pre-Incremented
[mIr] General Notation Indicating that Any of the Above Modes Is Allowed

Note: [] denotes indirect memory addressing and is part of the instruction syntax.

TABLE 2-4. Relative Index Register Mode Notations

Notation Type of Action Performed to Calculate a Data Memory Address

[IZ a n] IZ a Immediate Number (unsigned)xData Memory Address
[Ir a A] Index Register a Current Accumulator (unsigned) x Data Memory Address

Note: [] denotes indirect memory addressing and is part of the instruction syntax.

TABLE 2-5. Data Movement Instructions

Syntax Instruction Operation Addressing Modes

MOVE Rs, Rd registerxregister Register, Register
MOVE Rs, [mIr] registerxdata memory Register, Indexed
MOVE [mIr], Rd data memoryxregister Indexed, Register
MOVE Rs, [Ir a A] registerxdata memory Register, Register-Relative
MOVE [Ir a A], Rd data memoryx register Register-Relative, Register
MOVE rs, [IZ a n] registerxdata memory Limited Register, Immediate-Relative
MOVE [IZ a n], rd data memoryx register Immediate-Relative, Limited Register
MOVE n, rd instruction memoryxregister Immediate, Limited Register
MOVE n, [Ir] instruction memoryxdata memory Immediate, Indexed

21

Obs
ole

te

2.0 CPU Description (Continued)

Integer Arithmetic Instructions

The integer arithmetic instructions operate on 8-bit signed

(two’s complement) binary numbers. Two arithmetic func-

tions are supported: Add and Subtract. Three versions of

the Add and Subtract instructions exist: operand g accumu-

lator, operand g accumulator g carry, and immediate oper-

and g operand. The first two versions support both the reg-

ister and indexed addressing modes for the destination op-

erand. These two versions also allow the specification of a

separate register or data address for the destination oper-

and so that the sources may retain their integrity; (i.e., true

three-operand instructions). Note that the currently active

‘‘B’’ register bank selects which accumulator is used in

these instructions. The third version, immediate operand g

operand, only supports the register addressing mode for the

destination operand with the register as both a source and

the destination. Table 2-6 lists the integer arithmetic instruc-

tions along with their variations.

Logic Instructions

The logic instructions operate on 8-bit binary data. A full set

of logic functions is supported by the BCP: AND, OR, eXclu-

sive OR, and Complement. All the logic functions except

complement allow either an immediate operand or the cur-

rently active accumulator as an implied operand. Comple-

ment only allows one register operand which is both the

source and destination. The other logic instructions include

the following addressing modes: register, indexed, and im-

mediate. As with the integer arithmetic instructions, the in-

tegrity of the sources may be maintained by specifying a

destination register which is different from the source. Table

2-7 lists all the logic instructions.

TABLE 2-6. Integer Arithmetic Instructions

Syntax Instruction Operation Addressing Modes

ADD n, rsd register a n x register Immediate, Limited Register

ADDA Rs, Rd Rs a accumulator x Rd Register, Register

ADDA Rs, [mlr] Rs a accumulator x data memory Register, Indexed

ADCA Rs, Rd Rs a accumulator a carry x Rd Register, Register

ADCA Rs, [mlr] Rs a accumulator a carry x data memory Register, Indexed

SUB n, rsd register b n x register Immediate, Limited Register

SUBA Rs, Rd Rs b accumulator x Rd Register, Register

SUBA Rs, [mlr] Rs b accumulator x data memory Register, Indexed

SBCA Rs, Rd Rs b accumulator b carry x Rd Register, Register

SBCA Rs, [mlr] Rs b accumulator b carry x data memory Register, Indexed

TABLE 2-7. Logic Instructions

Syntax Instruction Operation Addressing Modes

AND n, rsd register & n x register Immediate, Limited Register

ANDA Rs, Rd Rs & accumulator x Rd Register, Register

ANDA Rs, [mlr] Rs & accumulator x data memory Register, Indexed

OR n, rsd register l n x register Immediate, Limited Register

ORA Rs, Rd Rs l accumulator x Rd Register, Register

ORA Rs, [mlr] Rs l accumulator x data memory Register, Indexed

XOR n, rsd register Z n x register Immediate, Limited Register

XORA Rs, Rd Rs Z accumulator x Rd Register, Register

XORA Rs, [mlr] Rs Z accumulator x data memory Register, Indexed

CPL Rsd register x register Register

Note: & e logical AND operation

l e logical OR operation

Z e logical exclusive OR operation

r e one’s complement

22

Obs
ole

te

2.0 CPU Description (Continued)

Shift and Rotate Instructions

The shift and rotate instructions operate on any of the 8-bit

CPU registers. The BCP supports shift left, shift right, and

rotate operations. Table 2-8 lists the shift and rotate instruc-

tions.

Comparison Instructions

The BCP utilizes two comparison instructions. The CMP in-

struction performs a two’s complement subtraction between

a register and immediate data. The BIT instruction tests se-

lected bits in a register by ANDing it with immediate data.

Neither instruction stores its results, only the ALU flags are

affected. Table 2-9 lists both of the comparison instructions.

Program Flow Instructions

The BCP has a wide array of program flow instructions: un-

conditional jumps, calls and returns; conditional jumps,

calls, and returns; relative or absolute instruction addressing

on jumps and calls; a specialized register field decoding

jump; and software interrupt capabilities. These instructions

redirect program flow by changing the Program Counter.

The unconditional jump instructions support both relative in-

struction addressing, the (JuMP instruction), and absolute

instruction addressing, (the Long JuMP instruction), using

the following addressing modes: Immediate, Register, Abso-

lute, and Indexed. Table 2-10 lists the unconditional jump

instructions and their variations.

The conditional jump instructions support both relative in-

struction addressing and absolute instruction addressing us-

ing the Immediate and Absolute addressing modes. The

conditional relative jump instruction tests flags in the Condi-

tion Code Register, ÀCCRÓ, and the Transceiver Status

Register, ÀTSRÓ. Two possible syntaxes are supported for

the conditional relative jump instruction; see Table 2-11.

Table 2-12 lists the various flags ‘‘f’’ that the conditional

JMP instruction can test and Table 2-13 lists the various

conditions ‘‘cc’’ that the Jcc instruction can test for. Keep in

TABLE 2-8. Shift and Rotate Instructions

Syntax Instruction Operation Addressing Mode

SHL Rsd,b Register

SHR Rsd,b Register

ROT Rsd,b Register

Note: ‘‘b’’ e the number of bit shifts/rotates to perform.

TABLE 2-9. Comparison Instructions

Syntax Instruction Operation Addressing Mode

CMP rs, n register b n Limited Register

BIT rs, n register & n Limited Register

Note: & e logical AND operation

TABLE 2-10. Unconditional Jump Instructions

Syntax Instruction Operation Operand Range Addressing Mode

JMP n PC a n (sign extended)xPC b128, a127 Immediate

JMP Rs PC a Rs (sign extended)xPC b128, a127 Register

LJMP nn nnxPC 0, 64k Absolute

LJMP [Ir] IrxPC 0, 64k Indexed

Note: PC e Program Counter; contents initially points to instruction following jump.

23

Obs
ole

te

2.0 CPU Description (Continued)

mind that the Jcc instruction is just an optional syntax for

the conditional JMP instruction.

The example in Figure 2-5 demonstrates two possible ways

to code the conditional relative jump instruction when test-

ing for a false [Z] flag in ÀCCRÓ. In the example, assume

that the symbol ‘‘Z’’ equals ‘‘000’’ binary, that the symbol

‘‘NS’’ equals ‘‘0’’ binary, and that the symbol ‘‘SKIP.IT’’

points to the desired instruction with which to begin execu-

tion if [Z] is false.

On the other hand, the conditional absolute jump instruc-

tion, LJMP, can test any bit in any currently active CPU reg-

ister. Table 2-14 shows the conditional long jump instruction

syntax.

JMP Z,NS,SKIP.IT ;If [Z]40 goto SKIP.IT

-or-

JNZ SKIP.IT ;If [Z]40 goto SKIP.IT

FIGURE 2-5. Coding Examples of Equivalent

Conditional Jump Instructions

TABLE 2-11. Conditional Relative Jump Instruction

Syntax Instruction Operation Operand Range Addressing Mode

JMP f,s,n If the flag ‘‘f’’ is in the state ‘‘s’’ b128, a127 Immediate

then PC a n (sign extended)xPC

Jcc n If the condition ‘‘cc’’ is met b128, a127 Immediate

then PC a n (sign extended)xPC

Note: PC e Program Counter; contents initially points to instruction following jump.

TABLE 2-12. ‘‘f’’ Flags

‘‘f’’(Binary) Flag Flag Name
Register

Containing Flag

000 Z Zero ÀCCRÓ

001 C Carry ÀCCRÓ

010 V Overflow ÀCCRÓ

011 N Negative ÀCCRÓ

100 RA Receiver Active ÀTSRÓ

101 RE Receiver Error ÀTSRÓ

110 DAV Data Available ÀTSRÓ

111 TFF Transmitter FIFO Full ÀTSRÓ

TABLE 2-13. ‘‘cc’’ Conditions Tested

‘‘cc’’ Field Condition Tested for Flag ‘‘f’’’s Condition

Z Zero [Z] e 1
NZ Not Zero [Z] e 0
EQ Equal [Z] e 1
NEQ Not Equal [Z] e 0
C Carry [C] e 1
NC No Carry [C] e 0
V Overflow [V] e 1
NV No Overflow [V] e 0
N Negative [N] e 1
P Positive [N] e 0
RA Receiver Active [RA] e 1
NRA Not Receiver Active [RA] e 0
RE Receiver Error [RE] e 1
NRE No Receiver Error [RE] e 0
DA Data Available [DAV] e 1
NDA No Data Available [DAV] e 0
TFF Transmitter FIFO FULL [TFF] e 1
NTFF Transmitter FIFO Not Full [TFF] e 0

TABLE 2-14. Conditional Absolute Jump Instruction

Syntax Instruction Operation Operand Range Addressing Mode

LJMP Rs,p,s,nn If the bit of register ‘‘Rs’’ in 0, 64k Register, Absolute
position ‘‘p’’ is in the state ‘‘s’’

then nnxPC

Note: PC e Program Counter

24

Obs
ole

te

2.0 CPU Description (Continued)

The BCP also has a specialized relative jump instruction

called relative Jump with Rotate and Mask on source regis-

ter, JRMK. This instruction facilitates the decoding of regis-

ter fields often involved in communications processing.

JRMK does this by rotating and masking a copy of its regis-

ter operand to form a signed program counter displacement

which usually points into a jump table. Table 2-15 shows the

syntax and operation of the JRMK instruction.

JRMK’s masking, (setting to zero), the least significant bit of

the displacement allows the construction of a jump table

using either one or two word instructions; for instance, a

table of JMP and/or LJMP instructions, respectively. The

example in Figure 2-6 demonstrates the JRMK instruction

decoding the address frame of the 3299 Terminal Multiplex-

er protocol which is located in the Receive/Transmit Regis-

ter, ÀRTR[4–2]Ó.
The BCP has two unconditional call instructions; CALL,

which supports relative instruction addressing and LCALL,

(Long CALL), which supports absolute instruction address-

ing. These instructions push the following information onto

the CPU’s internal Address Stack: the address of the next

instruction; the status of the Global Interrupt Enable flag,
[GIE]; the status of the ALU flags [Z], [C], [N], and [V]; and

the status of which register banks are currently active. Table

2-16 lists the two unconditional call instructions. Note that

the Address Stack is only twelve positions deep; therefore,

the BCP allows twelve levels of nested subroutine invoca-

tions, (this includes both interrupts and calls).

TABLE 2-15. JRMK Instruction

Syntax Instruction Operation
Displacement

Addressing Mode
Range

JRMK Rs, b, m (a) Rotate a copy of register ‘‘Rs’’ ‘‘b’’ bits to the right. b128, a126 Register

(b) Mask the most significant ‘‘m’’ bits and the least

significant bit of the above result.

(c) PC a resulting displacement (sign extended) x PC.

Note: PC e Program Counter; contents initially points to instruction following jump.

Example Code

JRMK RTR,1,4 ;decode terminal address

LJMP ADDR.0 ;jump to device handler #0

LJMP ADDR.1 ;jump to device handler #1

. . .

LJMP ADDR.7 ;jump to device handler #7

Instruction Execution JRMK Displacement Register Contents

(a) Copy ÀRTRÓ into JRMK’s displacement register: x x x A2 A1 A0 y y

(b) Rotate displacement register 1 bit to the right: y x x x A2 A1 A0 y

(c) AND result with ‘‘00001110’’ binary mask: 0 0 0 0 A2 A1 A0 0

(d) Sign extend resulting displacement and add

it to the program counter, (PC).

If the bits A2 A1 A0 equal ‘‘0 0 1’’ binary then

a 2 is added to the Program Counter; 0 0 0 0 0 0 1 0

(i.e., PC a 2 x PC).

(e) Execute the instruction pointed to by the PC,

which in this example is:

LJMP ADDR.1

FIGURE 2-6. JRMK Instruction Example

TABLE 2-16. Unconditional Call Instructions

Syntax Instruction Operation
Operand

Addressing Mode
Range

CALL n PC & [GIE] & ALU flags & reg. bank selection x Address Stack b128, a127 Immediate

PC a n (sign extended) x PC

LCALL nn PC & [GIE] & ALU flags & reg. bank selection x Address Stack 0, 64k Absolute

nn x PC

Note: PC e Program Counter; contents initially points to instruction following call.

[GIE] e Global Interrupt Enable bit.

& e concatenation operator, combines operands together forming one long operand.

25

Obs
ole

te

2.0 CPU Description (Continued)

The BCP has one conditional call instruction capable of

testing any bit in any currently active CPU register. This call

only supports absolute instruction addressing. Table 2-17

shows the conditional call instruction syntax and operation.

The return instruction complements the above call instruc-

tions. Two versions of the return instruction exist, the un-

condtional return and the conditional return. When the un-

conditional return instruction is executed, it pops the last

address on the CPU’s Address Stack into the program

counter and it can optionally affect the [GIE] bit, the ALU

flags, and the register bank selection. Table 2-18 shows the

syntax and operation of the unconditional return instruction.

The conditional return instruction functions the same as the

unconditional return instruction if a desired condition is met.

As with the conditional jump instruction, the conditional re-

turn instruction has two possible syntaxes. Table 2-19 lists

the syntax for the conditional return. The ‘‘f’’ flags and the

‘‘cc’’ conditions for the return instruction are the same as

for the conditional jump instruction, therefore refer to Table

2-12 and Table 2-13 for the listing of ‘‘f’’ and ‘‘cc’’, respec-

tively.

TABLE 2-17. Conditional Call Instruction

Syntax Instruction Operation Operand Range Addressing Mode

LCALL Rs, p, s, nn If the bit of register ‘‘Rs’’ in position 0, 64k Register, Absolute

‘‘p’’ is in the state ‘‘s’’ then

PC & [GIE] & ALU flags &

reg. bank selection x Address Stack

nn x PC

End if

Note: PC e Program Counter; contents initially points to instruction following call.

[GIE] e Global Interrupt Enable bit

& e concatenation operator, combines operands together forming one long operand.

TABLE 2-18. Unconditional Return Instruction

Syntax Instruction Operation

RET Àg À, rfÓÓ Case ‘‘g’’ of

0: leave [GIE] unaffected, (default)

1: restore [GIE] from Address Stack

2: set [GIE]
3: clear [GIE]

End case

If ‘‘rf’’ e 1 then

restore ALU flags from Address Stack

restore register bank selection from Address Stack

Else (the default)

leave the ALU flags and register bank selections unchanged

End if

Address Stack x PC

Note: PC e Program Counter

[GIE] e Global Interrupt Enable bit
ÀÓ e surrounds optional operands that are not part of the instruction syntax.

Optional operands may either be specified or omitted.

TABLE 2-19. Conditional Return Instruction

Syntax Instruction Operand

RETF f, s À, ÀgÓ, À, rfÓÓ If the flag ‘‘f’’ is in the state ‘‘s’’ then perform a RET Àg À, rfÓÓ

Rcc Àg À, rfÓÓ If the condition ‘‘cc’’ is met then perform a RET Àg À,rfÓÓ

Note: See Table XVIII for an explanation of ‘‘RET Àg À, rfÓÓ’’
ÀÓ e surrounds optional operands that are not part of the instruction syntax.

Optional operands may either be specified or omitted.

26

Obs
ole

te

2.0 CPU Description (Continued)

In addition to the above jump, call and return program flow

instructions, the BCP is capable of generating software in-

terrupts via the TRAP instruction. This instruction generates

a call to any one of 64 possible interrupt table addresses

based on its vector number operand. This allows both the

simulation of hardware interrupts and the construction of

special software interrupts, if desired. The actual interrupt

table entry address is determined by concatenating the In-

terrupt Base Register, ÀIBRÓ, to an 8-bit representation of

the vector number operand in the TRAP instruction. This

instruction may also clear the [GIE] bit, if desired. Table

2-20 shows the syntax and operation of the TRAP instruc-

tion.

Miscellaneous Instructions

As stated in the ‘‘CPU Register Set’’ section, the BCP has

44 registers with 24 of them arranged into four register

banks: Main Bank A, Alternate Bank A, Main Bank B, and

Alternate Bank B. The exchange instruction, EXX, selects

which register banks are currently available to the CPU, for

example either Main Bank A or Alternate Bank A. The dese-

lected register banks retain their current values. The EXX

instruction can also alter the state of [GIE], if desired. Table

2-21 shows the EXX instruction syntax and operation.

TABLE 2-20. TRAP Instruction

Syntax Instruction Operation Operand Range

TRAP v À, gÊÓ PC & [GIE] & ALU flags & 0, 63

reg. Bank SelectionxAddress Stack

If ‘‘gÊ’’ e 1 then clear [GIE]
Form PC address as shown below:

Note: PC e Program Counter; contents initially points to instruction following call.

[GIE] e Global Interrupt Enable bit

IBR e Interrupt Base Register

& e concatenation operator, combines operands together forming one long operand.
À Ó e surrounds optional operands that are not part of the instruction syntax.

Optional operands may either be specified or omitted.

TABLE 2-21. EXX Instruction

Syntax Instruction Operation

EXX ba, bb À, gÓ Case ‘‘ba’’ of

0: activate Main Bank A

1: activate Alternate Bank A

End case

Case ‘‘bb’’ of

0: activate Main Bank B

1: activate Alternate Bank B

End case

Case ‘‘g’’ of

0: leave [GIE] unaffected, (default)

1: (reserved)

2: set [GIE]
3: clear [GIE]

End case

Note: [GIE] e Global Interrupt Enable bit
À Ó e surrounds optional operands that are not part of the instruction syntax.

Optional operands may either be specified or omitted.

27

Obs
ole

te

2.0 CPU Description (Continued)

2.2 CPU FUNCTIONAL DESCRIPTION

2.2.1 ALU

The BCP provides a full function high speed 8-bit Arithmetic

Logic Unit (ALU) with full carry look ahead, signed arithme-

tic, and overflow decision capabilities. The ALU can perform

six arithmetic, nine logic, one rotate and two shift operations

on binary data. Full access is provided to all CPU registers

as both source and destination operands, and using the in-

direct addressing mode, results may be placed directly into

data memory. All operations which have an internal destina-

tion (register addressing) are completed in two (2) T-states.

External destination operations (indirect addressing to data

memory) complete in three (3) T-states.

Arithmetic operations include addition with or without carry,

and subtraction with or without borrow (represented by car-

ry). Subtractions are performed using 2’s complement addi-

tion to accommodate signed operands. The subtrahend is

converted to its 2’s complement equivalent by the ALU and

then added to the minuend. The result is left in 2’s comple-

ment form.

The remaining ALU operations include full logic, shift and

rotate operations. The logic functions include Complement,

AND, OR, Exclusive-OR, Compare and Bit Test. Zero

through seven bit right and left shift operations are provided,

along with a zero through seven bit right rotate operation.

Note that the shift and rotate operations may only be per-

formed on a register, which is both the source and destina-

tion. (See the Instruction Set Overview section for detailed

descriptions of these operations.)

The BCP ALU provides the programmer with four instruction

result status bits for conditional operations. These bits

(known as condition code flags) indicate the status (or con-

dition) of the destination byte produced by certain instruc-

tions. Not all instructions have an affect on every status flag.

(See the Instruction Set Reference section for the specific

details on what status flags a given instruction affects.)

These flags are held in the Condition Code Register,
ÀCCRÓ, see Figure 2-7.

7 6 5 4 3 2 1 0

TO RR RW BIRQ N V C Z

where:

N e Negative

C e Carry

V e Overflow

Z e Zero

FIGURE 2-7. Condition Code Register ALU Flags

If an instruction is documented as affecting a given flag,

then the flags are set (to 1) or cleared (to 0) under the

following conditions:

[N]Ð The Negative flag is set if the most significant bit

(MSB) of the result is one (1), otherwise it is cleared.

This flag represents the sign of the result if it is inter-

preted as a 2’s complement number.

[C] Ð The Carry flag is set if:

a) An addition operation generates a carry, see Fig-
ure 2-8a.

b) A subtract or compare operation generates a bor-

row, see Figure 2-8b.

c) The last bit shifted out during a shift operation (in

either direction) is a one (1), see Figure 2-9.

d) The last bit rotated by the rotate operation is a one

(1), see Figure 2-10.

In all other conditions [C] is cleared.

[V]Ð Overflow is set whenever the result of an arithmetic or

compare operation on signed operands is not repre-

sentable by the operand size, thereby producing an

incorrect result. For example, the addition of the two

signed negative numbers in Figure 2-8a would set [V]
since the correct representation of the result, both

sign and magnitude, is not possible in 8 bits. On the

other hand, in Figure 2-8b and 2-8c [V] would be

cleared because the results are correctly represented

in both sign and magnitude. It is important to remem-

ber that Overflow is only meaningful in signed arith-

metic and that it is the programmer’s responsibility to

determine if a given operation involves signed or un-

signed values.

[Z]Ð The Zero flag is set only when an operation produces

an all bits cleared result (i.e., a zero). In all other con-

ditions [Z] is cleared.

11101010 10111010 11011100
a 10001100 b 11000100 a 01100011

1w 01110110 1x 11110110 1w 00111111

[C] e 1 [C] e 1 [C] e 1
[V] e 1 [V] e 0 [V] e 0

(a) (b) (c)

FIGURE 2.8. Carry and Overflow Calculations

TL/F/9336–D3

FIGURE 2-9. Shifts’ Effect on Carry

TL/F/9336–D4

FIGURE 2-10. Rotate’s Effect on Carry

28

Obs
ole

te

2.0 CPU Description (Continued)

Several conditions apply to these flags, independent of their

operation and the way they are calculated. These conditions

are:

1. A flag’s previous state is retained when an instruction has

no affect on that flag.

2. Direct reading and writing of all ALU flags is possible via

the ÀCCRÓ register.

3. Currrent flag values are saved onto the address stack

during interrupt and call operations, and can be restored

to their original values if a return instruction with the re-

store flags option is executed.

4. Flag status is calculated in parallel with the instruction

result, therefore no time penalty is associated with flag

operation.

When performing single byte arithmetic (i.e., the values are

completely represented in one byte) the Add (ADD,ADDA)

and Subtract (SUB,SUBA) instructions should be used, but

when performing multi-byte arithmetic the Add with Carry

(ADCA) and Subtract with Carry (SBCA) instructions should

be used. This is because the carry (in an add operation) or

the borrow (in a subtract operation) must be carried forward

to the higher order bytes. Figure 2-11 demonstrates an in-

struction sequence for a 16-bit add and an instruction se-

quence for a 16-bit subtract.

Assume the 16-bit variable X is represented by the reg-

ister pair R4(MSB), R5(LSB), and that the 16-bit variable

Y is represented by the register pair R6(MSB), R7(LSB).

To perform the assignment Y e X a Y:

MOVE R7,A ;GET LSB OF Y

ADDA R5,R7 ;Y(LSB)4X(LSB)0Y(LSB)

MOVE R6,A ;GET MSB OF Y

ADCA R4,R6 ;Y(MSB)4X(MSB)0Y(MSB)

0CARRY

To perform the assignment Y e X 1 Y:

MOVE R7,A ;GET LSB OF Y

SUBA R5,R7 ;Y(LSB)4X(LSB)1Y(LSB)

MOVE R6,A ;GET MSB OF Y

SBCA R4,R6 ;Y(MSB)4X(MSB)1Y(MSB)

1CARRY

FIGURE 2-11. Multi-Byte Arithmetic

Instruction Sequences

When using the ALU to perform comparisons, the program-

mer has two options. If the compare is to a constant value

then the CMP instruction can be used, else one of the sub-

tract instructions must be used. When determining the re-

sults of any compare, the programmer must keep in mind

whether they are comparing signed or unsigned values. Ta-

ble 2-22 lists the Boolean condition that must be met for

unsigned comparisons and Table 2-23 lists the Boolean

condition that must be met for signed comparisons.

TABLE 2-22

Unsigned Comparison Results

Comparison: x b y Boolean Condition

x k y C

x s y C l Z

x e y Z

x t y C

x l y C & Z

Note: & e logical AND

l e logical OR

z e one’s complement

TABLE 2-23

Signed Comparison Results

Comparison: x b y Boolean Condition

x k y (N&V) l (N&V)

x s y Z l (N&V) l (N&V)

x e y Z

X t y (N&V) l (N&V)

x l y (N&V&Z) l (N&V&Z)

Note: & e logical AND

l e logical OR

z e one’s complement

2.2.2 Timing

Timing on the BCP is controlled by an internal oscillator and

circuitry that generates the internal timing signals. This cir-

cuitry in the CPU is referred to as Timing Control. The inter-

nal timing of the CPU is synchronized to an internal clock

called the CPU clock, CPU-CLK. A period of CPU-CLK is

referred to as a T-state. The clock for the BCP is provided

by a crystal connected between X1 and X2 or from a clock

source connected to X1. This clock will be referred to as the

oscillator clock, OCLK. The frequency of OCLK is divided in

half when the CPU clock select bit, [CCS], in the Device

Control Register, ÀDCRÓ, is set to a one. Either OCLK or

OCLK/2 is used by Timing Control to generate CPU-CLK

and other synchronous signals used to control the CPU tim-

ing.

After the BCP is reset, [CCS] is high and CPU-CLK is gener-

ated from OCLK/2. Since the output of the divider that cre-

ates OCLK/2 can be high or low after reset, CPU-CLK can

also be in a high or low state. Therefore, the exact number

of clock cycles to the start of the first instruction cannot be

determined. Automatic test equipment can synchronize to

the BCP by asserting RESET as shown in Figure 2-12. The

falling edge of RESET generates a clear signal which caus-

es CPU-CLK to fall. The next rising edge of X1 removes the

clear signal from CPU-CLK. The second rising edge of X1

will cause CPU-CLK to rise and the relationship between X1

and CPU-CLK can be determined from this point.

Writing a zero to [CCS] causes CPU-CLK to switch from

OCLK/2 to OCLK. The transition from OCLK to OCLK/2

occurs following the end of the instruction that writes to

29

Obs
ole

te

2.0 CPU Description (Continued)

[CCS] as shown in Figure 2-13. The switch occurs on the

falling edge of X1 when CPU-CLK is low. CPU-CLK can be

changed back to OCLK/2 by writing a one to [CCS]. The

point at which CPU-CLK changes depends on whether

there has been an odd or even number of T-states since
[CCS] was set low. The change would require a maximum

of two T-states and a minimum of one T-state following the

end of the instruction that writes to [CCS].
The CPU is a RISC processor with a limited number of in-

structions which execute in a short period of time. The maxi-

mum instruction cycle time is four T-states and the minimum

is two T-states. Six types of instruction timing are used in

the CPU: two T-state, three T-state program control, three

T-state data memory access, four T-state read data memory

access, four T-state program control, and four T-state two

word program control. The first T-state of each instruction

is T1 and the last T-state is T2. Intermediate T-states re-

quired to complete the instruction are referred to as TX.

The instruction clock output, ICLK, defines the instruction

boundaries. ICLK rises at the beginning of each instruction

and falls one-half T-state after the next address is generat-

ed on the instruction address bus, IA. Thus, ICLK indicates

the start of each instruction and when the next instruction

address is valid.

TL/F/9336–D5

FIGURE 2-12. CPU-CLK Synchronization with X1

TL/F/9336–D6

FIGURE 2-13. Changing from OCLK/2 to OCLK

30

Obs
ole

te

2.0 CPU Description (Continued)

Figure 2-14 shows the relationship between CPU-CLK,

ICLK, and IA for a two T-state instruction. The rising edge of

CPU-CLK generates ICLK at the start of T1. The next falling

edge of CPU-CLK increments the instruction address which

appears on IA. ICLK falls one-half T-state later. The instruc-

tion completes during T2 which ends with ICLK rising, signi-

fying the beginning of the next instruction.

The three T-state program control instruction is similar and

is shown in Figure 2-15. An additional T-state, TX, is added

between T1 and T2. ICLK rises at the beginning of T1 as

before but falls at the end of TX. The next instruction ad-

dress is generated one-half T-state before the end of TX

and the instruction ends with T2.

The three T-state data memory access instruction timing is

shown in Figure 2-16. Again, TX is inserted between T1 and

T2. ICLK rises at the beginning of the instruction and falls at

the end of T1. The next instruction address appears on IA

one-half clock cycle before ICLK falls. The address latch

enable output, ALE, rises halfway through T1 and falls half-

way through TX. The BCP has a 16-bit data memory ad-

dress bus and an 8-bit data bus. The data bus is multiplexed

with the lower 8 bits of the address bus and ALE is used to

latch the lower 8 bits of the address during a data memory

access. The upper 8 bits of the address become valid one-

half T-state after the beginning of T1 and go invalid one-half

T-state after the end of T2. The lower 8 bits of the address

become valid on the address-data bus, AD, when ALE rises

and goes invalid one-half T-state after ALE falls. Figure 2-16
shows a write to data memory in which case AD switches

from address to data at the beginning of T2. The data is

held valid until one-half T-state after the end of T2. The

write strobe, WRITE, falls at the beginning of T2 and rises at

the end of T2. A read of data memory is shown in Figure
2-17. The read timing is the same as a write except one-half

T-state after ALE falls AD goes into a high impedance state

allowing data to enter the BCP from data memory. AD re-

turns to an active state at the end of T2. The read strobe,

READ, timing is identical to WRITE.

TL/F/9336–D7

FIGURE 2-14. Two T-state Instruction

TL/F/9336–D8

FIGURE 2-15. Three T-state Program Control Instruction

31

Obs
ole

te

2.0 CPU Description (Continued)

TL/F/9336–D9

FIGURE 2-16. Three T-state Data Memory Write Instruction

TL/F/9336–E1

FIGURE 2-17. Three T-state Data Memory Read Instruction [4TR] e 0

32

Obs
ole

te

2.0 CPU Description (Continued)

When the Four T-state Read mode is selected ([4TR] e 1),

a second TX state is inserted before T2 and the timing of

the read strobe, READ, is changed such that READ falls

one-half T-state after the beginning of the second TX. Fig-
ure 2-18 shows a Four T-state Read of data memory. The

extra half T-state before READ falls allows more time for the

BCP to TRI-STATE the AD lines before the memory circuit

begins driving those lines.

The four T-state program control instruction timing is shown

in Figure 2-19. The instruction has two TX states inserted

between T1 and T2. ICLK rises at the beginning of T1 and

falls at the end of the second TX. The next instruction ad-

dress becomes valid halfway through the second TX. The

four T-state two word program control instruction timing is

the same as two consecutive two T-state instructions and is

shown in Figure 2-20.

This timing describes the minimum cycle time required by

each type of instruction. The BCP can be slowed down by

changing the number of wait states selected in the Device

Control Register, ÀDCRÓ. The BCP can be programmed for

up to three instruction memory wait states (instruction wait

states) and seven data memory wait states (data wait

states). Instruction wait states affect all instruction types

while data wait states affect only data memory access in-

structions. Bits three and four in ÀDCRÓ control the number

of instruction wait states and bits zero, one and two are

used to select the number of data wait states. The relation-

ships between the control bits and the number of wait states

selected are shown in Table 2-24 and Table 2-25. The BCP

is configured with three instruction wait states and seven

data wait states, and [4TR] set to zero after reset. A write

to ÀDCR[4,3]Ó to change the number of instruction wait

states takes effect on the following instruction if that instruc-

tion is a three T-state or four T-state program control in-

struction. For the other instruction types, the new number of

instruction wait states will take effect on the instruction fol-

TL/F/9336–H5

FIGURE 2-18. Four T-state Data Memory Read Instruction [4TR] e 1

33

Obs
ole

te

2.0 CPU Description (Continued)

TL/F/9336–E2

FIGURE 2-19. Four T-state Program Control Instruction

TL/F/9336–E3

FIGURE 2-20. Four T-state Two Word Instruction

TABLE 2-24. Data Memory

Wait States

ÀDCR[2–0]Ó Data Wait States

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

TABLE 2-25. Instruction Memory

Wait States

ÀDCR[4,3]Ó Instruction Wait States

00 0

01 1

10 2

11 3

34

Obs
ole

te

2.0 CPU Description (Continued)

lowing the instruction after the write to ÀDCRÓ. A write to
ÀDCR[2–0]Ó to change the number of data wait states will

take effect on the next data memory access instruction

even if it immediately follows the write to ÀDCRÓ.

A write to ÀDCR [2–0]Ó to change the number of data wait

states or to ÀACR [4TR]Ó will take effect on the next data

memory access instruction even if it immediately follows

write to ÀDCRÓ or ÀACRÓ. Both instruction and data

wait states cause the insertion of additional T-states prior to

T2 and these T-states are referred to as TW. The purpose

of instruction wait states is to increase the time from instruc-

tion address generation to the beginning of the next instruc-

tion cycle. Data wait states increase the time from data

memory address generation to the removal of the strobe at

the end of data memory access instructions. Therefore, in-

struction and data wait states are counted concurrently in a

data memory access instruction and TX of a data memory

access instruction is counted as one instruction wait state.

The actual number of wait states added to a data memory

access is calculated as the maximum between the

number of data wait states and one less than the number of

instruction wait states. Figure 2-21 shows a write of data

memory with one wait state. This could be accomplished by

selecting two instruction wait states or one data wait state.

The effect of the wait state is to increase the time the write

strobe is active and the data is valid on AD. The same situa-

tion for a read of data memory is shown in Figure
2-22. Note that if [4TR] is set to one then one data wait

state has no additional affect on a read of data memory and

the timing is the same as shown inFigure 2-18. The affect of

two data memory wait states and [4TR] set to one is shown

in Figure 2-23. A two T-state instruction with two instruction

wait states is shown in Figure 2-24 and a four T-state in-

struction with one instruction wait state is shown in Figure
2-25. As stated earlier, instruction wait states are inserted

before T2. Adding wait states to a four T-state two word

instruction causes the wait states to count twice when cal-

culating total instruction cycle time. The wait states are add-

ed to each of the two words of the instruction.

TL/F/9336–E4

FIGURE 2-21. Data Memory Write with One Wait State

35

Obs
ole

te

2.0 CPU Description (Continued)

TL/F/9336–E5

FIGURE 2-22. Data Memory Read with One Wait State and [4TR] e 0

TL/F/9336–H6

FIGURE 2-23. Data Memory Read with Two Wait States and [4TR] e 1

36

Obs
ole

te

2.0 CPU Description (Continued)

TL/F/9336–E6

FIGURE 2-24. Two T-state Instruction with Two Wait States

TL/F/9336–E7

FIGURE 2-25. Four T-state Instruction with One Wait State

37

Obs
ole

te

2.0 CPU Description (Continued)

The WAIT pin can also be used to add wait states to BCP

instruction execution. The CPU will be waited as long as

WAIT is low. To wait a given instruction, WAIT must be as-

serted low one-half T-state prior to the beginning of T2 in

the instruction to be affected. Figure 2-26 shows WAIT as-

serted during a write to data memory. In order to wait this

instruction, WAIT must fall prior to the falling edge of CPU-

CLK in TX. One wait state is added to the access and WAIT

rises prior to the falling edge of CPU-CLK in TW which al-

lows the access to finish. If WAIT had remained low, the

access would have been held off indefinitely. Programmed

wait states would delay when WAIT must be asserted since

they would delay the beginning of T2. Figures 2-27 through

Figure 2-29 depict the use of WAIT with three other instruc-

tion types. In all three cases, WAIT is asserted one-half

T-state prior to when T2 would normally begin. Also, it is

evident that the effect of WAIT on instruction timing is iden-

tical to adding programmed wait states.

TL/F/9336–E8

FIGURE 2-26. Data Memory Access WAIT Timing

TL/F/9336–E9

FIGURE 2-27. Two T-state Instruction WAIT Timing

38

Obs
ole

te

2.0 CPU Description (Continued)

TL/F/9336–F1

FIGURE 2-28. Three T-state Program Control Instruction WAIT Timing

TL/F/9336–F2

FIGURE 2-29. Four T-state Program Control Instruction WAIT Timing

LOCK is another input which affects BCP instruction timing.

LOCK prevents the BCP from accessing data memory.

When asserted low, LOCK will cause the BCP to wait when

it executes a data memory access instruction. The BCP will

be waited until LOCK is taken high. To prevent a given ac-

cess of data memory, LOCK must be asserted low one-half

T-state prior to the beginning of the instruction accessing

data memory.Figure 2-30 shows LOCK being used to wait a

write to data memory. LOCK falls prior to the falling edge of

CPU-CLK before T1. In order to guarantee at least one wait

state, LOCK is held low until after the falling edge of CPU-

CLK in T1. This causes the insertion of TW into the cycle

prior to TX. ALE remains high and the address is delayed on

AD until LOCK is removed. After LOCK rises the access

concludes normally with ALE falling halfway through TX and

WRITE occurring during T2. Note that LOCK waits the ac-

cess at a different point in the cycle than programmed wait

states or WAIT. Additional wait states could occur from

these sources prior to T2. Figure 2-31 shows an example of

LOCK holding off a write to data memory with one pro-

grammed wait state.

With timing similar to LOCK, the BCP will be delayed from

making a data memory access by an access from the re-

mote system. If the remote system is accessing the Remote

Interface Configuration register, ÀRICÓ, or data memory, the

BCP will be waited by the Remote Interface and Arbitration

System, RIAS, until the remote access is finished. The

length of time the BCP is waited depends on the speed of

the remote system and the type of remote access. The wait

states are added prior to TX in the same manner as for

LOCK shown in Figure 2-30. A more detailed description of

the operation of RIAS can be found in Section 4.0, Remote

Interface and Arbitration System.

39

Obs
ole

te

2.0 CPU Description (Continued)

TL/F/9336–F3

FIGURE 2-30. LOCK Timing

TL/F/9336–F4

FIGURE 2-31. LOCK Timing with One Wait State

40

Obs
ole

te

2.0 CPU Description (Continued)

The CPU will be stopped after RESET is asserted low. The

CPU can be externally controlled by changing the state of

the start bit, [STRT], in ÀRICÓ. The CPU starts executing

instructions from the current address in the program control

register when a one is written to [STRT] and stops when
[STRT] is cleared. The CPU will complete the current in-

struction before stopping. Controlling the CPU from ÀRICÓ

requires a processor to access ÀRICÓ. If no external proces-

sor is present, the CPU can be made to start automatically

after reset by holding REM-WR and REM-RD low and RAE

high while RESET is transitioning from low to high. The CPU

‘‘kick-starts’’ and will begin executing instructions from ad-

dress zero. The timing for kick-starting the CPU is shown in

Figure 2-32. ICLK rises on the rising edge of CPU-CLK one

T-state after RESET is de-asserted. The falling edge of

ICLK signifies the beginning of the first instruction fetch.

Three instruction wait states and T2 precede the first in-

struction.

A functional state diagram describing the timing of the CPU

is shown inFigure 2-33. The functional state diagram is sim-

ilar to a flow chart, except that transitions to a new state

(states are denoted as rectangular boxes) can only occur on

the rising edge of the CPU-CLK. A state box can specify

several actions, and each action is separated by a horizon-

tal line. A signal name listed in a state box indicates that that

pin will be asserted high when Timing Control has entered

that state. When the signal is omitted from a box, it is as-

serted low. (Note: this requires using the inversion of a sig-

nal in some cases.) Decision blocks are shown as diamonds

and their meaning is the same as in a flow chart. The func-

tional state diagram is a generalized approach to determin-

ing instruction flow while allowing for any combination of

wait states and control signals. Timing Control always starts

from a reset in the state IDLE. After RESET goes high, Tim-

ing Control remains in IDLE until [STRT] is written high. If

the BCP kick-starts, Timing Control enters TST on the next

rising edge of CPU-CLK. Timing Control starts with a dummy

instruction cycle in order to fetch the first instruction. ICLK

goes high in T1 and the instruction wait state counter is

loaded. ICLK falls when either T2 or TW is entered as deter-

mined by the value of iIW and WAIT. The normal instruction

flow begins after T2 at B on the diagram. As an example,

consider a three T-state data memory write instruction with

one data wait state. The instruction cycle path for this in-

struction would begin at T1 following the decision block for

data memory access. In T1, ICLK is asserted high, the in-

struction wait state counter is loaded, and a bus request to

RIAS is generated. Also, ALE is asserted high on the falling

edge of CPU-CLK during T1. A branch decision is now made

based on the state of LOCK and the response from RIAS to

the bus request. Assuming that LOCK is not asserted and a

remote access is not in progress, Timing Control enters TX

on the next rising edge of CPU-CLK. In TX, the data wait

state counter is loaded and the instruction wait state coun-

ter is decremented. In this example, the instruction wait

state counter is at zero and is not counting. The data wait

state counter is loaded with one. ALE goes low on the fall-

ing edge of CPU-CLK during TX. The next decision block

checks for a read of data memory. This example is a write to

data memory so the decision is no and the branch is to the

right. The wait state conditions are evaluated in the follow-

ing decision block. iDW is one and Timing Control enters TW

on the next rising edge of CPU-CLK. WRITE is asserted low

when TW is entered and the data wait state counter is dec-

remented to zero. The decision on iDW, iIW, and WAIT is

now true and T2 is entered on the next rising edge of CPU-

CLK. WRITE remains low. The CPU will stop execution if
[STRT] is low at B in the diagram. Otherwise, the next in-

struction will be executed beginning at A. To summarize,

this instruction went through the following states: T1, TX,

TW, and T2. The complete instruction cycle is shown in Fig-
ure 2-21. Any instruction cycle can be analyzed in a similar

manner using this functional state diagram.

TL/F/9336–F5

FIGURE 2-32. CPU Start-Up Timing

41

Obs
ole

te

2.0 CPU Description (Continued)

T
L
/
F
/
9
3
3
6
–
F
6

F
IG

U
R

E
2
-3

3
.
F
u
n
c
ti
o
n
a
l
S
ta

te
D

ia
g
ra

m
o
f
C

P
U

T
im

in
g

42

Obs
ole

te

2.0 CPU Description (Continued)

2.2.3 Interrupts

The DP8344B has two external and four internal interrupt

sources. The external interrupt sources are the Non-Maska-

ble Interrupt pin, NMI, and the Bi-directional Interrupt Re-

quest pin, BIRQ.

External

A non-maskable interrupt is detected by the CPU when a

falling edge is detected at the NMI pin. The interrupt is auto-

matically cleared internally when the CPU recognizes the

interrupt.

BIRQ can function as both an interrupt into the DP8344B

and as an output which can be used to interrupt other devic-

es. BIRQ is configured as an input or output according to

the state of [BIC] in the Auxiliary Control Register, ÀACRÓ.

BIRQ is an input if [BIC] is a zero and an output when [BIC]
is a one. The reset state of [BIC] is a zero, causing BIRQ to

be an input after the BCP is reset. [BIRQ] in the Condition

Code Register, ÀCCRÓ, is a read only bit which mirrors the

state of BIRQ regardless of whether BIRQ is configured as

an input or output. This bit is updated at the beginning of T1

of each instruction.

When BIRQ is configured as an input, an interrupt will occur

if the pin is held low. BIRQ must be held low until the inter-

rupt is recognized or the interrupt will not be processed. Due

to the prioritizing of interrupts as described below, BIRQ

may not be recognized by the CPU until higher priority inter-

rupts have been serviced. BIRQ will be recognized after

higher priority interrupts have been processed. The low

state on BIRQ should be removed after the CPU recognizes

the interrupt or the interrupt will be processed multiple

times.

When BIRQ is configured as an output, its state is controlled

by [IM3] in the Interrupt Control Register, ÀICRÓ. Changing

the state of this bit will change BIRQ at the beginning of T1

of the instruction following the write to [IM3]. Note that
[BIRQ] in ÀCCRÓ is also updated at the beginning of T1.

Therefore, there is a one instruction cycle delay from when
[IM3] changes to when the new value of BIRQ is made

available in [BIRQ]. [BIS] in the Remote Interface Configu-

ration register, ÀRICÓ, mirrors the state of [IM3]. When

BIRQ is an output, writing a one to [BIS] will change the

state of [IME] thus changing BIRQ and allowing a remote

processor to acknowledge an interrupt from the BCP. Note,

if the BCP code operates on [IM3] at the same time that the

remote processor acknowledges the interrupt by writing a

one to [BIS], BIRQ will toggle and then assume the state of
[IM3] resulting from the BCP code operation. Therefore, if

the designer chooses to operate on [IM3] while waiting for

the remote processor to acknowledge a BIRQ interrupt, the

designer should ensure that the remote processor is locked

out from accessing [BIS] during the operation on [IM3].
This can be accomplished by setting [LOR] in ÀACRÓ, hav-

ing the BCP perform a data memory access to ensure that

any current remote accesses are complete, operating an
[IM3], and finally clearing [LOR]. BIRQ will change state

two T-states after the end of the write to [BIS]. Writing a

one to [BIS] will have no effect on [IM3] when BIRQ is an

input. Table 2-26 summarizes the relationship between

BIRQ and its associated register bits.

TABLE 2-26. BIRQ Control Summary

(a) BIRQ is an Input ([BIC] e 0): Remote Processor Controls the State of BIRQ

[IM3] [BIS] BIRQ [BIRQ]

0 [IM3] e 0 Active Interrupt to the BCP: state of Reflects the state of BIRQ

BIRQ controlled by the Remote

Processor

1 [IM3] e 1 Masked Interrupt to the BCP: state of Reflects the state of BIRQ

BIRQ controlled by the Remote

Processor

(b) BIRQ is an Output ([BIC] e 1): BCP Controls the State of BIRQ

[IM3] [BIS] BIRQ [BIRQ]

0 [IM3] e 0 State of [IM3] e 0 Reflects the state of BIRQ e 0

1 [IM3] e 1 State of [IM3] e 1 Reflects the state of BIRQ e 1

(c) BIRQ is an Output ([BIC] e 1): Remote Processor Acknowledges BIRQ

[BIS] [IM3] [BIS] BIRQ [BIRQ]

Remote Processor writes a 1 to [BIS] Toggles [IM3] State of [IM3] Reflects the

state of BIRQ

43

Obs
ole

te

2.0 CPU Description (Continued)

Internal

The internal interrupts consist of the Transmitter FIFO Emp-

ty, TFE, interrupt, the Line Turn Around, LTA, interrupt, the

Time Out, TO, interrupt, and a user selectable receiver inter-

rupt source. The receiver interrupt source is selected from

either the Receiver FIFO, Full, RFF, interrupt, the Data

Available, DA, interrupt, or the Receiver Active, RA, inter-

rupt. The receiver interrupt is selected using bits [RIS1] and
[RIS0] in the Interrupt Control Register, ÀICRÓ. See the

Section 3.0, Transceiver for a description of these inter-

rupts.

Masking

The BCP uses two levels of interrupt masking: a global inter-

rupt mask which affects all interrupts except NMI and indi-

vidual interrupt mask bits. Global enabling and disabling of

the interrupts is performed by changing the state of the

Global Interrupt Enable bit, [GIE], in ÀACRÓ. The maskable

interrupts are disabled when [GIE] is a zero and enabled

when [GIE] is a one. [GIE] is a zero after the BCP is reset.
[GIE] is a read/write register bit and may be changed by

using any instruction that can write to ÀACRÓ. In addition,

the RET, RETF, and EXX instructions have option fields

which can be used to alter the state of [GIE]. The EXX

instruction can set or clear [GIE] as well as leaving it un-

changed. The RET and RETF instructions can restore [GIE]
to the value that was saved on the address stack at the time

the interrupt was recognized. These instructions also pro-

vide the options of clearing or setting [GIE] or leaving it

unchanged. [GIE] is set to a zero when an interrupt is rec-

ognized by the CPU. It is necessary to set [GIE] to a one if

interrupts are to be recognized within an interrupt routine.

The individual interrupt mask bits are located in ÀICRÓ.

When set to a one, bits [IM0], [IM1], [IM2], [IM3], and [IM4]
in ÀICRÓ mask the receiver interrupt, TFE interrupt, LTA in-

terrupt, BIRQ interrupt, and TO interrupt, respectively. To

enable an interrupt, its mask bit must be set to a zero. The

interrupts and associated mask bits are shown in

Table 2-27. These bits are set to a one when the DP8344 is

reset.

Masking interrupts with [GIE] or the mask bits in ÀICRÓ pre-

vents the CPU from acknowledging interrupts but does not

prevent the interrupts from occurring. Therefore, if an inter-

rupt is asserted, it will be processed as soon as it is un-

masked by changing [GIE] to a one and/or changing the

appropriate mask bit in ÀICRÓ to a zero.

Priorites

When more than one interrupt is unmasked and asserted,

the CPU processes the interrupt with the highest priority

first. NMI has the highest priority followed by the receiver

interrupt, TFE, LTA, BIRQ, and TO. Each time the interrupts

are sampled, the highest priority interrupt is processed first,

regardless of how long a lower priority interrupt has been

active. Interrupt priority is summarized in Table 2-27.

TABLE 2-27. ÀICRÓ Interrupt Mask Bits

and Interrupt Priority

Interrupt Mask Bit Priority

NMI Ð Highest

RFF, DA, RA [IMO]
TFE [IM1]
LTA [IM2]
BIRQ [IM3]
TO [IM4] Lowest

44

Obs
ole

te

2.0 CPU Description (Continued)

A call to the interrupt address is generated when an inter-

rupt is detected by the CPU. The address for each interrupt

is constructed by concatenating the Interrupt Base Register,
ÀIBRÓ, contents with the individual interrupt code as shown

in Table 2-28. There is room between the interrupt address-

es for a maximum of four instruction words.

TABLE 2-28. Interrupt Vector Generation

Interrupt Code

NMI 111

RFF, DA, RA 001

TFE 010

LTA 011

BIRQ 100

TO 101

Interrupt Vector

ÀIBRÓ Contents 0 0 0 Code 0 0

15 8 5 2 0

Interrupts are sampled by each falling edge of the CPU

clock with the last falling edge prior to the start of the next

instruction determining whether an interrupt will be process-

ed. The timing of a typical interrupt event is shown in Figure
2-34. The interrupt occurs during the current instruction and

is sampled by the falling edge of the CPU clock. The next

instruction is not operated on and its address is stored in the

internal address stack along with [GIE], the ALU flags, and

the register bank positions. The address stack is twelve

words deep. A two T-state internal call is now executed in

place of the non-executed instruction. This call will cause a

branch to the interrupt address that is generated in the first

half of T-state T1. Also, [GIE] is cleared at the end of the

first half of T-state T1. The internal call to the interrupt ad-

dress is subject to instruction wait states as configured in
ÀDCRÓ.

2.2.4 Oscillator

The crystal oscillator is an on-chip amplifier which may be

used with an external crystal to generate accurate CPU and

transceiver clocks. The input to this amplifier is X1, pin 33.

The output of the amplifier is X2, pin 34. When X1 and X2

are connected to a crystal and external capacitors (Figure
2-35), the combined circuit forms a Pierce crystal oscillator

with the crystal operating at parallel resonance. Crystals

that oscillate over the frequency range of 2 MHz to 20 MHz

may be used. The recommended crystal parameters for op-

eration with the oscillator are given in Table 2-29. The exter-

nal capacitor values should be chosen to provide the manu-

facturer’s specified load capacitance for the crystal when

combined with the parasitic capacitance of the trace, sock-

et, and package. As an example, a crystal with a specified

load capacitance of 20 pF used in a circuit with 13 pF per

pin parasitic capacitance will require external capacitor val-

ues of 27 pF each. This provides an equivalent capacitance

of 40 pF on each side of the crystal, and has a 20 pF series

equivalent value across the crystal.

As an alternative to the crystal oscillator, an external clock

source may be used. In this case, the external clock source

should be connected to X1 and no external circuitry should

be connected to X2 (Figure 2-36). The DP8344 can supply a

clock source, equal in frequency to the crystal oscillator or

external clock source, to other circuitry via pin 35, the CLK-

OUT output. This output is a buffered version of the signal at

X1.

TABLE 2-29. Recommended Crystal Parameters

AT Cut, Parallel Resonant

Fundamental Mode

Load Capacitor e 20 pF

Series Resistance k 20X

Frequency Tolerance 0.005% at 25§C
Stability 0.01% 0§ –70§C
Drive Level 0.5 mW Typical

TL/F/9336–F7

FIGURE 2-34. Interrupt Timing

45

Obs
ole

te

2.0 CPU Description (Continued)

TL/F/9336–F8

FIGURE 2-35. DP8344B Operation with Crystal

TL/F/9336–F9

FIGURE 2-36. DP8344B Operation with External Clock

3.0 Transceiver
3.1 TRANSCEIVER ARCHITECTURAL DESCRIPTION

The transceiver section operates as an on-chip, indepen-

dent peripheral, implementing all the necessary formatting

required to support the physical layer of the following serial

communications protocols:

IBM 3270 (including 3299)

IBM 5250

NSC general purpose 8-bit

The CPU and transceiver are tightly coupled through the

CPU register space, with the transceiver appearing to the

CPU as a group of special function registers and three dedi-

cated interrupts. The transceiver consists of separate trans-

mitter and receiver logic sections, each capable of indepen-

dent operation, communicating with the CPU via an asyn-

chronous interface. This interface is software configurable

for both polled and interrupt-driven interaction, allowing the

system designer to optimize his product for the specific ap-

plication.

The transceiver connects to the line through an external line

interface circuit which provides the required DC and AC

drive characteristics appropriate to the application. A block

diagram of such an interface is shown in Figure 3-1. An on-

chip differential analog comparator, optimized for use in a

transformer coupled coax interface, is provided at the input

to the receiver. Alternatively, if an external comparator is

necessary, the input signal may be routed to the DATA-IN

pin.

TL/F/9336–33

FIGURE 3-1. System Block Diagram, Showing Details of the Line Interface

46

Obs
ole

te

3.0 Transceiver (Continued)

The transceiver has several modes of operation. It can be

configured for single line, half-duplex operation in which the

receiver is disabled while the transmitter is active. Alterna-

tively, both receiver and transmitter can be active at the

same time for multi-channel (such as repeater) or loopback

operation. The transceiver has both internal and external

loopback capabilities, facilitating testing of both the soft-

ware and external hardware. At all times, both transmitter

and receiver operate according to the same protocol defini-

tion.

3.1.1 Protocols

In all protocols, data is transmitted serially in discrete mes-

sages containing one or more frames, each representing a

single word of information. Biphase (Manchester II) encod-

ing is used, in which the data stream is divided into discrete

time intervals (bit-times) denoted by a level transition in the

center of the bit-time. For the IBM 3270, 3299 and NSC

general purpose 8-bit protocols, a mid-bit transition from low

to high represents a biphase ‘‘1’’, and a mid-bit transition

from high to low represents a biphase ‘‘0’’. For the 5250

protocol, the definition of biphase logic levels is exactly re-

versed, i.e. a biphase ‘‘1’’ is represented by a high to low

transition. Depending on the bit sequence, there may or

may not be a transition on the bit-time boundary. The bi-

phase encoding of a simple bit sequence is illustrated in

Figure 3-2(a) .

Each transmission begins with a unique start sequence con-

sisting of 5 biphase encoded ‘‘1’s’’, (referred to as ‘‘line

quiesce pulses’’) followed by a 3 bit-time code violation and

the sync bit of the first frame, Figure 3-2(b) . The three bit-

time code violation does not conform to the rules of Man-

chester encoding and forms a unique recognition pattern for

bit time synchronization by the receiver logic. The first bit of

any frame is the sync bit, a biphase ‘‘1’’. The frame is then

formatted according to the requirements of the protocol. If a

multi-frame message is being transmitted, additional frames

are appended to the end of the first frameÐexcept for the

5250 protocol, where there may be an optional number of

‘‘fill bits’’ (biphase ‘‘0’’) between each frame.

Depending on the protocol, when all data has been trans-

mitted, the end of a message will be indicated either by the

transmission of an ending sequence, or (for 5250) simply by

the cessation of transitions on the differential line. Later

model 5250 equipment has incorporated a ‘‘line hold’’ at the

end of the message. The line hold maintains the final differ-

ential state on the line for several bit times to eliminate

noise or reflections that could be interpreted as a continu-

ance of the message. The ending sequence for all but 5250

protocols consists of a single biphase ‘‘0’’ followed by a low

to high transition on the bit-time boundary and two bit-times

with no transitions (two mini-code violation), Figure 3-2(c).

The various protocol framing formats are shown in Figures
3-3 through 3-5 . The diagrams use a bit pattern drawing

convention which, for clarity, shows the bit-time boundaries

but not the biphase transitions in the center of the bit times.

The timing relationship between the biphase encoded bit

stream and the bit pattern diagrams is consistent with Fig-
ure 3-2 .

TL/F/9336–34

(a) Biphase Encoding

TL/F/9336–36

(b) Starting Sequence

TL/F/9336–35

(c) Ending Sequence

FIGURE 3-2. Biphase Encoding

3.1.1.1 IBM 3270

The framing format of the IBM 3270 coax protocol is shown

in Figures 3-3(a) and (b) , for both single and multi-frame

messages. Each message begins with a starting sequence

and ends with an ending sequence, as shown in Figures
3-2(b) and (c) . Each 12-bit frame begins with a sync bit (B1)

followed by an 8-bit data byte (MSB first), a 2-bit control

field, and the frame delimiter bit (B12), representing even

parity on the previous 11 bits. The bit rate on the coax line is

2.3587 MHz.

3.1.1.2 IBM 3299

Adding 3299 multiplexers to the 3270 environment requires

an address to be transmitted along with each message from

the controller to the multiplexer. The IBM 3299 Terminal

Multiplexer protocol provides this capability by defining an

additional 8-bit frame as the first frame of every message

sent from the controller, as shown in Figure 3-3(c) . This

frame contains a 6-bit data field along with the normal sync

and word parity bits. The protocol currently utilizes bits B2–

B4 as an address field that directs the message through the

multiplexor hardware. Following the address frame, the rest

of the message follows standard 3270 convention. The bit

rate, 2.3587 MHz, is the same as standard 3270.

3.1.1.3 IBM 5250

The framing format of the IBM 5250 twinax protocol is

shown in Figure 3-4 , for both single and multi-frame mes-

sages. Each message begins with the starting sequence

shown in Figure 3-2(b) , and ends with 3 fill bits (biphase

‘‘0’’). A 16-bit frame is employed, consisting of a sync bit

(B15); an 8-bit data byte (B7–B14) (LSB first); a 3-bit station

address field (B4–B6); and the last bit (B3) representing

47

Obs
ole

te

3.0 Transceiver (Continued)

TL/F/9336–37

(a) 3270 Single-Byte Message

TL/F/9336–38

(b) 3270 Multi-Byte Message

TL/F/9336–39

(c) 3299 Controller/Multiplexer Message

FIGURE 3-3. 3270/3299 Protocol Framing Format

TL/F/9336–40

(a) 5250 Single-Byte Message

TL/F/9336–41

(b) 5250 Multi-Byte Message

FIGURE 3-4. 5250 Protocol Framing Format

48

Obs
ole

te

3.0 Transceiver (Continued)

even word parity on the previous 12 bits. Following the pari-

ty bit, 3 biphase ‘‘0’’ fill bits (B0–B2) are transmitted. Follow-

ing these required fill bits, up to 240 additional fill bits can be

inserted between frames before the next sync bit and the

start of the next frame of a multi-byte message. The bit rate

on the twinax line is 1 MHz.

3.1.1.4 General Purpose 8-Bit

The framing format of the general purpose 8-bit protocol is

shown in Figure 3-5 , for both single and multi-frame mes-

sages. It is identical to that used by the National Semicon-

ductor DP8342 transmitter and DP8343 receiver chips.

Each message begins with a starting sequence and ends

with an ending sequence, as shown in Figures 3-2(b) and

(c) . A 10-bit frame is employed, consisting of the sync bit

(B1); an 8-bit data byte (B2–B9) (LSB first); and the last bit

of the frame (B10) representing even word parity on the

previous 9 bits. For multiplexed applications, the first frame

can be designated as an address frame, with all 8 bits avail-

able for the logical address. (See General Purpose 8-bit

Modes in this section.)

3.2 TRANSCEIVER FUNCTIONAL DESCRIPTION

A block diagram of the transceiver, revealing external inputs

and outputs and details of the CPU interface, is shown in

Figure 3-6 . The transmitter and receiver are largely indepen-

dent of each other, sharing only the clock, reset and proto-

col select signals. The transceiver is mapped into the CPU

register space, thus the status of the transceiver can always

be polled. In addition, the CPU/Transceiver interface can be

configured for an interrupt-driven environment. (See Trans-

ceiver Interrupts in this section.)

Both transmitter and receiver are reset by a common Trans-

ceiver Reset bit, [TRES], allowing the CPU to independently

reset the transceiver at any time. The Transceiver is also

reset whenever the CPU reset is asserted, including the re-

quired power-up reset. When [TRES] is asserted, both

transmitter and receiver FIFO’s are emptied resulting in the

Transmit FIFO Empty flag [TFE] being asserted and the

Data Available flag [DAV] cleared. Other flags cleared by
[TRES] are Transmit FIFO Full [TFF] and Transmitter Ac-

tive [TA] in the transmitter and Line Active [LA], Receiver

Active [RA], Receiver Error [RE], Receive FIFO Full [RFF],
Data Error or Message End [DEME], [POLL], [ACK], and
[RAR] command flags in the receiver. When [TRES] is as-

serted, external pin TX-ACT is cleared, DATA-DLY goes to a

state equal to the complement of Transmitter INvert [TIN] in
ÀTMRÓ, and DATA-OUT goes into a state equal to the com-

plement of [TIN] exclusive or’ed with the Advance Transmit-

ter Active [ATA] in ÀTCRÓ. In other words, when [TRES] is

asserted, DATA-DLY e [TIN], and DATA-OUT e [TIN] Z

[ATA]. When [TRES] is asserted under software control, it

is necessary to wait at least one instruction after asserting
[TRES] before seeing the resulting reset state of the affect-

ed flags in the CPU. The transmitter and receiver are

clocked by a common Transceiver Clock, TCLK, at a fre-

quency equal to eight times the required serial data rate.

TCLK can either be obtained from the on-chip oscillator di-

vided by 1, 2 or 4, or from an external clock applied to the

X-TCLK pin. TCLK selection is controlled by two Transceiv-

er Clock Select bits, [TCS 1–0] located in the Device Con-

trol Register, ÀDCRÓ. [TCS 1–0] should only be changed

when the transceiver is inactive.

Since the TCLK source can be asynchronous with respect

to the CPU clock, the CPU/Transceiver interface can be

asynchronous. All flags from the Transceiver are therefore

latched at the start of all instructions, and parallel data is

transferred through 3 word FIFOs in both the transmitter

and receiver.

Protocol selection is controlled by three Protocol Select

bits, [PS2–0] in the Transceiver Mode Register, ÀTMRÓ

(see Table 3-1). Enough flexibility is provided for the BCP to

operate in all required positions in the network. It is not pos-

TL/F/9336–42

(a) 8-Bit Single-Byte Message

TL/F/9336–43

(b) 8-Bit Multi-Byte Message

FIGURE 3-5. General Purpose 8-Bit Protocol Framing Format

49

Obs
ole

te

3.0 Transceiver (Continued)

sible for the transmitter and receiver to operate with differ-

ent protocols at the same time. The protocol mode should

only be changed when both transmitter and receiver are

inactive.

If both transmitter and receiver are connected to the same

line, they should be configured to operate sequentially (half-

duplex). This mode of operation is achieved by clearing the

RePeater ENable control bit [RPEN] in ÀTMRÓ. In this

mode, an active transmitter will disable the receiver, pre-

venting simultaneous operation of transmitter and receiver.

If the transmitter FIFO is loaded while the receiver is active-

ly processing an incoming signal, the receiver will be dis-

abled and flag the CPU that a ‘‘Receiver Disabled While

Active’’ error has occurred. (See Receiver Errors in this sec-

tion.) On power-up/reset the transceiver defaults to this

half-duplex mode.

By asserting the Repeat Enable flag [RPEN], the receiver is

not disabled by the transmitter, allowing both transmitter

and receiver to be active at the same time. This feature

provides for the implementation of a repeater function or

loopback for test purposes.

The transmitter output can be connected to the receiver

input, implementing a local (on-chip) loopback, by asserting
[LOOP]. [RPEN] must also be asserted to enable both the

transmitter and receiver at the same time. With [LOOP] as-

serted, the output TX-ACT is disabled, keeping the external

line driver in TRI-STATE. The internal flag [TA] is still en-

abled, as are the serial data outputs.

TABLE 3-1. Protocol Mode Definition

PS2–0 Protocol Mode Comments

0 0 0 3270 Standard IBM 3270 protocol.

0 0 1 3299 Multiplexer Receiver expects first frame to be address frame. Transmitter uses standard

3270, no address frame.

0 1 0 3299 Controller Transmitter generates address frame as first frame. Receiver expects standard

3270, no address frame.

0 1 1 3299 Repeater Both transmitter and receiver operate with first frame as address frame.

1 0 0 5250 Non-promiscuous mode. [DAV] asserted only when first frame address matches
ÀATRÓ.

1 0 1 5250 Promiscuous [DAV] asserted on all valid received data without regard to address field.

1 1 0 8-Bit General-purpose 8-bit protocol with first frame address. Non-promiscuous mode.
[DAV] asserted only when first frame address matches ÀATRÓ.

1 1 1 8-Bit Promiscuous [DAV] asserted on all valid received frames.

50

Obs
ole

te

3.0 Transceiver (Continued)

TL/F/9336–44

KEY TO REGISTERS

RTR Receive/Transmit Register ATR Auxiliary Transceiver Register

TSR Transceiver Status Register NCF Network Command Register

TCR Transceiver Command Register FBR Fill-Bit Register

TMR Transceiver Mode Register DCR Device Control Register

FIGURE 3-6. Block Diagram of Transceiver, Showing CPU Interface

51

Obs
ole

te

3.0 Transceiver (Continued)

3.2.1 Transmitter

The transmitter accepts parallel data from the CPU, formats

it according to the desired protocol and transmits it as a

serial biphase-encoded bit stream. A block diagram of the

transmitter logic is shown in Figure 3-6 . Two biphase out-

puts, DATA-OUT, DATA-DLY, and the external line driver

enable, TX-ACT, provide the data and control signals for the

external line interface circuitry. The two biphase outputs are

valid only when TX-ACT is asserted (high) and provide the

necessary phase relationship to generate the ‘‘predistor-

tion’’ waveform common to all of the transceiver protocols.

See Figure 3-7 for the timing relationships of these outputs

as well as the output of the line driver. For a recommended

3270/3299 coax interface, see Section 3.2.5.1 3270 Line

Interface. For a recommended 5250 twinax interface see

Section 3.2.5.2 5250 Line Interface.

The capability is provided to invert DATA-OUT and DATA-

DLY via the Transmitter Invert bit, [TIN], located in the

Transceiver Mode Register, ÀTMRÓ. In addition, the timing

relationship between TX-ACT and the two biphase outputs

can be modified with the Advance Transmitter Active con-

trol, [ATA]. When [ATA] is cleared low (the power-up condi-

tion), the transmitter generates exactly five line quiesce bits

at the start of each message, as shown in Figure 3-7 . If
[ATA] is asserted high, the transmitter generates a sixth line

quiesce bit, adding one biphase bit time to the start se-

quence transmission. The line driver enable, TX-ACT, is as-

serted halfway through this bit time, allowing an additional

half-bit to precede the first full line quiesce of the transmit-

ted waveform. Also, the state of DATA-DLY is such that no

predistortion results on the line during this first half line

quiesce. This modified start sequence is depicted in the dot-

ted lines shown in Figure 3-7 and is used to limit the initial

transient voltage amplitude when the message begins.

Data is loaded into the transmitter by writing to the Receive/

Transmit Register ÀRTRÓ, causing the first location of the

FIFO to be loaded with a 12-bit word (8 bits from ÀRTRÓ and

4 bits from the Transceiver Command Register ÀTCRÓ. The

data byte to be transmitted is loaded into ÀRTRÓ, and
ÀTCRÓ contains additional information required by the pro-

tocol. It is important to note that if ÀTCRÓ is to be changed,

it must be loaded before ÀRTRÓ. A multi-frame transmission

is accomplished by sequentially loading the FIFO with the

required data, the transmitter taking care of all necessary

frame formatting.

If the FIFO was previously empty, indicated by the Transmit

FIFO Empty flag [TFE] being asserted, the first word loaded

into the FIFO will asynchronously propagate to the last loca-

tion in approximately 40 ns, leaving the first two locations

empty. It is therefore possible to load up the FIFO with three

sequential instructions, at which time the Transmit FIFO Full

flag [TFF] will be asserted. If ÀRTRÓ is written while [TFF] is

high, the first location of the FIFO will be over-written and

that data will be destroyed.

When the first word is loaded into the FIFO, the transmitter

starts up from idle, asserting TX-ACT and the Transmitter

Active flag [TA], and begins generating the start sequence.

After a delay of approximately 16 TCLK cycles (2 biphase

bit times), the word in the last location of the FIFO is loaded

into the encoder and prepared for transmission. If the FIFO

was full, [TFF] will be de-asserted when the encoder is

loaded, allowing an additional word to be loaded into the

FIFO.

When the last word in the FIFO has been loaded into the

encoder, [TFE] goes high, indicating that the FIFO is empty.

To ensure the continuation of a multi-frame message, more

data must then be loaded into the FIFO before the encoder

starts the transmission of the last bit of the current frame

(the frame parity bit for 3270, 3299, and 8-bit modes; the

last of the three mandatory fill bits for 5250). This maximum

load time from [TFE] can be calculated by subtracting two

from the number of bits in each frame of the respective

protocol, and multiplying that result by the bit rate. This

number represents the best case time to loadÐthe worst

case value is dependent on CPU performance. Since the

CPU samples the transceiver flags and interrupts at instruc-

tion boundaries, the CPU clock rate, wait states (from pro-

grammed wait states, asserting the WAIT pin, or remote ac-

cess cycles), and the type of instruction currently being exe-

cuted can affect when the flag or interrupt is first presented

to the CPU.

If there is no further data to transmit (or if the load window is

missed), the ending sequence (3270/3299/8-bit) is generat-

ed and the transmitter returns to idle, de-asserting TX-ACT

and [TA]. In 5250 mode, the three required fill bits are sent

and TX-ACT and [TA] are de-asserted at a time dependent

on the value of bits 7 through 3 of the Auxiliary Transceiver

Register ÀATRÓ. If ÀATR[7–3]Óe00000, TX-ACT and [TA]
are de-asserted at the end of the third required fill bit result-

ing in no additional ‘‘line hold’’ at the end of the message.

Each increment of ÀATR[7–3]Ó results in an additional half

bit time of line hold up to a maximum of 15.5 bit times.

Data should not be loaded into the FIFO after the transmit-

ter is committed to ending the message and before the [TA]
flag is deasserted. If this occurs, the load will be missed by

the transmitter control logic and the word(s) will remain in

the FIFO. This condition exists when [TA] and [TFE] are

both low at the same time, and can be cleared by resetting

the transceiver (asserting [TRES]) or by loading more data

into the FIFO, in which case the first frame(s) transmitted

will contain the word(s) left in the FIFO from the previous

message.

52

Obs
ole

te

3.0 Transceiver (Continued)

TL/F/9336–45

FIGURE 3-7. Transmitter Output

3.2.2 Receiver

The receiver accepts a serial biphase-encoded bit stream,

strips off the framing information, checks for errors and re-

formats the data for parallel transfer to the CPU. The block

diagram in Figure 3-6 depicts the data flow from the serial

input(s) to the FIFO’s parallel outputs. Note that the FIFO

outputs are multiplexed with the Error Code Register ÀECRÓ

outputs.

The receiver and transmitter share the same TCLK, though

in the receiver this clock is used only to establish the sam-

pling rate for the incoming biphase encoded data. All control

timing is derived from a clock signal extracted from this

data. Several status flags and interrupts are made available

to the CPU to handle the asynchronous nature of the incom-

ing data stream. See Figure 3-8 for the timing relationships

of these flags and interrupts relative to the incoming data.

The input source to the decoder can be either the on-chip

analog line receiver, the DATA-IN input or the output of the

transmitter (for on-chip loopback operation). Two bits, the

Select Line Receiver [SLR] and Loopback [LOOP], control

this selection. For interfacing to the on-chip analog line re-

ceiver, see Section 3.2.5.1, 3270 Line Interface. An example

of an external comparator circuit for interfacing to twinax

cable in 5250 environments is contained in Section 3.2.5.2,

5250 Line Interface. The selected serial data input can be

inverted via the Receiver Invert [RIN] control bit.

The receiver continually monitors the line, sampling at a fre-

quency equal to eight times the expected data rate. The

Line Active flag [LA] is asserted whenever an input tran-

sition is detected and will remain asserted as long as anoth-

er input transition is detected within 16 TCLK cycles. If an-

other transition is not detected in this time frame, [LA] will

be de-asserted. The propagation delay from the occurrence

of the edge to [LA] being set is approximately 1 transceiver

clock cycle. This function is independent of the mode of

operation of the transceiver; [LA] will continue to respond to

input signal transitions, even if the transmitter is activated

and the receiver disabled.

If the receiver is not disabled by the transmitter or by assert-

ing [TRES], the decoder will adjust its internal timing to the

incoming transitions, attempting to synchronize to valid bi-

phase-encoded data. When synchronization occurs, the bi-

phase clock will be extracted and the serial NRZ (Non-Re-

turn to Zero) data will be analyzed for a valid start se-

quence, see Figure 3-2(b) . The minimum number of line

quiesce bits required by the receiver logic is selectable via

the Receiver Line Quiesce [RLQ] control bit. If this bit is set

high (the power-up condition), three line quiesce bits are

required; if set low, only two are needed. Once the start

sequence has been recognized, the receiver asserts the

Receiver Active flag [RA] and enables the error detection

circuitry. The propagation delay from the occurrence of the

mid-bit edge of the sync bit in the starting sequence to [RA]
being set is approximately 3 transceiver clock cycles.

The NRZ serial bit stream is now clocked into a serial to

parallel shift register and analyzed according to the expect-

ed data pattern as defined by the protocol. If no errors are

detected by the word parity bit, the parallel data (up to a

total of 11-bits, depending on the protocol) is passed to the

first location of the FIFO. It then propagates asynchronously

to the last location in approximately 40 ns, at which time the

Data Available flag [DAV] is asserted, indicating to the CPU

that valid data is available in the FIFO. The propagation

delay from the occurrence of the mid-bit edge of the parity

bit of the frame to [DAV] being set is approximately 5 trans-

ceiver clock cycles.

Of the possible 11-bits in the last location of the FIFO, 8-bits

(data byte) are mapped into ÀRTRÓ and the remaining bits

(if any) are mapped into the Transceiver Status Register
ÀTSR [2–0]Ó. The CPU accesses the data byte by reading
ÀRTRÓ, and the 5250 address field or 3270 control bits by

reading ÀTSRÓ. When reading the FIFO, it is important to

note that ÀTSRÓ must be read before ÀRTRÓ, since reading
ÀRTRÓ advances the FIFO. Once [DAV] has been recog-

nized as set by the CPU, the data can be read by any in-

struction with ÀRTR] as the source. All instructions with
ÀRTRÓ as the source (except BIT, CMP, JRMK, JMP reg-

53

Obs
ole

te

3.0 Transceiver (Continued)

TL/F/9336–46

FIGURE 3-8. Timing of Receiver Flags Relative to Incoming Data

ister, LJMP conditional, and LCALL conditional) will result in

popping the last location of the FIFO, presenting a new

word (if present) for future CPU access. Data in the FIFO

will propagate from one location to the next in approximate-

ly 10–15 ns, therefore the CPU is easily able to unload the

FIFO with a set of consecutive instructions.

If the received bit stream is a multi-byte message, the re-

ceiver will continue to process the data and load the FIFO.

After the third load (if the CPU has not accessed the FIFO),

the Receive FIFO Full flag [RFF] will be asserted. The prop-

agation delay from the occurrence of the mid-bit edge of the

parity bit of the frame to [RFF] being set is approximately 5

transceiver clock cycles. If there are more than 3 frames in

the incoming message, the CPU has approximately one

frame time (sync bit to start of parity bit) to start unloading

the FIFO. Failure to do so will result in an overflow error

condition and a resulting loss of data (see Receiver Errors).

If there are no errors detected, the receiver will continue to

process the incoming frames until the end of message is

detected. The receiver will then return to an inactive state,

clearing [RA] and asserting the Line Turn-Around flag,
[LTA] indicating that a message was received with no er-

rors. The propagation delay from the occurrence of the

edge starting the first minicode violation to [RA] cleared and
[LTA] set is approximately 17 transceiver clock cycles in

3270, 3299, and 8-bit modes. In 5250 modes, the assertion

of [LTA] and clearing of [RA] are dependent on how the

transmission line ends after the transmission of the three

required fill bits (see 5250 Modes). For the 3270 and 3299

protocols, [LTA] can be used to initiate an immediate trans-

mitter FIFO load; for the other protocols, an appropriate re-

sponse delay time may be needed. [LTA] is cleared by load-

ing the transmitter’s FIFO, writing a one to [LTA] in the Net-

work Command flag register, or by asserting [TRES].

Receiver Errors

If the Receiver Active flag, [RA], is asserted by the receiver

logic, the selected receiver input source is continuously

checked for errors, which are reported to the CPU by assert-

ing the Receiver Error flag, [RE], and setting the appropri-

ate receiver error flag in the Error Code Register ÀECRÓ. If a

condition occurs which results in multiple errors being creat-

ed, only the first error detected will be latched into ÀECRÓ.

Once an error has been detected and the appropriate error

flag has been set, the receiver is disabled, clearing [RA]
and preventing the Line Turn-Around flag and interrupt

[LTA] from being asserted. The Line Active flag [LA] re-

mains asserted if signal transitions continue to be detected

on the input.

5 error flags are provided in ÀECRÓ:

7 6 5 4 3 2 1 0

rsv rsv rsv OVF PAR IES LMBT RDIS

[OVF] OverflowÐAsserted when the decoder writes to

the first location of the FIFO while [RFF] is assert-

ed. The word in the first location will be over-writ-

ten; there will be no effect on the last two loca-

tions.

[PAR] Parity ErrorÐAsserted when a received frame

fails an even (word) parity check.

[IES] Invalid Ending SequenceÐAsserted during an

expected end sequence when an error occurs in

the mini code-violation. Not valid in 5250 modes.

[LMBT] Loss of Mid-Bit TransitionÐAsserted when the

expected biphase-encoded mid-bit transition does

not occur within the expected window. Indicates a

loss of receiver synchronization.

[RDIS] Receiver Disabled While ActiveÐAsserted when

an active receiver is disabled by the transmitter be-

ing activated.

To determine which error has occurred, the CPU must read
ÀECRÓ. This is accomplished by asserting the Select Error

Codes control bit, [SEC], and reading ÀRTRÓ. The ÀECRÓ is

only 5 bits wide, therefore the upper 3 bits are still the out-

put of the receive FIFO (seeFigure 3-6) . All instructions with
ÀECRÓ as the source (except BIT, CMP, JRMK, JMP regis-

ter, LJMP conditional, and LCALL conditional) will clear the

error condition and return the receiver to idle, allowing the

receiver to again monitor the incoming data stream for a

new start sequence. The [SEC] control bit must be de-as-

serted to read the FIFO’s data from ÀRTRÓ.

If data is present in the FIFO when the error occurs, the

Data Available flag [DAV] is de-asserted when the error is

detected and re-asserted when ÀECRÓ is read. Data pres-

ent in the FIFO before the error occurred is still available to

the CPU. The flexibility is provided, therefore, to read the

error type and still recover data loaded into the FIFO before

the error occurred. The Transceiver Reset, [TRES] can be

asserted at any time, clearing both Transceiver FIFOs and

the error flags.

54

Obs
ole

te

3.0 Transceiver (Continued)

3.2.3 Transceiver Interrupts

The transceiver has access to 3 CPU interrupt vectors, one

each for the transmitter and receiver, and a third, the Line

Turn-Around interrupt, providing a fast turn around capability

between receiver and transmitter. The receiver interrupt is

the CPU’s highest priority interrupt (excluding NMI), fol-

lowed by the transmitter and Line Turn-Around interrupts,

respectively. The three interrupt vector addresses and a full

description of the interrupts are given in Table 3-2.

The receiver interrupt is user-selectable from 4 possible

sources (only 3 used at present) by specifying a 2-bit field,

the Receiver Interrupt Select bits [RIS1-0] in the Interrupt

Control Register ÀICRÓ. A full description is given in Table

3-3.

The RFF a RE interrupt occurs only when the receive FIFO

is full (or an error is detected). If the number of frames in a

received message is not exactly divisible by 3, one or two

words could be left in the FIFO at the end of the message,

since the CPU would receive no indication of the presence

of that data, it is recommended that this interrupt be used

together with the line turn-around interrupt, whose service

routine can include a test for whether any data is present in

the receive FIFO.

For additional information concerning interrupts, refer to

Sections 2.1.1.3, Interrupt Control Registers, and 2.2.3, In-

terrupts.

3.2.4 Protocol Modes

3270/3299 Modes

As shown in Table 3-1, the transceiver can operate in 4

different 3270/3299 modes, to accommodate applications

of the BCP in different positions in the network. The 3270

mode is designed for use in a device or a controller which is

not in a multiplexed environment. For a multiplexed network,

the 3299 multiplexer and controller modes are designed for

each end of the controller to multiplexer connection, the

3299 repeater mode being used for an in-line repeater situ-

ated between controller and multiplexer.

For information on how parallel data loaded into the trans-

mit FIFO and unloaded from the receive FIFO maps into the

serial bit positions, see Figure 3-9 .

To transmit a frame, ÀTCR [3–0]Ó must first be set up with

the correct control information, after which the data byte

can be written to ÀRTRÓ. The resulting composite 12-bit

word is loaded into the transmit FIFO where it propagates

through to the last location to be loaded into the encoder

and formatted for transmission.

When formatting a 3270 frame, ÀTCR [2]Ó controls whether

the transmitter is required to format a data frame or a com-

mand frame. If ÀTCR [2]Ó is low, the transmitter logic calcu-

TABLE 3-2. Transceiver Interrupts

Interrupt Vector Address Description

Receiver 000100 User selectable from 4 possible sources, see Table 3-3.

Transmitter 001000 Set when [TFE] asserted, indicating that the transmit FIFO is empty, cleared by

writing to ÀRTRÓ. Note: [TRES] causes [TFE] to be asserted.

Line Turn-Around 001100 Set when a valid end sequence is detected, cleared by writing to ÀRTRÓ, writing

a one to [LTA], or asserting [TRES]. In 5250 modes, interrupt is set when the

last fill bit has been received and no further input transitions are detected. Will

not be set in 5250 or 8-bit non-promiscuous modes unless an address match

was received.

The interrupt vector is obtained by concatenating interrupt
IBR 0 0 vector address vectorÀIBRÓ with the vector address as shown:

15 8 5 0

TABLE 3-3. Receiver Interrupts

Interrupt RIS1,0 Description

RFFaRE 0 0 Set when [RFF] or [RE] asserted. If activated by [RFF], indicating that the

receive FIFO is full, interrupt is cleared by reading from ÀRTRÓ. If activated by
[RE], indicating that an error has been detected, interrupt is cleared by reading

from ÀECRÓ.

DAVaRE 0 1 Set when [DAV] or [RE] asserted. If activated by [DAV], indicating that valid

data is present in the receive FIFO, interrupt is cleared by reading from ÀRTRÓ. If

activated by [RE], indicating that an error has been detected, interrupt is cleared

by reading from ÀECRÓ.

Not Used 1 0 Reserved for future product enhancement.

RA 1 1 Set when [RA] asserted, indicating the receipt of a valid start sequence, cleared

by reading ÀECRÓ or ÀRTRÓ.

All receiver interrupts can be cleared by asserting [TRES].

55

Obs
ole

te

3.0 Transceiver (Continued)

lates odd parity on the data byte (B2–B9) and transmits this

value for B10. If ÀTCR [2]Ó is high, B10 takes the state of
ÀTCR [0]Ó. Odd Word Parity [OWP] controls the type of

parity calculated on B1–B11 and transmitted as B12, the

frame delimiter. If [OWP] is high, odd parity is output; other-

wise even parity is transmitted. In this manner the system

designer is provided with maximum flexibility in defining the

transmitted 3270 control bits (B10–B12).

When data is written to ÀRTRÓ, the least significant 4 bits of
ÀTCRÓ are loaded into the FIFO along with the data being

written to ÀRTRÓ. The same ÀTCRÓ contents can therefore

be used for more than one frame of a multi-frame transmis-

sion, or changed for each frame.

When a 3270 frame is received and decoded, the decoder

loads the parallel data into the receive FIFO where it propa-

gates through to the last location and is mapped into ÀRTRÓ

and ÀTSRÓ. Bits B2–B11 are exactly as received; Byte Pari-

ty [BP] is odd parity on B2–B9, calculated in the decoder.

Reading ÀRTRÓ will advance the receive FIFO, therefore
ÀTSRÓ must be read first if this information is to be utilized.

TL/F/9336–47

(a) 3270 Data and Command Frames

TL/F/9336–48

(b) 3299 Address Frame

FIGURE 3-9. 3270/3299 Frame Assembly/Disassembly Procedure

56

Obs
ole

te

3.0 Transceiver (Continued)

When formatting a 3299 address frame, the procedure is

the same as for a 3270 frame, with ÀRTR [7–2]Ó defining

the address to be transmitted. The only bit in ÀTCRÓ which

has any functional meaning in this mode is [OWP], which

controls the type of parity required on B1–B8. Similarly,

when the receiver de-formats a 3299 address frame, the

received address bits are loaded into ÀRTR [7–2]Ó; ÀRTR
[1–0]Ó and ÀTSR [2–0]Ó are undefined.

The POLL, POLL/ACK and TT/AR flags in the Network

Command Flag Register are valid only in 3270 and 3299

(excluding the 3299 address frame) modes. These flags are

decodes of their respective coax commands as defined in

Table 3-4. The Data Error or Message End [DEME] flag

(also in the ÀNCFÓ register) indicates different information

depending on the selected protocol. In 3270 and 3299,
[DEME] is set when B10 of the received frame does not

match the locally generated odd parity on bits B2–B9 of the

received frame. [DEME] is not part of the receiver error

logic, it functions only as a status flag to the CPU. These

flags are decoded from the last location in the FIFO and are

valid only when [DAV] is asserted; they are cleared by read-

ing ÀRTRÓ and must be checked before advancing the re-

ceiver FIFO.

5250 Modes

The biphase data is inverted in the 5250 protocol relative to

3270/3299 (see the Protocol sectionÐIBM 5250). Depend-

ing on the external line interface circuitry, the transceiver’s

biphase inputs and outputs may need to be inverted by as-

serting the [RIN] (Receiver INvert) and [TIN] (Transmitter

INvert) control bits in ÀTMRÓ.

For information on how data must be organized in ÀTCRÓ

and ÀRTRÓ for input to the transmitter, and how data ex-

tracted from a received frame is organized by the receiver

and mapped into ÀTSRÓ and ÀRTRÓ, see Figure 3-10.

To transmit a 5250 message, the least significant 4 bits of
ÀTCRÓ must first be set up with the correct address and

parity control information. The station address field (B4–B6)

is defined by ÀTCR[2–0]Ó, and [OWP] controls the type of

parity (even or odd) calculated on B4–B15 and transmitted

as B3. When the 8-bit data byte is written to ÀRTRÓ, the

resulting composite 12-bit word is loaded into the transmit

FIFO, starting the transmitter. The same ÀTCRÓ contents

can be used for more than one frame of a multi-frame trans-

mission, or changed for each frame.

The 5250 protocol defines bits B0–B2 as fill bits which the

transmitter automatically appends to the parity bit (B3) to

TABLE 3-4. Decode of 3270 Coax Commands

Received Word Flag Description

B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

0 0 0 0 0 0 0 0 0 0 RAR TT/AR (Clean Status) Received

X X X 1 0 0 0 1 X 1 ACK POLL/ACK Command Received

X X X 0 0 0 0 1 X 1 POLL POLL Command Received

All flags cleared by reading ÀRTRÓ.

TL/F/9336–49

FIGURE 3-10. 5250 Frame Assembly/Disassembly Description

57

Obs
ole

te

3.0 Transceiver (Continued)

form the 16-bit frame. Additional fill bits may be inserted

between frames of a multi-frame transmission by loading

the fill bit register, ÀFBRÓ, with the one’s complement of the

number of fill bits to be transmitted. A value of FF (hex),

corresponds to the addition of no extra fill bits. At the con-

clusion of a message the transmitter will return to the idle

state after transmitting the 3 fill bits of the last frame (no

additional fill bits will be transmitted).

As shown in Table 3-1, the transceiver can operate in 2

different 5250 modes, designated ‘‘promiscuous’’ and ‘‘non-

promiscuous’’. The transmitter operates in the same man-

ner in both modes.

In the promiscuous mode, the receiver passes all received

data to the CPU via the FIFO, regardless of the station ad-

dress. The CPU must determine which station is being ad-

dressed by reading ÀTSR [2–0]Ó before reading ÀRTRÓ.

In the non-promiscuous mode, the station address field

(B4–B6) of the first frame must match the 3 least significant

bits of the Auxiliary Transceiver Register, ÀATR [2–0]Ó, be-

fore the receiver will pass the data on to the CPU. If no

match is detected in the first frame of a message, and if no

errors were found on that frame, the receiver will reset to

idle, looking for a valid start sequence. If an address match

is detected in the first frame of a message, the received

data is passed on to the CPU. For the remainder of the

message all received frames are decoded in the same man-

ner as the promiscuous mode.

To maintain maximum flexibility, the receiver logic does not

interpret the station address or command fields in determin-

ing the end of a 5250 message. The message typically ends

with no further line transitions after the third fill bit of the last

frame. This end of message must be distinguished from a

loss of synchronization between frames of a multi-byte

transmission condition by looking for line activity some time

after the loss of synchronization occurs. When the loss of

synchronization occurs during fill bit reception, the receiver

monitors the Line Active flag, [LA], for up to 11 biphase bit

times (11 ms at the 1 MHz data rate). If [LA] goes inactive at

any point during this period, the receiver returns to the idle

state, de-asserting [RA] and asserting [LTA]. If, however,
[LA] is still asserted at the end of this window, the receiver

interprets this as a real loss of synchronization and flags the
[LMBT] error condition to the CPU. (See Receiver Errors in

this section.)

In the 5250 modes, the Data-Error-or-Message-End [DEME]
flag is a decode of the 111 station address (the end of mes-

sage delimiter) and is valid only when [DAV] is asserted.

This function allows the CPU to quickly determine when the

end of message has been received.

The transmitter has the flexibility of holding TX-ACT active

at the end of a 5250 message, thus reducing line reflections

and ringing during this critical time period. The amount of

hold time is programmable from 0 ms to 15.5 ms in 500 ns

increments (assuming TCLK is 8 MHz), and is set by writing

the selected value to the upper 5-bits of the Auxiliary Trans-

ceiver Register, ÀATR [7–3]Ó.

General Purpose 8-Bit Modes

As shown in Table 3-1, the transceiver can operate in 2

different 8-bit modes, designated ‘‘promiscuous’’ and ‘‘non-

promiscuous’’. In the non-promiscuous mode, the first frame

data byte (B2–B9) must match the contents of ÀATR[7–0]Ó
before the receiver will load the FIFO and assert [DAV]. If

no match is made on the first frame, and if no errors were

found on that frame, the receiver will go back to idle, looking

for a valid start sequence. The address comparator logic is

not enabled in the promiscuous mode, and therefore all re-

ceived frames are passed through the receive FIFO to the

CPU. The transmitter operates in the same manner in both

modes.

The serial bit positions relative to the parallel data loaded

into the transmit FIFO and presented to the CPU by the

receiver FIFO are shown in Figure 3-11. To transmit a

frame, the data byte is written to ÀRTRÓ, loading the trans-

mit FIFO where it propagates through to the last location to

be loaded into the encoder and formatted for transmission.

Only [OWP] in ÀTCRÓ is loaded into the transmitter FIFO in

both protocol modes; ÀTCR [2–0]Ó are don’t cares. B10 is

defined by a parity calculation on B1–B9; odd if [OWP] is

high and even if [OWP] is low.

When a frame is received, the decoder loads the processed

data into the receive FIFO where it propagates through to

the last location and is mapped into ÀRTRÓ. All bits are

exactly as received. Reading the data is accomplished by

reading ÀRTRÓ. ÀTSR [2–0]Ó are undefined in the 8-bit

modes.

TL/F/9336–50

FIGURE 3-11. General Purpose 8-Bit Frame Assembly/Disassembly Procedure

58

Obs
ole

te

3.0 Transceiver (Continued)

3.2.5 Line Interface

3.2.5.1 3270 Line Interface

In the 3270 environment, data is transmitted between a con-

trol unit and a device via a single coax cable or twisted pair

cable. The coax type is RG62AU with a maximum length of

1.5 kilometers. The twisted pair cable has become more

prevalent to reduce cabling and routing costs. Typically, a

24 AWG unshielded twisted pair is used to achieve the cost

reduction goals. The length of the twisted pair cable is a

minimum of 100 feet to a maximum of 900 feet. The 3270

protocol utilizes a transformer to isolate the peripheral from

the cabling system.

An effective line interface design must be able to accept

either coax or twisted pair cabling and compensate for

noise, jitter and reflections in the cabling system. There

must be an adequate amount of jitter tolerance to offset the

effects of filtering and noise. Some filtering is needed to

reduce ambient noise caused by surrounding hardware.

Such filtering must not introduce transients that the receiver

comparator translates into data jitter.

An effective driver design should also attempt to compen-

sate for the filtering effects of the cable. Higher data fre-

quencies become attenuated more than lower frequency

signals as cable length is increased, yielding greater dispari-

ty in the amplitudes of these signals. This effect generates

greater jitter at the receiver. The 3270 signal format allows

for a high voltage (predistorted) magnitude and a low volt-

age (nondistorted) magnitude within each data bit time. In-

creasing the predistorted-to-nondistorted signal level ratio

counteracts the filtering phenomenon because the lower

frequency signals contain less predistortion than do higher

frequency signals. Thus, the amplitude of the higher fre-

quency signals is ‘‘boosted’’ more than the lower frequency

signals. Unfortunately, a low signal level is more susceptible

to reflection-induced errors at short cable length. Proper im-

pedance matching and slower edge rates must be utilized to

eliminate as much reflection as possible at these lengths.

Additionally, shielded or balanced operation must be ade-

quately supported. Shielded operation implies the use of

coax cable, where balanced implies the use of twisted pair

cable. Proper termination should be employed, and a termi-

nation slightly greater than the characteristic impedance of

theline may actually provide more desirable waveforms

than a perfectly matched termination. Board layout should

make the comparator lines as short as possible. Lines

should be placed closely together to avoid the introduction

of differential noise. These lines should not pass near

‘‘noisy’’ lines. A ground plane should isolate all ‘‘noisy’’

lines.

BCP Design

The line interface design for the receiver is shown in Figure
3-12. An offset of approximately 17 mV separates the com-

parator inputs, making the receiver more immune to ambi-

ent noise present on the circuit board. A 2:1:1 (arranged as

a 3:1) transformer increases any voltage sensitivity lost by

introducing the offset. A bandpass filter is employed to re-

duce edge rate to the comparator and eliminate ambient

noise. The bandwidth (30 kHz to 30 MHz) was chosen to

provide sufficient attenuation for noise while producing mini-

mum data jitter.

The driver design, Figure 3-13, incorporates a National

Semiconductor DS3487 and a resistor network to generate

the proper signal levels. The predistorted-to-nondistorted

ratio was chosen to be about 3 to 1. The coax/twisted pair

front end, Figure 3-14, includes an ADC brand connector to

switch between coax and twisted pair cable. The coax inter-

face has the shield capacitively coupled to ground. The

510X resistor and the filter loading produce a termination of

about 95X. The twisted pair interface balances both lines

and possesses an input impedance of about 100X. This

termination is somewhat higher than the characteristic im-

pedance (about 96X) of twisted pair. Terminations of this

type produce reflections that do not tend to generate mid-bit

errors. Such terminations have the benefit of creating a larg-

er voltage at the receiver over longer cable lengths. For a

more detailed explanation of the 3270 line interface, see

Application Note ‘‘A Combined Coax/Twisted Pair 3270

Line Interface for the DP8344 Biphase Communications

Processor’’.

3.2.5.2 5250 Line Interface

The 5250 environment utilizes twinax in a multi-drop config-

uration, where eight devices can be ‘‘daisy-chained’’ over a

total distance of 5,000 feet and eleven splices, (each physi-

cal device is considered a splice). Twinax connectors are

bulky and expensive, but are very sturdy. Twinaxial cable is

a shielded twisted pair that is nearly (/3 of an inch thick.

Legend

A f To coax/twisted pair front end

B f To line driver circuitry

C f To BCP comparator

* Includes board capacitance

TL/F/9336–G1

FIGURE 3-12. BCP Receiver Design

59

Obs
ole

te

3.0 Transceiver (Continued)

Legend

B f To 2:1:1 Transformer

D f From DP8344 Outputs

TL/F/9336–G2

FIGURE 3-13. BCP Driver Design

Legend

A f To 2:1:1 Transformer

Switch Open Ð Twisted Pair

Switch Closed Ð Coax

TL/F/9336–G3

FIGURE 3-14. BCP Coax/Twisted Pair Front End

The cable shield must be continuous throughout the trans-

mission system, and be grounded at the system unit and

each station. Since twinax connectors have exposed metal

connected to their shield grounds, care must be taken not to

expose them to noise sources. The polarity of the two inner

conductors must also be maintained throughout the trans-

mission system.

The transmission system is implemented in a balanced cur-

rent mode; every receiver/transmitter pair is directly cou-

pled to the twinax at all times. Data is impressed on the

transmission line by unbalancing the line voltage with the

driver current. The system requires passive termination at

both ends of the transmission line. The termination resist-

ance value is given by:

Rt e ZO/2; where

Rt: Termination Resistance

ZO: Characteristic Impedance

In practice, termination is accomplished by connecting both

conductors to the shield via 54.9X, 1% resistors; hence the

characteristic impedance of the twinax cable of 107X g5%

at 1.0 MHz. Intermediate stations must not terminate the

line; each is configured for ‘‘pass-through’’ instead of ‘‘ter-

minate’’ mode. Stations do not have to be powered on to

pass twinax signals on to other stations; all of the receiver/

transmitter pairs are DC coupled. Consequently, devices

must never output any signals on the twinax line during pow-

er-up or down that could be construed as data, or interfere

with valid data transmission between other devices.

Driver Circuits for the DP8344B

The transmitter interface on the DP8344B is sufficiently

general to allow use in 3270, 5250, and 8-bit transmission

systems. Because of this generality, some external hard-

ware is needed to adapt the outputs to form the signals

necessary to drive the twinax line. The chip provides three

signals: DATA-OUT, DATA-DLY and TX-ACT. DATA-OUT is

biphase serial data (inverted). DATA-DLY is the biphase se-

rial data output (non-inverted) delayed one-quarter bit-time.

TX-ACT, or transmitter active, signals that serial data is be-

ing transmitted when asserted. DATA-OUT and DATA-DLY

can be used to form the A and B phase signals with their

three levels by the circuit shown in Figure 3-15. TX-ACT is

used as an external transmitter enable. The BCP can invert

the sense of the DATA-OUT and DATA-DLY signals by as-

serting [TIN] ÀTMR[3]Ó. This feature allows both 3270 and

5250 type biphase data to be generated, and/or utilization

of inverting on non-inverting transmitter stages.

Drivers for the 5250 environment may not place any signals

on the transmission system when not activated. The power-

on and off conditions of drivers must be prevented from

causing noise on the system since other devices may be in

operation. Figure 3-15 shows a ‘‘DC power good’’ signal

enabling the driver circuit. This signal will lock out conduc-

tion in the drivers if the supply voltage is out of tolerance.

Twinax signals can be viewed as consisting of two distinct

phases, phase A and phase B, each with three levels, off,

60

Obs
ole

te

3.0 Transceiver (Continued)

high and low. The off level corresponds with 0 mA current

being driven, the high level is nominally 62.5 mA, a20%
b30%, and the low level is nominally 12.5 mA, a20%
b30%. When these currents are applied to a properly ter-

minated transmission line the resultant voltages impressed

at the driver are: off level is 0V, low level is 0.32V g20%,

high level is 1.6V g20%. The interface must provide for

switching of the A and B phases and the three levels. A bi-

modal constant current source for each phase can be built

that has a TTL level interface for the BCP.

Receiver Circuits

The pseudo-differential mode of the twinax signals make

receiver design requirements somewhat different than the

coax 3270 world. Hence, the analog receiver on the BCP is

not well suited to receiving twinax data. The BCP provides

both analog inputs to an on-board comparator circuit as well

as a TTL level serial data input, DATA-IN. The sense of this

serial data can be inverted by the BCP by asserting [RIN],
ÀTMR[4]Ó.
The external receiver circuit must be designed with care to

ensure reliable decoding of the bit-stream in the worst envi-

ronment. Signals as small as 100 mV must be detected. In

order to receive the worst case signals, the input level

switching threshold or hysteresis for the receiver should be

nominally 29 mV g20%. This value allows the steady state,

worst case signal level of 100 mV g66% of its amplitude

before transitioning.

To achieve this, a differential comparator with complemen-

tary outputs can be applied, such as the National LM361.

The complementary outputs are useful in setting the hyster-

esis or switching threshold to the appropriate levels. The

LM361 also provides excellent common mode noise rejec-

tion and a low input offset voltage. Low input leakage cur-

rent allows the design of an extremely sensitive receiver,

without loading the transmission line excessively.

In addition to good analog design techniques, a low pass

filter with a roll-off of approximately 1 MHz should be ap-

plied to both the A and B phases. This filter essentially con-

ducts high frequency noise to the opposite phase, effective-

ly making the noise common mode and easily rejectable.

Layout considerations for the LM361 include proper bypass-

ing of the g12V supplies at the chip itself, with as short as

possible traces from the pins to 0.1 mF ceramic capacitors.

Using surface mount chip capacitors reduces lead induc-

tance and is therefore preferable in this case. Keeping the

input traces as short and even in length is also important.

The intent is to minimize inductance effects as well and

standardize those effects on both inputs. The LM361 should

have as much ground plane under and around it as possi-

ble. Trace widths for the input signals especially should be

as wide as possible; 0.1 inch is usually sufficient. Finally,

keep all associated discrete components nearby with short

routing and good ground/supply connections.

For a more detailed explanation of the 5250 line interface,

see application note ‘‘Interfacing the DP8344 to Twinax.’’

TL/F/9336–G4

FIGURE 3-15. 5250 Line Interface Schematic

61

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS)
INTRODUCTION

Communication with the BCP is based on the BCP’s ability

to share its data memory. A microprocessor (or any intelli-

gent device) can read and write to any BCP data location

while the BCP CPU is executing instructions. This capability

is part of the BCP’s Remote Interface and Arbitration Sys-

tem (RIAS). Sharing data memory is possible because

RIAS’s arbitration logic allocates use of the BCP’s data and

address buses. RIAS has been designed so that accesses

of BCP data memory by another device minimally impact its

performance as well as the BCP’s. In addition to data mem-

ory accesses, RIAS allows another device to control how

BCP programs are loaded, started and debugged.

4.1 RIAS ARCHITECTURAL DESCRIPTION

Interfacing to the BCP is accomplished with the control sig-

nals listed in Table 4-1. Figure 4-1 shows the BCP inter-

faced to Instruction Memory, Data Memory, and an intelli-

gent device, termed the Remote Processor (RP). Instruction

and Data are separate memory systems with separate ad-

dress buses and data paths. This arrangement allows con-

tinuous instruction fetches without interleaved data access-

es. Instruction Memory (IMEM) is interfaced to the BCP

through the Instruction (I) and Instruction Address (IA) bus-

es. IMEM is 16 bits wide and can address up to 64k memo-

ry. Data Memory (DMEM) is eight bits wide and can also

address up to 64k memory. The DMEM address is formed

by the 8-bit upper byte (A bus) and the 8-bit lower byte (AD

bus). The AD bus must be externally latched because it also

serves as the path for data between the BCP and DMEM.

For further information on how AD bus is used, refer to Sec-

tion 2.2.2 CPU Timing.

The Remote Processor’s address and data buses are con-

nected to the BCP’s address and data buses through the

bus control circuitry. The RP’s address lines decode a chip

select for the BCP called Remote Access Enable (RAE).

Basically, the BCP’s Data Memory has been memory

mapped into the RP’s memory. A Remote Access of the

BCP occurs when REM-RD or REM-WR, along with RAE is

asserted low. REM-RD and REM-WR can be directly con-

nected to the Remote Processor’s read and write lines, or

for more complicated systems the REM-RD and REM-WR

signals may be controlled by a combination of address de-

code and the RP’s read and write signals. To the RP, an

access of the BCP will appear as any other memory system

access. This configuration allows the RP to read and write

Data Memory, read and write the BCP’s Program Counter,

and read and write BCP Instruction Memory. These func-

tions are selected by control bits in the Remote Interface

Configuration register ÀRICÓ. This register can be accessed

only by the RP and not by the BCP CPU. If the Remote

Processor executes a remote access with the Command

input (CMD) high, ÀRICÓ is accessed through the BCP’s AD

bus.

In Figure 4-1 , the Remote Processor’s address lines are

decoded to form the CMD input. When a remote access

takes place with CMD low, the memory system designated

in ÀRICÓ is accessed. Figure 4-2 shows the contents of
ÀRICÓ. The two least significant bits are the Memory Select

bits [MS1–0] which designate the type of remote access: to

Data Memory, the Program Counter, or Instruction Memory.

This register also contains the BCP start bit [STRT], three

interface select bits [FBW, LR, LW], the Single-Step bit
[SS], and the Bi-directional Interrupt Status bit [BIS]. Refer

to the RIAS Reference Section for a more detailed descrip-

tion of the contents of this register and the function of each

bit.

TL/F/9336–19

FIGURE 4-1. BCP/Remote Processor Interface

62

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

TABLE 4-1. RIAS Inputs and Outputs

Signal In/Out Pin
Reset

Function
State

CMD In 45 X CoMmanD input. When high, remote accesses are directed to the

Remote Interface Configuration register, ÀRICÓ. When low, remote

accesses are directed to Data Memory, Instruction Memory or the

Program Counter as determined by ÀRIC [1,0]Ó.

LCL Out 31 0 LoCaL. Normally low, goes high when the BCP relinquishes the data

and address bus to service a remote access.

LOCK In 44 X Asserting this input Low will LOCK out local (BCP) accesses to Data

Memory. Once the remote processor has been granted the bus,

LOCK gives it sole access to the bus and BCP accesses are

‘‘waited’’.

RAE In 46 X Remote Access Enable. Setting this input low allows host access of

BCP functions and memory.

REM-RD In 47 X REMote ReaD. When low along with RAE, a remote read cycle is

requested; serviced by the BCP when the data bus becomes

available.

REM-WR In 48 X REMote WRite. When low along with RAE, a remote write cycle is

requested; serviced by the BCP when the data bus becomes

available.

WR-PEND Out 49 1 WRite PENDing. In a system configuration where remote write

cycles are latched, WR-PEND will go low, indicating that the latches

contain valid data which have yet to be serviced by the BCP.

XACK Out 50 1 Transfer ACKnowledge. Normally high, goes low on REM-RD or

REM-WR going low (if RAE low) returning high when the transfer is

complete. Normally used as a ‘‘wait’’ signal to a remote processor.

(In the Latched Write mode, XACK will only transition if a second

remote access begins before the first one completes.)

WAIT In 54 X Asserting this input low will add wait states to both remote accesses

and to the BCP instruction cycle. WAIT will extend a remote access

until it is set high.

7 6 5 4 3 2 1 0

BIS SS FBW LR LW STRT MS1 MS0 RIC

BIS ÐBidirectional Interrupt Status

SS ÐSingle-Step

FBW ÐFast Buffered Write mode

LR ÐLatched Read mode

LW ÐLatched Write mode

STRT ÐBCP CPU start/stop

MS1–0 ÐMemory Selection

FIGURE 4-2. Remote Interface Control Register

4.1.1 Remote Arbitration Phases

The BCP CPU and RIAS share the internal CPU-CLK. This

clock is derived from the X1 crystal input. It can be divided

by two by setting [CCS] e 1 in ÀDCRÓ or run undivided by

setting [CCS] e 0. The frequency at which the Remote

Processor is run need not bear any relationship to the CPU-

CLK. A remote access is treated as an asynchronous event

and data is handshaked between the Remote Processor

and the BCP.

The two key handshake signals involved in the BCP/RP

interface are Transfer Acknowledge (XACK) and Local

(LCL). Internally, two more signals control the access tim-

ing: INT-READ and INT-WRITE. The timing for a generic

Remote Access is shown in Figure 4-3 . A remote access is

TL/F/9336–20

FIGURE 4-3. Generic Remote Access (RAE e 0)

initiated by the RP asserting REM-RD or REM-WR with RAE

low. There is no set-up/hold time relationship between RAE

and REM-RD or REM-WR. These signals are internally gat-

ed together such that if RAE (REM-RD a REM-WR) is true,

a remote access will begin. A short delay later, XACK will

fall. This signal can be fed back to the RP’s wait line to

extend its read or write cycle, if necessary. When the BCP’s

63

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

arbitration logic determines that the BCP is not using data

memory, LCL rises, relinquishing control of the address and

data buses to the RP. The remote access can be delayed at

most one BCP instruction (providing [LOR] is not set high).

If the CPU is executing a string of data memory accesses,

RIAS has an opportunity to break in at the completion of

every instruction. The time period between REM-RD or

REM-WR being asserted (with RAE low) and LCL rising is

called the Arbitration Phase. It is a minimum of one T-state,

but can be increased if the BCP CPU is accessing Data

Memory (local access) or if the BCP has set the Lock Out

Remote bit [LOR].
The CMD pin is internally latched on the first falling edge of

the CPU-CLK after a remote access has been initiated by

asserting RAE low along with asserting REM-RD or

REM-WR low. If the remote interface is asynchronous, the

CMD signal must be valid simultaneously or before RAE is

asserted low along with REM-RD or REM-WR being assert-

ed low. The value of CMD is only sampled once during each

remote access and will remain in effect for the duration of

the remote access.

After the Arbitration Phase has ended, the Access Phase

begins. Either Data Memory, Instruction Memory, the Pro-

gram Counter, or ÀRICÓ is read or written in this phase.

Either INT-READ or INT-WRITE will fall one T-state after

LCL rises. These two signals provide the timing for the dif-

ferent types of accesses. INT-READ times the transitions on

the AD bus for Remote Reads and forms the external READ

line. INT-WRITE clocks data into the PC and ÀRICÓ and

forms the IWR and WRITE lines. INT-READ and INT-WRITE

rise with XACK, or shortly after.

The duration of the Access Phase depends on the type of

memory being accessed. Data Memory and Instruction

Memory accesses are subject to any programmed wait

states and all remote accesses are waited by asserting

WAIT low. The minimum time in the Access Phase is 2

T-states.

The rising edge of XACK indicates the Access Phase has

ended and the Termination Phase has begun. If the RP was

doing a read operation, this edge indicates that valid data is

available to the RP. During the Termination Phase the BCP

is regaining control of the buses. LCL falls one T-state after

XACK and since the RP is no longer being waited, it can

deassert REM-RD or REM-WR. The duration of this phase

is a minimum of one T-state, but can be extended depend-

ing on the interface mode chosen in ÀRICÓ.

4.1.2 Access Types

There are four types of accesses an RP can make of the

BCP:

ÐRemote Interface Control Register ÀRICÓ

ÐData Memory (DMEM)

ÐProgram Counter (PC)

ÐInstruction Memory (IMEM)

An access of ÀRICÓ is accomplished by asserting RAE and

REM-RD or REM-WR with the CMD pin asserted high. The

Remote Interface Configuration register is accessed

through the AD bus as shown in Figure 4-4(c) . A read or

write of ÀRICÓ can take place while the BCP CPU is execut-

ing instructions. Timing for this access is shown in Figures
4-4(a) and (b) . Note that in the Remote Read Figure 4-4(a),
AD does not transition. This is because the contents of
ÀRICÓ are active on the bus by default. The AD bus is in

TRI-STATE during a Remote Write Figure 4-4(b) while LCL

is high. The byte being written to ÀRICÓ is latched on the

rising edge of XACK and can be seen on AD after LCL falls.

The Access Phase, in this case, is always two T-states (un-

less WAIT is low) because ÀRICÓ is not subject to any pro-

grammed wait states.

TL/F/9336–80

(a) Remote Read Timing (RAE e 0)

TL/F/9336–81

(b) Remote Write Timing (RAE e 0)

TL/F/9336–82

(c) RIC to AD Connectivity

FIGURE 4-4. Generic RIC Access

64

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

Remote Accesses other than to ÀRICÓ are accomplished

with the CMD pin low in conjunction with asserting RAE low

along with REM-WR or REM-RD being taken low. The type

of access performed is defined by the Memory Select bits in
ÀRICÓ, as shown in Figure 4-5.

7 6 5 4 3 2 1 0

BIS SS FBW LR LW ST MS1 MS0X ä Y
Memory Select Bits

00 - Data Memory

01 - Instruction Memory

10 - PC low byte

11 - PC high byte

FIGURE 4-5. Memory Select Bits in ÀRICÓ

Reads or writes of Data Memory (DMEM) are preceded by

setting the Memory Select bits in ÀRICÓ for a DMEM ac-

cess: [MS1,0] e 00. After that, the RP simply reads or

writes to BCP Data Memory as many times as it needs to. A

DMEM access, as well as a ÀRICÓ access, can be made

while the BCP CPU is executing instructions. All other ac-

cesses must be executed with the BCP CPU stopped.

The timing for a Data Memory read and write are shown in

Figure 4-6 . The access is initiated by asserting RAE and

REM-RD or REM-WR while CMD is low. The BCP responds

by bringing its address and data lines into TRI-STATE and

allowing the RP to control DMEM. READ is asserted in the

Access Phase of a Remote Read Figure 4-6(a) . It will stay

low for a minimum of one T-state, but can be extended by

adding programmable data wait states or by taking WAIT

low. WRITE is asserted in the Access Phase with a remote

write. It too is a minimum of one T-state and can be in-

creased by adding programmable wait states or by taking

WAIT low.

Figure 4-7(c) shows the data path from the Program Coun-

ter to the AD bus. Both high and low PC bytes can be writ-

ten or read through AD. The RP has independent control of

the high and low bytes of the Program CounterÐthe byte

being accessed is specified in the Memory Select bits. The

high byte of the PC is accessed by setting [MS1–0] e 11.

Setting [MS1–0] e 10 allows access to the low byte of the

PC. After the Memory Select bits are set by a Remote Write

to ÀRICÓ, the byte selected can be read or written by the RP

by executing a Remote Access with CMD low. Remote ac-

cesses to both the high and low bytes of the PC, as well as

the instruction memory access must be executed with the

BCP CPU idle. Four accesses by the RP are necessary to

read or write both the high and low bytes of the PC. Timing

for a PC access is shown in Figure 4-7(a) and (b) . The PC

becomes valid on a Remote Read (a) one T-state after LCL

rises and one T-state before XACK rises. AD is in TRI-

STATE while LCL is high for a Remote Write (b). Time in the

Access Phase is two T-states if WAIT is not asserted.

Instruction memory (IMEM) is accessed through another in-

ternal path: from AD to the I bus, shown in Figure 4-8(c) .
The memory is accessed first low byte, then high byte. Low

and high bytes of the 16-bit I bus are alternately accessed

for Remote Reads. An 8-bit holding register, ILAT, retains

the low byte until the high byte is written by the Remote

Processor for the write to IMEM. The BCP increments the

PC after the high byte has been accessed.

TL/F/9336–83

(a) Remote Read Timing (RAE e 0)

TL/F/9336–84

(b) Remote Write Timing (RAE e 0)

FIGURE 4-6. Generic DMEM Access

Timing for an IMEM access is shown in Figure 4-8(a) and

(b) . As before, the Memory Select bits are first set to instruc-

tion memory: [MS1–0] e 01. It is only necessary to set
[MS1–0] once for repeated IMEM accesses. (Instruction

Memory is the power-up Memory Selection state.) A simple

state machine keeps track of which instruction byte is ex-

pected nextÐlow or high byte. The state machine powers

up looking for the low instruction byte and every IMEM ac-

cess causes this state machine to switch to the alternate

byte. Accesses other than to IMEM will not cause the state

machine to switch to the alternate byte, but writing 01 to the

Memory Select bits in ÀRICÓ (i.e. [MS1–0] e 01, pointing to

IMEM) will always force the state machine to the ‘‘low byte

state’’. This way the instruction word boundary can be reset

without resetting the BCP. When the BCP is reset the state

machine will also be forced to the ‘‘low byte state.’’

Figure 4-8(a) shows a Remote Read of Instruction memory.

Both the low byte, then the high byte can be seen on back

to back remote reads. An instruction byte becomes active

on the AD bus one T-state after LCL rises and is valid when

XACK rises. This time period will be a minimum of one

T-state, but can be extended up to three more T-states by

instruction wait states.

65

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

TL/F/9336–85

(a) Remote Read Timing (RAE e 0)

TL/F/9336–86

(b) Remote Write Timing (RAE e 0)

TL/F/9336–87

(c) IA to AD Connectivity

FIGURE 4-7. Generic PC Access

66

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

TL/F/9336–88

(a) Remote Read Timing (RAE e 0)

TL/F/9336–89

(b) Remote Write Timing (RAE e 0)

TL/F/9336–90

(c) I to AD Connectivity

FIGURE 4-8. Generic IMEM Access

67

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

In addition, WAIT can delay the rising edge of XACK indefi-

nitely. One T-state after XACK rises, ÀRICÓ will once again

be active on AD. Timing is similar for a Remote Write. AD is

in TRI-STATE while LCL is high. LCL is asserted for a mini-

mum of three T-states, but can be extended by instruction

wait states and the WAIT pin. IWR clocks the instruction

into memory during the write of the high byte. The Instruc-

tion Address (PC) is incremented about one T-state after

LCL falls on a high byte access for both Remote Reads and

Writes.

Soft-loading Instruction Memory is accomplished by first

setting the BCP Program Counter to the starting address of

the program to be loaded. The Memory Select bits are then

set to IMEM. BCP instructions can then be moved from the

Remote Processor to the BCPÐlow byte, high byteÐuntil

the entire program is loaded.

4.1.3 Interface Modes

The Remote Interface and Arbitration System will support

TRI-STATE buffers or latches between the Remote Proces-

sor and the BCP. The choice between buffers and latches

depends on the type of system that is being interfaced to.

Latches will help prevent the faster system from slowing to

the speed of the slower system. Buffers can be used if the

Remote Processor (RP) requires that data be handshaked

between the systems.

Figure 4-9 shows the timing of Remote Reads via a buffer

(a) and a latch (b) (called a Buffered Read and Latched

Read). The main difference in these modes is in the Termi-

nation Phase. The Buffered Read handshakes the data

back to the RP. When the BCP deasserts XACK, data is

valid and the RP can deassert REM-RD. Only after REM-RD

goes high is LCL removed. In the Latched Read Figure
4-9(b) XACK rises at the same time, but the Termination

Phase completes without waiting for the rising edge of

REM-RD. One half T-state after XACK rises, INT-READ ris-

es and one half T-state later LCL falls. The BCP can use the

buses one T-state after LCL falls. The minimum time (no

wait states, no arbitration delay) the BCP CPU could be pre-

vented from using the bus is four T-states in the Latched

Read Mode.

A Buffered Read prevents the BCP CPU from using the bus

during the time RP is allocated the buses. This time period

begins when LCL rises and ends when REM-RD is re-

moved. If the REM-RD is asserted longer than the minimum

Buffered Read execution time (four T-states), then the BCP

may be unnecessarily prevented from using the buses.

Therefore, if there are no overriding reasons to use the Buff-

ered Read Mode, the Latched Read Mode is preferable.

There are three Remote Write ModesÐtwo require buffers

and one requires latches. The timing for the writes utilizing

buffers is shown inFigure 4-10. The Slow Buffered Write (a)
is handshaked in the same manner as the Buffered Read

and thus has the same timing. The Fast Buffered Write has

similar timing to the Latched Read. This timing similarity ex-

ists because the BCP terminates the remote access without

waiting for the RP to deassert REM-WR.

In both cases, XACK falls a short delay after REM-WR falls

and LCL rises when the RP is given the buses. One T-state

after LCL rises, INT-WRITE falls. The termination in the

Slow Buffered Write mode keys off REM-WR rising, as

shown inFigure 4-10(a) . INT-WRITE rises a prop-delay later

and LCL falls one T-state later. The Fast Buffered Write,

shown in Figure 4-10(b) , begins the Termination Phase with

the rising edge of XACK. INT-WRITE rises at the same time

as XACK, and LCL falls one T-state later. The BCP can

begin a local access one T-state after LCL transitions.

A Fast Buffered Write is preferable to the Slow Buffered

Write if RP’s write cycles are slow compared to the mini-

mum Fast Buffered Write execution time. The Fast Buffered

Write assumes, though, that data is available to the BCP by

the time INT-WRITE rises.

TL/F/9336–91

(a) Buffered Read
TL/F/9336–92

(b) Latched Read

FIGURE 4-9. Read from Remote Processor

68

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

TL/F/9336–93

(a) Slow Buffered Write

TL/F/9336–94

(b) Fast Buffered Write

FIGURE 4-10. Buffered Write from Remote Processor

In both Buffered Write Modes, XACK is asserted to wait the

RP. The Latched Write Mode makes it possible for the RP to

write to the BCP without getting waited. The timing for the

Latched Write Mode is shown in Figure 4-11. When the Re-

mote Processor writes to the BCP, its address and data

buses are externally latched on the rising edge of REM-WR.

Even though REM-WR has been asserted XACK does not

TL/F/9336–95

FIGURE 4-11. Latched Write from Remote Processor

switch. The BCP only begins remote access execution after

the trailing edge of REM-WR. Since the RP is not requesting

data back from the BCP, it can continue execution without

waiting for the BCP to complete the remote access. After

REM-WR is deasserted, WR-PEND is taken low to prevent

overwrite of the latches. A minimum of two T-states later

LCL switches and AD, A, and the external address latch go

into TRI-STATE, allowing the latches which contain the re-

mote address and data to become active. If the RP attempts

to initiate another access before the current write is com-

plete, XACK is taken low to wait the RP and the address

and the data are safe because WR-PEND prevents the

latches from opening. The Access Phase ends when

INT-WRITE rises and the data is written. One T-state later,

LCL falls and one T-state after that WR-PEND rises. If an-

other access is pending, it can begin in the next T-state.

This is indicated by XACK rising when WR-PEND rises.

A minimum BCP/RP interface utilizes four TRI-STATE buff-

ers or latches. A block diagram of this interface is shown in

Figure 4-12. The blocks A, B, C, and D indicate the location

of buffers or latches. Blocks A and B isolate 16 bits of the

RP’s address bus from the BCP’s Data Address bus. Two

more blocks, C and D, bidirectionally isolate 8 bits of the

RP’s data bus from the BCP AD bus.

69

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

TL/F/9336–96

FIGURE 4-12. Minimum BCP/Remote Processor Interface

The BCP Remote Arbitrator State Machine (RASM) must

know what hardware interfaces to the RP in order to time

the remote accesses correctly. To accomplish this, three

Interface Mode bits in ÀRICÓ are used to define the hard-

ware interface. These bits are the Latched Write bit [LW],
the Latched Read bit [LR] and the Fast Buffered Write bit
[FBW]. See Figure 4-13.

7 6 5 4 3 2 1 0

BIS SS FBW LR LW ST MS1 MS0X ä Y
Interface Mode Bits

– 0 – - Buffered Read

– 1 – - Latched Read

0 – 0 - Slow Buffered Write

1 – 0 - Fast Buffered Write

X – 1 - Latched Write

FIGURE 4-13. Interface Mode Bits

All combinations of Remote Reads or Writes with buffers or

latches can be configured via the Interface Mode bits. A

Buffered Read is accomplished by using a buffer for block D

and setting [LR] e 0. Conversely, using a latch for block D

and setting [LR] e 1 configures the RASM for Latched

Reads. Using buffers for blocks A, B, and C and setting
[LW] e 0 allows either a Slow or Fast Buffered Write. Set-

ting [FBW] e 0 configures RASM for a Slow Buffered Write

and [FBW] e 1 designates a Fast Buffered Write. A

Latched Write is accomplished by using latches for blocks

A, B, and C and setting [LW] e 1.

4.1.4 Execution Control

The BCP can be started and stopped in two ways. If the

BCP is not interfaced to another processor, it can be started

by pulsing RESET low while both REM-RD and REM-WR

are low. Execution then begins at location zero. If there is a

Remote Processor interfaced to the BCP, a write to ÀRICÓ

which sets the start bit [STRT] high will begin execution at

the current PC location. Writing a zero to [STRT] stops exe-

cution after the current instruction is completed. A Single-

Step is accomplished by writing a one to the Single-Step bit
[SS] in ÀRICÓ. This will execute the instruction at the current

PC, increment the PC, and then return to idle. [SS] returns

low after the single-stepped instruction has completed. [SS]
is a write only bit and will always appear low when ÀRICÓ is

read.

Two pins (WAIT and LOCK), and one register bit, [LOR],
can also affect the BCP CPU or RIAS execution. The WAIT

pin can be used to add wait states to a remote access.

When WAIT must be asserted low to add wait states is de-

pendent on which remote access mode is being used. The

information needed to calculate when WAIT must be assert-

ed to add wait states, is contained within the individual de-

scriptions of the modes in the next section (4.2 RIAS Func-

tional Description).

70

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

Programmed wait states delay when WAIT must be assert-

ed since programmed wait states are inserted before WAIT

is tested to see if any more wait states should be added.

LOCK prevents local accesses of Data Memory. If LOCK is

asserted a half T-state before T1 of a BCP instruction cycle,

further local accesses will be prevented by waiting the Tim-

ing Control Unit. The Timing Control Unit (TCU) is the BCP

CPU sub system responsible for timing each instruction. For

a more detailed description of the operation of LOCK, refer

to the CPU Timing section. [LOR] allows the BCP to prevent

remote accesses. Once [LOR], located in ÀACRÓ, is set

high, further remote accesses are waited by XACK remain-

ing low.

Though the BCP CPU runs independently of RIAS there is

some interaction between the two systems. [LOR] is one

such interaction. In addition, two bits allow the BCP CPU to

keep track of remote accesses. These bits are the Remote

Write bit [RW] and the Remote Read bit [RR], and are lo-

cated in ÀCCR[6–5]Ó. Each bit goes high when its respec-

tive remote access to DMEM reaches its Termination

Phase. Once one of these bits has been set, it will remain

high until a ‘‘1’’ is written to that bit to reset it low.

4.2 RIAS FUNCTIONAL DESCRIPTION

In this section, the operation of the Remote Arbitration State

Machine (RASM), is described in detail. Discussed, among

other things, are the sequence of events in a remote ac-

cess, arbitration of the data buses, timing of external sig-

nals, when inputs are sampled, and when wait states are

added. Each of the five Interface Modes is described in

functional state machine form. Although each interface

mode is broken out in a separate flow chart, they are all part

of a single state machine (RASM). Thus the first state in

each flow chart is actually the same state.

The functional state machine form is similar to a flow chart,

except that transitions to a new state (states are denoted as

rectangular boxes) can only occur on the rising edge of the

internal CPU clock (CPU-CLK). CPU-CLK is high during the

first half of its cycle. A state box can specify several actions,

and each action is separated by a horizontal line. A signal

name listed in a state box indicates that that pin will be

asserted high when RASM has entered that state. Signals

not listed are assumed low.

Note: This sometimes necessitates using the inversion of the external pin

name.

This same rule applies to the A and AD buses. By default,

these buses are active. The A bus will have the upper byte

of the last used data address. The AD bus will display
ÀRICÓ. When one of these buses appears in a state box, the

condition specified will be in effect only during that state.

Decision blocks are shown as diamonds and their meaning

is the same as in a flow chart. The hexagon box is used to

denote a conditional stateÐnot synchronous with the clock.

When the path following a decision block encounters a con-

ditional state, the action specified inside the hexagon box is

executed immediately.

Also provided is a memory arbitration example in the form of

a timing diagram for each of the five modes. These exam-

ples show back to back local accesses punctuated by a

remote access. Both the state of RASM and the Timing

Control Unit are listed for every clock at the top of each

timing diagram. The RASM states listed correspond to the

flow charts. The Timing Control Unit states are described in

Section 2.2.2, Timing portion of the data sheet.

4.2.1 Buffered Read

The unique feature of this mode is the extension of the read

until REM-RD is deasserted high. The complete flow chart

for the Buffered Read mode is shown in Figure 4-14. Until a

Remote Read is initiated (RAE*REM-RD true), the state ma-

chine (RASM) loops in state RSA1. If a Remote Read is

initiated and [LOR] is set high, RASM will move to state

RSA2. Likewise, if a Remote Read is initiated while the bus-

es have been granted locally (i.e., Local Bus Request e 1),

RASM will move to state RSA2. The state machine will loop

in state RSA2 as long as [LOR] is set high or the buses are

granted locally. If the BCP CPU needs to access Data Mem-

ory while in either RSA state (and LOCK is high), it can still

do so. A local access is requested by the Timing Control

Unit asserting the Local Bus Request (LCL-BREQ) signal. A

local bus grant will be given by RASM if the buses are not

being used (as is the case in the RSA states).

XACK is taken low as soon as RAE*REM-RD is true, re-

gardless of an ongoing local access. If [LOR] is low, RASM

will move into RSB on the next clock after RAE*REM-RD is

true and there is no local bus request. No further local bus

requests will be granted until the remote access is complete

and RASM returns to RSA. Half a T-state after entering RSB
the A bus (and AD bus if the access is to Data Memory)

goes into TRI-STATE.

On the next CPU-CLK, RASM enters RSC and LCL is taken

high while XACK remains low. The wait state counters, iIW
and iDW, are loaded in this state from [IW1–0] and [DW2–

0], respectively, in ÀDCRÓ. The A bus (and AD if the access

is to Data Memory) remains in TRI-STATE and the Access

Phase begins.

The state machine can move into one of several states,

depending on the state of CMD and [MS1–0], on the next

clock. XACK remains low and LCL remains high in all the

possible next states. If CMD is high, the access is to ÀRICÓ

and the next state will be RSD1. Since the default state of

AD is ÀRICÓ, it will not transition in this state.

The five other next states all have CMD low and depend on

the Memory Select bits. If [MS1–0] is 10 or 11 the state

machine will enter either RSD2 or RSD3 and the low or high

bytes of the Program Counter, respectively, will be read.

[MS1–0] e 00 designates a Data Memory access and

moves RASM into RSD4. READ will be asserted in this state

and A and AD continue to be in TRI-STATE. This allows the

Remote Processor to drive the Data Memory address for

the read. Since DMEM is subject to wait states, RSD4 is

looped upon until all the wait states have been inserted.

71

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

T
L
/
F
/
9
3
3
6
–
9
7

F
IG

U
R

E
4
-1

4
.
F
lo

w
C

h
a
rt

o
f
B

u
ff

e
re

d
R

e
a
d

M
o
d
e

72

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

T
L
/
F
/
9
3
3
6
–
2
7

R
e
g
is

te
r

C
o
n
fi
g
u
ra

ti
o
n
:

O
th

e
r

B
C

P
C

o
n
tr

o
l
S
ig

n
a
ls

:

Ð
O

n
e

W
a
it
-S

ta
te

P
ro

g
ra

m
m

e
d

fo
r
D

a
ta

-M
e
m

o
ry

R
A

E
e

0

Ð
Z
e
ro

W
a
it
-S

ta
te

s
P
ro

g
ra

m
m

e
d

fo
r
In

s
tr
u
c
ti
o
n
-M

e
m

o
ry

C
M

D
e

0

Ð
À
R

IC
Ó

C
o
n
te

n
ts

:
X
X
X
0
X
1
0
0

R
E
M

-W
R

e
1

Ð
[L

O
R

]
e

0
L
O

C
K

e
1

F
IG

U
R

E
4
-1

5
.
B

u
ff

e
re

d
R

e
a
d

o
f
D

a
ta

M
e
m

o
ry

b
y

R
e
m

o
te

P
ro

c
e
s
s
o
r

73

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

The last possible Memory Selection is Instruction Memory,
[MS1–0] e 01. The two possible next states for an IMEM

access depend on if RASM is expecting the low byte or high

byte. Instruction words are accessed low byte then high

byte and RASM powers up expecting the low Instruction

byte. The internal flag that keeps track of the next expected

Instruction byte is called the High Instruction Byte flag (HIB).

If HIB is low, the next state is RSD5 and the low instruction

byte is MUXed to the AD bus. If HIB is high, the high instruc-

tion byte is MUXed to AD and RSD6 is entered. An IMEM

access, like a DMEM access, is subject to wait states and

these states will be looped on until all programmed instruc-

tion memory wait states have been inserted.

Note: Resetting the BCP will reset HIB (i.e., HIB e 0). Writing 01 to the

Memory Select bits in ÀRICÓ (i.e., [MS1–0] e 01, pointing to IMEM)

will also force HIB to zero. This way the instruction word boundary

can be reset without resetting the BCP.

After all of the programmed wait states are inserted in the

RSD states, more wait states may be added by asserting

WAIT low a half T-state before the end of the last pro-

grammed wait state. If there are no programmed wait

states, WAIT must be asserted low a half T-state before the

end of RSD to add wait states. If WAIT remains low, the

remote access is extended indefinitely. All the RSD states

move to their corresponding RSE states on the CPU-CLK

after the programmed wait state conditions are met and

WAIT is high. The RSE states are looped upon until RAE*
REM-RD is deasserted. LCL remains high in all RSE states

and A remains in TRI-STATE. AD will also stay in TRI-

STATE if the access was to DMEM. XACK is taken back

high to indicate that data is now valid on the read. If XACK is

connected to a Remote Processor wait pin, it is no longer

waited and can now terminate its read cycle. This state be-

gins the Termination Phase. The action specified in the con-

ditional box is only executed while RAE*REM-RD is assert-

edÐa clock edge is not necessary. In all RSE states except

RSE4 (DMEM) LCL will fall a propagation delay after

RAE*REM-RD is deasserted. In RSE4, LCL remains high

through the whole state.

On the CPU-CLK after RAE*REM-RD is deasserted. RASM,

enters RSF1 from every RSE state except RSE4 (DMEM). In

RSF1, LCL remains low and A remains in TRI-STATE while

CPU-CLK is high (i.e., for the first half T-state of RSF1).

From RSE4, RASM enters RSF2 on the CPU-CLK after

RAE*REM-RD is deasserted. In RSF2, LCL remains high

while both A and AD remain in TRI-STATE.

From RSF1, the next clock will return the state machine

back to state RSA1 where it will loop until another Remote

Access is initiated. If the access was to IMEM, then the last

action of the remote access before returning to RSA is to

switch HIB and increment the PC if the high byte was read.

From RSF2, the next CPU-CLK returns to state RSA3 where

LCL returns low, but A and AD remain TRI-STATE for the

first half T-state of RSA3. If no Remote Access is initiated

the next state will be RSA1 where it will loop until another

Remote Access is initiated.

The example in Figure 4-15 shows the BCP executing the

first of two consecutive Data Memory reads when REM-RD

goes low. In response, XACK goes low waiting the remote

processor. At the end of the first instruction, although the

BCP begins its second read by taking ALE high, the RASM

now takes control of the bus and takes LCL high at the end

of T1. A one T-state delay is built into this transfer to ensure

that READ has been deasserted before the data bus is

switched. The Timing Control Unit is now waited, inserting

remote access wait states, TWr, as RASM takes over.

The remote address is permitted one T-state to settle on the

BCP address bus before READ goes low, XACK then re-

turns high one T-state plus the programmed Data Memory

wait state, TWd later, having satisfied the memory access

time. The Remote Processor will respond by deasserting

REM-RD high to which the BCP in turn responds by deas-

serting READ high. Following READ being deasserted high,

the BCP waits till the end of the next T-state before taking

LCL low, again ensuring that the read cycle has concluded

before the bus is switched. Control is then returned to the

Timing Control Unit and the local memory read continues.

4.2.2 Latched Read

This mode differs from the Buffered Read mode in the way

the access is terminated. A latched Read cycle ends after

the data being read is valid and the termination doesn’t wait

for the trailing edge of REM-RD. Therefore the Arbitration

and Access Phases of the Latched Read mode are the

same as for the Buffered Read mode. The complete flow

chart for the Latched Read mode is shown in Figure 4-16.

74

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

Until a Remote Read is initiated (RAE*REM-RD true), the

state machine (RASM) loops in state RSA1. If a Remote

Read is initiated and [LOR] is set high, RASM will move to

state RSA2. Likewise, if a Remote Read is initiated while the

buses have been granted locally (i.e., Local Bus Grant e 1),

RASM will move to state RSA2. The state machine will loop

in state RSA2, as long as [LOR] is set high or the buses are

granted locally. If the BCP CPU needs to access Data Mem-

ory while in either RSA state (and LOCK is high), it can still

do so. A local access is requested by the Timing Control

Unit asserting the Local Bus Request (LCL-BREQ) signal. A

local bus grant will be given by RASM if the buses are not

being used (as is the case in RSA).

XACK is taken low as soon as RAE*REM-RD is true, re-

gardless of an ongoing local access. If [LOR] is low, RASM

will move into RSB on the next clock after RAE*REM-RD is

asserted and there is no local bus request. No further local

bus requests will be granted until RASM enters the Termina-

tion Phase. If the BCP CPU initiates a Data Memory access

after RSA, the Timing Control Unit will be waited and the

BCP CPU will remain in state TWr until the remote access

reaches the Termination Phase. Half a T-state after entering

RSB the A bus (and AD bus if the access is to Data Memory)

goes into TRI-STATE.

On the next clock, RASM enters RSC and LCL is taken high

while XACK remains low. The wait state counters, iIW and

iDW, are loaded in this state from [IW1–0] and [DW2–0],
respectively, in ÀDCRÓ. The A bus (and AD if the access is

to Data Memory) now remains TRI-STATE and the Access

Phase begins.

The state machine can move into one of several states,

depending on the state of CMD and [MS1–0], on the next

clock. XACK remains low and LCL remains high in all the

possible next states. If CMD is high, the access is to ÀRICÓ

and the next state will be RSD1. Since the default state of

AD is ÀRICÓ, it will not transition in this state. The five other

next states all have CMD low and depend on the Memory

Select bits. If [MS1–0] is 10 or 11 the state machine will

enter either RSD2 or RSD3 and the low or high bytes of the

Program Counter, respectively, will be read.

[MS1–0] e 00 designates a Data Memory access and

moves RASM into RSD4. READ will be asserted low in this

state and A and AD continue to be tri-stated. This allows the

Remote Processor to drive the Data Memory address for

the read. Since DMEM is subject to wait states, RSD4 is

looped upon until all the wait states have been inserted.

The last possible Memory Selection is Instruction Memory,
[MS1–0] e 01. The two possible next states for the IMEM

access depend on if RASM is expecting the low byte or high

byte. Instruction words are accessed low byte then high

byte and RASM powers up expecting the low Instruction

byte. The internal flag that keeps track of the next expected

Instruction byte is called the High Instruction Byte flag (HIB).

If HIB is low, the next state is RSD5 and the low instruction

byte is MUXed to the AD bus. If HIB is high, the high instruc-

tion byte is MUXed to AD and RSD6 is entered. An IMEM

access, like a DMEM access, is subject to wait states and

these states will be looped on until all programmed instruc-

tion memory wait states have been inserted.

Note: Resetting the BCP will reset HIB (i.e., HIB e 0). Writing 01 to the

Memory Select bits in ÀRICÓ (i.e., [MS1–0] e 01, pointing to IMEM)

will also force HIB to zero. This way the instruction word boundary

can be reset without resetting the BCP.

After all of the programmed wait states are inserted in the

RSD states, more wait states may be added by asserting

WAIT low a half T-state before the end of the last pro-

grammed wait state. If there are no programmed wait states

WAIT must be asserted low a half T-state before the end of

RSD to add wait states. If WAIT remains low, the remote

access is extended indefinitely. All the RSD states move to

their corresponding RSE states on the CPU-CLK after the

programmed wait state conditions are met and WAIT is

high. LCL remains high in all RSE states and A remains in

TRI-STATE (and AD if the access is to Data Memory).

XACK returns high in this state, indicating that data is valid

so that it can be externally latched. The action specific to

each RSD state remains in effect during the first half of the

RSE cycle (i.e. READ is asserted in the first half of RSE4).

This half T-state of hold time is provided to guarantee data

is latched when XACK goes high. This state begins the Ter-

mination Phase.

75

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

T
L
/
F
/
9
3
3
6
–
9
8

F
IG

U
R

E
4
-1

6
.
F
lo

w
C

h
a
rt

o
f
L
a
tc

h
e
d

R
e
a
d

M
o
d
e

76

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

T
L
/
F
/
9
3
3
6
–
3
0

R
e
g
is

te
r

C
o
n
fi
g
u
ra

ti
o
n
:

O
th

e
r

B
C

P
C

o
n
tr

o
l
S
ig

n
a
ls

:

Ð
O

n
e

W
a
it
-S

ta
te

P
ro

g
ra

m
m

e
d

fo
r
D

a
ta

-M
e
m

o
ry

R
A

E
e

0

Ð
Z
e
ro

W
a
it
-S

ta
te

s
P
ro

g
ra

m
m

e
d

fo
r
In

s
tr
u
c
ti
o
n
-M

e
m

o
ry

C
M

D
e

0

Ð
À
R

IC
Ó

C
o
n
te

n
ts

:
X
X
X
1
X
1
0
0

R
E
M

-W
R

e
1

Ð
[L

O
R

]
e

0
L
O

C
K

e
1

F
IG

U
R

E
4
-1

7
.
L
a
tc

h
e
d

R
e
a
d

o
f
D

a
ta

M
e
m

o
ry

b
y

R
e
m

o
te

P
ro

c
e
s
s
o
r

77

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

On the next clock the state machine will enter RSF and LCL

will return low. The A bus (and AD bus if the access is to

data memory) remains in TRI-STATE for the first half

T-state of RSF. After the first half of RSF, the Re-

mote Processor is no longer using the buses and the BCP

CPU will be granted the buses if LCL-BREQ is asserted. If a

local bus request is made, a local bus grant will be given to

the Timing Control Unit. If the preceding access was a read

of IMEM, then HIB is switched and if the access was to the

high byte of IMEM then the PC is incremented. If RAE*
REM-RD is deasserted at this point, the next clock will bring

RASM back to RSA where it will loop until another Remote

Access is initiated. RSG is entered if RAE*REM-RD is still

true. RASM will loop in RSG until RAE*REM-RD is no longer

active at which time the state machine will return to RSA.

In Figure 4-17, the BCP is executing the first of two Data

Memory reads when REM-RD goes low. In response, XACK

goes low, waiting the Remote Processor. At the end of the

first instruction, although the BCP begins its second write by

taking ALE high, the RASM now takes control of the bus

and deasserts LCL high at the end of T1. A one T-state

delay is built into this transfer to ensure that READ has been

deasserted high before the data bus is switched. The Timing

Control Unit is now waited, inserting remote access wait

states, TWr, as RASM takes over.

The remote address is permitted one T-state to settle on the

BCP address bus before READ goes low, XACK then re-

turns high one T-state plus the programmed Data Memory

wait state, TWd later, having satisfied the memory access

time. READ returns high a half T-state later, ensuring suffi-

cient hold time, followed by LCL being reasserted low after

an additional half T-state, transferring bus control back to

the BCP. The Remote Processor responds to XACK return-

ing high by deasserting REM-RD high, although by this time

the BCP is well into its own memory read.

4.2.3 Slow Buffered Write

The timing for this mode is the same as the Buffered Read

mode. The complete flow chart for the Slow Buffered Write

mode is shown inFigure 4-18. Until a Remote Write is initiat-

ed (RAE*REM-WR true), the state machine (RASM) loops

in state RSA1. If a Remote Write is initiated and [LOR] is set

high, RASM will move to state RSA2. Likewise, if a Remote

Write is initiated while the buses have been granted locally

(i.e., Local Bus Grant e 1), RASM will move to state RSA2.

The state machine will loop in state RSA2 as long as [LOR]
is set high or the buses are granted locally. If the BCP CPU

needs to access Data Memory while in either RSA state

(and LOCK is high), it can still do so. A local access is re-

quested by the Timing Control Unit asserting the Local Bus

Request (LCL-BREQ) signal. A local bus grant will be given

by RASM if the buses are not being used (as is the case in

the RSA state).

XACK is taken low as soon as RAE*REM-WR is true, re-

gardless of an ongoing local access. RASM will move into

RSB on the next clock after RAE*REM-WR is asserted and

there is no local bus request and [LOR] e 0. No further

local bus requests will be granted until the remote access is

complete and RASM returns to RSA. If the BCP CPU initi-

ates a Data Memory access after RSA, the Timing Control

Unit will be waited and the BCP CPU will remain in state TWr
until completion of the remote access. Half a T-state after

entering RSB the A and AD buses go into TRI-STATE.

On the next CPU-CLK, RASM enters RSC and LCL is taken

high while XACK remains low. The wait state counters, iIW

and iDW, are loaded in this state from [IW1–0] and [DW2–

0], respectively, in ÀDCRÓ. The A and AD buses now remain

in TRI-STATE and the Access Phase begins. If the Remote

Access is to IMEM and the high instruction byte flag is set

(i.e., HIB e 1), then IWR is asserted low in RSC. The state

machine can move into one of several states, depending on

the state of CMD and [MS1–0], on the next clock. XACK

remains low and LCL remains high in all the possible next

states. If CMD is high, the access is to ÀRICÓ and the next

state will be RSD1. The path from AD to ÀRICÓ opens in this

state. Any remote access mode changes made by this write

will not take effect until one T-state after the completion of

the present write.

The five other next states all have CMD low and depend on

the Memory Select bits. If [MS1–0] is 10 or 11, the state

machine will enter either RSD2 or RSD3 and the low or high

bytes of the Program Counter, respectively, will be written.

[MS1–0] equal to 00 designates a Data Memory access

and moves RASM into RSD4. WRITE will be asserted in this

state and A and AD continue to be tri-stated. This allows the

Remote Processor to drive the Data Memory address and

data buses for the write. Since DMEM is subject to wait

states, RSD4 is looped upon until all the programmed data

memory wait states have been inserted.

The last possible Memory Selection is Instruction Memory,
[MS1–0] e 01. The two possible next states for IMEM de-

pend on whether RASM is expecting the low byte or high

byte. Instruction words are accessed low byte, then high

byte and RASM powers up expecting the low Instruction

byte. The internal flag that keeps track of the next expected

Instruction byte is called the High Instruction Byte flag (HIB).

If HIB is low, the next state is RSD5 and the low instruction

byte is written into the holding register, ILAT. If HIB is high,

the high instruction byte is moved to I15–8 and the value in

ILAT is moved to I7–0. At the same time, IWR is asserted

low, beginning the write to instruction memory. An IMEM

access, like a DMEM access, is subject to wait states and

these states will be looped on until all programmed Instruc-

tion Memory wait states have been inserted.

Note: Resetting the BCP will reset HIB (i.e., HIB e 0). Writing 01 to the

Memory Select bits in ÀRICÓ (i.e., [MS1–0] e 01, pointing to IMEM)

will also force HIB to zero. This way the instruction word boundary

can be reset without resetting the BCP.

After all of the programmed wait states are inserted in the

RSD states, more wait states may be added by asserting

WAIT low a half T-state before the end of the last pro-

grammed wait state. If there are no programmed wait

states, WAIT must be asserted low a half T-state before the

end of RSD to add wait states. If WAIT remains low, the

remote access is extended indefinitely. All the RSD states

move to their corresponding RSE states on the CPU-CLK

after the programmed wait state conditions are met and

WAIT is high. The RSE states are looped upon until RAE*
REM-WR is deasserted. LCL remains high in all RSE states,

but XACK is taken back high to indicate that the remote

access can be terminated. If XACK is connected to a Re-

mote Processor wait pin, it can now terminate its write cycle.

This state begins the Termination Phase. The action speci-

fied in the conditional box is only executed while RAE*REM-

WR is assertedÐa clock edge is not necessary.

On the CPU-CLK after RAE*REM-WR is deasserted, RASM

enters RSF, where LCL remains high and the BCP A and AD

buses are still in TRI-STATE. The next CPU-CLK causes

RASM to move to RSA3. If the access was to IMEM, then

78

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

T
L
/
F
/
9
3
3
6
–
9
9

F
IG

U
R

E
4
-1

8
.
F
lo

w
C

h
a
rt

o
f
S
lo

w
B

u
ff

e
re

d
W

ri
te

M
o
d
e

79

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

the last action of the remote access before moving to RSA3
is to switch HIB and increment the PC if the high byte was

written. In RSA3, LCL goes low while A and AD remain in

TRI-STATE for the first half of RSA3. If no new Remote

access is initiated the next clock brings the state machine

back to RSA1 where it will loop until a Remote Access is

initiated.

In Figure 4-19, the BCP is executing the first of two consec-

utive Slow Buffered Writes to Data Memory when REM-WR

goes low. In response, XACK goes low, waiting the Remote

Processor. At the end of the first instruction, although the

BCP begins its second write by taking ALE high, RASM now

Takes control of the bus and deasserts LCL high at the end

of T1. A one T-state delay is built into this transfer to ensure

that WRITE has been deasserted high before the data bus

is switched. The Timing Control Unit is now waited, inserting

remote access wait states, TWr, as RASM takes over.

The remote address is permitted one T-state to settle on the

BCP address bus before WRITE goes low, XACK then re-

turns high one T-state plus the programmed Data Memory

wait state, TWd later, having satisfied the memory access

time. The Remote Processor will respond by deasserting

REM-WR high to which the BCP in turn responds by deas-

serting WRITE high. Following WRITE being deasserted

high, the BCP waits till the end of the next T-state before

asserting LCL low, again ensuring that the write cycle has

concluded before the bus is switched. Control is then re-

turned to the Timing Control Unit and the local memory write

continues.

4.2.4 Fast Buffered Write

The timing for the Fast Buffered Write mode is very similar

to the timing of the Latched Read. The major difference is

the additional half clock that AD is active in the Latched

Read mode that is not present in the Fast Buffered Write

mode. The Fast Buffered Write cycle ends after the data is

written and the termination doesn’t wait for the trailing edge

of REM-WR. Therefore the Arbitration and Access Phases

of the Fast Buffered Write mode are the same as for the

Latched Read mode.

The complete flow chart for the Fast Buffered Write mode is

shown in Figure 4-20. Until a Remote Write is initiated

(RAE*REM-WR true), the state machine (RASM) loops in

state RSA1. If a Remote Write is initiated and [LOR]

is set high, RASM will move to state RSA2. Likewise, if a

Remote Write is initiated while the buses have been granted

locally (i.e., Local Bus Grant e 1), RASM will move to state

RSA2. The state machine will loop in state RSA2 as long as
[LOR] is set high or the buses are granted locally. If the

BCP CPU needs to access Data Memory while in either RSA
state (and LOCK is high), it can still do so. A local access is

requested by the Timing Control Unit asserting the Local

Bus Request (LCL-BREQ) signal. A local bus grant will be

given by RASM if the buses are not being used (as is the

case in the RSA states).

XACK is taken low as soon as RAE*REM-WR is true, re-

gardless of an ongoing local access. If [LOR] is low, RASM

will move into RSB on the next clock after RAE*REM-WR is

asserted and there is no local bus request. No further local

bus requests will be granted until the BCP enters the Termi-

nation Phase. If the BCP CPU initiates a Data Memory ac-

cess after RSA, the Timing Control Unit will be waited and

the BCP CPU will remain in state TWr until the remote ac-

cess reaches the Termination Phase. Half a T-state after

entering RSB the A and AD buses go into TRI-STATE.

On the next CPU-CLK, RASM enters RSC and LCL is taken

high while XACK remains low. The wait state counters, iIW
and iDW, are loaded in this state from [IW1–0] and [DW2–

0], respectively, in ÀDCRÓ. The A and AD buses remain in

TRI-STATE and the Access Phase begins. If the Remote

Access is to IMEM and the high instruction byte flag is set

(i.e., HIB e 1), then IWR is asserted low in RSC.

The state machine can move into one of several states de-

pending on the state of CMD and [MS1–0] on the next

clock. XACK and LCL in all the possible next states. If CMD

is high, the access is to ÀRICÓ and the next state will be

RSD1. The path from AD to ÀRICÓ opens in this state. Any

remote access mode changes made by this write will not

take effect until one T-state after the completion of the pres-

ent write.

The five other next states all have CMD low and depend on

the Memory Select bits. If [MS1–0] is 10 or 11 the state

machine will enter either RSD2 or RSD3 and the low or high

bytes of the Program Counter, respectively, will be written.

[MS1–0] e 00 designates a Data Memory access and

moves RASM into RSD4. WRITE will be asserted in this

80

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

T
L
/
F
/
9
3
3
6
–
2
8

R
e
g
is

te
r

C
o
n
fi
g
u
ra

ti
o
n
:

O
th

e
r

B
C

P
C

o
n
tr

o
l
S
ig

n
a
ls

:

Ð
O

n
e

W
a
it
-S

ta
te

P
ro

g
ra

m
m

e
d

fo
r
D

a
ta

-M
e
m

o
ry

R
A

E
e

0

Ð
Z
e
ro

W
a
it
-S

ta
te

s
P
ro

g
ra

m
m

e
d

fo
r
In

s
tr
u
c
ti
o
n
-M

e
m

o
ry

C
M

D
e

0

Ð
À
R

IC
Ó

C
o
n
te

n
ts

:
X
X
0
X
0
1
0
0

R
E
M

-R
D

e
1

Ð
[L

O
R

]
e

0
L
O

C
K

e
1

F
IG

U
R

E
4
-1

9
.
S
lo

w
B

u
ff

e
re

d
W

ri
te

to
D

a
ta

M
e
m

o
ry

b
y

R
e
m

o
te

P
ro

c
e
s
s
o
r

81

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

state and A and AD continue to be tri-stated. This allows the

Remote Processor to drive the Data Memory address and

data buses for the write. Since DMEM is subject to wait

states, RSD4 is looped upon until all the programmed Data

Memory wait states have been inserted.

The last possible Memory Selection is Instruction Memory,
[MS1–0] e 01. The two possible next states for IMEM de-

pend on whether RASM is expecting the low byte or high

byte. Instruction words are accessed low byte then high

byte and RASM powers up expecting the low Instruction

byte. The internal flag that keeps track of the next expected

Instruction byte is called the High Instruction Byte flag (HIB).

If HIB is low, the next state is RSD5 and the low instruction

byte is written into the holding register, ILAT. If HIB is high,

the high instruction byte is moved to I15–8 and ILAT is

moved to I7–0. At the same time IWR is asserted low, be-

ginning the write to instruction memory. An IMEM access,

like a DMEM access, is subject to wait states and these

states will be looped on until all programmed instruction

memory wait states have been inserted.

Note: Resetting the BCP will reset HIB (i.e., HIB e 0). Writing 01 to the

Memory Select bits in ÀRICÓ (i.e., [MS1–0] e 01, pointing to IMEM)

will also force HIB to zero. This way the instruction word boundary

can be reset without resetting the BCP.

After all of the programmed wait states are inserted into

RSD states, more wait states may be added by asserting

WAIT low a half T-state before the end of the last pro-

grammed wait state. If there are no programmed wait states

WAIT must be asserted low a half T-state before the end of

RSD to add wait states. If WAIT remains low, the remote

access is extended indefinitely. All the RSD states converge

to state RSE on the next CPU-CLK after the programmed

wait state conditions are met and WAIT is high. LCL remains

high in all RSE states and A and AD remain in TRI-STATE

as well. XACK returns high in this state, indicating that the

data is written and the cycle can be terminated by the RP.

This state begins the Termination Phase.

On the next clock the state machine will enter RSF and LCL

will return low. The A and AD buses remain in TRI-STATE

for the first half T-state of RSF. After the first half of RSF,

the Remote Processor is no longer using the buses and the

BCP CPU can make an access to Data Memory by asserting

LCL-BREQ. If a local bus request is made, a local bus grant

will be given to the Timing Control Unit. If the preceding

access was a write of IMEM, then HIB is switched and if the

access was to the high byte of IMEM then the PC is incre-

mented. If RAE*REM-WR is deasserted at this point, the

next clock will bring RASM back to RSA where it will loop

until another remote access is initiated. RSG is entered if

RAE*REM-WR is still true. RASM will loop in RSG until

RAE*REM-WR is no longer active at which time the state

machine will return to RSA.

In Figure 4-21, the BCP is executing the first of two Data

Memory writes when REM-WR goes low. In response,

XACK goes low, waiting the Remote Processor. At the end

of the first instruction, although the BCP begins its second

write by taking ALE high, RASM now takes control of the

bus and deasserts LCL high at the end of T1. A one T-state

delay is built into this transfer to ensure that WRITE has

been deasserted high before the data bus is switched. The

Timing Control Unit is now waited, inserting remote access

wait states, TWr, as RASM takes over.

The remote access is permitted one T-state to settle on the

BCP address bus before WRITE goes low, XACK then re-

turns high one T-state plus the programmed Data Memory

wait state, TWd later, having satisfied the memory access

time. WRITE returns high at the same time, and one T-state

later LCL returns low, transferring bus control back to the

BCP. The remote processor responds to XACK returning

high by deasserting REM-WR high, although by this time the

BCP is well into its own memory write.

82

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

T
L
/
F
/
9
3
3
6
–
A

0

F
IG

U
R

E
4
-2

0
.
F
lo

w
C

h
a
rt

o
f
F
a
s
t
B

u
ff

e
re

d
W

ri
te

M
o
d
e

83

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

T
L
/
F
/
9
3
3
6
–
2
9

R
e
g
is

te
r

C
o
n
fi
g
u
ra

ti
o
n
:

O
th

e
r

B
C

P
C

o
n
tr

o
l
S
ig

n
a
ls

:

Ð
O

n
e

W
a
it
-S

ta
te

P
ro

g
ra

m
m

e
d

fo
r
D

a
ta

-M
e
m

o
ry

R
A

E
e

0

Ð
Z
e
ro

W
a
it
-S

ta
te

s
P
ro

g
ra

m
m

e
d

fo
r
In

s
tr
u
c
ti
o
n
-M

e
m

o
ry

C
M

D
e

0

Ð
À
R

IC
Ó

C
o
n
te

n
ts

:
X
X
1
X
0
1
0
0

R
E
M

-R
D

e
1

Ð
[L

O
R

]
e

0
L
O

C
K

e
1

F
IG

U
R

E
4
-2

1
.
F
a
s
t
B

u
ff

e
re

d
W

ri
te

to
D

a
ta

M
e
m

o
ry

b
y

R
e
m

o
te

P
ro

c
e
s
s
o
r

84

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

4.2.5 Latched Write

This mode executes a write without waiting the Remote

ProcessorÐXACK isn’t normally taken low. The complete

flow chart for the Latched Write mode is shown in Figure
4-22. Until a Remote Write is initiated (RAE*REM-WR true),

the state machine (RASM) loops in state RSA. If the BCP

CPU needs to access Data Memory at this time (and LOCK

is high), it can still do so. A local access is requested by the

Timing Control Unit asserting the Local Bus Request

(LCL-BREQ) signal. A local bus grant will be given by RASM

if the buses are not being used (as is the case in RSA).

RASM will move into RSB on the next clock after

RAE*REM-WR is asserted. XACK is not taken low

and therefore the RP is not waited. The state machine will

loop in RSB until the RP terminates its write cycleÐuntil

RAE*REM-WR is no longer true. The external address and

data latches are typically latched on the trailing edge of

REM-WR. A local bus request will still be serviced in this

state.

Next, RASM enters RSC and WR-PEND is asserted to pre-

vent overwrite of the external latches. Since the RP has

completed its write cycle, another write or read can happen

at any time. Any Remote Read cycle (RAE*REM-RD) or

Remote Write cycle (RAE*REM-WR) occurring after the

state machine enters RSC will take XACK low. A local ac-

cess initiated before or during this state must be completed

before RASM can move to RSD. Once RSD is entered,

though, no further local bus requests will be granted until

RASM enters the Termination Phase. If the BCP CPU initi-

ates a Data Memory access after RSC, the Timing Control

Unit will be waited and the BCP CPU will remain in state TWr
until the RASM enters RSH. Half a T-state after entering

RSB the A and AD buses go into TRI-STATE.

On the next clock, the state machine enters RSE and LCL is

taken high. WR-PEND continues to be asserted low in this

state and the data and instruction wait state counters, iDW
and iIW, are loaded from [DW2–0] and [IW1–0], respective-

ly, in ÀDCRÓ. The A and AD buses remain in TRI-STATE

and the Access Phase begins. Any remote accesses now

occurring will take XACK low and wait the Remote Proces-

sor. If the Remote Access is to IMEM and the high instruc-

tion byte flag is set (i.e., HIB e 1), then IWR is asserted low

in RSE.

The state machine will move into one of several states on

the next clock, depending on the state of CMD and
[MS1–0]. WR-PEND remains low and LCL remains high in

all the possible next states. If CMD is high, the access is to
ÀRICÓ and the next state will be RSF1. The path from AD to
ÀRICÓ opens in this state. Any remote access mode chang-

es made by this write will not take effect until one T-state

after the completion of the present write.

The five other next states all have CMD low and depend on

the Memory Select bits. If [MS1–0] is 10 or 11 the state

machine will enter either RSF2 or RSF3 and the low or high

bytes of the Program Counter, respectively, will be loaded.

[MS1–0] e 00 designates a Data Memory access and

moves RASM into RSF4. WRITE will be asserted low in this

state and A and AD continue to be tri-stated. This allows the

Remote Processor to drive the Data Memory address and

data for the write. Since DMEM is subject to wait states,

RSF4 is looped upon until all the programmed Data Memory

wait states have been inserted.

The last possible Memory Selection is Instruction Memory,
[MS1–0] e 01. The two possible next states for IMEM de-

pend on if RASM is expecting the low byte or high byte.

Instruction words are accessed low byte then high byte and

RASM powers up expecting the low Instruction byte. The

internal flag that keeps track of the next expected Instruc-

tion byte is called the High Instruction Byte flag (HIB). If HIB

is low, the next state is RSF5 and the low instruction byte is

written into the holding register, ILAT. If HIB is high, the high

instruction byte is moved to I15–8 and the value in ILAT is

moved to I7–0. At the same time, IWR is asserted low and

the write to Instruction Memory is begun. An IMEM access,

like a DMEM access, is subject to wait states and these

states will be looped on until all programmed instruction

memory wait states have been inserted.

Note: Resetting the BCP will reset HIB (i.e., HIB e 0). Writing 01 to the

Memory Select bits in ÀRICÓ (i.e., [MS1–0] e 01, pointing to IMEM)

will also force HIB to zero. This way the instruction word boundary

can be reset without resetting the BCP.

All the RSF states converge to a single decision box that

tests WAIT. If WAIT is low then the state machine loops

back to RSF, otherwise RASM will move on to RSG. LCL

remains high and WR-PEND remains low in this state but

the actions specific to the RSF states have ended (i.e.

WRITE will no longer be asserted low).

The next CPU-CLK moves RASM into RSH, the last state in

the state machine. LCL returns low but WR-PEND is still

low. The A and AD buses remain in TRI-STATE for the first

half of RSH. XACK will be taken low if a Remote Access

is initiated. If the just completed access was to IMEM, HIB

will be switched. Also, the PC will be incremented if the high

byte was written. A local access will be granted if LCL-

BREQ is asserted in this state.

If another Remote Write is pending, the state machine takes

the path to RSB where that write will be processed. A pend-

ing Remote Read will return to the RSA in either the Buff-

ered or Latched Read sections (not shown in Figure 4-22)

of the state machine. And if no Remote Access is pending,

the machine will loop in RSA until the next access is initiat-

ed.

In Figure 4-23, the BCP is executing the first of two Data

Memory writes when REM-WR goes low. The BCP takes no

action until REM-WR goes back high, latching the data and

making a remote access request. The BCP responds to this

by taking WR-PEND low. At the end of the first instruction,

although the BCP begins its second write by taking ALE

high, RASM now takes control of the bus and deasserts

LCL high at the end of T1. A one T-state delay is built into

this transfer to ensure that WRITE has been deasserted

high before the data bus is switched. Timing Control Unit is

now waited, inserting remote access wait states, TWr, as

RASM takes over.

The remote address is permitted one T-state to settle on the

BCP address bus before WRITE goes low. WRITE then re-

turns high one T-state plus the programmed Data Memory

wait state, TWd later, having satisfied the memory access

time, and one T-state later LCL is reasserted low, transfer-

ring bus control back to the BCP.

In this example, REM-WR goes low again during the remote

write cycle which, since WR-PEND is still low, causes XACK

to go low to wait the Remote Processor. Then LCL goes

low, allowing the second data byte to be latched on the next

trailing edge of REM-WR. One T-state later. XACK and

WR-PEND go back high at the same time.

85

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

T
L
/
F
/
9
3
3
6
–
A

1

F
IG

U
R

E
4
-2

2
.
F
lo

w
C

h
a
rt

o
f
L
a
tc

h
e
d

W
ri
te

M
o
d
e

86

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

T
L
/
F
/
9
3
3
6
–
3
1

R
e
g
is

te
r

C
o
n
fi
g
u
ra

ti
o
n
:

O
th

e
r

B
C

P
C

o
n
tr

o
l
S
ig

n
a
ls

:

Ð
O

n
e

W
a
it
-S

ta
te

P
ro

g
ra

m
m

e
d

fo
r
D

a
ta

-M
e
m

o
ry

R
A

E
e

0

Ð
Z
e
ro

W
a
it
-S

ta
te

s
P
ro

g
ra

m
m

e
d

fo
r
In

s
tr
u
c
ti
o
n
-M

e
m

o
ry

C
M

D
e

0

Ð
À
R

IC
Ó

C
o
n
te

n
ts

:
X
X
X
X
1
1
0
0

R
E
M

-R
D

e
1

Ð
[L

O
R

]
e

0
L
O

C
K

e
1

F
IG

U
R

E
4
-2

3
.
L
a
tc

h
e
d

W
ri
te

to
D

a
ta

M
e
m

o
ry

b
y

R
e
m

o
te

P
ro

c
e
s
s
o
r

87

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

The BCP is now shown executing a local memory write, with

remote data still pending in the latch. At the end of this

instruction, the BCP begins executing a series of internal

operations which do not require the bus. RASM therefore

takes over and, without waiting the Timing Control Unit, exe-

cutes the Remote Write.

4.2.6 Remote Rest Time

For the BCP to operate properly, remote accesses to the

BCP must be separated by a minimal amount of time. This

minimal amount of time has been termed ‘‘rest time’’.

There are two causes for remote rest time. The first cause is

implied in the functional state machine forms for remote ac-

cesses and can be explained as follows: At the beginning of

every T-state the validity of a remote access is sampled for

that T-state. To guarantee that the BCP recognizes the end

of a remote cycle, the time between remote accesses must

be a minimum of one T-state plus set up and hold times.

In the case of Latched Read and Fast Buffered Write, the

validity of a remote access is not sampled on the first rising

edge of the CPU-CLK following XACK rising. However, on

all subsequent rising edges of the CPU-CLK the validity of

the remote access is sampled. As a result, if the remote

processor can terminate its remote access quickly after

XACK rises (within a T-state), up to a T-state may be added

to the above equation for Latched Read and Fast Buffered

Write modes (i.e., a second remote access should not begin

for two T-states plus set up and hold times after XACK rises

in Latched Read and Fast Buffered Write modes). On the

other hand, if the remote processor does not terminate its

remote access within a T-state of XACK rising, the above

equation (one T-state plus set up and hold times between

remote accesses) remains valid for Latched Read and Fast

Buffered Write modes.

If these specifications are not adhered to, the BCP may

sample the very end of one valid remote access and one

T-state later sample the very beginning of a second remote

access. Thus, the BCP will treat the second access as a

continuation of the first remote access and will not perform

the second read/write. The second access will be ignored.

(Reference Figure 4-24 for the timing diagrams which dem-

onstrate how two remote accesses can be mistaken as

one.)

The second source of remote rest time is due to the manner

in which the BCP samples the CMD signal. CMD is sampled

once at the beginning of each remote access. Due to the

manner in which CMD is sampled, CMD will not be sampled

again if a second remote access begins within 1.5 T-states

plus a hold time, after the BCP recognizes the end of the

first remote access. If this happens, the BCP will use the

value of CMD from the previous remote access during the

second remote access. If the value of CMD is the same for

both accesses, the second access will proceed as intended.

However, if the value of CMD is different for the two remote

accesses, the second remote access will read/write the

wrong location.

The reader should note that the timing of the second source

of rest time begins at the same time that the BCP first sam-

ples the end of the previous remote access. Thus when the

first source of rest time ends, the second source of rest time

begins. (Reference Figure 4-25 for timing diagrams for rest

time in all modes except Latched Write mode).

Latched Write Mode

Latched Write mode is a special case of rest time and

needs to be discussed separately from the other modes.

The first cause of rest time affects every mode including

Latched Write. In regards to the second source of rest time,

Latched Write mode was designed to allow a second re-

mote access to start while a write is still pending (i.e.,

WR-PEND e 0). Thus, when WR-PEND rises (signaling the

end of the previous write) the value of CMD is sampled for

the second remote access. This allows Latched Write to

avoid the second cause of rest time discussed above.

However, if a remote access begins within one half a

T-state after WR-PEND rises, CMD will not be sampled

again. For this case, if the value of CMD changes just after

WR-PEND rose and at the same time the remote access

begins, the BCP will read/write the wrong location. (Refer-

enceFigure 4-26 for timing diagrams of rest time for latched

write mode.)

88

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

TL/F/9336–G5

(a) This timing diagram shows two remote accesses within one T-state. The first set of arrows

shows the BCP sampling a valid remote read. The next time the BCP samples the validity of the

remote access is shown by the second set of arrows (1 T-state later). In this case, it will sample

the second remote access and mistake it as a continuation of the first remote access.

TL/F/9336–G6

(b) This timing diagram shows the timing necessary for the BCP to recognize both accesses as

separate accesses. The first set of arrows shows the BCP sampling a valid remote read. One T-state

later at the second set of arrows the BCP will sample the end of the first remote access. Another T-state

later at the third set of arrows the BCP will sample the beginning of the second remote access.

FIGURE 4-24. Mistaking Two Remote Accesses as Only One

89

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

TL/F/9336–G7

(a) This timing diagram shows the second remote access violating rest time. The first set of arrows shows the

BCP sampling a valid remote write. The second set of arrows (1 T-state later), shows the BCP sampling the end of

the first remote access. If a second remote access starts before the position of the third set of arrows (another

1.5 T-states later), the value of CMD will not be sampled. The value of CMD has changed from the first remote

access, so the BCP will write to the wrong location during the second access.

TL/F/9336–G8

(b) This timing diagram shows the second remote access violating rest time. The first set of arrows shows the

BCP sampling a valid remote write. The second set of arrows (1 T-state later), shows the BCP sampling the end of

the first remote access. If a second remote access starts before the position of the third set of arrows (another

1.5 T-states later), the value of CMD will not be sampled. The value of CMD does not change from the first remote

access, so the BCP will write to the intended location during the second remote access.

TL/F/9336–G9

(c) This timing diagram shows the timing needed to avoid violating rest time for all modes except

latched write. The first set of arrows shows the BCP sampling the end of the first remote access.

The second set of arrows (1.5 T-states later), shows the BCP recognizing no remote access has

started and the value of CMD will be sampled for the next remote access. The third set of arrows

shows the BCP sampling the correct value of CMD for the second remote access.

FIGURE 4-25. Remote Rest Time for All Modes except Latched Write

90

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

TL/F/9336–H1

(a) This timing diagram shows a remote access violating remote rest time. The first set of arrows shows

the BCP sampling the value of CMD when WR-PEND rises. If a remote access begins after WR-PEND rises

and before the position of the second set of arrows (0.5 T-states later), the value of CMD will not be

sampled again. The value of CMD has changed since WR-PEND rose, so the BCP will read the wrong location.

TL/F/9336–H2

(b) This timing diagram shows a remote access violating remote rest time. The first set of arrows shows

the BCP sampling the value of CMD when WR-PEND rises. If a remote access begins after WR-PEND rises

and before the position of the second set of arrows (0.5 T-states later), the value of CMD will not be

sampled again. The value of CMD has not changed since WR-PEND rose, so the BCP will read the intended location.

FIGURE 4-26. Rest Time for Latched Write Mode

91

Obs
ole

te

4.0 Remote Interface and Arbitration System (RIAS) (Continued)

TL/F/9336–H3

(c) This timing diagram shows a remote access setting up in time for WR-PEND rising to latch in the proper value of

CMD. The only set of arrows shows the BCP sampling the second remote access’s CMD value when WR-PEND rises.

The value of CMD will not be sampled again. The BCP will carry out the second remote access as it was intended.

TL/F/9336–H4

(d) This timing diagram shows a remote access starting after a half T-state plus a hold time since WR-PEND

rose. The first set of arrows shows the BCP sampling the value of CMD when WR-PEND rises. The second set of

arrows shows the BCP recognizing that no remote access has started and the value of CMD will be sampled

for the next remote access. The third set of arrows shows the BCP sampling the correct value of CMD for the second

remote access. The BCP will carry out the second remote access as it was intended.

FIGURE 4-26. Rest Time for Latched Write Mode (Continued)

92

Obs
ole

te

5.0 Device Specifications
Plastic Chip Carrier

TL/F/9336–2

FIGURE 5-1. Top View

Order Number DP8344B

See NS Package Number V84A

5.1 PIN DESCRIPTIONS

Signal In/Out Pin
Reset

Description
State

5.1.1 TIMING/CONTROL SIGNALS

X1 In 33 X Input and output of the on-chip crystal oscillator amplifier. Connect a crystal

across these pins, or apply an external clock to X1, with X2 left open.X2 Out 34 X1

CLK-OUT Out 35 X1 Buffered CLocK oscillator OUTput, at the crystal frequency.

X-TCLK In 32 X EXternal Transceiver CLocK input.

WAIT In 54 X CPU WAIT. When active, waits processor and remote interface controller.

RESET In 55 0 Master RESET. Parallel reset to all sections of the chip.

5.1.2 INSTRUCTION MEMORY INTERFACE

Instruction Address Bus:

IA15 (MSB) Out 58 0 16-bit Instruction memory Address bus.

IA14 Out 59 0

IA13 Out 60 0

IA12 Out 61 0

IA11 Out 62 0

IA10 Out 63 0

93

Obs
ole

te

5.0 Device Specifications (Continued)

Signal In/Out Pin
Reset

Description
State

5.1.2 INSTRUCTION MEMORY INTERFACE (Continued)

Instruction Address Bus: (Continued)

IA9 Out 64 0 16-bit Instruction memory Address bus.

IA8 Out 65 0

IA7 Out 68 0

IA6 Out 69 0

IA5 Out 70 0

IA4 Out 71 0

IA3 Out 72 0

IA2 Out 73 0

IA1 Out 74 0

IA0 (LSB) Out 75 0

Instruction Bus:

I15 (MSB) In/Out 76 In 16-bit Instruction memory data bus.

I14 In/Out 77 In

I13 In/Out 78 In

I12 In/Out 79 In

I11 In/Out 80 In

I10 In/Out 81 In

I9 In/Out 82 In

I8 In/Out 83 In

I7 In/Out 2 In

I6 In/Out 3 In

I5 In/Out 4 In

I4 In/Out 5 In

I3 In/Out 6 In

I2 In/Out 7 In

I1 In/Out 8 In

I0 (LSB) In/Out 9 In

Timing Control:

IWR Out 56 1 Instruction WRite. Instruction memory write strobe.

ICLK Out 51 0 Instruction CLocK. Delimits instruction fetch cycles. Rises during the first half of

T1, signifying the start of an instruction cycle, and falls when the next instruction

address is valid.

5.1.3 DATA MEMORY INTERFACE

Address Bus:

A15 (MSB) Out 10 X High byte of 16-bit memory Address.

A14 Out 11 X

A13 Out 12 X

A12 Out 13 X

A11 Out 14 X

A10 Out 15 X

A9 Out 16 X

A8 Out 17 X

Multiplexed Address/Data Bus:

AD7 In/Out 18 1 Low byte of 16-bit data memory Address, multiplexed with 8-bit Data bus.

AD6 In/Out 19 0

AD5 In/Out 20 0

AD4 In/Out 21 0

AD3 In/Out 24 0

AD2 In/Out 25 0

AD1 In/Out 26 0

AD0 (LSB) In/Out 27 1

94

Obs
ole

te

5.0 Device Specifications (Continued)

Signal In/Out Pin
Reset

Description
State

5.1.3 DATA MEMORY INTERFACE (Continued)

Timing/Control:

ALE Out 28 0 Address Latch Enable. Demultiplexes AD bus. Address should be latched on the

falling edge.

READ Out 29 1 Data memory READ strobe. Data is latched on the rising edge.

WRITE Out 30 1 Data memory WRITE strobe. Data is presented on the rising edge.

5.1.4 TRANSCEIVER INTERFACE

DATA-IN In 39 X Logic level serial DATA INput.

aALG-IN In 42 X Non-inverting AnaLoG INput for biphase serial data.

bALG-IN In 41 X Inverting AnaLoG INput for biphase serial data.

DATA-OUT Out 38 1 Biphase serial DATA OUTput (inverted).

DATA-DLY Out 37 1 Biphase serial DATA output DeLaYed by one-quarter bit time.

TX-ACT Out 36 0 Transmitter ACTive. Normally low, goes high to indicate serial data is being

transmitted. Used to enable external line drive circuitry.

5.1.5 REMOTE INTERFACE

RAE In 46 X Remote Access Enable. A ‘‘chip-select’’ input to allow host access of BCP

functions and memory.

CMD In 45 X CoMmanD input. When high, remote accesses are directed to the Remote

Interface Configuration register ÀRICÓ. When low, remote accesses are directed

to data-memory, instruction-memory or program counter as determined by
ÀRICÓ.

REM-RD In 47 X REMote ReaD. When active along with RAE, a remote read cycle is requested;

serviced by the BCP when the data bus becomes available.

REM-WR In 48 X REMote WRite. When active along with RAE, a remote write cycle is requested;

serviced by the BCP when the data bus becomes available.

XACK Out 50 1 Transfer ACKnowledge. Normally high, goes low on REM-RD or REM-WR going

low (if RAE low), returning high when the transfer is complete. Normally used as

a ‘‘wait’’ signal to a remote processor.

WR-PEND Out 49 1 WRite PENDing. In a system configuration where remote write cycles are

latched, indicates when the latches contain valid data which is yet to be serviced

by the BCP.

LOCK In 44 X The remote processor uses this input to LOCK out local (BCP) accesses to data-

memory. Once the remote processor has been granted the bus, LOCK gives it

sole access to the bus and BCP accesses are ‘‘waited’’.

LCL Out 31 0 LoCaL. Normally low, goes high when the BCP relinquishes the data and

address bus to service a Remote Access.

5.1.6 EXTERNAL INTERRUPTS

BIRQ In/Out 53 In Bi-directional Interrupt ReQuest. As an input, can be used as an active low

interrupt input (maskable and level-sensitive). As an output, can be used to

generate remote system interrupts, reset via ÀRICÓ.

NMI In 52 X Non-Maskable Interrupt. Negative edge sensitive interrupt input.

95

Obs
ole

te

5.0 Device Specifications (Continued)

5.2 ABSOLUTE MAXIMUM RATINGS (Notes 1 & 2)

If Military/Aerospace specified devices are required,

please contact the National Semiconductor Sales

Office/Distributors for availability and specifications.

Supply Voltage (VCC) b0.5V to a7.0V

DC Input Voltage (VIN) or b0.5V to VCC a 0.5V

DC Input Diode Current g20 mA

DC Output Voltage (VOUT) or b0.5V to VCC a 0.5V

DC Output Current, per Pin (IOUT) g20 mA

DC VCC or GND Current, per Pin g50 mA

Storage Temperature Range (TSTG) b65§C to a150§C
Power Dissipation (PD) 500 mW

Lead Temperature (Soldering, 10 sec) 260§C
ESD Tolerance: CZAP e 120 pF,

RZAP e 1500X 2.0 kV

5.3 OPERATING CONDITIONS

Min Max Units

Supply Voltage (VCC) 4.5 5.5 V

DC Input or Output Voltage

(VIN, VOUT) 0.0 VCC V

Operating Temp. Range (TA) 0 70 §C
Input Rise or Fall Times (tr, tf) 500 ns

Oscillator Crystal RS 20 X
VCC Power Up Ramp 6 ms

DC ELECTRICAL CHARACTERISTICS VCC e 5V g10% (unless otherwise specified)

Symbol Parameter Conditions
Guaranteed

Units
Limits 0–70§C

VIH Minimum High Level Input Voltage

X1 (Note 3) 3.5 V

All Other Inputs Except bALG-IN, aALG-IN 2.0 V

VIL Maximum Low Level Input Voltage

X1 (Note 3) 1.7 V

All Other Inputs Except bALG-IN, aALG-IN 0.8 V

VIH–VIL Minimum DATA-IN Hysteresis 0.1 V

VSENS Minimum Analog Input INa, INb Figure 5-8b
20 mV

Differential Sensitivity

VBIAS Common Mode Analog Input User Provided Bias Voltage Min 2.25 V

Bias Voltage Max 2.75 V

VOH Minimum High Level VIN e VIH or VIL

Output Voltage lIOUTle 20 mA VCC b 0.1 V

IA, A, AD lIOUTle 4.0 mA, VCC e 4.5V 3.5 V

All Other Outputs lIOUTle 1.0 mA, VCC e 4.5V 3.5 V

VOL Maximum Low Level VIN e VIH or VIL

Output Voltage lIOUTle 20 mA 0.1 V

IA, A, AD lIOUTle 4.0 mA, VCC e 4.5V 0.4 V

All Other Outputs lIOUTle 1.0 mA, VCC e 4.5V 0.4 V

IIN Maximum Input Current VIN e VCC or GND

bALG-IN, aALG-IN g10 mA

X1 (Note 3) g20 mA

All Others g10 mA

IOZ Maximum TRI-STATEÉ Output VOUT e VCC or GND
g10 mA

Leakage Current

ICC Maximum Operating VIN e VCC or GND

Supply Current TCLK e 8 MHz, CPU-CLK e 16 MHz

Total to 4 VCC Pins Xcvr and CPU Operating 61 mA

(Note 4) Xcvr Idle, CPU Waited 29 mA

VIN e VCC or GND

TCLK e 20 MHz, CPU-CLK e 20 MHz

Xcvr and CPU Operating 71 mA

Xcvr Idle, CPU Waited 31 mA

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified, all voltages are referenced to ground.

Note 3: X2 is an internal node with ESD protection. Do not use other than with crystal oscillator application.

Note 4: No DC loading, with X1 driven, no crystal. AC load per Test Circuit for Output Tests.

96

Obs
ole

te

5.0 Device Specifications (Continued)

5.5 SWITCHING CHARACTERISTICS

The following specifications apply for VCC e 4.5V to 5.5V,

TA e 0§C to 70§C.

5.5.1 Definitions

The timing specifications for the BCP are provided in the

following tables and figures. The tables consist of five sec-

tions which are the following: the timing parameter symbol,

the parameter IDÝ, the parameter description, the formula

for the parameter, and the timing specification for the pa-

rameter. Below each table is a figure containing the wave-

forms for the parameters in the table.

The parameter symbol is composed of the type of timing

specification and the signal or signals involved. Note that

the symbols are unique only within a given table. The follow-

ing symbol conventions are used for the type of timing spec-

ification.

tW Ð Pulse width specification

tPD Ð Propagation delay specification

tH Ð Hold time specification

tSU Ð Setup time specification

tZA Ð High impedance to active delay specification

(enable time)

tAZ Ð Active to high impedance delay specification

(disable time)

tACC Ð Access time specification

tT Ð Clock period specification

The parameter IDÝ is used to cross reference the timing

parameter to the appropriate timing relationship in the ac-

companying figure. The waveforms in the figures are shown

with the CPU clock running full speed ([CCS] e 0). For this

case, CPU-CLK and CLK-OUT are equivalent. If CPU-CLK/

2 is selected ([CCS] e 1), the effect on the waveforms with

CLK-OUT is for CLK-OUT to double in frequency. The same

is true for waveforms with X1. Note that CLK-OUT is always

running at the crystal frequency and it is the CPU-CLK that

is changing to half speed.

The parameter description defines the timing relationship

being specified. BCP pin references are capitalized in the

description.

Many of the timing specifications are dependent on vari-

ables such as operating frequency and number of pro-

grammed wait states. The formula for the parameter allows

an accurate timing specification to be calculated for any

combination of these variables. The formula represents the

part of the timing specification that is synchronized to the

internal CPU clock. This value is calculated and then added

to the value specified under the Min or Max column to cre-

ate the minimum or maximum guaranteed timing specifica-

tion for the parameter.

The following acronyms are used in the tables:

DMEM refers to data memory

IMEM refers to instruction memory

RIC refers to the Remote Interface Control register

PC refers to the BCP Program Counter

T refers to the CPU clock period in ns

TH refers to first half pulse width (high time) of the CPU

clock in ns

TL refers to second half pulse width (low time) of the

CPU clock in ns.

C refers to the transceiver clock period in ns

nIW is the number of instruction memory wait states pro-

grammed in DCR

nDW is the number of data memory wait states pro-

grammed in DCR

nLW is the number of remote wait states due to a BCP

local data memory access

nRW is the number of CPU wait states due to a remote

access

MAX(A,B) means take the greater value of A or B

The following table is an example of the format used for the

timing specifications. In this example, tW-RD indicates a

pulse width specification for the output pin READ. The IDÝ
for locating the parameter in the timing waveforms is 10.

The formula for this specification involves data and instruc-

tion memory wait states and the CPU clock period. For the

case of 3 data memory wait states and 0 instruction memory

wait states and a CPU clock period of 50 ns, the READ low

minimum pulse width would be calculated as:

(MAX(3,0b1)a1)Ta(b10) e 4T b 10 e 190 ns

For the case of 1 data memory wait state and 3 instruction

memory wait states and a CPU clock period of 50 ns, the

READ low minimum pulse width would be calculated as:

(MAX(1,3b1)a1)Ta(b10) e 3T b 10 e 140 ns

To calculate nLW the following two equations are needed:

nLW (min) e 0

nLW (max) e MAX(nDW, nIW–1)aData Memory Access Cy-

cle

Data Memory Access Cycle is normally 3 T-states if [4TR]
e 0 and 4 T-states if [4TR] e 1. Keep in mind that both
[LOR] and WAIT can extend nLW.

Symbol IDÝ Parameter Formula Min Max Units

tW-RD 10 Read Low (MAX(nDW,nIWb1)a1)Ta b10 10 ns

97

Obs
ole

te

5.0 Device Specifications (Continued)

Note 1: S1 e VCC for tPZL, and tPLZ measurements

S1 e GND for tPZH, and tPHZ measurements

S1 e Open for push pull outputs

Note 2: RL e 1.1k for 4 mA outputs

RL e 4.4k for 1 mA outputs

Note 3: CL includes scope and jig capacitance.

Test Circuit for Output Tests

TL/F/9336–A2

Propagation Delay Waveforms

Except for Oscillator

TL/F/9336–A3

Input Pulse Width Waveforms

TL/F/9336–A5

Propagation Delay Waveform

for Oscillator

TL/F/9336–A4

Setup and Hold Time Waveforms

TL/F/9336–A6

Note 1: Waveform for negative edge sensitive circuits will be inverted.

TRI-STATE Output Enable and Disable Waveforms

TL/F/9336–A7

FIGURE 5-2. Switching Characteristic Measurement Waveforms

98

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-3. Data Memory Read Timing (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tW-ALE 1 ALE High (nRWa1)Ta b10 12 ns

tPD-AAD-ALE 2 A, AD (Data Address) Valid to ALE Falling Ta b22 ns

tPD-ALE-AD 3 ALE Falling to AD (Data Address) Invalid TLa b2 ns

tH-RD-DATA 4 Data Valid after READ Rising 0 ns

tAZ-RD-AD 5 READ Falling to AD Disabled ([4TR]e0) 20 ns

tAZ-AD-RD 6 AD Disabled before READ Falling ([4TR]e1) THa b20 ns

tSU-RD-DATA 7 READ Falling to AD (Data) Setup ([4TR]e0) (MAX(nDW,nIWb1)a1)Ta b22 ns

tSU-RD-DATA 8 READ Falling to AD (Data) Setup ([4TR]e1) (MAX(nDWb1,nIWb1)a1)TaTLa b21 ns

tZA-RD-AD 9 READ Rising to AD Enabled THa b2 ns

tPD-AAD-RD 10 A, AD (Data Address) Valid before READ Falling TaTLa b27 ns

([4TR]e0)

tPD-AAD-RD 11 A, AD (Data Address) Valid before READ Falling 2Ta b27 ns

([4TR]e1)

tW-RD 12 READ Low ([4TR]e0) (MAX(nDW,nIWb1)a1)Ta b10 10 ns

tW-RD 13 READ Low ([4TR]e1) (MAX(nDWb1,nIWb1)a1)TaTLa b10 10 ns

tACC-D 14 Data Memory Read Time ([4TR])e0) (MAX(nDW,nIWb1)a2)TaTLa b40 ns

tACC-D 15 Data Memory Read Time ([4TR])e1) (MAX(nDWb1,nIWb1)a3)TaTLa b40 ns

tSU-AD-DATA 16 AD Disabled to AD (Data) Setup ([4TR]e0) (MAX(nDW,nIWb1)a1)Ta b33 ns

tSU-AD-DATA 17 AD Disabled to AD (Data) Setup ([4TR]e1) (MAX(nDWb1,nIWb1)a2)Ta b33 ns

tPD-ALE-AAD 18 ALE Rising to A, AD (Data Address) Valid (nRW)Ta 24 ns

tPD-RD-A 19 READ Rising to A Invalid THa 0 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

TL/F/9336–52

(a) Read Timing with ([4TR]e0)

TL/F/9336–H7

(b) Read Timing with ([4TR]e1)

FIGURE 5-3. Data Memory Read Timing

99

Obs
ole

te

TABLE 5-4. Data Memory Write Timing (Note 1)

5.0 Device Specifications (Continued)

TABLE 5-4. Data Memory Write Timing (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tW-ALE 1 ALE High (nRWa1)Ta b10 12 ns

tPD-AAD-ALE 2 A, AD (Data Address) Valid to ALE Falling Ta b22 ns

tPD-ALE-AD 3 ALE Falling to AD (Data Address) Invalid TLa b2 ns

tPD-DATA-WR 4 AD (Data) Valid to WRITE Rising (MAX(nDW,nIWb1)a1)Ta b20 ns

tPD-AAD-WR 5 A, AD (Data Address) Valid to WRITE Falling 1.5Ta b28 ns

tPD-WR-DATA 6 WRITE Falling to AD (Data) Valid 19 ns

tPD-WR-DATAz 7 WRITE Rising to AD (Data) Invalid THa b4 ns

tW-WR 8 WRITE Low (MAX(nDW,nIWb1)a1)Ta b10 10 ns

tPD-ALE-AAD 9 ALE Rising to A, AD (Data Address) Valid (nRW)Ta 24 ns

tPD-WR-A 10 WRITE Rising to A Invalid THa b2 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

TL/F/9336–53

FIGURE 5-4. Data Memory Write Timing

100

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-5. Instruction Memory Read Timing (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tACC-I 1 Instruction Memory Read Time (nIWa1)TaTLa b19 ns

tH-IA-I 2 IA Invalid to I Invalid 0 ns

tPD-ICLK-IA 3 ICLK Rising to IA Invalid THa b13 ns

tPD-IA-ICLK 4 Next IA Valid before ICLK Falling
TLa

b12 ns

tPD-IAz-ICLK IA Invalid before ICLK Falling
17 ns

tSU-I-ICLK 5 I Valid before ICLK Rising 20 ns

tH-I-ICLK 6 I Invalid before ICLK Falling TLa 0 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

TL/F/9336–A9

(a) Instruction Memory Read Timing

TL/F/9336–54

(b) Instruction ICLK Timing

FIGURE 5-5. Instruction Memory Timing

101

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-6. Clock Timing (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tT-X1 1 X1 Period (Note 2) 50 500 ns

tPD-X1-CO 2 X1 to CLK-OUT (Note 2) 37 ns

tPD-CO-ICLKr 3 CLK-OUT Rising to ICLK Rising 15 ns

tPD-CO-ICLKf 4 CLK-OUT Rising to ICLK Falling (Note 3) 15 ns

tT-XT 5 X-TCLK Period (Note 4) 50 500 ns

tW-X1HL 6 X1 High and Low time Pulse Widths (Note 5) 21 ns

tW-XTHL 7 XTCLK High and Low Time Pulse Widths 15 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: Measurement thresholds at 2.5V.

Note 3: The falling edge of ICLK occurs only after the next IA becomes valid. The CLK-OUT cycle in which this occurs depends on the instruction being executed

and the number of programmed instruction wait states.

Note 4: There is no relationship between X1 and X-TCLK. X-TCLK is fully asynchronous.

Note 5: External loading on pin X2 equal to 15 pF. See Figure 5-6b for affect of X2 loading in non-crystal applications (i.e., an external oscillator driving X1).

TL/F/9336–55

TL/F/9336–H8

FIGURE 5-6. Clock Timing

102

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-7. Transceiver Timing (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tPD-X1-TA 1 X1 Rising to TX-ACT Rising/Falling 10 65 ns

tPD-XTCLK-TA 2 X-TCLK Rising to TX-ACT Rising/Falling 7 49 ns

tPD-DODD-TA 3 DATA-OUT, DATA-DLY Valid to TX-ACT Rising Ca 16 ns

tW-DO-HB 4 DATA-OUT Half Bit Cell Width 4Ca b10 10 ns

tW-DO-FB 5 DATA-OUT Full Bit Cell Width 8Ca b10 10 ns

tPD-DO-DD 6 DATA-OUT Falling/Rising to DATA-DLY
2Ca b10 10 ns

Rising/Falling (Note 3)

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: When [ATA]e1, TX-ACT is delayed by 4C and an additional line quiescent is generated resulting in 5(/2 line quiescent pulses after the line interface logic.

The additional delay relative to a message with [ATA]e0 is 8C (one bit time).

TL/F/9336–56

(a) Transmission Beginning Timing (Note 2)

TL/F/9336–57

(b) Transmission Ending Timing

FIGURE 5-7. Transceiver Timing

103

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-8. Analog and DATA-IN Timing (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tW-DI-hb 1 DATA-IN Data, Half Bit Width 3Ca 12 ns

5Ca b12 ns

tW-DI-fb 2 DATA-IN Data, Full Bit Width 7Ca 12 ns

9Ca b12 ns

tW-AI-hb 3 Analog Data, Half Bit Width 3Ca 20 ns

(bALG-IN or aALG-IN)
5Ca b20 ns

tW-AI-fb 4 Analog Data, Full Bit Width 7Ca 20 ns

(bALG-IN or aALG-IN)
9Ca b20 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

TL/F/9336–58

(a) DATA-IN Jitter Timing (3270)

TL/F/9336–59

(b) Analog Jitter Timing (3270)

FIGURE 5-8. Analog and DATA-IN Timing

104

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-9. Interrupt Timing (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-NMI-CO 1 NMI Falling before CLK-OUT Falling 12 ns

tH-NMI-CO 2 NMI Hold after CLK-OUT Falling 8 ns

tSU-BQ-CO 3 BIRQ (Input) Falling before CLK-OUT Falling 13 ns

tPD-ICLK-BQ 4 ICLK Rising to BIRQ (Output) Rising/Falling 24 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

TL/F/9336–60

(a) Interrupt Timing

TL/F/9336–61

(b) BIRQ Output Timing

FIGURE 5-9. Interrupt Timing

105

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-10. Control Pin Timing (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tW-RST 1 RESET Low 5Ta 0 ns

tPD-RST-ICLK 2 RESET Rising to ICLK Rising 4Ta 0 ns

tSU-ALE-WT 3 WAIT Low after ALE High to Extend Cycle (MAX(nDW,nIWb1)a1)Ta b21 ns

tH-WT-ALE 4 WAIT Rising after ALE Falling (Note 2) 0 ns

(MAX(nDW,nIWb1)a1)Ta b28 ns

tPD-WT-RDWR 5 WAIT Rising to READ or WRITE Rising TaTLa b22 ns

2TaTLa 2 ns

tSU-RRW-RST 6 REM-RD, REM-WR Low to RESET
15 ns

Rising for BCP to Start

tH-RST-RRW 7 REM-RD, REM-WR Low after RESET
5 ns

Rising for BCP to Start

tSU-LK-ICLK 8 LOCK Low before ICLK High (Note 3) TLa 19 ns

tPD-LK-ALE 9 LOCK High to ALE Low Ta b2 ns

3Ta 20 ns

tSU-WT-ICLK 10 WAIT Low after ICLK Rising to Extend Cycle (MAX(nDW,nIWb1))TaTHa

b22 ns
(Note 4)

tH-WT-ICLK 11 WAIT High after ICLK Rising (Notes 2, 4) (MAX(nDW,nIWb1))TaTHa 2 ns

(MAX(nDW,nIWb1)a1)TaTHa b20 ns

tH-LK-ICLK 12 LOCK Rising after ICLK High THa 2 ns

tPD-AD-ALE 13 AD to ALE Falling after LOCK Rising Ta b33 ns

tSU-WT-ALEf 14 WAIT Low before ALE Falling to Extend Cycle 23 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: The maximum value for this parameter is the lastest WAIT can be removed without adding an additional T-state. The formula assumes a minimum

externally generated wait of one T-state.

Note 3: If tSU-LK-ICLK is not met, the maximum time from LOCK low till no more local accesses is (MAX(nDW, nIWb1)a3)T.

Note 4: The formula(s) apply to a 2 T-state instruction. For a 3 T-state instruction, add one T-state; for a 4 T-state instruction, add two T-states.

106

Obs
ole

te

5.0 Device Specifications (Continued)

TL/F/9336–62

(a) Reset Timing

TL/F/9336–63

(b) BCP Access WAIT Timing

TL/F/9336–64

(c) LOCK Timing

TL/F/9336–A8

(d) Instruction WAIT Timing

FIGURE 5-10. Control Pin Timing

107

Obs
ole

te

TABLE 5-11. Buffered Read of PC, RIC (Note 1)

5.0 Device Specifications (Continued)

TABLE 5-11. Buffered Read of PC, RIC (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRR-CO 1 RAE, REM-RD Falling before CLK-OUT Rising 22

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising (Note 2) 0 ns

2Ta b34 ns

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling Ta 26 ns

tPD-RRR-X 5 RAE, REM-RD Falling to XACK Falling 26 ns

tPD-X-LCL 6 XACK Falling to LCL Rising (nLWa1)Ta b5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising 2Ta b10 8 ns

tPD-RRR-LCL 8 RAE, REM-RD Rising to LCL Falling 3 ns

tAZ-A-LCL 9 A Disabled before LCL Rising TLa b18 ns

tZA-LCL-A 10 A Enabled after LCL Falling THa 15 ns

tPD-LCL-PC 11 LCL Rising to AD (PC) Valid Ta 22 ns

tPD-PC-X 12 AD (PC, RIC) Valid before XACK Rising Ta b24 ns

tPD-PC-RRR 13 RAE, REM-RD Rising to AD (PC) Invalid 6 ns

tW-PC 14 AD (PC, RIC) Valid Time Ta b2 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: The maximum value for this parameter is the latest RAE, REM-RD can be removed without adding a T-state to the remote access.

TL/F/9336–65

FIGURE 5-11. Buffered Read of PC, RIC

108

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-12. Buffered Read of DMEM (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRR-CO 1 RAE, REM-RD Falling before CLK-OUT Rising 22 ns

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising (Note 2) 0 ns

Ta b32 ns

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling Ta 26 ns

tPD-RRR-X 5 RAE, REM-RD Falling to XACK Falling 26 ns

tPD-X-LCL 6 XACK Falling to LCL Rising (nLWa1)Ta b5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising (nDWa2)Ta b10 8 ns

tPD-RRR-LCL 8 RAE, REM-RD Rising to LCL Falling Ta 3 ns

tPD-LCL-RD 9 LCL Rising to READ Falling Ta b5 16 ns

tPD-RD-X 10 READ Falling to XACK Rising (nDWa1)Ta b15 ns

tPD-RRR-RD 11 RAE, REM-RD Rising to READ Rising 1 28 ns

tAZ-AAD-LCL 12 A, AD Disabled before LCL Rising TLa b20 ns

tZA-LCL-AAD 13 A, AD Enabled after LCL Falling THa b10 ns

tW-RD 14 Read Low (nDWa1)Ta b4 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: The maximum value for this parameter is the latest RAE, REM-RD can be removed without adding a T-state to the remote access.

TL/F/9336–66

FIGURE 5-12. Buffered Read of DMEM

109

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-13. Buffered Read of IMEM (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRR-CO 1 RAE, REM-RD Falling before CLK-OUT Rising 22 ns

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising (Note 2) 0 ns

Ta b32 ns

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling Ta 26 ns

tPD-RRR-X 5 RAE, REM-RD Falling to XACK Falling 26 ns

tPD-X-LCL 6 XACK Falling to LCL Rising Ta b5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising (nIWa2)Ta b10 8 ns

tPD-RRR-LCL 8 RAE, REM-RD Rising to LCL Falling 3 ns

tAZ-LCL-A 9 A Disabled after LCL Rising TLa b18 ns

tZA-A-LCL 10 A Enabled before LCL Falling THa 15 ns

tPD-IMEM-X 11 AD (IMEM) Valid before XACK Rising (nIWa1)Ta b25 ns

tPD-RRR-IMEM 12 AD (IMEM) Invalid after RAE, REM-RD Rising 10 ns

tPD-LCL-IMEM 13 LCL Rising to AD (IMEM) Valid Ta 22 ns

tW-IMEM 14 (IMEM) Valid (nIWa1)Ta 0 ns

tPD-LCL-IA 15 LCL Falling to Next IA Valid (Note 3) THa 8 ns

TaTHa 44 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: The maximum value for this parameter is the latest RAE, REM-RD can be removed without adding a T-state to the remote access.

Note 3: Two remote reads from instruction memory are necessary to read a 16-bit instruction word from IMEMÐlow byte followed by high byte. The timing for the

two reads are the same except that IA is incremented after the high instruction memory byte is read.

TL/F/9336–67

FIGURE 5-13. Buffered Read of IMEM

110

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-14. Latched Read of PC, RIC (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRR-CO 1 RAE, REM-RD Falling before CLK-OUT Rising 22 ns

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising 0 ns

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling Ta 26 ns

tPD-RRR-X 5 RAE, REM-RD Falling to XACK Falling 26 ns

tPD-Xf-LCLr 6 XACK Falling to LCL Rising (nLWa1)Ta b5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising 2Ta b10 8 ns

tPD-Xr-LCLf 8 XACK Rising to LCL Falling Ta b11 11 ns

tAZ-A-LCL 9 A Disabled before LCL Rising TLa b18 ns

tZA-LCL-A 10 A Enabled after LCL Falling THa b12 ns

tPC-LCL-PC 11 LCL Rising to AD (PC) Valid Ta 20 ns

tPD-PC-X 12 AD (PC) Valid before XACK Rising Ta b22 ns

tPD-X-PC 13 XACK Rising to AD (PC) Invalid THa 0 ns

tW-PC 14 AD (PC, RIC) Valid TaTHa b12 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

TL/F/9336–68

FIGURE 5-14. Latched Read of PC, RIC

111

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-15. Latched Read of DMEM (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRR-CO 1 RAE, REM-RD Falling before CLK-OUT Rising 22 ns

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising 0 ns

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling Ta 26 ns

tPD-RRR-X 5 RAE, REM-RD Falling to XACK Falling 26 ns

tPD-Xf-LCLr 6 XACK Falling to LCL Rising (nLWa1)Ta b5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising (nDWa2)Ta b10 8 ns

tPD-Xr-LCLf 8 XACK Rising to LCL Falling Ta b11 11 ns

tPC-LCL-RD 9 LCL Rising to READ Falling Ta b5 16 ns

tPD-RD-X 10 READ Falling before XACK Rising (nDWa1)Ta b15 ns

tPD-X-RD 11 XACK Rising to READ Rising THa b7 12 ns

tAZ-AAD-LCL 12 A, AD Disabled before LCL Rising TLa b20 ns

tZA-LCL-AAD 13 A, AD Enabled after LCL Falling THa b10 ns

tW-RD 14 READ Low (nDWa1)TaTHa b12 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

TL/F/9336–69

FIGURE 5-15. Latched Read of DMEM

112

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-16. Latched Read of IMEM (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRR-CO 1 RAE, REM-RD Falling before CLK-OUT Rising 22 ns

tH-RRR-X 2 RAE, REM-RD Rising after XACK Rising 0 ns

tSU-CMD-RRR 3 CMD Valid before RAE, REM-RD Falling 0 ns

tH-CMD-RRR 4 CMD Invalid after RAE, REM-RD Falling Ta 26 ns

tPD-RRR-X 5 RAE, REM-RD Falling to XACK Falling 26 ns

tPD-Xf-LCLr 6 XACK Falling to LCL Rising Ta b5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising (nIWa2)Ta b10 8 ns

tPD-Xr-LCLf 8 XACK Rising to LCL Falling Ta b11 11 ns

tAZ-A-LCL 9 A Disabled before LCL Rising TLa b18 ns

tZA-LCL-A 10 A Enabled after LCL Falling THa b12 ns

tPD-LCL-IMEM 11 LCL Rising to AD (IMEM) Valid Ta 22 ns

tPD-IMEM-X 12 AD (IMEM) Valid to XACK Rising (nIWa1)Ta b23 ns

tPD-X-IMEM 13 XACK Rising to AD (IMEM) Invalid THa 1 ns

tPD-LCL-IA 14 LCL Falling to Next IA Valid (Note 2) TaTHa b19 5 ns

tW-IMEM 15 IMEM Valid (nIWa1)TaTHa b9 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: Two remote reads from instruction memory are necessary to read a 16-bit instruction word from IMEMÐlow byte followed by high byte. The timing for the

two reads are the same except that IA is incremented after the high instruction memory byte is read.

TL/F/9336–70

FIGURE 5-16. Latched Read of IMEM

113

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-17. Slow Buffered Write of PC, RIC (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before CLK-OUT Rising 24 ns

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising (Note 2) 0 ns

Ta b37 ns

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling Ta 26 ns

tPD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns

tPD-X-LCL 6 XACK Falling to LCL Rising (nLWa1)Ta b5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising 2Ta b10 8 ns

tPD-RRW-LCL 8 RAE, REM-WR Rising to LCL Falling Ta 5 ns

tAZ-AAD-LCL 9 A, AD Disabled before LCL Rising TLa b20 ns

tZA-LCL-AAD 10 A, AD Enabled after LCL Falling THa b10 ns

tSU-RDAT-RRW 11 AD (Data) Valid before RAE, REM-WR Rising 12 ns

tH-RDAT-RRW 12 AD (Data) Invalid after RAE, REM-WR Rising 10 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: The maximum value for this parameter is the latest RAE, REM-WR can be removed without adding a T-state to the remote access.

TL/F/9336–71

FIGURE 5-17. Slow Buffered Write of PC, RIC

114

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-18. Slow Buffered Write of DMEM (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before CLK-OUT Rising 24 ns

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising (Note 2) 0 ns

Ta b34 ns

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling Ta 26 ns

tPD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns

tPD-X-LCL 6 XACK Falling to LCL Rising (nLWa1)Ta b5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising (nDWa2)Ta b10 8 ns

tPD-RRW-LCL 8 RAE, REM-WR to LCL Falling Ta 5 ns

tPD-LCL-WR 9 LCL Rising to WRITE Falling Ta b5 ns

tPD-WR-X 10 WRITE Falling to XACK Rising (nDWa1)Ta b17 ns

tPD-RRW-WR 11 RAE, REM-WR Rising to WRITE Rising 2 28 ns

tAZ-AAD-LCL 12 A, AD Disabled before LCL Rising TLa b20 ns

tAZ-LCL-AAD 13 A, AD Enabled after LCL Falling THa b10 ns

tW-WR 14 WRITE Low (nDWa1)Ta b3 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: The maximum value for this parameter is the latest RAE, REM-WR can be removed without adding a T-state to the remote access.

TL/F/9336–72

FIGURE 5-18. Slow Buffered Write of DMEM

115

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-19. Slow Buffered Write of IMEM (Notes 1, 2)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before CLK-OUT Rising 24 ns

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising (Note 3) 0 ns

Ta b34 ns

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling Ta 26 ns

tPD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns

tPD-X-LCL 6 XACK Falling to LCL Rising Ta b5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising (nIWa2)Ta b10 8 ns

tPD-RRW-LCL 8 RAE, REM-WR to LCL Falling Ta 5 ns

tAZ-AAD-LCL 9 A, AD Disabled before LCL Rising TLa b20 ns

tZA-LCL-AAD 10 A, AD Enabled after LCL Falling THa b10 ns

tPD-RDAT-I 11 AD (Data) Valid to I Valid 30 ns

tH-RDAT-RRW 12 AD (Data) Invalid after RAE, REM-WR Rising 14 ns

tPD-LCL-IA 13 LCL Falling to next IA Valid TaTHa b20 3 ns

tPD-LCL-IWR 14 LCL Rising to IWR Falling b3 ns

tPD-IWR-X 15 IWR Falling before XACK Rising (nIWa2)Ta b19 ns

tPD-RRW-IWR 16 RAE, REM-WR Rising to IWR Rising 5 ns

tZA-IWR-I 17 IWR Falling to I Enabled Ta b2 ns

tAZ-IWR-I 18 IWR Rising to I Disabled 22 52 ns

tPD-I-IWR 19 I Valid before IWR Rising (nIWa1)Ta b10 ns

tW-IWR 20 IWR Low (nIWa2)Ta b2 ns

tPD-I-IA 21 I Disabled to IA Invalid 2TaTHa b64 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: Two remote writes to instruction memory are necessary to store a 16-bit instruction word to IMEMÐlow byte followed by high byte. The timing for the 2nd

write is shown in the following diagram. The timing of the first write is the same as a write of the PC or RIC.

Note 3: The maximum value for this parameter is the latest RAE, REM-WR can be removed without adding a T-state to the remote access.

116

Obs
ole

te

5.0 Device Specifications (Continued)

T
L
/
F
/
9
3
3
6
–
7
3

F
IG

U
R

E
5
-1

9
.
S
lo

w
B

u
ff

e
re

d
W

ri
te

o
f
IM

E
M

117

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-20. Fast Buffered Write of RIC, PC (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before CLK-OUT Rising 24 ns

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising 0 ns

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling Ta 26 ns

tPD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns

tPD-X-LCL 6 XACK Falling to LCL Rising (nLWa1)Ta b5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising 2Ta b10 8 ns

tPD-Xr-LCLf 8 XACK Rising to LCL Falling Ta b11 11 ns

tAZ-AAD-LCL 9 A, AD Disabled before LCL Rising TLa b20 ns

tZA-LCL-AAD 10 A, AD Enabled after LCL Falling THa b10 ns

tSU-RDAT-X 11 AD (Data) Valid before XACK Rising 26 ns

tH-RDAT-X 12 AD (Data) Invalid after XACK Rising 3 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

TL/F/9336–74

FIGURE 5-20. Fast Buffered Write of RIC, PC

118

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-21. Fast Buffered Write of DMEM (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before CLK-OUT Rising 24 ns

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising 0 ns

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling Ta 26 ns

tPD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns

tPD-Xf-LCLr 6 XACK Falling to LCL Rising (nLWa1)Ta b5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising (nDWa2)Ta b10 8 ns

tPD-Xr-LCLf 8 XACK Rising to LCL Falling Ta b11 11 ns

tPD-LCL-WR 9 LCL Rising to WRITE Falling Ta b5 ns

tPD-WR-X 10 WRITE Falling to XACK Rising (nDWa1)Ta b16 ns

tPD-X-WR 11 XACK Rising to WRITE Rising b4 13 ns

tAZ-AAD-LCL 12 A, AD Disabled before LCL Rising TLa b20 ns

tZA-LCL-AAD 13 A, AD Enabled after LCL Falling THa b10 ns

tW-WR 14 WRITE Low (nDWa1)Ta b10 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

TL/F/9336–75

FIGURE 5-21. Fast Buffered Write of DMEM

119

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-22. Fast Buffered Write of IMEM (Notes 1, 2)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before CLK-OUT Rising 24 ns

tH-RRW-X 2 RAE, REM-WR Rising after XACK Rising 0 ns

tSU-CMD-RRW 3 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 4 CMD Invalid after RAE, REM-WR Falling Ta 26 ns

tPD-RRW-X 5 RAE, REM-WR Falling to XACK Falling 26 ns

tPD-Xf-LCLr 6 XACK Falling to LCL Rising Ta b5 ns

tPD-LCL-X 7 LCL Rising to XACK Rising (nIWa2)Ta b10 8 ns

tPD-Xr-LCLf 8 XACK Rising to LCL Falling Ta b11 11 ns

tAZ-AAD-LCL 9 A, AD Disabled before LCL Rising TLa b20 ns

tZA-LCL-AAD 10 A, AD Enabled after LCL Falling THa b10 ns

tPD-RDAT-I 11 AD (Data) Valid to I Valid 30 ns

tH-RDAT-X 12 AD (Data) Invalid after XACK Rising 3 ns

tPD-IWR-X 13 IWR Falling before XACK Rising (nIWa2)Ta b19 ns

tPD-LCL-IA 14 LCL Falling to next IA Valid TaTHa b19 5 ns

tPD-LCL-IWR 15 LCL Rising to IWR Falling b3 ns

tPD-X-IWR 16 XACK Rising to IWR Rising b2 ns

tZA-IWR-I 17 IWR Falling to I Enabled Ta b2 ns

tAZ-IWR-I 18 IWR Rising to I Disabled 22 52 ns

tPD-I-IWR 19 I Valid before IWR Rising (nIWa1)Ta b18 ns

tW-IWR 20 IWR Low Time (nIWa2)Ta b10 ns

tPD-I-IA 21 I Disabled to IA Invalid 2TaTHa b70 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: Two remote writes to instruction memory are necessary to store a 16-bit instruction word to IMEMÐlow byte followed by high byte. The timing of the 2nd

write is shown in the following diagram. The timing of the first write is the same as a write of the PC or RIC as shown in Figure 5-20.

120

Obs
ole

te

5.0 Device Specifications (Continued)

TL/F/9336–76

FIGURE 5-22. Fast Buffered Write of IMEM

121

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-23. Latched Write of PC, RIC (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before CLK-OUT Rising 24 ns

tH-RRW-CO 2 RAE, REM-WR Rising after CLK-OUT Rising (Note 2) THa 6 ns

Ta b20 ns

tH-RRW-X 3 RAE, REM-WR Rising after XACK Rising 0 ns

tSU-CMD-RRW 4 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 5 CMD Invalid after RAE, REM-WR Falling Ta 26 ns

tPD-RRW-X 6 RAE, REM-WR Falling to XACK Falling 26 ns

tSU-RDAT-LCL 7 AD (Data) Valid after LCL Rising 2Ta b30 ns

tH-RDAT-LCL 8 AD (Data) Invalid after LCL Rising 2Ta 2 ns

tAZ-AAD-LCL 9 A, AD Disabled before LCL Rising TLa b20 ns

tZA-LCL-AAD 10 A, AD Enabled after LCL Falling THa b10 ns

tPD-RRW-WPND 11 RAE, REM-WR Rising to WR-PEND Falling 5 ns

Ta 34 ns

tSU-CMD-WPND 12 CMD Valid before WR-PEND Rising 16 ns

tH-CMD-WPND 13 CMD Invalid after WR-PEND Rising 4 ns

tSU-RRWr-CO 14 RAE, REM-WR Rising before CLK-OUT Rising 20 ns

tPD-X-WPND 15 XACK Rising to WR-PEND Rising 13 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: The maximum value for this parameter is the latest RAE, REM-WR can be removed without delaying the remote access by one T-state.

TL/F/9336–77

FIGURE 5-23. Latched Write of PC, RIC

122

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-24. Latched Write of DMEM (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before CLK-OUT Rising 24 ns

tH-RRW-CO 2 RAE, REM-WR Rising after CLK-OUT Rising (Note 2) THa 6 ns

Ta b20 ns

tH-RRW-X 3 RAE, REM-WR Rising after XACK Rising 0 ns

tSU-CMD-RRW 4 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 5 CMD Invalid after RAE, REM-WR Falling Ta 26 ns

tPD-RRW-X 6 RAE, REM-WR Falling to XACK Falling 26 ns

tPD-LCL-WR 7 LCL Rising to WRITE Falling Ta b5 ns

tPD-WR-LCL 8 WRITE Rising to LCL Falling Ta b11 ns

tAZ-AAD-LCL 9 A, AD Disabled before LCL Rising TLa b20 ns

tZA-LCL-AAD 10 A, AD Enabled after LCL Falling THa b10 ns

tW-WR 11 WRITE Low Time (nDWa1)Ta b10 ns

tPD-RRW-WPND 12 RAE, REM-WR Rising to WR-PEND Falling 5 ns

Ta 34 ns

tSU-CMD-WPND 13 CMD Valid before WR-PEND Rising 16 ns

tH-CMD-WPND 14 CMD Invalid after WR-PEND Rising 4 ns

tSU-RRWr-CO 15 RAE, REM-WR Rising before CLK-OUT Rising 20 ns

tPD-X-WPND 16 XACK Rising to WR-PEND Rising 13 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: The maximum value for this parameter is the latest RAE, REM-WR can be removed without delaying the remote access by one T-state.

TL/F/9336–78

FIGURE 5-24. Latched Write of DMEM

123

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-25. Latched Write of IMEM (Notes 1, 2)

Symbol IDÝ Parameter Formula Min Max Units

tSU-RRW-CO 1 RAE, REM-WR Falling before CLK-OUT Rising 24 ns

tH-RRW-CO 2 RAE, REM-WR Rising after CLK-OUT Rising (Note 3) THa 6 ns

Ta b20 ns

tH-RRW-X 3 RAE, REM-WR Rising after XACK Rising 0 ns

tSU-CMD-RRW 4 CMD Valid before RAE, REM-WR Falling 0 ns

tH-CMD-RRW 5 CMD Invalid after RAE, REM-WR Falling Ta 26 ns

tPD-RRW-X 6 RAE, REM-WR Falling to XACK Falling 26 ns

tAZ-AAD-LCL 7 A, AD Disabled before LCL Rising TLa b20 ns

tZA-LCL-AAD 8 A, AD Enabled after LCL Falling THa b10 ns

tPD-RDAT-I 9 AD (Data) Valid to I Valid 30 ns

tH-RDAT-IWR 10 AD (Data) Invalid after IWR Rising 0 ns

tPD-RRW-WPND 11 RAE, REM-WR Rising to WR-PEND Falling 5

Ta 34 ns

tPD-LCL-IA 12 LCL Falling to Next IA Valid TaTHa b19 5 ns

tZA-IWR-I 13 IWR Falling to I Enabled Ta b2 ns

tAZ-IWR-I 14 IWR Rising to I Disabled 22 52 ns

tPD-I-IWR 15 I Valid before IWR Rising (nIWa1)Ta b18 ns

tPD-LCL-IWR 16 LCL Rising to IWR Falling b3 ns

tPD-IWR-LCL 17 IWR Rising to LCL Falling Ta b17 ns

tW-IWR 18 IWR Low Time (nIWa2)Ta b12 ns

tSU-CMD-WPND 19 CMD Valid before WR-PEND Rising 16 ns

tH-CMD-WPND 20 CMD Invalid after WR-PEND Rising 4 ns

tPD-I-IA 21 I Disabled to IA Invalid 2TaTHa b70 ns

tSU-RRWr-CO 22 RAE, REM-WR Rising before CLK-OUT Rising 20 ns

tPD-X-WPND 23 XACK Rising to WR-PEND Rising 13 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: Two remote writes to instruction memory are necessary to store a 16-bit instruction word to IMEMÐlow byte followed by high byte. The timing of the 2nd

write is shown in the following diagram. The first write is the same as a write of the PC or RIC as shown in Figure 5-23.

Note 3: The maximum value for this parameter is the latest RAE, REM-WR can be removed without delaying the remote access by one T-state.

124

Obs
ole

te

5.0 Device Specifications (Continued)

TL/F/9336–79

FIGURE 5-25. Latched Write of IMEM

125

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-26. Remote Rest Time (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-BR-RR-CO 1 REM-RD Rising before CLK-OUT Rising
19 ns

(Buffered Read Mode)

tH-BR 2 CLK-OUT Rising after REM-RD Rising to REM-RD
TaTHa 10 ns

or REM-WR Falling (Buffered Read Mode)

tSU-LR-RR-CO 3 REM-RD Rising before CLK-OUT Rising
16 ns

(Latched Read Mode)

tH-LR 4 CLK-OUT Rising after REM-RD Rising to REM-RD
TaTHa 10 ns

or REM-WR Falling (Latched Read Mode)

tSU-SBW-RW-CO 5 REM-WR Rising before CLK-OUT Rising
22 ns

(Slow Buffered Write Mode)

tH-SBW 6 CLK-OUT Rising after REM-WR Rising to REM-RD or
TaTHa 10 ns

REM-WR Falling (Slow Buffered Write Mode)

tSU-FBW-RW-CO 7 REM-WR Rising before CLK-OUT Rising
22 ns

(Fast Buffered Write Mode)

tH-FBW 8 CLK-OUT Rising after REM-WR Rising to REM-RD or
TaTHa 10 ns

REM-WR Falling (Fast Buffered Write Mode)

tSU-LW-RW-CO 9 REM-WR Rising before CLK-OUT Rising
20 ns

(Latched Write Mode)

tH-LW 10 CLK-OUT Rising after REM-WR Rising to REM-RD
10 ns

or REM-WR Falling (Latched Write Mode)

tSU-LW-RWR-COa 11 REM-WR orREM-RD Falling to CLK-OUT Falling
THa 7 ns

(Latched Write Mode) (Note 2)

tSU-LW-RWR-COb 12 CLK-OUT Rising to REM-WR or REM-RD rising
8 ns

(Latched Write Mode) (Note 2)

tPD-CO-WP 13 CLK-OUT rising to WR-PEND Rising b1 21 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: Both specifications refer to the CLK-OUT falling edge after WR-PEND rising. See Section 4.2.6, RIAS remote rest time.

126

Obs
ole

te

5.0 Device Specifications (Continued)

TL/F/9336–B0

(a) REM-RD Rest Time (Buffered Read Mode)

TL/F/9336–B1

(b) REM-RD Rest Time (Latched Read Mode)

TL/F/9336–B2

(c) REM-WR Rest Time (Slow Buffered Write Mode)

TL/F/9336–B3

(d) REM-WR Rest Time (Fast Buffered Write Mode)

TL/F/9336–B4

(e) REM-WR Rest Time (Latched Write Mode)

FIGURE 5-26. Remote Rest Time

127

Obs
ole

te

5.0 Device Specifications (Continued)

TL/F/9336–H9

(f) WR-PEND Rising (Latched Write Mode)

FIGURE 5-26. Remote Rest Time (Continued)

TABLE 5-27. Remote Interface WAIT Timing (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tSU-WT-LCL 1 WAIT Falling after LCL Rising to Extend Cycle

(Buffered Read, Latched Read, Slow Buffered Write, TaTHa b28 ns

Fast Buffered Write and Latched Write of PC, RIC)

WAIT Falling after LCL Rising to Extend Cycle

(Buffered Read, Latched Read, Slow Buffered Write, (nDWa1)TaTHa b28 ns

Fast Buffered Write and Latched Write of DMEM)

WAIT Falling after LCL Rising to Extend Cycle

(Buffered Read, Latched Read, Slow Buffered Write, (nIWa1)TaTHa b28 ns

Fast Buffered Write and Latched Write of IMEM)

tH-WT-LCL 2 WAIT Rising after LCL Rising
TaTHa 0 ns

(Buffered Read, Latched Read, Slow Buffered Write,

Fast Buffered Write and Latched Write of PC, RIC) (Note 2)
2TaTHa b27 ns

WAIT Rising after LCL Rising
(nDWa1)TaTHa 0 ns

(Buffered Read, Latched Read, Slow Buffered Write,

Fast Buffered Write and Latched Write of DMEM) (Note 2)
(nDWa2)TaTHa b27 ns

WAIT Rising after LCL Rising
(nIWa1)TaTHa 0 ns

(Buffered Read, Latched Read, Slow Buffered Write,

Fast Buffered Write and Latched Write of IMEM) (Note 2)
(nIWa2)TaTHa b27 ns

tSU-WT-RD 3 WAIT Falling after READ Falling to Extend Cycle
(nDW)TaTHa b32 ns

(Buffered Read and Latched Read)

tSU-WT-WR 3 WAIT Falling after WRITE Falling to Extend Cycle
(nDW)TaTHa b33 ns

(Slow Buffered Write, Fast Buffered Write and Latched Write)

tSU-WT-IWR 3 WAIT Falling after IWR Falling to Extend Cycle
(nIWa1)TaTHa b38 ns

(Slow Buffered Write, Fast Buffered Write and Latched Write)

128

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-27. Remote Interface WAIT Timing (Note 1) (Continued)

Symbol IDÝ Parameter Formula Min Max Units

tH-WT-RD 4 WAIT Rising after READ Falling (nDWTaTHa b4 ns

(Buffered Read and Latched Read) (Note 2)
(nDWa1)TaTHa b30 ns

tH-WT-WR 4 WAIT Rising after WRITE Falling (Slow Buffered Write, (nDW)TaTHa b5 ns

Fast Buffered Write and Latched Write) (Note 2)
(nDWa1)TaTHa b34 ns

tH-WT-IWR 4 WAIT Rising after IWR Falling (Slow Buffered Write, (nIWa1)TaTHa b5 ns

Fast Buffered Write and Latched Write) (Note 2)
(nIWa2)TaTHa b38 ns

tPD-WT-X 5 WAIT Rising to XACK Rising (Buffered Read, Latched TLa 0 ns

Read, Slow Buffered Write and Fast Buffered Write)
TaTLa 24 ns

tPD-WT-LCL 6 WAIT Rising to LCL Falling (Latched Write) TaTLa 1 ns

2TaTLa 26 ns

tPD-WT-WR 7 WAIT Rising to WRITE Rising (Latched Write) TLa 2 ns

TaTLa 28 ns

tPD-WT-IWR 7 WAIT Rising to IWR Rising (Latched Write) TLa 4 ns

TaTLa 38 ns

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

Note 2: The maximum value for this parameter is the latest WAIT can be removed without adding an additional T-state. The formula assumes a minimum external

wait of one T-state.

TL/F/9336–B5

(a) Buffered Read, Latched Read, Slow Buffered

Write and Fast Buffered Write

TL/F/9336–B6

(b) Latched Write

FIGURE 5-27. Remote Interface WAIT Timing

129

Obs
ole

te

5.0 Device Specifications (Continued)

TABLE 5-28. Wait Timing After Remote Access (Note 1)

Symbol IDÝ Parameter Formula Min Max Units

tPD-LCL-AAD 1 LCL Falling to A, AD (Data Address) Valid THa 11 ns

tPD-LCL-AAD-BR LCL Falling to A, AD (Data Address) Valid
2Ta 29 ns

for Buffered Read of RIC

tPD-AAD-ALE 2 A, AD (Data Address) Valid to ALE Falling Ta b16 ns

tSU-WT-LCL 3 LCL Falling to WAIT Falling to Extend Local Cycle (max(nDW,nIWb1)a1)TaTHa b29 ns

tH-WT-LCL 4 WAIT Rising after LCL Falling (max(nDW,nIWb1)a1)TaTHa b3 ns

(max(nDW,nIWb1)a2)TaTHa b28 ns

tH-WT-LCL-BR WAIT Rising after LCL Falling for Buffered (max(nDW,nIWb1)a3)TaTHa

b3 ns
read of RIC

tSU-WT-ALEf 5 WAIT Low Before ALE Falling to Extend Cycle 22 ns

tH-WT-ALE 6 WAIT Rising After ALE Falling 0 ns

(max(nDW,nIWb1)a1)Ta b28 ns

tSU-WT-AAD 7 A, AD (Data Address) Valid to WAIT Falling Ta b33 ns

to Extend Load Cycle

Note 1: All parameters are individually tested and guaranteed. Interpreting this data by numerically adding two or more parameters to create a new timing

specification may lead to invalid results.

TL/F/9336–I0

FIGURE 5-28. Wait Timing After Remote Access

130

Obs
ole

te

6.0 Reference Section
6.1 INSTRUCTION SET REFERENCE

The Instruction Set Reference section contains detailed in-

formation on the syntax and operation of each BCP instruc-

tion. The instructions are arranged in alphabetical order by

mnemonic for easy access. Although this section is primarily

intended as a reference for the assembly language pro-

grammer, previous assembly language experience is not a

prerequisite. The intent of this instruction set reference is to

include all the pertinent information regarding each instruc-

tion on the page(s) describing that instruction. The only ex-

ceptions to this rule concern the instruction addressing

modes and the bus timing diagrams. The discussion of the

instruction addressing modes occurs at the beginning of the

BCP Instruction Set Overview section and, therefore, will

not be repeated here. The figures for the bus timing dia-

grams are located at the end of this introduction rather than

constantly repeating them under each instruction. The infor-

mation that is contained under each instruction is divided

into eight categories titled: Syntax, Affected Flags, Descrip-

tion, Example, Instruction Format, T-states, Bus timing, and

Operation. The following paragraphs explain what informa-

tion each category conveys and any special nomenclature

that a category may use.

Syntax

This category illustrates the assembler syntax for each in-

struction. Multiple lines are used when a given instruction

supports more than one type of addressing mode, or if it has

an optional mnemonic. All capital letters, commas (,), math

symbols (a, b), and brackets ([]) are entered into the as-

sembler exactly as shown. Braces (À Ó) surround an instruc-

tion’s optional operands and their associated syntax. The

text between the braces may either be entered in with or

omitted from the instruction. The braces themselves should

not be entered into the assembler because they are not part

of the assembler syntax. Lower case characters and oper-

ands that begin with the capital R represent symbols. These

must be replaced with actual register names, numbers, or

equated registers and numbers. Table 6-1 lists all the sym-

bols and their associated meanings.

Affected Flags

If an instruction sets or clears any of the ALU flags, (i.e.,

Negative [N], Zero [Z], Carry [C], and/or Overflow [V]),
then those flags affected are listed under this category.

Description

The Description category contains a verbal discussion

about the operation of an instruction, the operands it allows,

and any notes highlighting special considerations the pro-

rammer should keep in mind when using the instruction.

Example

Each instruction has one or more coding examples de-

signed to show its typical usage(s). For clarity, register

name abbreviations are often used instead of the register

numbers, (i.e., RTR is used in place of R4). Each example

assumes that the ‘‘.EQU’’ assembler directive has been pre-

viously executed to establish these relationships. Informa-

tion relating register abbreviations to register names, num-

bers, and purpose is located in the CPU Registers section.

Instruction Format

This category illustrates the formation of an instruction’s

machine code for each operand variation. Assembly or dis-

assembly of any instruction can be accomplished using

these figures.

T-states

The T-state category lists the number of CPU clock cycles

required for each instruction, including operand variations

and conditional considerations. Using this information, actu-

al execution times may be calculated. For example, if the

conditional relative jump instruction’s condition is not met,

the CPU’s clock cycle is 18.867 MHz ([CCS]e0), and no

instruction wait states are requested ([IW1b0]e00), then

Jcc’s execution time is calculated as shown below:

texecution e 1/(CPU clock frequency) c T-states

e 1/(18.867 c 106 Hz) c 2

e (53 c 10b9s) c 2

e 106 ns

See the section BCP Timing for more information on calcu-

lating instruction execution times.

Bus Timing

This category refers the user to the Bus Timing Figures 6-1
to 6-6 on the following pages. These figures illustrate the

relationship between software instruction execution and

some of the BCP’s hardware signals.

Operation

The operation category illustrates each instruction’s opera-

tion in a symbolic coding format. Most of the operand

names used in this format come directly from each instruc-

tion’s syntax. The exceptions to this rule deal with implied

operands. Instructions that imply the use of the accumula-

tors use the name ‘‘accumulator’’ as an operand. Instruc-

tions that manipulate the Program Counter use the symbol

‘‘PC’’. Instructions that ‘‘push’’ onto or ‘‘pop’’ off of the inter-

nal Address Stack specify ‘‘Address Stack’’ as an operand.

Instructions that save or restore the ALU flags and the reg-

ister bank selections use those terms as operands. Two

specialized operator symbols are used in the symbolic cod-

ing format, the arrow ‘‘x’’ and the concatenation operator

‘‘&’’. The arrow indicates the movement of data from one

operand to another. For instance, after the operation

‘‘RsxRd’’ is performed the content of Rd has been re-

placed with the content of Rs. The concatenation operator

‘‘&’’ simply indicates that the operands surrounding an ‘‘&’’

are attached together forming one new operand. For exam-

ple, ‘‘PC & [GIE] & ALU flags & register bank selecti-

onsxAddress Stack’’ means that the Program Counter,

the Global Interrupt Enable bit, the ALU flags and the regis-

ter bank selections are combined into one operand and

pushed onto the internal Address Stack. Three conditional

structures are utilized in the symbolic coding format: the

‘‘Two Line If’’ structure, the ‘‘Blocked If’’ structure, and the

‘‘Blocked Case’’ structure. In the ‘‘Two Line If’’ structure, if

the condition is met then the operation is performed, other-

wise the operation is not performed.

‘‘Two Line If’’ structure:

If condition

then operation

131

Obs
ole

te

6.0 Reference Section (Continued)

In the ‘‘Blocked If’’ structure, if the condition is met then all

the operations between the ‘‘If’’ statement and the ‘‘End if’’

statement are performed.

‘‘Blocked If’’ structure:

If condition then

operation
operation
etc . . .

End if

In the ‘‘Blocked Case’’ structure, the operation preceded by

the equivalent numeric value of the operand is executed.

For example, if the operand’s value is equal to ‘‘1’’ then the

operation preceded by ‘‘1:’’ is executed.

‘‘Blocked Case’’ structure:

Case operand of

0: operation
1: operation
2: etc . . .

End case

Two reference tables have been added to the back of the

Instruction Set Reference section. The first table, Table 6-2,

lists all the instructions with their associated T-states, Af-

fected Flags, and Bus Timing figure numbers in a compact

format. The second table, Table 6-3, lists all the instructions

in opcode order to facilitate disassembly.

TABLE 6-1. Notational Conventions for Instruction Set

Symbol Represents Meaning Length

n 0 to 255 Unsigned Number 8 Bits

a127 to b128 Signed Number

nn 0 to 65535 Unsigned Number 16 Bits

Rs R0–R31 Source Register

Rd R0–R31 Destination Register

Rsd R0–R31 Combination Source/Destination Register

rs R0–R15 Limited Source Register

rd R0–R15 Limited Destination Register

rsd R0–R15 Limited Combination Source/Destination Register

Ir IW, IX, IY, IZ Index Register

mIr Index Register in One of the Following Address Modes:

Irb Post Decrement

Ir No Change

Ira Post Increment

aIr Pre-Increment

b 0–7 Shift Field 3 Bits

m 0–7 Mask Field 3 Bits

p 0–7 Position Field 3 Bits

s 0–1 State Field 1 Bit

f 0–7 Flag Reference Field 3 Bits

cc Condition Code Instruction Extensions

v 0–63 Vector Field 6 Bits

g 0–3 Global Interrupt Enable Flag [GIE] Status Control 2 Bits

gÊ 0–1 Global Interrupt Enable Flag [GIE] Limited Status Control 1 Bit

rf 0–1 Register Bank and ALU Flag Status Control 1 Bit

ba 0–1 Register Bank A Select 1 Bit

bb 0–1 Register Bank B Select 1 Bit

132

Obs
ole

te

6.0 Reference Section (Continued)

TL/F/9336–21

FIGURE 6-1. Instruction-Memory Bus Timing for 2 T-state Instructions

(No Instruction Wait States [IW1–0] e 00, CPU Running at Full Speed [CCS] e 0)

TL/F/9336–22

FIGURE 6-2. Instruction-Memory Bus Timing for 3 T-state Instructions

(No Instruction Wait States [IW1–0] e 00, CPU Running at Full Speed [CCS] e 0)

133

Obs
ole

te

6.0 Reference Section (Continued)

TL/F/9336–23

FIGURE 6-3. Instruction-Memory Bus Timing for (2 a 2) T-state Instructions

(No Instruction Wait States [IW1–0] e 00, CPU Running at Full Speed [CCS] e 0)

TL/F/9336–24

FIGURE 6-4. Instruction-Memory Bus Timing for 4 T-state Instructions

(No Instruction Wait States [IW1–0] e 00, CPU Running at Full Speed [CCS] e 0)

134

Obs
ole

te

6.0 Reference Section (Continued)

TL/F/9336–25

FIGURE 6-5. Instruction/Data Memory Bus Timing for Data Memory Read

(No Instruction or Data Memory Wait States, CPU Running at Full Speed [CCS] e 0, [4TR] e 0)

TL/F/9336–I1

FIGURE 6-6. Instruction/Data Memory Bus Timing for Data Memory Read

(No Instruction or Data Memory Wait States, CPU Running at Full Speed [CCS] e 0), [4TR] e 1)

135

Obs
ole

te

6.0 Reference Section (Continued)

TL/F/9336–26

FIGURE 6-7. Instruction/Data Memory Bus Timing for Data Memory Write

(No Instruction or Data Memory Wait States, CPU Running at Full Speed [CCS] e 0)

ADCA Add with Carry and Accumulator

Syntax

ADCA Rs, Rd Ðregister, register

ADCA Rs, [mIr] Ðregister, indexed

Affected Flags

N, Z, C, V

Description

Adds the source register Rs, the active accumulator, and

the carry flag together, placing the result into the destination

specified. The destination may be either a register, Rd, or

data memory via an index register mode, [mIr]. Note that

register bank selection determines which accumulator is ac-

tive.

Example

Add the constant 109 to the index register IW, (which is 16

bits wide).

SUBA A, A ;Clear the accumulator

ADD 109, R12 ;Add 109 to low byte of IW

ADCA R13, R13 ;Add carry to high byte of IW

Instruction Format

ADCA Rs, Rd

1 1 1 0 0 1
Opcode Rd Rs

15 9 4 0

ADCA Rs, [mIr]

TL/F/9336–5

T-states

ADCA Rs, Rd Ð2

ADCA Rs, [mIr] Ð3

Bus Timing

ADCA Rs, Rd ÐFigure 6-1
ADCA Rs, [mIr] ÐFigure 6-6

Operation

ADCA Rs, Rd

Rs a accumulator a carry bitxRd

ADCA Rs, [mIr]
Rs a accumulator a carry bitxdata memory

136

Obs
ole

te

6.0 Reference Section (Continued)

ADD Add Immediate

Syntax

ADD n, rsd Ðimmediate, limited register

Affected Flags

N, Z, C, V

Description

Adds the immediate value n to the register rsd and places

the result back into the register rsd. Note that only the ac-

tive registers R0–R15 may be specified for rsd. The value of

n is limited to 8 bits; (unsigned range: 0 to 255, signed

range: a127 to b128).

Example

Add the constant b3 to register 10.

ADD b3, R10 ;R10 a (b3)xR10

Instruction Format

0 0 0 0
Opcode n rsd

15 11 3 0

T-States

2

Bus Timing

Figure 6-1

Operation

rsd a nxrsd

ADDA Add with Accumulator

Syntax

ADDA Rs, Rd Ðregister, register

ADDA Rs, [mIr] Ðregister, indexed

Affected Flags

N, Z, C, V

Description

Adds the source register Rs to the active accumulator and

places the result into the destination specified. The destina-

tion may be either a register, Rd, or data memory via an

index register mode, [mIr]. Note that register bank selection

determines which accumulator is active.

Example

In the first example, the value 4 is placed into the currently

active accumulator, that accumulator is added to the con-

tents of register 20, and then the result is placed into regis-

ter 21.

MOVE 4, A ;Place constant into accum

ADDA R20, R21 ;R20 a accumxR21

In the second example, the alternate accumulator of regis-

ter bank B is selected and then added to register 20. The

result is placed into the data memory pointed to by the index

register IZ and then the value of IZ is incremented by one.

EXX 0, 1 ;Select alt accumulator

ADDA R20, [IZa] ;R20 a accumxdata mem

;and increment data pointer

Instruction Format

ADDA Rs, Rd

1 1 1 0 0 0
Opcode Rd Rs

15 9 4 0

ADDA Rs, [mIr]

TL/F/9336–6

T-states

ADDA Rs, Rd Ð2

ADDA Rs, [mIr] Ð3

Bus Timing

ADDA Rs, Rd ÐFigure 6-1
ADDA Rs, [mIr] ÐFigure 6-6

Operation

ADDA Rs, Rd

Rs a accumulatorxRd

ADDA Rs, [mIr]
Rs a accumulatorxdata memory

AND And Immediate

Syntax

AND n, rsd Ðimmediate, limited register

Affected Flags

N, Z

Description

Logically ANDs the immediate value n to the register rsd

and places the result back into the register rsd. Note that

only the active registers R0–R15 may be specified for rsd.

The value of n is 8 bits wide.

Example

Unmask both the Transmitter and Receiver interrupts via

the Interrupt Control Register ÀICRÓ, R2. Leave the other

interrupts unaffected.

EXX 0,0 ;select main register banks

AND 11111100B,R2 ;unmask transmitter and

; receiver interrupts

Instruction Format

0 1 0 0
Opcode n rsd

15 11 3 0

T-states

2

Bus Timing

Figure 6-1

Operation

rsd AND nxrsd

137

Obs
ole

te

6.0 Reference Section (Continued)

ANDA And with Accumulator

Syntax

ANDA Rs, Rd Ðregister, register

ANDA Rs, [mIr] Ðregister, indexed

Affected Flags

N, Z

Description

Logically ANDs the source register Rs to the active accumu-

lator and places the result into the destination specified.

The destination may be either a register, Rd, or data memo-

ry via an index register mode, [mIr]. Note that register bank

selection determines which accumulator is active.

Example

This example demonstrates a way to quickly unload all 11

bits of the three words in the Receiver FIFO when the FIFO

is full. The example assumes that the index register IZ

points to the location in data memory where the information

should be stored.

EXX 1,1 ;select alternate banks

MOVE 00000111B, A ;place the ÀTSRÓ mask

; into the accumulator

; Pop the first word from the receiver FIFO

ANDA TSR, [IZa] ;read bits 8, 9, & 10

MOVE RTR, [IZa] ;pop bits 0–7

; Pop the second word from the receiver FIFO

ANDA TSR, [IZa]
MOVE RTR, [IZa]

; Pop the third word from the receiver FIFO

ANDA TSR, [IZa]
MOVE RTR, [IZa]

Instruction Format

ANDA Rs, Rd

1 1 1 1 0 0
Opcode Rd Rs

15 9 4 0

ANDA Rs,[mIr]

TL/F/9336–7

T-states

ANDA Rs, Rd Ð2

ANDA Rs, [mIr] Ð3

Bus Timing

ANDA Rs, Rd ÐFigure 6-1
ANDA Rs, [mIr] ÐFigure 6-7

Operation

ANDA Rs, Rd

Rs AND accumulatorxRd

ANDA Rs, [mIr]
Rs AND accumulatorxdata memory

BIT Bit Test

Syntax

BIT rs, n Ðlimited register, immediate

Affected Flags

N, Z

Description

Performs a bit level test by logically ANDing the source reg-

ister rs to the immediate value n. The affected flags are

updated, but the result is not saved. Note that only the ac-

tive registers R0–R15 may be specified for rs. The value n

is 8 bits wide.

Example

Poll the Transmitter FIFO Empty flag [TFE] in the Network

Command Flag register ÀNCFÓ, R1, waiting for the Trans-

mitter to send the current FIFO data.

EXX 0,1 ;select main A, alt B

Poll: BIT NCF,10000000B ;All data sent yet?

JZ Poll ; No, poll TFE

. . . ; Yes, send next byte(s)

Instruction Format

0 1 1 1
Opcode n rs

15 11 3 0

T-states

2

Bus Timing

Figure 6-1

Operation

rs AND n

138

Obs
ole

te

6.0 Reference Section (Continued)

CALL Unconditional Relative Call

Syntax

CALL n Ðimmediate

Affected Flags

None

Description

Pushes the Program Counter, the ALU flags, the Global In-

terrupt Enable bit [GIE], and the current register bank selec-

tions onto the internal Address Stack; then unconditionally

transfers control to the instruction at the memory address

calculated by adding the contents of the Program Counter

to the immediate value n, (sign extended to 16 bits). Since

the immediate value n is an 8-bit two’s complement dis-

placement, the unconditional relative call’s range is from
a127 to b128 relative to the Program Counter. Note that

the Program Counter initially contains the memory address

of the next instruction following the call.

Example

Transfer control to the subroutine ‘‘Send.it’’. Note that

‘‘Send.it’’ must be within a127/b128 words relative to the

PC.

CALL Send.it

Instruction Format

1 1 0 0 1 1 0 0
Opcode n

15 7 0

T-states

3

Bus Timing

Figure 6-2

Operation

PC & [GIE] & ALU flags & register bank selections

xAddress Stack

PC a n(sign extended)xPC

CMP Compare

Syntax

CMP rs, n Ðlimited register, immediate

Affected Flags

N, Z, C, V

Description

Compares the immediate value n with the source register rs

by subtracting n from rs. The affected flags are updated, but

the result is not saved. Note that only the active registers

R0–R15 may be specified for rs. The value of n is limited to

8 bits; (unsigned range: 0 to 255, signed range: a127 to
b128).

Example

Compare the data byte in register 11 to the ASCII character

‘‘A’’.

CMP R11,‘‘A’’ ;If:

JC LessÐthanÐA ; datak‘‘A’’

JEQ EqualÐtoÐA ; datae‘‘A’’

. . . ;else datal‘‘A’’

Compare the contents of register 8 to the value 25.

CMP R8,25 ;if:

BIT CCR,00000011B ; data l 25

JZ GreaterÐthan ; Goto GreaterÐthan

Comparing of Unsigned Values

Comparison Flag(s) to Test

LT (k) C

LEQ (ke) ClZ
EQ (e) Z

GEQ (le) C

GT (l) C & Z

Note: & e logical AND

l e logical OR

Instruction Format

0 0 1 1
Opcode n rs

15 11 3 0

T-states

2

Bus Timing

Figure 6-1

Operation

rs b n

139

Obs
ole

te

6.0 Reference Section (Continued)

CPL Complement

Syntax

CPL Rsd Ðregister

Affected Flags

N, Z

Description

Logically complements the contents of the register Rsd,

placing the result back into that register.

Example

Load the fill-bit count passed from the host into the Trans-

mitter’s Fill-Bit Register ÀFBRÓ, R3, and then perform the

required one’s complement of the fill-bit count. In this exam-

ple, register 20 contains the fill-bit count.

EXX 1,1 ;select alternate banks

MOVE R20, FBR ;load ÀFBRÓ

CPL FBR ;complement fill-bit count

Instruction Format

1 0 1 0 1 1 1 0 0 0 0
Opcode Rsd

15 4 0

T-states

2

Bus Timing

Figure 6-1

Operation

RsdxRsd

EXX Exchange Register Banks

Syntax

EXX ba, bb À,gÓ

Affected Flags

None

Description

Selects which CPU register banks are active by exchanging

between the main and alternate register sets for each bank.

Bank A controls R0–R3 and Bank B controls R4–R11. The

table below shows the four possible register bank configura-

tions. Note that deactivated registers retain their current val-

ues. The Global Interrupt Enable bit [GIE] can be set or

cleared, if desired.

Register Bank Configurations

ba bb Active Register Banks

0 0 Main A, Main B

0 1 Main A, Alternate B

1 0 Alternate A, Main B

1 1 Alternate A, Alternate B

Example

Activate the main register set of Bank A, the alternate regis-

ter set of Bank B, and leave the Global Interrupt Enable bit
[GIE] unchanged.

EXX 0,1 ;select main A, alt B reg banks

Instruction Format

1 0 1 0 1 1 1 0 1 0 0 0
Opcode g ba bb

15 6v 4 3 2 0

00ÐGIE not affected
01Ðreserved
10ÐSet GIE
11ÐClear GIE

T-states

2

Bus Timing

Figure 6-1

Operation

Case ba of

0: activate main Bank A

1: activate alternate Bank A

End case

Case bb of

0: activate main Bank B

1: activate alternate Bank B

End case

Case g of

0: leave [GIE] unaffected, (default)

1: (reserved)

2: set [GIE]
3: clear [GIE]

End case

140

Obs
ole

te

6.0 Reference Section (Continued)

JMP Conditional Relative Jump

Jcc

Syntax

JMP f, s, n Ðimmediate

Jcc n Ðimmediate (optional syntax)

Affected Flags

None

Description

Conditionally transfers control to the instruction at the mem-

ory address calculated by adding the contents of the Pro-

gram Counter to the immediate value n, (sign extended to

16 bits), if the state of the flag referenced by f is equal to the

state of the bit s; or, optionally, if the condition cc is met.

See the tables below for the flags that f can reference and

the conditions that cc may specify. Since the immediate val-

ue n is an 8-bit two’s complement displacement, the condi-

tional relative jump’s range is from a127 to b128 relative

to the Program Counter. Note that the Program Counter ini-

tially contains the memory address of the next instruction

following the jump.

Example

This example demonstrates both syntaxes of the condition-

al relative jump instruction testing for a non-zero result from

a previous instruction; (i.e., [Z]e0). If the condition is

met then control transfers to the instruction labeled

‘‘Loop.back’’; else the next instruction following the jump is

executed.

JMP 000B,0,Loop.back ;jump on not zero

. . .

JNZ Loop.back ;jump on not zero

Condition Specification Table for ‘‘cc’’

cc Meaning Condition Tested for

Z Zero [Z] e 1

NZ Not Zero [Z] e 0

EQ Equal [Z] e 1

NEQ Not Equal [Z] e 0

C Carry [C] e 1

NC No Carry [C] e 0

V Overflow [V] e 1

NV No Overflow [V] e 0

N Negative [N] e 1

P Positive [N] e 0

RA Receiver Active [RA] e 1

NRA Not Receiver Active [RA] e 0

RE Receiver Error [RE] e 1

NRE No Receiver Error [RE] e 0

DA Data Available [DAV] e 1

NDA No Data Available [DAV] e 0

TFF Transmitter FIFO Full [TFF] e 1

NTFF Transmitter FIFO Not Full [TFF] e 0

Instruction Format

1 1 0 1
Opcode s f n

15 11 10 7 0

T-states

2 if condition is not met

3 if condition is met

Bus Timing

Figure 6-1 if condition is not met

Figure 6-2 if condition is met

Operation

JMP f, s, n

If flag f is in state s

then PC a n(sign extended)xPC

Jcc n

If cc condition is true

then PC a n(sign extended)xPC

Flag Reference Table for ‘‘f’’

f (binary) Flag Reference

0 (000) [Z] in ÀCCRÓ

1 (001) [C] in ÀCCRÓ

2 (010) [V] in ÀCCRÓ

3 (011) [N] in ÀCCRÓ

4 (100) [RA] in ÀTSRÓ

5 (101) [RE] in ÀTSRÓ

6* (110) [DAV] in ÀTSRÓ

7 (111) [TFF] in ÀTSRÓ

*Note: The value of f for [DAV] differs from the numeric

value for the position of [DAV] in ÀTSRÓ.

141

Obs
ole

te

6.0 Reference Section (Continued)

JMP Unconditional Relative Jump

Syntax

JMP n Ðimmediate

JMP Rs Ðregister

Affected Flags

None

Description

Unconditionally transfers control to the instruction at the

memory address calculated by adding the contents of the

Program Counter to either the immediate value n or the con-

tents of the source register Rs, (both sign extended to 16

bits). Since the immediate value n and the contents of Rs

are 8-bit two’s complement displacements, the uncondition-

al relative jump’s range is from a127 to b128 relative to

the Program Counter. Note that the Program Counter initial-

ly contains the memory address of the next instruction fol-

lowing the jump.

Example

Transfer control to the instruction labeled ‘‘InitÐXmit’’,

which is within a127/b128 words relative to the PC.

JMP InitÐXmit ;go initialize Transmitter

Instruction Format

JMP n

1 1 0 0 1 0 1 1
Opcode n

15 7 0

JMP Rs

1 1 0 0 1 1 0 1 1 0 0
Opcode Rs

15 4 0

T-states

JMP n Ð3

JMP Rs Ð4

Bus Timing

JMP n ÐFigure 6-2
JMP Rs ÐFigure 6-4

Operation

JMP n

PC a n(sign extended)xPC

JMP Rs

PC a Rs(sign extended)xPC

142

Obs
ole

te

6.0 Reference Section (Continued)

JRMK Relative Jump with Rotate and
Mask on Register

Syntax

JRMK Rs, b, m Ðregister

Affected Flags

None

Description

Transfers control to the instruction at the memory address

calculated by adding the contents of the Program Counter

to a specially formed displacement. The displacement is

formed by rotating a copy of the source register Rs the val-

ue of b bits to the right, masking (setting to zero) the most

significant m bits, masking the least significant bit, and then

sign extending the result to 16 bits. Typically, the JRMK

instruction transfers control into a jump table. The LSB of

the displacement is always set to zero so that the jump table

may contain two word instructions, (e.g., LJMP). The range

of JRMK is from a126 to b128 relative to the Program

Counter. Note that the Program Counter initially contains

the memory address of the next instruction following JRMK.

The source register Rs may specify any active CPU register.

The rotate value b may be from 0 to 7, where 0 causes no

bit rotation to occur. The mask value m may be from 0 to 7;

where me0 causes only the LSB of the displacement to be

masked, me1 causes the MSB and the LSB to be masked,

me2 causes bits 7–6 and the LSB to be masked, etc . . .

Example

This example demonstrates the decoding of the address

frame of the 3299 Terminal Multiplexer protocol. In the ad-

dress frame, only the bits 4–2 contain the address of the

Logical Unit.

EXX 0,1 ;select main A, alt B

JRMK RTR,1,4 ;decode device address

LJMP ADDR.0 ;jump to device handler Ý0

LJMP ADDR.1 ;jump to device handler Ý1

LJMP ADDR.2 ;jump to device handler Ý2

. . .

LJMP ADDR.7 ;jump to device handler Ý7

Instruction Format

1 0 0 0 0
Opcode m b Rs

15 10 7 4 0

T-states

4

Bus Timing

Figure 6-4

Operation

Copy Rs to a temporary register:

Rsxregister

Rotate the register b bits to the right:

TL/F/9336–8

Mask the most significant m bits and the LSB:

mV â W
register AND 0 . . . 0 1 . . . 1 0xregister

Modify the Program Counter:

PC a register(sign extended)xPC

143

Obs
ole

te

6.0 Reference Section (Continued)

LCALL Conditional Long Call

Syntax

LCALL Rs, p, s, nn Ðregister, absolute

Affected Flags

None

Description

If the bit in position p of register Rs is equal to the bit s, then

push the Program Counter, the ALU flags, the Global Inter-

rupt Enable bit [GIE], and the current register bank selec-

tions onto the internal Address Stack. Following the push,

transfer control to the instruction at the absolute memory

address nn. The operand Rs may specify any active CPU

register. The value of p may be from 0 to 7, where 0 corre-

sponds to the LSB of Rs and 7 corresponds to the MSB of

Rs. The absolute value nn is 16 bits long, (range: 0 to 64k),

therefore, all of instruction memory can be addressed.

Example

Call the ‘‘Load.Xmit’’ subroutine when the Transmitter FIFO

Empty flag, [TFE], of the Network Command Flag register
ÀNCFÓ is ‘‘1’’.

EXX 0,0 ;select main A, alt B

LCALL NCF,7,1, Load.Xmit ;If [TFE]e1 call

Instruction Format

1 0 0 0 1 1 1
Opcode s p Rs

15 8 7 4 0

nn

15 0

T-states

(2 a 2)

Bus Timing

Figure 6-3

Operation

If Rs[p] e s then

PC & [GIE] & ALU flags & register bank selections

x Address Stack

nnxPC

End if

LCALL Unconditional Long Call

Syntax

LCALL nn Ðabsolute

Affected Flags

None

Description

Pushes the Program Counter, the ALU flags, the Global In-

terrupt Enable bit [GIE], and the current register bank selec-

tions onto the internal Address Stack; then unconditionally

transfers control to the instruction at the absolute memory

address nn. The value of nn is 16 bits long, (range: 0 to

64k), therefore, all of instruction memory can be addressed.

Example

Transfer control to the subroutine ‘‘Send.it.all’’, which could

be located anywhere in instruction memory.

LCALL Send.it.all

Instruction Format

1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0
Opcode

15 0

nn

15 0

T-states

(2 a 2)

Bus Timing

Figure 6-3

Operation

PC & [GIE] & ALU flags & register bank selections

x Address Stack

nnxPC

144

Obs
ole

te

6.0 Reference Section (Continued)

LJMP Conditional Long Jump

Syntax

LJMP Rs, p, s, nn Ðregister, absolute

Affected Flags

None

Description

Conditionally transfers control to the instruction at the abso-

lute memory address nn if the bit in position p of register Rs

is equal to the state of the bit s. The operand Rs may speci-

fy any active CPU register. The value of p may be from 0 to

7, where 0 corresponds to the LSB of Rs and 7 corresponds

to the MSB of Rs. The absolute value nn is 16 bits long,

(range: 0 to 64k), therefore, all of instruction memory can be

addressed.

Example

Long Jump to one of the receiver error handling routines

based on the contents of the Error Code Register ÀECRÓ.

EXX 0,1,3 ;select main A, alt B

; and clear [GIE]
OR 01000000B,TSR ;set [SEC] in ÀTSRÓ

MOVE ECR, R11 ;read ÀECRÓ

; Determine error condition

LJMP R11, 0, 1, SoftwareÐerror

LJMP R11, 1, 1, LossÐofÐMidbit

LJMP R11, 2, 1, InvalidÐEndingÐSeq

LJMP R11, 3, 1, ParityÐerror

LJMP R11, 4, 1, SoftwareÐerror

Instruction Format

1 0 0 0 1 1 0
Opcode s p Rs

15 8 7 4 0

nn

15 0

T-states

(2 a 2)

Bus Timing

Figure 6-3

Operation

If Rs[p] e s

then nnxPC

LJMP Unconditional Long Jump

Syntax

LJMP nn Ðabsolute

LJMP [Ir] Ðindexed

Affected Flags

None

Description

Unconditionally transfers control to the instruction at the

memory address specified by the operand. The operand

may either specify an absolute instruction address nn, (16

bits long), or an index register Ir, which contains an instruc-

tion address. Long Jump’s addressing range is from 0 to

64k; (i.e., all of instruction memory can be addressed).

Example

Transfer control to the instruction labeled ‘‘Reset.System’’,

which may be located anywhere in instruction memory.

LJMP Reset.System ;go reset the system

Instruction Format

LJMP nn

1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0
Opcode

15 0

nn

15 0

LJMP [Ir]

1 1 0 0 1 1 0 1 0 0 0 0 0 0
Opcode Ir

15 6v 4 0

00ÐIW
01ÐIX
10ÐIY
11ÐIZ

T-states

LJMP nn Ð(2 a 2)

LJMP [Ir] Ð2

Bus Timing

LJMP nn ÐFigure 6-3
LJMP [Ir] ÐFigure 6-1

Operation

LJMP nn

nnxPC

LJMP [Ir]
IrxPC

145

Obs
ole

te

6.0 Reference Section (Continued)

MOVE Move Data Memory

Syntax

MOVE [mIr], Rd Ðindexed, register

MOVE [IraA], Rd Ðregister-relative, register

MOVE [IZan], rd Ðimmediate-relative, limited register

Affected Flags

None

Description

Moves a data memory byte into the destination register

specified. The data memory source operand may specify

any one of the index register modes; [mIr], [IraA], [IZan].
The index register-relative mode, [IraA], forms its data

memory address by adding the contents of the index regis-

ter Ir to the unsigned 8-bit value contained in the currently

active accumulator. The immediate-relative mode, [IZan],
forms its data memory address by adding the contents of

the index register IZ to the unsigned 8-bit immediate value

n. The destination register operand Rd may specify any ac-

tive CPU register; where as, the destination register operand

rd is limited to the active registers R0–R15.

Example

The first example loads the current accumulator by ‘‘pop-

ping’’ an external data stack, which is pointed to by the

index register IX.

MOVE [aIX], A ;pop accum from ext. stack

The second example demonstrates the random access of a

data byte within a logical record contained in memory. The

index register IY contains the base address of the logical

record.

ADDA R9, A ;calculate offset into record

MOVE [IYaA], R20 ;get data byte from record

In the final example, the 4th element of an Error Count table

is transmitted to a host. The index register IZ points to the

1st entry of the table.

EXX 0,1 ;select main A, alt B

MOVE [IZa3], RTR ;transmit 4th element

Instruction Format

MOVE [mIr], Rd

TL/F/9336–9

MOVE [IraA], Rd

1 1 0 0 0 1 0 0 0
Opcode Ir Rd

15 6v 4 0

00ÐIW
01ÐIX
10ÐIY
11ÐIZ

MOVE [IZan], rd

1 0 0 1
Opcode n rd

15 11 3 0
T-states

3 [4TR] e 0

4 [4TR] e 1

Bus Timing

Figure 6-5 [4TR] e 0

Figure 6-6 [4TR] e 1

Operation

MOVE [mIr], Rd

data memoryxRd

MOVE [IraA], Rd

data memoryxRd

MOVE [IZan], rd

data memoryxrd

146

Obs
ole

te

6.0 Reference Section (Continued)

MOVE Move Immediate

Syntax

MOVE n, rd Ðimmediate, limited register

MOVE n, [Ir] Ðimmediate, indexed

Affected Flags

None

Description

Moves the immediate value n into the destination specified.

The destination may be either a register, rd, (limited to the

active registers R0–R15), or data memory via an index reg-

ister, Ir. The value n is 8 bits wide.

Example

Load the current accumulator with the value of 4.

MOVE 4, A ;Load accumulator

Instruction Format

MOVE n, rd

1 0 1 1
Opcode n rd

15 11 3 0

MOVE n, [Ir]

1 0 0 0 1 0
Opcode n[7–5] Ir n[4–0]

15 9 6v 4 0

00ÐIW
01ÐIX
10ÐIY
11ÐIZ

T-states

MOVE n, rd Ð2

MOVE n, [Ir] Ð3

Bus Timing

MOVE n, rd ÐFigure 6-1
MOVE n, [Ir] ÐFigure 6-7

Operation

MOVE n, rd

nxrd

MOVE n, [Ir]
nxdata memory

147

Obs
ole

te

6.0 Reference Section (Continued)

MOVE Move Register

Syntax

MOVE Rs, Rd Ðregister, register

MOVE Rs, [mIr] Ðregister, indexed

MOVE Rs, [IraA] Ðregister, register-relative

MOVE rs, [IZan] Ðlimited register, immediate-relative

Affected Flags

None

Description

Moves the contents of the source register into the destina-

tion specified. The source register operand Rs may specify

any active CPU register; where as the source register oper-

and rs is limited to the active registers R0–R15. The desti-

nation operand may specify either any active CPU register,

Rd, or data memory via one of the index register modes;
[mIr], [IraA], [IZan]. The index register-relative mode,
[IraA], forms its data memory address by adding the con-

tents of the index register Ir to the unsigned 8-bit value con-

tained in the currently active accumulator. The immediate-

relative mode, [IZan], forms its data memory address by

adding the contents of the index register IZ to the unsigned

8-bit immediate value n.

Example

The first example loads the Transmitter FIFO with a data

byte in register 20.

EXX 0,1 ;select main A, alt B

MOVE R20, RTR ;Load the Transmitter FIFO

The second example ‘‘pushes’’ the current accumulator’s

contents onto an external data stack, which is pointed to by

the index register IX.

MOVE A, [IXb] ;push accum to ext. stack

The third example demonstrates the random access of a

data byte within a logical record contained in memory. The

index register IY contains the base address of the logical

record.

ADDA R9, A ;calculate offset into record

MOVE R20, [IYaA] ;update data byte in record

In the final example, the 4th element of an Error Count table

is updated with a new value contained in the current accu-

mulator. The index register IZ points to the 1st entry of the

table.

MOVE A, [IZa3] ;update 4th element of table

Instruction Format

MOVE Rs, Rd

1 1 1 1 1 1
Opcode Rd Rs

15 9 4 0

MOVE Rs, [mIr]

TL/F/9336–10

MOVE Rs, [IraA]

1 1 0 0 0 1 0 0 1
Opcode Ir Rs

15 6v 4 0

00ÐIW
01ÐIX
10ÐIY
11ÐIZ

MOVE rs, [Zan]

0 0 0 1
Opcode n rs

15 11 3 0

T-states

MOVE Rs, Rd Ð2

MOVE Rs, [mIr] Ð3

MOVE Rs, [IraA] Ð3

MOVE rs, [IZan] Ð3

Bus Timing

MOVE Rs, Rd ÐFigure 6-1
MOVE Rs, [mIr] ÐFigure 6-6
MOVE Rs, [IraA] ÐFigure 6-6
MOVE rs, [IZan] ÐFigure 6-6

Operation

MOVE Rs, Rd ÐRsxRd

MOVE Rs, [mIr] ÐRsxdata memory

MOVE Rs, [IraA] ÐRsxdata memory

MOVE rs, [IZan] Ðrsxdata memory

148

Obs
ole

te

6.0 Reference Section (Continued)

OR OR Immediate

Syntax

OR n, rsd Ðimmediate, limited register

Affected Flags

N, Z

Description

Logically ORs the immediate value n to the register rsd and

places the result back into the register rsd. Note that only

the active registers R0–R15 may be specified for rsd. The

value of n is 8 bits wide.

Example

Mask both the Transmitter and Receiver interrupts via the

Interrupt Control Register ÀICRÓ, R2. Leave the other inter-

rupts unaffected.

EXX 0,0 ;select main reg banks

OR 00000011B, ICR ;mask transmitter and

; receiver interrupts

Instruction Format

0 1 0 1
Opcode n rsd

15 11 3 0

T-states

2

Bus Timing

Figure 6-1

Operation

rsd OR nxrsd

ORA OR with Accumulator

Syntax

ORA Rs, Rd Ðregister, register

ORA Rs, [mIr] Ðregister, indexed

Affected Flags

N, Z

Description

Logically ORs the source register Rs to the active accumu-

lator and places the result into the destination specified.

The destination may be either a register, Rd, or data memo-

ry via an index register mode, [mIr]. Note that register bank

selection determines which accumulator is active.

Example

Write an 11-bit word to the Transmitter’s FIFO. This exam-

ple assumes that the index register IZ points to the location

of the data in memory.

TCR.settings: .EQU 00101000B

. . .

EXX 1,1 ;select main A, alt B

MOVE TCR.settings,A ;load accumulator w/mask

MOVE [IZa],R20 ;load bits 8, 9, & 10

ORA R20,TCR ;write bits 8, 9, 10 to ÀTCRÓ

MOVE [IZa],RTR ;push 11-bit word to FIFO

Instruction Format

ORA Rs, Rd

1 1 1 1 0 1
Opcode Rd Rs

15 9 4 0

ORA Rs, [mIr]

TL/F/9336–11

T-states

ORA Rs, Rd Ð2

ORA Rs, [mIr] Ð3

Bus Timing

ORA Rs, Rd ÐFigure 6-1
ORA Rs, [mIr] ÐFigure 6-7

Operation

ORA Rs, Rd

Rs OR accumulatorxRd

ORA Rs, [mIr]
Rs OR accumulatorxdata memory

149

Obs
ole

te

6.0 Reference Section (Continued)

RETF Conditional Return

Rcc

Syntax

RETF f, sÀ,ÀgÓ À,rfÓÓ

Rcc ÀgÀ,rfÓÓ Ð(optional syntax)

Affected Flags

If rf e 1 then N, Z, C, and V

Description

Conditionally returns control to the last instruction address

pushed onto the internal Address Stack by popping that ad-

dress into the Program Counter, if the state of the flag refer-

enced by f is equal to the state of the bit s; or, optionally, if

the condition cc is met. See the tables on the following page

for the flags that f can reference and the conditions that cc

may specify. The conditional return instruction also has two

optional operands, g and rf. The value of g determines if the

Global Interrupt Enable bit [GIE] is left unchanged (ge0),

restored from the Address Stack (ge1), set (ge2), or

cleared (ge3). If the g operand is omitted then ge0 is as-

sumed. The second optional operand, rf, determines if the

ALU flags and register bank selections are left unchanged

(rfe0), or restored from the Address Stack (rfe1). If the rf

operand is omitted then rfe0 is assumed.

Example

This example demonstrates both syntaxes of the condition-

al return instruction testing for a carry result from a previous

instruction; (i.e., [C]e1). If the condition is met then the

return occurs, else the next instruction following the return

is executed. The current environment is left unchanged.

RETF 001B,1 ; If [C]e1 then return

. . .

RC ; If [C]e1 then return

Instruction Format

1 0 1 0 1 1 1 1 0
Opcode g rf s f

15 6v 4 3 2 0

00ÐGIE not affected
01ÐRestore GIE
10ÐSet GIE
11ÐClear GIE

T-states

2 if condition is not met

3 if condition is met

Bus Timing

Figure 6-1 if condition is not met

Figure 6-2 if condition is met

Operation

If flag f is in state s then

Case g of

0: leave [GIE] unaffected, (default)

1: restore [GIE] from Address Stack

2: set [GIE]
3: clear [GIE]

End case

If rfe1 then

restore ALU flags from Address Stack

restore register bank selection from Address Stack

End if

Address StackxPC

End if

Condition Specification Table for ‘‘cc’’

cc Meaning Condition Tested for

Z Zero [Z] e 1

NZ Not Zero [Z] e 0

EQ Equal [Z] e 1

NEQ Not Equal [Z] e 0

C Carry [C] e 1

NC No Carry [C] e 0

V Overflow [V] e 1

NV No Overflow [V] e 0

N Negative [N] e 1

P Positive [N] e 0

RA Receiver Active [RA] e 1

NRA Not Receiver Active [RA] e 0

RE Receiver Error [RE] e 1

NRE No Receiver Error [RE] e 0

DA Data Available [DAV] e 1

NDA No Data Available [DAV] e 0

TFF Transmitter FIFO Full [TFF] e 1

NTFF Transmitter FIFO Not Full [TFF] e 0

Flag Reference Table for ‘‘f’’

f (binary) Flag Referenced

0 (000) [Z] in ÀCCRÓ

1 (001) [C] in ÀCCRÓ

2 (010) [V] in ÀCCRÓ

3 (011) [N] in ÀCCRÓ

4 (100) [RA] in ÀTSRÓ

5 (101) [RE] in ÀTSRÓ

6* (110) [DAV] in ÀTSRÓ

7 (111) [TFF] in ÀTSRÓ

*Note: The value of f for [DAV] differs from the numeric

value for the position of [DAV] in ÀTSRÓ.

150

Obs
ole

te

6.0 Reference Section (Continued)

RET Unconditional Return

Syntax

RET Àg À,rfÓÓ

Affected Flags

If rfe1 then N, Z, C, and V

Description

Unconditionally returns control to the last instruction ad-

dress pushed onto the internal Address Stack by popping

that address into the Program Counter. The unconditional

return instruction also has two optional operands, g and rf.

The value of g determines if the Global Interrupt Enable bit
[GIE] is left unchanged (ge0), restored from the Address

Stack (ge1), set (ge2), or cleared (ge3). If the g operand

is omitted then ge0 is assumed. The second optional oper-

and, rf, determines if the ALU flags and register bank selec-

tions are left unchanged (rfe0), or restored from the Ad-

dress Stack (rfe1). If the rf operand is omitted then rfe0 is

assumed.

Example

Return from an interrupt.

RET 1,1 ;Restore environment & return

Instruction Format

1 0 1 0 1 1 1 1 1 0 0 0 0
Opcode g rf

15 6v 4 3 0

00ÐGIE not affected
01ÐRestore GIE
10ÐSet GIE
11ÐClear GIE

T-states

2

Bus Timing

Figure 6-1

Operation

Case g of

0: leave [GIE] unaffected, (default)

1: restore [GIE] from Address Stack

2: set [GIE]
3: clear [GIE]

End case

If rfe1 then

restore ALU flags from Address Stack

restore register bank selection from Address Stack

End if

Address StackxPC

ROT Rotate

Syntax

ROT Rsd, b Ðregister

Affected Flags

N, Z, C

Description

Rotates the contents of the register Rsd b bits to the right

and places the result back into that register. The bits that

are shifted out of the LSB are shifted back into the MSB,

(and copied into the Carry flag). The value b may specify

from 0 to 7 bit rotates.

Example

Add 3 to the Address Stack Pointer contained in the Internal

Stack Pointer register ÀISPÓ, R30.

MOVE ISP, R8 ;get ÀISPÓ

ROT R8, 4 ;shift [ASP] to low order nibble

ADD 3, R8 ;add 3 to [ASP]
ROT R8, 4 ;shift [ASP] to high order nibble

MOVE R8, ISP ;store new ÀISPÓ

Instruction Format

1 1 0 0 1 0 1 0
Opcode b Rsd

15 7 4 0

T-states

2

Bus Timing

Figure 6-1

Operation

TL/F9336–12

151

Obs
ole

te

6.0 Reference Section (Continued)

SBCA Subtract with Carry and
Accumulator

Syntax

SBCA Rs, Rd Ðregister, register

SBCA Rs, [mIr] Ðregister, indexed

Affected Flags

N, Z, C, V

Description

Subtracts the active accumulator and the carry flag from the

source register Rs, placing the result into the destination

specified. The destination may be either a register, Rd, or

data memory via an index register mode, [mIr]. Negative

results are represented using the two’s complement format.

Note that register bank selection determines which accumu-

lator is active.

Example

Subtract the constant 109 from the index register IW, (which

is 16 bits wide).

SUBA A, A ;Clear the accumulator

SUB 109, R12 ;low byte of IWÐ109

SBCA R13, R13 ;high byte of IWÐborrow

Instruction Format

SBCA Rs, Rd

1 1 1 0 1 1
Opcode Rd Rs

15 9 4 0

SBCA Rs, [mIr]

TL/F9336–13

T-states

SBCA Rs, Rd Ð2

SBCA Rs, [mIr] Ð3

Bus Timing

SBCA Rs, Rd ÐFigure 6-1
SBCA Rs, [mIr] ÐFigure 6-7

Operation

SBCA Rs, Rd

Rs b accumulator b carry bitxRd

SBCA Rs, [mIr]
Rs b accumulator b carry bitxdata memory

SHL Shift Left

Syntax

SHL Rsd, b Ðregister

Affected Flags

N, Z, C

Description

Shifts the contents of the register Rsd b bits to the left and

places the result back into that register. Zeros are shifted in

from the right, (i.e., from the LSB). The value b may specify

from 0 to 7 bit shifts. The Carry flag contains the last bit

shifted out.

Example

Place a new internal Address Stack Pointer into the Internal

Stack Pointer register ÀISPÓ, R30. Assume that the new
[ASP] is located in register 20.

MOVE ISP,R8 ;read ÀISPÓ for [DSP]
AND 00001111B,R8 ;save [DSP] only

SHL R20,4 ;left justify [ASP]
ORA R20,ISP ;combine [ASP] a [DSP],

; then place into ÀISPÓ

Instruction Format

1 1 0 0 1 0 0 1
Opcode (8-b) Rsd

15 7 4 0

T-states

2

Bus Timing

Figure 6-1

Operation

TL/F/9336–14

152

Obs
ole

te

6.0 Reference Section (Continued)

SHR Shift Right

Syntax

SHR Rsd, b Ðregister

Affected Flags

N, Z, C

Description

Shifts the contents of the register Rsd b bits to the right and

places the result back into that register. Zeros are shifted in

from the left, (i.e., from the MSB). The value b may specify

from 0 to 7 bit shifts. The Carry flag contains the last bit

shifted out.

Example

Right justify the Address Stack Pointer from the Internal

Stack Pointer register ÀISPÓ, R30.

MOVE ISP, R20 ;Load [ASP] from ÀISPÓ

SHR R20,4 ;right justify [ASP]

Instruction Format

1 1 0 0 1 0 0 0
Opcode b Rsd

15 7 4 0

T-states

2

Bus Timing

Figure 6-1

Operation

TL/F/9336–15

SUB Subtract Immediate

Syntax

SUB n, rsd Ðimmediate, limited register

Affected Flags

N, Z, C, V

Description

Subtracts the immediate value n from the register rsd and

places the result back into the register rsd. Note that only

the active registers R0–R15 may be specified for rsd. The

value of n is limited to 8 bits; (signed range: a127 to
b128). Negative numbers are represented using the two’s

complement format.

Example

Subtract the constant 3 from register 10.

SUB 3, R10 ; R10 b 3xR10

Instruction Format

0 0 1 0
Opcode n rsd

15 11 3 0

T-states

2

Bus Timing

Figure 6-1

Operation

rsd b nxrsd

153

Obs
ole

te

6.0 Reference Section (Continued)

SUBA Subtract with Accumulator

Syntax

SUBA Rs, Rd Ðregister, register

SUBA Rs, [mlr] Ðregister, indexed

Affected Flags

N, Z, C, V

Description

Subtracts the active accumulator from the source register

Rs and places the result into the destination specified. The

destination may be either a register, Rd, or data memory via

an index register mode, [mlr]. Negative numbers are repre-

sented using the two’s complement format. Note that regis-

ter bank selection determines which accumulator is active.

Example

In the first example, the value 4 is placed into the currently

active accumulator, that accumulator is subtracted from the

contents of register 20, and then the result is placed into

register 21.

MOVE 4, A ;Place constant into accum

SUBA R20, R21 ;R20 b accumxR21

In the second example, the alternate accumulator of regis-

ter bank B is selected and then subtracted from register 20.

The result is placed into the data memory pointed to by the

index register IZ and then the value of IZ is incremented by

one.

EXX 0, 1 ;Select alt accumulator

SUBA R20, [IZa] ;R20 b accumxdata mem

;and increment data pointer

Instruction Format

SUBA Rs, Rd

1 1 1 0 1 0
Opcode Rd Rs

15 9 4 0

SUBA Rs, [mlr]

TL/F/9336–16

T-states

SUBA Rs, Rd Ð2

SUBA Rs, [mlr] Ð3

Bus Timing

SUBA Rs, Rd ÐFigure 6-1
SUBA Rs, [mlr] ÐFigure 6-7

Operation

SUBA Rs, Rd

Rs b accumulatorxRd

SUBA Rs, [mlr]
Rs b accumulatorxdata memory

TRAP Software Interrupt

Syntax

TRAP v À,gÊÓ
Affected Flags

None

Description

Pushes the Program Counter, the Global Interrupt Enable bit
[GIE], the ALU flags, and the current register bank selec-

tions onto the internal Address Stack; then unconditionally

transfers control to the instruction at the memory address

created by concatenating the contents of the Interrupt Base

Register ÀIBRÓ to the value of v extended with zeros to 8

bits. If the value of gÊ is equal to ‘‘1’’ then the Global Inter-

rupt Enable bit [GIE] will be cleared. If the gÊ operand is

omitted, then gÊ e 0 is assumed. The vector number v

points to one of 64 Interrupt Table entries; (range: 0 to 63).

Since some of the Interrupt Table entries are used by the

hardware interrupts, the TRAP instruction can simulate

hardware interrupts. The following table lists the hardware

interrupts and their associated vector numbers:

Hardware Interrupt Vector Table

Interrupt v (Binary)

NMI 28 (011100)

RFF/DA/RA 4 (000100)

TFE 8 (001000)

LTA 12 (001100)

BIRQ 16 (010000)

TO 20 (010100)

Example

Simulate the Transmitter FIFO Empty interrupt.

TRAP 8, 1 ;TFE interrupt simulation

Instruction Format

1 1 0 0 1 1 1 1 1
Opcode gÊ v

15 6 5 0

T-states

2

Bus Timing

Figure 6-1

Operation

PC & [GIE] & ALU flags & register bank selections

xAddress Stack

if gÊ e 1

then clear [GIE]
Create PC address by concatonating the ÀIBRÓ register to

the vector number v as shown below:

TL/F/9336–17

154

Obs
ole

te

6.0 Reference Section (Continued)

XOR Exclusive OR Immediate

Syntax

XOR n, rsd Ðimmediate, limited register

Affected Flags

N, Z

Description

Logically exclusive ORs the immediate value n to the regis-

ter rsd and places the result back into the register rsd. Note

that only the active registers R0–R15 may be specified for

rsd. The value of n is 8 bits wide.

Example

Encode/decode a data byte in register 15.

XOR codeÐpattern, R15 ;encode/decode

Instruction Format

0 1 1 0
Opcode n rsd

15 11 3 0

T-states

2

Bus Timing

Figure 6-1

Operation

rsd XOR nxrsd

XORA Exclusive OR with Accumulator

Syntax

XORA Rs, Rd Ðregister, register

XORA Rs, [mlr] Ðregister, indexed

Affected Flags

N, Z

Description

Logically exclusive ORs the source register Rs to the active

accumulator and places the result into the destination speci-

fied. The destination may be either a register, Rd, or data

memory via an index register mode, [mlr]. Note that register

bank selection determines which accumulator is active.

Example

Decode the data byte just received and place it into data

memory. This example assumes that the accumulator con-

tains the ‘‘key’’ and that the index register IY points to the

location where the information should be stored.

EXX 1,1 ;select alternate banks

XORA RTR, [IYa] ;decode received byte and

; save it

Instruction Format

XORA Rs, Rd

1 1 1 1 1 0
Opcode Rd Rs

15 9 4 0

XORA Rs, [mlr]

TL/F/9336–18

T-states

XORA Rs, Rd Ð2

XORA Rs, [mlr] Ð3

Bus Timing

XORA Rs, Rd ÐFigure 6-1
XORA Rs, [mlr] ÐFigure 6-7

Operation

XORA Rs, Rd

Rs XOR accumulatorxRd

XORA Rs, [mlr]
Rs XOR accumulatorxdata memory

155

Obs
ole

te

6.0 Reference Section (Continued)

TABLE 6-2. Instructions Versus T-states, Affected Flags, and Bus Timing

Instruction T-states
Affected Timing

Instruction T-states
Affected Timing

Flags Figure Flags Figure

ADCA Rs, Rd 2 N,Z,C,V 6-1 MOVE Rs, [mlr] 3 6-7

ADCA Rs, [mlr] 3 N,Z,C,V 6-7 MOVE Rs, [Ir a A] 3 6-7

ADD n, rsd 2 N,Z,C,V 6-1 MOVE rs, [IZ a n] 3 6-7

ADDA Rs, Rd 2 N,Z,C,V 6-1 MOVE [mlr], Rd 3 [4TR] e 0 6-5

4 [4TR] e 1 6-6
ADDA Rs, [mlr] 3 N,Z,C,V 6-7

MOVE [Ir a A], Rd 3 [4TR] e 0 6-5
AND n, rsd 2 N,Z 6-1

4 [4TR] e 1 6-6
ANDA Rs, Rd 2 N,Z 6-1

MOVE [IZ a n], rd 3 [4TR] e 0 6-5
ANDA Rs, [mlr] 3 N,Z 6-7 4 [4TR] e 1 6-6

BIT rs, n 2 N,Z 6-1 OR n, rsd 2 N,Z 6-1

CALL n 3 6-2 ORA Rs, Rd 2 N,Z 6-7

CMP rs, n 2 N,Z,C,V 6-1 ORA Rs, [mlr] 3 N,Z 6-7

CPL Rsd 2 N,Z 6-1 Rcc ÀgÀ,rfÓÓ 2 false 6-1

3 true N,Z,C,V* 6-2EXX ba, bb À,gÓ 2 6-1

RET ÀgÀ,rfÓÓ 2 N,Z,C,V* 6-1Jcc n 2 false 6-1

3 true 6-2 RETF f, s À,ÀgÓ À,rfÓÓ 2 false 6-1

3 true N,Z,C,V* 6-2JMP f, s, n 2 false 6-1

3 true 6-2 ROT Rsd, b 2 N,Z,C 6-1

JMP n 3 6-2 SBCA Rs, Rd 2 N,Z,C,V 6-1

JMP Rs 4 6-4 SBCA Rs, [mlr] 3 N,Z,C,V 6-7

JRMK Rs, b, m 4 6-4 SHL Rsd, b 2 N,Z,C 6-1

LCALL nn (2a2) 6-3 SHR Rsd, b 2 N,Z,C 6-1

LCALL Rs, p, s, nn (2a2) 6-3 SUB n, rsd 2 N,Z,C,V 6-1

LJMP nn (2a2) 6-3 SUBA Rs, Rd 2 N,Z,C,V 6-1

LJMP [lr] 2 6-1 SUBA Rs, [mlr] 3 N,Z,C,V 6-7

LJMP Rs, p, s, nn (2a2) 6-3 TRAP v À,gÊÓ 2 6-1

MOVE n, rd 2 6-1 XOR n, rsd 2 N,Z 6-1

MOVE n, [lr] 3 6-7 XORA Rs, Rd 2 N,Z 6-1

MOVE Rs, Rd 2 6-1 XORA Rs, [mlr] 3 N,Z 6-7

*Note: If rf e 1 then N, Z, C, and V are affected.

156

Obs
ole

te

6.0 Reference Section (Continued)

TABLE 6-3. Instruction Opcodes

KEY
Hex Opcode Instruction

mlr

0000–0FFF ADD n, rsd0 0 0 0 00 lrb
Opcode n rsd 01 lr

15 11 3 0 10 lra

11 alr

1000–1FFF MOVE rs, [IZ a n]0 0 0 1
lrOpcode n rs

15 11 3 0 00 IW

01 IX

10 IY
2000–2FFF SUB n, rsd0 0 1 0

11 IZOpcode n rsd

15 11 3 0
g

00 NCHG
3000–3FFF CMP rs, n0 0 1 1

01 RIOpcode n rs
10 EI15 11 3 0
11 DI

4000–4FFF AND n, rsd0 1 0 0 gÊ
Opcode n rsd

0 NCHG15 11 3 0
1 DI

5000–5FFF OR n, rsd0 1 0 1 ba/bb
Opcode n rsd

0 MAIN15 11 3 0
1 ALT

6000–6FFF XOR n, rsd0 1 1 0 f
Opcode n rsd

000 [Z]
15 11 3 0

001 [C]
010 [V]

7000–7FFF BIT rs, n0 1 1 1 011 [N]
Opcode n rs

100 [RA]
15 11 3 0 101 [RE]

110 [DAV]

8000–87FF JRMK Rs, b, m
111 [TFF]1 0 0 0 0

Opcode m b Rs

15 10 7 4 0

157

Obs
ole

te

6.0 Reference Section (Continued)

TABLE 6-3. Instruction Opcodes (Continued)

KEY
Hex Opcode Instruction

mlr

8800–8BFF MOVE n, [Ir]1 0 0 0 1 0 00 lrb
Opcode n[7–5] Ir n[4–0] 01 lr

15 9 6 4 0 10 lra

11 alr

8C00–8DFF LJMP Rs, p, s, nn1 0 0 0 1 1 0
lrOpcode s p Rs

15 8 7 4 0 00 IW

01 IX

10 IY
0000–FFFF

11 IZnn

15 0
g

00 NCHG
8E00–8FFF LCALL Rs, p, s, nn1 0 0 0 1 1 1

01 RIOpcode s p Rs
10 EI15 8 7 4 0
11 DI

0000–FFFF

gÊ
nn

0 NCHG15 0
1 DI

9000–9FFF MOVE [IZan], rd1 0 0 1 ba/bb
Opcode n rd

0 MAIN15 11 3 0
1 ALT

A000–A1FF ADDA Rs, [mIr]1 0 1 0 0 0 0 f
Opcode m Ir Rs

000 [Z]
15 8 6 4 0

001 [C]
010 [V]

A200–A3FF ADCA Rs, [mIr]1 0 1 0 0 0 1 011 [N]
Opcode m Ir Rs

100 [RA]
15 8 6 4 0 101 [RE]

110 [DAV]

A400–A5FF SUBA Rs, [mIr]
111 [TFF]1 0 1 0 0 1 0

Opcode m Ir Rs

15 8 6 4 0

158

Obs
ole

te

6.0 Reference Section (Continued)

TABLE 6-3. Instruction Opcodes (Continued)

KEY
Hex Opcode Instruction

mlr

A600–A7FF SBCA Rs, [mIr]1 0 1 0 0 1 1 00 lrb
Opcode m Ir Rs 01 lr

15 8 6 4 0 10 lra

11 alr

A800–A9FF ANDA Rs, [mIr]1 0 1 0 1 0 0
lrOpcode m Ir Rs

15 8 6 4 0 00 IW

01 IX

10 IY
AA00–ABFF ORA Rs, [mIr]1 0 1 0 1 0 1

11 IZOpcode m Ir Rs

15 8 6 4 0
g

00 NCHG
AC00–ADFF XORA Rs, [mIr]1 0 1 0 1 1 0

01 RIOpcode m Ir Rs
10 EI15 8 6 4 0
11 DI

AE00–AE1F CPL Rsd1 0 1 0 1 1 1 0 0 0 0 gÊ
Opcode Rs

0 NCHG15 4 0
1 DI

AE80–AEF8 EXX ba, bb À,gÓ
1 0 1 0 1 1 1 0 1 0 0 0 ba/bb

Opcode g ba bb
0 MAIN15 6 4 3 2 0
1 ALT

AF00–AF7F RETF f,sÀ,ÀgÓÀ,rfÓÓ1 0 1 0 1 1 1 1 0 f
Opcode g rf s f Rcc ÀgÀ,rfÓÓ

000 [Z]
15 6 4 3 2 0

001 [C]
010 [V]

AF80–AFF0 RET ÀgÀ,rfÓÓ
011 [N]1 0 1 0 1 1 1 1 1 0 0 0 0

Opcode g rf 100 [RA]
15 6 4 3 0 101 [RE]

110 [DAV]
111 [TFF]

B000–BFFF MOVE n, rd1 0 1 1
Opcode n rd

15 11 3 0

159

Obs
ole

te

6.0 Reference Section (Continued)

TABLE 6-3. Instruction Opcodes (Continued)

KEY
Hex Opcode Instruction

mlr

C000–C1FF MOVE [mIr], Rd1 1 0 0 0 0 0 00 lrb
Opcode m Ir Rd 01 lr

15 8 6 4 0 10 lra

11 alr

C200–C3FF MOVE Rs, [mIr]1 1 0 0 0 0 1
lrOpcode m Ir Rs

15 8 6 4 0 00 IW

01 IX

10 IY
C400–C47F MOVE [IraA], Rd1 1 0 0 0 1 0 0 0

11 IZOpcode Ir Rd

15 6 4 0
g

00 NCHG
C480–C4FF MOVE Rs, [IraA]1 1 0 0 0 1 0 0 1

01 RIOpcode Ir Rs
10 EI15 6 4 0
11 DI

C800–C8FF SHR Rsd, b1 1 0 0 1 0 0 0 gÊ
Opcode b Rsd

0 NCHG15 7 4 0
1 DI

C900–C9FF SHL Rsd, b1 1 0 0 1 0 0 1 ba/bb
Opcode (8-b) Rsd

0 MAIN15 7 4 0
1 ALT

CA00–CAFF ROT Rsd, b1 1 0 0 1 0 1 0 f
Opcode b Rsd

000 [Z]
15 7 4 0

001 [C]
010 [V]

CB00–CBFF JMP n1 1 0 0 1 0 1 1 011 [N]
Opcode n

100 [RA]
15 7 0 101 [RE]

110 [DAV]

CC00–CCFF CALL n
111 [TFF]1 1 0 0 1 1 0 0

Opcode n

15 7 0

160

Obs
ole

te

6.0 Reference Section (Continued)

TABLE 6-3. Instruction Opcodes (Continued)

KEY
Hex Opcode Instruction

mlr

00 lrb
CD00–CD60 LJMP [Ir]1 1 0 0 1 1 0 1 0 0 0 0 0 0

01 lrOpcode Ir

10 lra15 6 4 0
11 alr

lr

CD80–CD9F JMP Rs1 1 0 0 1 1 0 1 1 0 0 00 IW
Opcode Rs 01 IX

15 4 0 10 IY

11 IZ

g
CE00

LJMP nn1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 00 NCHG
Opcode0000–FFFF

01 RI
15 0

10 EI

11 DI

nn
gÊ

15 0
0 NCHG

1 DI

ba/bb
CE80 LCALL nn1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0

Opcode
0000–FFFF 0 MAIN

15 0 1 ALT

f
nn

000 [Z]
15 0

001 [C]
010 [V]
011 [N]
100 [RA]

CF80–CFFF TRAP vÀ,gÊÓ1 1 0 0 1 1 1 1 1
101 [RE]Opcode gÊ v
110 [DAV]

15 6 5 0
111 [TFF]

D000–DFFF JMP f, s, n1 1 0 1
Opcode s f n

Jcc n
15 11 10 7 0

161

Obs
ole

te

6.0 Reference Section (Continued)

TABLE 6-3. Instruction Opcodes (Continued)

KEY
Hex Opcode Instruction

mlr

E000–E3FF ADDA Rs, Rd1 1 1 0 0 0 00 lrb
Opcode Rd Rs 01 lr

15 9 4 0 10 lra

11 alr

E400–E7FF ADCA Rs, Rd1 1 1 0 0 1
lrOpcode Rd Rs

15 9 4 0 00 IW

01 IX

10 IY
E800–EBFF SUBA Rs, Rd1 1 1 0 1 0

11 IZOpcode Rd Rs

15 9 4 0
g

00 NCHG
EC00–EFFF SBCA Rs, Rd1 1 1 0 1 1

01 RIOpcode Rd Rs
10 EI15 9 4 0
11 DI

F000–F3FF ANDA Rs, Rd1 1 1 1 0 0 gÊ
Opcode Rd Rs

0 NCHG15 9 4 0
1 DI

F400–F7FF ORA Rs, Rd1 1 1 1 0 1 ba/bb
Opcode Rd Rs

0 MAIN15 9 4 0
1 ALT

F800–FBFF XORA Rs, Rd1 1 1 1 1 0 f
Opcode Rd Rs

000 [Z]
15 9 4 0

001 [C]
010 [V]

FC00–FFFF MOVE Rs, Rd1 1 1 1 1 1 011 [N]
Opcode Rd Rs

100 [RA]
15 9 4 0 101 [RE]

110 [DAV]
111 [TFF]

162

Obs
ole

te

6.0 Reference Section (Continued)

6.2 REGISTER SET REFERENCE

The register set reference contains detailed information on the bit definitions of all special function registers that are address-

able in the CPU. This reference section presents the information in three forms: a bit index, a register description and bit

definition tables. The bit index is an alphabetical listing of all status/control bits in the CPU-addressable function registers, with a

brief summary of the function. The register description is a list of all CPU-addressable special function registers in alphabetical

order. The bit definition tables describe the location and function of all control and status bits in the various CPU-addressable

special function registers. These tables are arranged by function.

6.2.1 Bit Index

An alphabetical listing of all status/control bits in the CPU-addressable special function registers, with a brief summary of

function. Detailed definitions are provided in Section 6.2.3, Bit Definition Tables.

Bit Name Location Function

4TR Four T-State Read ACR [3] Timing Control

ACK poll/ACKnowledge NCF [1] Receiver Status

ASP3–0 Address Stack Pointer ISP [7–4] Stacks

AT7–0 Auxilliary Transceiver control ATR [7–0] Receiver Control

ATA Advance Transmitter Active TCR [4] Transmitter Control

BIC Bi-directional Interrupt Control ACR [4] Interrupt Control

BIRQ Bi-directional Interrupt ReQuest CCR [4] Interrupt Control

C Carry CCR [1] Arithmetic Flag

CCS CPU Clock Select DCR [7] Timing Control

COD Clock Out Disable ACR [2] Timing Control

DAV Data AVailable TSR [3] Receiver Status

DEME Data Error or Message End NCF [3] Receiver Status

DS7–0 Data Stack DS [7–0] Stacks

DSP3–0 Data Stack Pointer ISP [3–0] Stacks

DW2–0 Data memory Wait-state select DCR [2–0] Timing Control

FB7–0 Fill Bits FBR [7–0] Transmitter Control

GIE Global Interrupt Enable ACR [0] Interrupt Control

IES Invalid Ending Sequence ECR [2] Receiver Error Code

IM4–0 Interrupt Mask select ICR [4–0] Interrupt Control

IV15–8 Interrupt Vector IBR [7–0] Interrupt Control

IW1,0 Instruction memory Wait-state select DCR [4,3] Timing Control

LA Line Active NCF [5] Receiver Status

LMBT Loss of Mid Bit Transition ECR [1] Receiver Error Code

LOR Lock Out Remote ACR [1] Remote Interface

LOOP internal LOOP-back TMR [6] Transceiver Control

LTA Line Turn Around NCF [4] Receiver Status

N Negative CCR [3] Arithmetic Flag

OVF receiver OVerFlow ECR [4] Receiver Error Code

OWP Odd Word Parity TCR [3] Transmitter Control

PAR PARity error ECR [3] Receiver Error Code

POLL POLL NCF [0] Receiver Status

PS2–0 Protocol Select TMR [2–0] Transceiver Control

RA Receiver Active TSR [4] Receiver Status

RAR Received Auto-Response NCF [2] Receiver Status

RDIS Receiver DISabled while active ECR [0] Receiver Error Code

RE Receiver Error TSR [5] Receiver Status

RF10–8 Receive FIFO TSR [2–0] Receiver Control

RFF Receive FIFO Full NCF [6] Receiver Status

RIN Receiver INvert TMR [4] Receiver Control

RIS1,0 Receiver Interrupt Select ICR [7,6] Interrupt Control

RLQ Receive Line Quiesce TCR [7] Receiver Control

RPEN RePeat ENable TMR [5] Receiver Control

RR Remote Read CCR [6] Remote Interface

RTF7–0 Receive/Transmit FIFO RTR [7–0] Transceiver Control

RW Remote Write CCR [5] Remote Interface

SEC Select Error Codes TCR [6] Receiver Control

SLR Select Line Receiver TCR [5] Receiver Control

TA Transmitter Active TSR [6] Transmitter Status

TCS1,0 Transceiver Clock Select DCR [6,5] Transceiver Control

TF10–8 Transmit FIFO TCR [2–0] Transmitter Control

163

Obs
ole

te

6.0 Reference Section (Continued)

6.2.1 Bit Index (Continued)

An alphabetical listing of all status/control bits in the CPU-addressable special function registers, with a brief summary of

function. Detailed definitions are provided in Section 6.2.3, Bit Definition Tables.

Bit Name Location Function

TFE Transmit FIFO Empty NCF [7] Transmitter Status

TFF Transmit FIFO Full TSR [7] Transmitter Status

TIN Transmitter INvert TMR [3] Transmitter Control

TLD Timer LoaD ACR [6] Timer

TM7–0 TiMer TRL [7–0] Timer

TM15–8 TiMer TRH [7–0] Timer

TMC TiMer Clock select ACR [5] Timer

TO Time Out flag CCR [7] Timer

TRES Transceiver RESet TMR [7] Transceiver Control

TST Timer StarT ACR [7] Timer

V oVerflow CCR [2] Arithmetic Flag

Z Zero CCR [0] Arithmetic Flag

6.2.2 Register Description

A list of all CPU-addressable special function registers, in

alphabetical order.

The Remote Interface Configuration register ÀRICÓ, which is

addressable only by the remote system, is not included. See

Section 6.3, Remote Interface Reference for details of the

function of this register.

Each register is listed together with its address, the type of

access available, and a functional description of each bit.

Further details on each bit can be found in Section 6.2.3, Bit

Definition Tables.

ACR AUXILIARY CONTROL REGISTER
[Main R3; read/write]

7 6 5 4 3 2 1 0

TST TLD TMC BIC rsv COD LOR GIE

rsv . . . state is undefined at all times.

TST Ð Timer StarT . . . When high, the timer is enabled

and will count down from it’s current value.

When low, timer is disabled. Timer is stopped by

writing a 0 to [TST].
TLD Ð Timer LoaD . . . When high, generates timer load

pulse. Cleared when load complete.

TMC Ð TiMer Clock select . . . Selects timer clock fre-

quency. Should not be written when [TST] is

high. Can be written at same time as [TST] and
[TLD].

TMC Timer Clock

0 (CPU-CLK)/16

1 (CPU-CLK)/2

BIC Ð Bi-directional Interrupt Control . . . Controls di-

rection of BIRQ.

BIC BIRQ

0 Input

1 Output

COD Ð Clock Out Disable . . . When high, CLK-OUT out-

put is at TRI-STATE.

LOR Ð Lock Out Remote . . . When high, a remote sys-

tem is prevented from accessing the BCP.

GIE Ð Global Interrupt Enable . . . When low, disables

all maskable interrupts. When high, works with
[IM4–0] to enable maskable interrupts.

4TR Ð 4 T-state Read . . . When high, READ strobe tim-

ing is changed to allow more time between the

TRI-STATE of the AD lines by the BCP and the

falling of the READ strobe. All data memory reads

take four T-states when this bit is set. See Sec-

tion 2.2.2 for more information.

164

Obs
ole

te

6.0 Reference Section (Continued)

ATR AUXILIARY TRANSCEIVER REGISTER
[Alternate R2; read/write]

7 6 5 4 3 2 1 0

AT7 AT6 AT5 AT4 AT3 AT2 AT1 AT0

AT7–0 Ð Auxiliary Transceiver . . . In 5250 protocol

modes, bits 2–0 define the receive station ad-

dress, and bits 7–3 control the amount of time

TX-ACT stays asserted after the last fill bit.

In 8-bit protocol modes, bits 7–0 define the re-

ceive station address.

For further information, see Section 3.0 Trans-

ceiver.

ATR 7–3
TX-ACT Hold Time (ms)

(if TCLK e 8 MHz)

0 0 0 0 0 0

0 0 0 0 1 0.5

0 0 0 1 0 1.0

0 0 0 1 1 1.5

v v
1 1 1 1 1 15.5

CCR CONDITION CODE REGISTER
[Main R0; bits 0–3, 5–7 read/write, bit 4 read only]

7 6 5 4 3 2 1 0

TO RR RW BIRQ N V C Z

TO Ð Time Out flag . . . Set high when timer counts to

zero. Cleared by writing a 1 to this location or by

stopping timer (by writing a 0 to [TST]).
RR Ð Remote Read . . . Set on the trailing edge of a

REM-RD pulse, if RAE is asserted and ÀRICÓ is

pointing to Data Memory. Cleared by writing a 1

to this location.

RW Ð Remote Write . . . Set on the trailing edge of a

REM-WR pulse, if RAE is asserted and ÀRICÓ is

pointing to Data Memory. Cleared by writing a 1

to this location.

BIRQ Ð Bi-directional Interrupt ReQuest . . . [Read

only]. Reflects the logic level of the Bi-directional

interrupt pin, BIRQ. Updated at the beginning of

each instruction cycle.

N Ð Negative . . . A high level indicates a negative

result generated by an arithmetic, logical or shift

instruction.

V Ð oVerflow . . . A high level indicates an overflow

condition generated by an arithmetic instruction.

C Ð Carry . . . A high level indicates a carry or borrow

generated by an arithmetic instruction. During a

shift/rotate operation the state of the last bit shift-

ed out appears in this location.

Z Ð Zero . . . A high level indicates a zero result gen-

erated by an arithmetic, logical or shift instruction.

Further information: Section 2.2.1 ALU, Section

2.2.3 Interrupts.

165

Obs
ole

te

6.0 Reference Section (Continued)

DCR DEVICE CONTROL REGISTER
[Alternate R0; read/write]

7 6 5 4 3 2 1 0

CCS TCS1 TCS0 IW1 IW0 DW2 DW1 DW0

CCS Ð CPU Clock Select . . . Selects CPU clock fre-

quency. OCLK represents the frequency of the

on-chip oscillator, or the externally applied clock

on input X1.

CCS CPU CLK

0 OCLK

1 OCLK/2

TCS1,0 Ð Transceiver Clock Select . . . Selects trans-

ceiver clock, TCLK, frequency.

OCLK represents the frequency of the on-chip

oscillator, or the externally applied clock on in-

put X1. X-TCLK is the external transceiver

clock input.

TCS1,0 TCLK

0 0 OCLK

0 1 OCLK/2

1 0 OCLK/4

1 1 X-TCLK

IW1,0 Ð Instruction memory Wait-state select . . .

Selects from 0 to 3 wait states for accessing

instruction memory.

DW2–0 Ð Data memory Wait-state select . . . Selects

from 0 to 7 wait states for accessing data mem-

ory.

DS DATA STACK

[Main R31; read/write]

7 6 5 4 3 2 1 0

DS7 DS6 DS5 DS4 DS3 DS2 DS1 DS0

DS7–0 Ð Data Stack . . . Data stack input/output port.

Stack is 16 bytes deep. Further information:

Section 2.1.1.8 Stack Registers.

rsv . . . state is undefined at all times.

166

Obs
ole

te

6.0 Reference Section (Continued)

ECR ERROR CODE REGISTER
[Alternate R4 with [SEC] high; read only]

7 6 5 4 3 2 1 0

rsv rsv rsv OVF PAR IES LMBT RDIS

OVF Ð Receiver oVerFlow . . . Set when the receiver

has processed 3 words and another complete

frame is received before the FIFO is read by the

CPU. Cleared by reading ÀECRÓ or by asserting
[TRES].

PAR Ð PARity error . . . Set when bad (odd) overall

word parity is detected in any receive frame.

Cleared by reading ÀECRÓ or by asserting
[TRES].

IES Ð Invalid Ending Sequence . . . Set when the

‘‘mini-code violation’’ is not correct during a 3270,

3299, or 8-bit ending sequence. Cleared by read-

ing ÀECRÓ or by asserting [TRES].
LMBT Ð Loss of Mid-Bit Transition . . . Set when the ex-

pected Manchester Code mid-bit transition does

not occur within the allowed window. Cleared by

reading ÀECRÓ or by asserting [TRES].
RDIS Ð Receiver DISabled while active . . . Set when

transmitter is activated while receiver is active,

without RPEN being asserted. Cleared by reading
ÀECRÓ or by asserting [TRES]. Further informa-

tion: Section 3.2 Transceiver Functional Descrip-

tion.

FBR FILL-BIT REGISTER
[Alternate R3; read/write]

7 6 5 4 3 2 1 0

FB7 FB6 FB5 FB4 FB3 FB2 FB1 FB0

FB7–0 Ð Fill Bits . . . 5250 fill-bit control. Further informa-

tion: Section 3.0 Transceiver.

167

Obs
ole

te

6.0 Reference Section (Continued)

IBR INTERRUPT BASE REGISTER
[Alternate R1; read/write]

7 6 5 4 3 2 1 0

IV15 IV14 IV13 IV12 IV11 IV10 IV9 IV8

IV15–8Ð Interrupt Vector . . . High byte of interrupt and

trap vectors. Further information: Section 2.2.3,

Interrupts.

Interrupt Vector

IBR 0 0 vector address

15 8 5 0

The interrupt vector is obtained by concatenating ÀIBRÓ

with the vector address:

Interrupt Vector Address Priority

NMI 0 1 1 1 0 0 Ð

Receiver 0 0 0 1 0 0 1 high

Transmitter 0 0 1 0 0 0 2 u
Line Turn Around 0 0 1 1 0 0 3

Bi-directional 0 1 0 0 0 0 4 v
Timer 0 1 0 1 0 0 5 low

ICR INTERRUPT CONTROL REGISTER
[Main R2; read/write]

7 6 5 4 3 2 1 0

RIS1 RIS0 rsv IM4 IM3 IM2 IM1 IM0

rsv . . . state is undefined at all times

RIS1,0 Ð Receiver Interrupt Select . . . Defines the

source of the Receiver Interrupt.

RIS1,0 Interrupt Source

0 0 RFF a RE

0 1 DAV a RE

1 0 (unused)

1 1 RA

‘‘a’’ indicates logical ‘‘or’’

Further information: Section 3.2.3 Transceiver In-

terrupts.

IM4–0 Ð Interrupt Masks . . . Each bit, when set high,

masks an interrupt. IM3 functions as an interrupt

mask only if BIRQ is defined as an input. When

BIRQ is defined as an output, IM3 controls the

state of BIRQ.

IM4–0 Interrupt

0 0 0 0 0 No Mask

X X X X 1 Receiver

X X X 1 X Transmitter

X X 1 X X Line Turn-Around

X 1 X X X Bi-Directional

1 X X X X Timer

Further information: Section 2.2.3 Interrupts.

168

Obs
ole

te

6.0 Reference Section (Continued)

ISP INTERNAL STACK POINTER
[Main R30; read/write]

7 6 5 4 3 2 1 0

ASP3 ASP2 ASP1 ASP0 DSP3 DSP2 DSP1 DSP0

ASP3–0 Ð Address Stack Pointer . . . Input/output port

of the address stack pointer. Further informa-

tion: Section 2.1.1.8 Stack Registers.

DSP3–0Ð Data Stack Pointer . . . Input/output port of the

data stack pointer. Further information: Section

2.1.1.8 Stack Registers.

NCF NETWORK COMMAND FLAG REGISTER
[Main R1; read only]

7 6 5 4 3 2 1 0

TFE RFF LA LTA DEME RAR ACK POLL

TFE Ð Transmit FIFO Empty . . . Set high when the

FIFO is empty. Cleared by writing to ÀRTRÓ.

RFF Ð Receive FIFO Full . . . Set high when the Re-

ceive FIFO contains 3 received words.

Cleared by reading to ÀRTRÓ.

LA Ð Line Active . . . Indicates activity on the re-

ceiver input. Set high on any transition;

cleared after detecting no input transitions for

16 TCLK periods.

LTA Ð Line Turn Around . . . Set high when end of

message is received. Cleared by writing to
ÀRTRÓ, writing a ‘‘1’’ to this location, or by

asserting [TRES].
DEME Ð Data Error or Message End . . . In 3270 &

3299 modes, asserted when a byte parity er-

ror is detected. In 5250 modes, asserted when

the [111] station address is decoded and
[DAV] is asserted. Cleared by reading ÀRTRÓ.

Undefined in 8-bit modes and in the first frame

of 3299 modes.

RAR Ð Received Auto-Response . . . Set high when

a 3270 Auto-Response message is decoded

and [DAV] is asserted. Cleared by reading
ÀRTRÓ. Undefined in 5250 and 8-bit modes

and in the first frame of 3299 modes.

ACK Ð Poll/ACKnowledge . . . Set high when a 3270

poll/ack command is decoded and [DAV] is

asserted. Cleared by reading ÀRTRÓ. Unde-

fined in 5250 and 8-bit modes and in the first

frame of 3299 modes.

POLL Ð POLL . . . Set high when a 3270 poll command

is decoded and [DAV] is asserted. Cleared by

reading ÀRTRÓ. Undefined in 5250 and 8-bit

modes and in the first frame of 3299 modes.

Further information: Section 3.0 Transceiver.

169

Obs
ole

te

6.0 Reference Section (Continued)

RTR RECEIVE/TRANSMIT REGISTER
[Alternate R4; read/write]

7 6 5 4 3 2 1 0

RTF7 RTF6 RTF5 RTF4 RTF3 RTF2 RTF1 RTF0

RTF7–0 Ð Receive Transmit FIFO’s . . . Input/output

port to the least significant eight bits of receive

and transmit FIFO’s. [OWP], [TF10–8] and
[RTF7–0] are pushed onto the transmit FIFO

on moves into ÀRTRÓ. [RF10–8] and [RTF7–

0] are popped from receiver FIFO on moves

out of ÀRTRÓ. Further information: Section 3.0

Transceiver.

TCR TRANSCEIVER COMMAND REGISTER
[Alternate R6; read/write]

7 6 5 4 3 2 1 0

RLQ SEC SLR ATA OWP TF10 TF9 TF8

RLQ Ð Receive Line Quiesce . . . Selects number of

line quiesce bits the receiver looks for.

RLQ
Number of

Quiesces

0 2

1 3

SEC Ð Select Error Codes . . . When high ÀECRÓ is

switched into ÀRTRÓ location.

SLR Ð Select Line Receiver . . . Selects the receiver

input source.

SLR Source

0 DATA-IN

1 On-chip analog

line receiver

ATA Ð Advance Transmitter Active . . . When high,

TX-ACT is advanced one half bit time so that

the transmitter can generate 5.5 line quiesce

pulses.

OWP Ð Odd Word Parity . . . Controls transmitter

word parity.

OWP Word Parity

0 Even

1 Odd

TF10–8 Ð Transmit FIFO . . . [OWP], [TF10–8] and
[RTF7–0] are pushed onto transmit FIFO on

moves into ÀRTRÓ.

Further information: Section 3.0 Transceiver.

170

Obs
ole

te

6.0 Reference Section (Continued)

TMR TRANSCEIVER MODE REGISTER
[Alternate R7; read/write]

7 6 5 4 3 2 1 0

TRES LOOP RPEN RIN TIN PS2 PS1 PS0

TRES Ð Transceiver RESet . . . Resets transceiver

when high. Transceiver can also be reset by

RESET, without affecting [TRES].
LOOP Ð Internal LOOP-back . . . When high, TX-ACT

is disabled (held at 0) and transmitter serial

data is internally directed to the receiver serial

data input.

RPEN Ð RePeat ENable . . . When high, the receiver

can be active at the same time as the trans-

mitter.

RIN Ð Receiver INvert . . . When high, the receiver

serial data is inverted.

TIN Ð Transmitter INvert . . . When high the trans-

mitter serial data outputs are inverted.

PS2–0 Ð Protocol Select . . . Selects protocol for both

transmitter and receiver.

PS2–0 Protocol

0 0 0 3270

0 0 1 3299 multiplexer

0 1 0 3299 controller

0 1 1 3299 repeater

1 0 0 5250

1 0 1 5250 promiscuous

1 1 0 8-bit

1 1 1 8-bit promiscuous

Further information: Section 3.0 Transceiver.

TRH TIMER REGISTER Ð HIGH
[Main R29; read/write]

7 6 5 4 3 2 1 0

TM15 TM14 TM13 TM12 TM11 TM10 TM9 TM8

TM15–8Ð TiMer . . . Input/output port of high byte of timer.

Further information: Section 2.1.1.4 Timer Reg-

isters.

171

Obs
ole

te

6.0 Reference Section (Continued)

TRL TIMER REGISTERÐLOW
[Main R28; read/write]

7 6 5 4 3 2 1 0

TM7 TM6 TM5 TM4 TM3 TM2 TM1 TM0

TM7–0Ð TiMer . . . Input/output port of low byte of timer.

Further information: Section 2.1.1.4 Timer Regis-

ters.

TSR TRANSCEIVER STATUS REGISTER
[Alternate R5; read only]

7 6 5 4 3 2 1 0

TFF TA RE RA DAV RF10 RF9 RF8

TFF Ð Transmit FIFO Full . . . Set high when the trans-

mit FIFO is full. ÀRTRÓ must not be written to

when [TFF] is high.

TA Ð Transmitter Active . . . Reflects the state of TX-

ACT, indicating that data is being transmitted.

Unlike TX-ACT, however, [TA] is not disabled by
[LOOP].

RE Ð Receiver Error . . . Set high when a receiver er-

ror is detected. Cleared by reading ÀECRÓ or by

asserting [TRES].
RA Ð Receiver Active . . . Set high when a valid start-

ing sequence is received. Cleared when either

an end of message or an error is detected. In

5250 modes, [RA] is cleared at the same time

as [LA].
DAV Ð Data AVailable . . . Set high when valid data is

available in ÀRTRÓ and ÀTSRÓ. Cleared by read-

ing ÀRTRÓ, or when an error is detected.

RF10–8Ð Receive FIFO . . . [RF10–8] and [RTF7–0] re-

flect the state of the top word of the receive

FIFO.

Further information: Section 3.0 Transceiver.

172

Obs
ole

te

6.0 Reference Section (Continued)

6.2.3 Bit Definition Tables

The following tables describe the location and function of all control and status bits in the various BCP addressable special

function registers. The Remote Interface Configuration register, ÀRICÓ, which is addressable only by a remote processor is not

included.

6.2.3.1 Processor

Bit Name Location Reset State Function

Timing/ CCS CPU Clock Select DCR [7] 1 Selects CPU clock frequency.

Control

Where OCLK is the frequency of the on-chip oscillator, or

the externally applied clock on input X1.

DW2–0 Data memory DCR [2–0] 111 Selects from 0 to 7 wait states for accessing data memory.

Wait-state select

IW1,0 Instruction memory DCR [4,3] 11 Selects from 0 to 3 wait states for accessing instruction

memory.Wait-state select

COD Clock Out Disable ACR [2] 0 When high, CLK-OUT is at TRI-STATE.

4TR 4 T-state Read ACR[3] 0 When high, data memory reads take four T-states.

Remote LOR* Lock Out Remote ACR [1] 0 When high, a remote processor is prevented from accessing

the BCP or its memory.Interface

RR* Remote Read CCR [6] 0 Set on the trailing edge of a REM-RD pulse, if RAE is

asserted and ÀRICÓ is pointing to Data Memory. Cleared by

writing a 1 to [RR].

RW* Remote Write CCR [5] 0 Set on the trailing edge of a REM-WR pulse, if RAE is

asserted and ÀRICÓ is pointing to Data Memory. Cleared by

writing a 1 to [RW].

Interrupt BIC Bi-directional ACR [4] 0 Controls the direction of BIRQ.

Control Interrupt Control

BIRQ Bi-directional CCR [4] X [Read Only]. Reflects the logic level of the BIRQ input.

Updated at the beginning of each instruction cycle.Interrupt ReQuest

GIE Global Interrupt ACR [0] 0 When low, disables all maskable interrupts. When high,

works with [IM4–0] to enable maskable interrupts.Enable

IM4–0 Interrupt Mask ICR [4–0] 11111 Each bit, when set high, masks an interrupt.

select

IM3 functions as an interrupt mask only when BIRQ is

defined as an input. When BIRQ is defined as an output, IM3

controls the state of BIRQ.

CCS CPU CLK

0 OCLK

1 OCLK/2

BIC BIRQ

0 Input

1 Output

IM4–0 Interrupt Priority

0 0 0 0 0 No Mask Ð

X X X X 1 Receiver 1 High

X X X 1 X Transmitter 2 u
X X 1 X X Line Turn-Around 3

X 1 X X X Bi-Directional 4 v
1 X X X X Timer 5 Low

*These bits represent the only visibility and control that the processor has into the operation of the remote interface controller. The Remote Interface Configuration

register, ÀRICÓ, accessible only by a remote processor, provides further control functions. See Remote Interface section for more information.

173

Obs
ole

te

6.0 Reference Section (Continued)

6.2.3 Bit Definition Tables (Continued)

The following tables describe the location and function of all control and status bits in the various BCP addressable special

function registers. The Remote Interface Configuration register, ÀRICÓ, which is addressable only by a remote processor is not

included.

6.2.3.1 Processor (Continued)

Bit Name Location Reset State Function

Interrupt IV15–8 Interrupt Vector IBR [7–0] 0000 0000 High byte of interrupt and trap vectors.

Control The interrupt vector is obtained by concatenating ÀIBRÓ with

the vector address:(Continued)

Interrupt Vector Address

NMI 0 1 1 1 0 0

Receiver 0 0 0 1 0 0

Transmitter 0 0 1 0 0 0

Line Turn Around 0 0 1 1 0 0

Bi-Directional 0 1 0 0 0 0

Timer 0 1 0 1 0 0

Interrupt Vector

IBR 0 0 vector address

15 8 5 0

RIS1,0 Receiver Interrupt ICR [7,6] 11 Defines the source of the receiver interrupt.

Select RIS1,0 Interrupt Source

0 0 RFF a RE

0 1 DAV a RE

1 0 (unused)

1 1 RA

Address ASP3–0 Address Stack ISP [7–4] 0000 Address stack pointer. Writing to this location changes the

value of the pointer.and Pointer

Data

Stacks

DSP3–0 Data Stack ISP [3–0] 0000 Data stack pointer. Writing to this location changes the value

of the pointer.Pointer

DS7–0 Data Stack DS [7–0] XXXX XXXX Data Stack Input/Output port. Stack is 16 bytes deep.

Arithmetic C Carry CCR [1] 0 A high level indicates a carry or borrow, generated by an

arithmetic instruction. During a shift/rotate operation theFlags
state of the last bit shifted out appears in this location.

N Negative CCR [3] 0 A high level indicates a negative result generated by an

arithmetic, logical, or shift instruction.

V oVerflow CCR [2] 0 A high level indicates an overflow condition, generated by an

arithmetic instruction.

Z Zero CCR [0] 0 A high level indicates a zero result generated by an

arithmetic, logical, or shift instruction.

174

Obs
ole

te

6.0 Reference Section (Continued)

6.2.3. Bit Definition Tables (Continued)

The following tables describe the location and function of all control and status bits in the various BCP addressable special

function registers. The Remote Interface Configuration register, ÀRICÓ, which is addressable only by a remote processor is not

included.

6.2.3.1 Processor (Continued)

Bit Name Location Reset State Function

Timer TLD Timer LoaD ACR [6] 0 Set high to load timer. Cleared automatically when load

complete.

TM15–8 TiMer TRH [7–0] XXXX XXXX Input/output port of high byte of timer.

TM7–0 TiMer TRL [7–0] XXXX XXXX Input/output port of low byte of timer.

TMC Timer Clock ACR [5] 0 Selects timer clock frequency. Must not be written when
[TST] high. Can be written at same time as [TST] andselect
[TLD].

TMC Timer Clock

0 CPU-CLK/16

1 CPU-CLK/2

TO Time Out flag CCR [7] 0 Set high when timer counts down to zero. Cleared by writing

a 1 to [TO] or by stopping the timer (by writing a 0 to [TST]).

TST Timer StarT ACR [7] 0 When high, timer is enabled and will count down from its

current value. Timer is stopped by writing a 0 to this location.

6.2.3.2 Transceiver

Table includes control and status bits only. It does not include definitions of bit fields provided for the formatting (de-formatting)

of data frames. For further information see the Transceiver section.

Bit Name Location Reset State Function

Transceiver LOOP internal TMR [6] 0 When high, TX-ACT is disabled (held at 0) and transmitter

serial data is internally directed to the receiver serial dataControl LOOP-back
input.

PS2–0 Protocol Select TMR [2–0] 000 Selects protocol for both transmitter and receiver.

PS2–0 Protocol

0 0 0 3270

0 0 1 3299 Multiplexer

0 1 0 3299 Controller

0 1 1 3299 Repeater

1 0 0 5250

1 0 1 5250 Promiscuous

1 1 0 8-bit

1 1 1 8-bit Promiscuous

RTF7–0 Receive/Transmit RTR [7–0] XXXX XXXX Input/output port of the least significant 8 bits of receive and

transmit FIFOs. [OWP], [TF10–8] and [RTF7–0] are pushedFIFOs
onto the transmit FIFO on moves to ÀRTRÓ. [RF10–8] and
[RTF7–0] are popped from receive FIFO on moves from
ÀRTRÓ.

175

Obs
ole

te

6.0 Reference Section (Continued)

6.2.3 Bit Definition Tables (Continued)

6.2.3.2 Transceiver (Continued)

Table includes control and status bits only. It does not include definitions of bit fields provided for the formatting (de-formatting)

data frames. For further information see the Transceiver section.

Bit Name Location Reset State Function

Transceiver TCS1,0 Transceiver Clock DCR [6,5] 10 Selects transceiver clock, TCLK, source.

Control Select TCS1,0 TCLK

(Continued)
0 0 OCLK

0 1 OCLK/2

1 0 OCLK/4

1 1 X-TCLK

OCLK is the frequency of the on-chip oscillator, or the

externally applied clock on input X1. X-TCLK is the external

transceiver clock input.

TRES Transceiver RESet TMR [7] 0 Resets transceiver when high. Transceiver can also be reset

by RESET, without affecting [TRES].

Transmitter ATA Advance Transmitter TCR [4] 0 When high, TX-ACT is advanced one half bit time so that the

transmitter can generate 5.5 line quiesce pulses.Control Active

AT7–3 Auxiliary ATR [7–3] XXXXX In 5250 modes. Controls the time TX-ACT is held after the last

fill bit.Transceiver control

AT7–3
TX-ACT Hold Time (ms)

(If TCLK e 8 MHz)

0 0 0 0 0 0

0 0 0 0 1 0.5

0 0 0 1 0 1

v v
1 1 1 1 1 15.5

FB7–0 Fill Bit select FBR [7–0] XXXX XXXX The value in this register contains the 1’s complement of the

number of additional 5250 fill bits selected.

OWP Odd Word Parity TCR [3] 0 Controls transmitter word parity.

OWP Word Parity

0 Even

1 Odd

TF10–8 Transmit FIFO TCR [2–0] 000 [OWP], [TF10–8] and [RTF7–0] are pushed onto the

transmit FIFO on moves to ÀRTRÓ.

TIN Transmitter INvert TMR [3] 0 When high, the transmitter serial data outputs are inverted.

Receiver AT7–0 Auxiliary ATR [7–0] XXXX XXXX In 5250 modes, [AT2–0] contains the station address. In 8-bit

modes, [AT7–0] contains the station address.Control Transceiver control

RF10–8 Receive FIFO TSR [2–0] XXX Reflects the state of the most significant 3 bits in the top

location of the receive FIFO.

RIN Receiver INvert TMR [4] 0 When high, the receiver serial data is inverted.

RLQ Receive Line TCR [7] 1 Selects number of line quiesce bits the receiver requires

before it will indicate receipt of a valid start sequence.Quiesce

RLQ Number of Line Quiesce Pulses

0 2

1 3

RPEN RePeat ENable TMR [5] 0 When high, the receiver can be active at the same time as the

transmitter.

SEC Select Error Codes TCR [6] 0 When high, ÀECRÓ is switched into ÀRTRÓ location.

176

Obs
ole

te

6.0 Reference Section (Continued)

6.2.3 Bit Definition Tables (Continued)

6.2.3.2 Transceiver (Continued)

Table includes control and status bits only. It does not include definitions of bit fields provided for the formatting (de-formatting)

data frames. For further information see the Transceiver section.

Bit Name Location Reset State Function

Receiver SLR Select Line TCR [5] 0 Selects the receiver input source.

Control Receiver SLR Source
(Continued)

0 DATA-IN

1 On-Chip Analog

Line Receiver

Transmitter TA Transmitter Active TSR [6] 0 Reflects the state of TX-ACT, indicating that data is being

transmitted. Is not disabled by [LOOP].Status

TFE Transmit FIFO NCF [7] 1 Set high when the FIFO is empty. Cleared by writing to
ÀRTRÓ.Empty

TFF Transmit FIFO TSR [7] 0 Set high when the FIFO is full. ÀRTRÓ must not be written

when [TFF] is high.Full

Receiver ACK poll/ NCF [1] 0 Set high when a 3270 poll/ack command is decoded and
[DAV] is asserted. Cleared by reading ÀRTRÓ. Undefined inStatus ACKnowledge
5250 and 8-bit modes and in the first frame of 3299 modes.

DAV Data AVailable TSR [3] 0 Set high when valid data is available in ÀRTRÓ and ÀTSRÓ.

Cleared by reading ÀRTRÓ, or when an error is detected.

DEME Data Error or NCF [3] 0 In 3270 or 3299 modes, asserted when a byte parity error is

detected. In 5250 modes, asserted when the [111] stationMessage End
address is decoded and [DAV] is asserted. Undefined in 8-bit

modes and first frame of 3299 modes.

LA Line Active NCF [5] 0 Indicates activity on the receiver input. Set high on any

transition; cleared after no input transitions are detected for

16 TCLK periods.

LTA Line Turn Around NCF [4] 0 Set high when an end of message is detected. Cleared by

writing to ÀRTRÓ, writing a ‘‘1’’ to [LTA] or by asserting
[TRES].

POLL POLL NCF [0] 0 Set high when a 3270 Poll command is decoded and [DAV] is

asserted. Cleared by reading ÀRTRÓ. Undefined in 5250 and

8-bit modes and in the first frame of 3299 modes.

RA Receiver Active TSR [4] 0 Set high when a valid start sequence is received. Cleared

when either an end of message or an error is detected.

RAR Received NCF [2] 0 Set high when a 3270 Auto-Response message is decoded

and [DAV] is asserted. Cleared by reading ÀRTRÓ. UndefinedAuto-Response
in 5250 and 8-bit modes and in the first frame of 3299 modes.

RE Receiver Error TSR [5] 0 Set high when an error is detected. Cleared by reading ÀECRÓ

or by asserting [TRES].

RFF Receive FIFO NCF [6] 0 Set high when the receive FIFO contains 3 received words.

Cleared by reading ÀRTRÓ.Full

177

Obs
ole

te

6.0 Reference Section (Continued)

6.2.3 Bit Definition Tables (Continued)

6.2.3.2 Transceiver (Continued)

Table includes control and status bits only. It does not include definitions of bit fields provided for the formatting (de-formatting)

data frames. For further information see the Transceiver section.

Bit Name Location Reset State Function

Receiver IES Invalid Ending ECR [2] 0 Set when the first mini-code violation is not correct during a

3270, 3299 or 8-bit ending sequence. Cleared by readingError Codes Sequence
ÀECRÓ or asserting [TRES].

LMBT Loss of Mid-Bit ECR [1] 0 Set when the expected Manchester Code mid-bit transition

does not occur within the allowed window. Cleared by readingTransition
ÀECRÓ or by asserting [TRES].

OVF receiver OVerFlow ECR [4] 0 Set when the receiver has processed 3 words and another

complete frame is received before the FIFO is read by the

CPU. Cleared by reading ÀECRÓ or asserting [TRES].

PAR PARity error ECR [3] 0 Set when bad (odd) overall word parity is detected in any

receive frame. Cleared by reading ÀECRÓ or asserting
[TRES].

RDIS Receiver DISabled ECR [0] 0 Set when transmitter is activated by writing to ÀRTRÓ while

receiver is still active, without [RPEN] first being asserted.while active
Cleared by reading ÀECRÓ or asserting [TRES].

6.3 REMOTE INTERFACE CONFIGURATION REGISTER

This register can be accessed only by the remote system.

To do this, CMD and RAE must be asserted and the [LOR]
bit in the ÀACRÓ register must be low.

7 6 5 4 3 2 1 0

BIS SS FW LR LW STRT MS1 MS0 RIC

BIS Bidirectional Interrupt Status . . . Mirrors the state

of IM3 (ÀICRÓ bit 3), enabling the remote system to

poll and determine the status of the BIRQ I/O.

When BIRQ is an output, the remote system can

change the state of this output by writing a one to

BIS. This can be used as an interrupt acknowl-

edge, whenever BIRQ is used as a remote inter-

rupt. For complete information on the relationship

between BIS, IM3 and BIRQ, refer to Section 2.2.3

Interrupts.

SS Single-Step . . . Writing a 1 with STRT low, the BCP

will single-step by executing the current instruction

and advancing the PC. On power up/reset this bit

is low.

FW Fast Write . . . When high, with LW low, selects fast

write mode for the buffered interface. When low

selects slow write mode. On power up/reset this

bit is low (LW will also be low, so buffered write

mode is selected).

LR Latched Read . . . When high selects latched read

mode, when low selects buffered read mode. On

power up/reset this bit is low. (Buffered read mode

is selected.)

LW Latched Write . . . When high selects latched write

mode, when low selects buffered write mode. On

power up/reset this bit is low (FW will also be low,

so slow buffered write mode is selected).

STRT STaRT . . . The remote system can start and stop

the BCP using this bit. On power-up/reset this bit is

low (BCP stopped). When set, the BCP begins exe-

cuting at the current Program Counter address.

When cleared, the BCP finishes executing the cur-

rent instruction, then halts to an idle mode.

In some applications, where there is no remote

system, or the remote system is not an intelligent

device, it may be desirable to have the BCP power-

up/reset running rather than stopped at address

0000H. This can be accomplished by asserting

REM-RD, REM-WR and RESET, with RAE de-as-

serted. (Refer to Electrical Specification Section

for the timing information needed to start the BCP

in stand alone mode.)

MS1,0 Memory Select 1,0 . . . These two bits determine

what the remote system is accessing in the BCP

system, according to the following table:

MS1 MS0 Selected Function

0 0 Data Memory

0 1 Instruction Memory

1 0 Program Counter (Low Byte)

1 1 Program Counter (High Byte)

The BCP must be idle for the remote system to

read/write Instruction memory or the Program

Counter.

All remote accesses are treated the same (inde-

pendent of where the access is directed using MS0

and MS1), as defined by the configuration bits LW,

LR, FW.

If the remote system and the BCP request data

memory access simultaneously, the BCP will win

first access. If the locks ([LOR], LOCK) are not set,

the remote system and BCP will alternate access

cycles thereafter.

On power-up/reset, MS1,0 points to instruction

memory.

Power-up/Reset state of ÀRIC[7-0]Ó is l000 000l.

178

Obs
ole

te

6.0 Reference Section (Continued)

6.4 DEVELOPMENT TOOLS

National Semiconductor provides tools specifically created

for the development of products that use the DP8344.

These tools consist of the DP8344 BCP Assembler System,

the DP8344 BCP Demonstration/Development Kit, and the

DP8344 BCP Multi-Protocol Adapter (MPA) Design/Evalua-

tion Kit.

6.4.1 Assembler System

The Assembler System is an MS-DOS compatible program

used to translate the DP8344’s instruction set into a directly

executable machine language. The system contains a mac-

ro cross assembler, link editor and librarian. The macro

cross assembler provides nested macro definitions and ex-

pansions, to automate common instruction sequences, and

source file inclusion nested conditional assembly, which al-

lows the assembler to make intelligent decisions concerning

instruction sequence based on user directives. The linker

allows relocatable object sections to be combined in any

desired order. It can also generate a load map which details

each section’s contribution to the linked module. The librari-

an allows for the creation of libraries from frequently ac-

cessed object modules, which the linker can automatically

include to resolve references.

6.4.2 Demonstration/Development Kit

The Demonstration/Development kit is a cost effective de-

velopment tool that performs functions similar to an in-cir-

cuit emulator. The kit, developed by Capstone Technology,

Inc., Fremont, California, consists of a DP8344 based devel-

opment board, a monitor/debugger software package, Na-

tional Semiconductor’s DP8344 video training tapes, and all

required documentation. The development board is a full

size PC card that contains a 22 square inch area for logic

prototype wiring. The monitor/debugger program displays

internal register contents and status information. It also pro-

vides functions such as execution break points and single

stepping.

6.4.3 Multi-Protocol Adapter (MPA)

Design/Evaluation Kit

The Multi-Protocol Adapter (MPA) is a PC expansion card

that emulates a 3270 or 5250 display terminal and supports

industry standard PC emulation software. The MPA comes

in a design/evaluation kit that includes the hardware, sche-

matics and PAL equations, and software including all the

DP8344 source code. This kit was produced to provide a

blueprint for PC emulation products and a cornerstone for

all 3270 and 5250 product development using the DP8344.

The code was developed in a modular fashion so it can be

adapted to any 3270 or 5250 application.

6.4.4 DP8344 BCP Inverse Assembler

The DP8344 BCP Inverse Assembler is a software package

for use in an HP 1650A or HP1651A Logic Analyzer, or in an

HP16500A Logic Analysis System with an HP 16510A

State/Timing Card installed. The inverse Assembler was de-

veloped by National Semiconductor to allow disassembly of

the DP8344 op-code mnemonics. This allows one to deter-

mine the actual execution flow that occurs in the system

being developed with the DP8344.

6.5 THIRD PARTY SUPPLIERS

The following section is intended to make the DP8344 Cus-

tomer aware of products, supplied by companies other than

National Semiconductor, that are available for use in devel-

oping DP8344 systems. While National Semiconductor has

supported these ventures and has become familiar with

many of these products, we do not provide technical sup-

port, or in any way guarantee the functionality of these prod-

ucts.

6.5.1 Crystal Supplier

The recommended crystal parameters for operation with the

DP8344 are given in Section 2.2.4. Any crystal meeting

these specifications will work correctly with the DP8344.

NEL Frequency Controls, Inc., Burlington, Wisconsin, has

developed crystals, the NEL C2570N and NEL C2571N,

specifically for the DP8344 which meet these specifications.

The C2570N and C2571N are both 18.8696 MHz funda-

mental mode AT cut quartz crystals. The C2571N has a

hold down pin for case ground and a third mechanical tie

down. NEL Frequency Controls, Inc. is located at:

NEL Frequency Controls, Inc.

357 Beloit Street

Burlington, Wisconsin 53105

(414) 763-3591

6.5.2 System Development Tools

The DP8344, with its higher level of integration and process-

ing power, has opened the IBM mainframe connectivity mar-

ket to a wider range of product manufacturers, who until

now found the initial cost and time to market prohibitive.

This wider base of manufacturers created the opportunity

for a more extensive line of development tools that dealt not

only with the use of the DP8344 but also with the implemen-

tation of the 3270 and 5250 protocols. While National Semi-

conductor is dedicated to providing the Customer with the

proper tools in both areas, we also have aided and encour-

aged a number of third party suppliers to offer additional

development tools. This has further provided an avenue for

faster and more reliable product development in this prod-

uct area. The development tools discussed in this section

are controller emulators and line monitors for the IBM 3270/

3299 and 5250 protocols.

A controller emulator is a device that emulates an IBM 3x74

cluster controller or a System 3x controller. With the

DP8344 both of these controllers can be emulated with the

same piece of hardware. The controller emulator allows the

designer to issue individual commands or sequences of

commands to a peripheral. This is very useful in characteriz-

ing existing equipment and testing of products under devel-

opment. Capstone Technology offers such a product. Their

Extended Interactive Controller, part ÝCT-109, is a single

PC expansion card that can emulate both 3270 and 5250

control devices (the 3x74 and System 3X, respectively).

Newleaf Technologies, Ltd., Cobham, Surrey, England, and

Azure Technology, Inc., Franklin, Mass., also supply prod-

ucts in this area. Newleaf Technology offers the COLT52, a

twinax controller emulator, and Azure Technology offers a

controller made with their CoaxScope and TwinaxScope

line monitors.

A line monitor is a device that monitors all the activity on the

coax or twinax cable. The activity includes both the com-

mands from the controller and the responses from the pe-

ripheral. These devices typically decode the commands and

present them in an easy to read format. The individual trans-

missions are time stamped to provide the designer with re-

sponse time information. The line monitors are very useful in

characterizing communications traffic and in determining

the source of problems during development or in the field.

Azure Technology offers both a 3270/3299 (Coax) and

5250 (Twinax) line monitor. Their Coax Scope and Twinax

179

Obs
ole

te

6.0 Reference Section (Continued)

Scope are single PC expansion cards that can record, de-

code and display activity on the 3270 coax and 5250 twinax

line respectively. These devices also allow the play back of

the recorded controller information. Capstone Technology

also supplies a line monitor. The CT101C, Network Analysis

Monitor (NAM), is a coax line monitor.

These companies can be contacted at the following loca-

tions:

Azure Technology, Inc.

38 Pond Street

Franklin, Massachusettes 02038

(508) 520-3800

Capstone Technology

853 Brown Rd., Suite 207

Fremont, California 94539

(415) 438-3500

New Leaf Technology, Ltd.

24A High Street

Cobham

Surrey

KT113EB

ENGLAND

(0932) 66466

For technical assistance in using the DP8344B, contact the

BCP Hot Line (817) 468-6676.

TABLE 6-4. DP8344 Application Notes

App

Note No. Title

AN-623 Interfacing Memory to the DP8344B

AN-624 A Combined Coax-Twisted Pair 3270 Line

Interface for the DP8344 Biphase

Communications Processor

AN-516 Interfacing the DP8344 to Twinax

AN-504 DP8344 BCP Stand-Alone Soft-Load

System

AN-499 ‘‘Interrupts’’-A Powerful Tool of the Biphase

Communications Processor

AN-625 JRMK Speeds Command Decoding

AN-627 DP8344 Remote Processor Interfacing

AN-626 DP8344 Timer Application

AN-641 MPA - A Multi-Protocol Terminal Emulation

Adapter Using the DP8344

AN-688 The DP8344 BCP Inverse Assembler

6.6 DP8344A AND DP8344B COMPATIBILITY GUIDE

The DP8344B is an enhanced version of the DP8344A, ex-

hibiting improved switching performance and additional

functionality. The device has been characterized in a num-

ber of applications and found to be a compatible replace-

ment for the DP8344A. Differences between the DP8344A

and DP8344B are detailed in this section.

6.6.1 Timing Changes to the CPU

Relative to the DP8344A, the DP8344B incorporates a num-

ber of timing changes designed to improve the system inter-

face. These timing changes are improvements in the timing

specifications and therefore should allow the DP8344B to

drop into existing DP8344A designs without any hardware

modifications.

The DP8344A exhibits a small amount of contention be-

tween certain bus signals as detailed in the Device Specifi-

cations section of this data sheet. The DP8344B interface

timing improvements are designed to reduce and/or elimi-

nate this bus contention.

70 ns Data Memory

At a 20 MHz CPU clock rate, the DP8344B can support 70

ns static RAM for data memory with no wait states. The

DP8344A was limited to 55 ns static RAM for data memo-

ry with no wait states. (See Section 5.0 Device Specifica-

tions.)

READ

The timing of the READ strobe has been improved to re-

duce bus contention during a data memory access. There

is now more time between AD disabled and READ falling

as well as one-half T-state between READ rising and AD

enabled. In addition, a new 4 T-state read option has been

provided to eliminate bus contention. (See Section 5.0 De-

vice Specifications for timing changes, and 4 T-state

Read later in this document for more information on the 4

T-state Read option.)

The user can therefore choose between a fast read mode

(3 T-states) with a small amount of contention and a slow-

er read mode (4 T-states) with no contention.

A/AD Bus Timing

The timing of the A and AD buses has been changed to

eliminate bus contention during remote accesses of data

memory. There is now a one-half T-state TRI-STATE zone

during the bus transfer from local to remote control and

vice versa. (See Section 5.0 Device Specifications.)

IWR

The timing of IWR has been changed such that IWR now

falls one T-state earlier. This eliminates bus contention

during the start of soft loads. (See Section 5.0 Device

Specifications.)

IA Bus Softload Timing

The auto-increment of the IA bus address during soft

loads of instruction memory now occurs one T-state later

to maintain in-phase data and thereby eliminate bus con-

tention. (See Seection 5.0 Device Specifications.)

LCL

LCL is now removed when REM-RD is taken high on buff-

ered reads of ÀRICÓ, the program counter, and instruction

memory, to eliminate bus contention in this mode. (See

Section 5.0 Device Specifications.)

RIC

The hold time on slow buffered writes to ÀRICÓ and the

program counter has been improved. (See Section 5.0 De-

vice Specifications.)

‘‘Kick-start’’

The hold time on REM-WR and REM-RD to RESET to

‘‘kick-start’’ the CPU has been improved. (See Section 5.0

Device Specifications.)

6.6.2 Additional Functionality of the DP8344B

6.6.2.1 4 T-state Read

To eliminate bus contention during memory accesses, a

new optional read mode has been created, controlled by

180

Obs
ole

te

6.0 Reference Section (Continued)

[4TR] in ÀACRÓ. When a one is written to this bit, all subse-

quent data memory read operations expand to 4 T-states

with an extra one-half T-state between the falling edge of

ALE and the falling edge of READ. This eliminates bus con-

tention on data memory read operations. After a BCP reset,

or when a zero is written to this bit, the DP8344B data mem-

ory read operations operate in 3 T-states, as in the

DP8344A, in which this bit was unused. (See Section 2.2.2

for more information.)

6.6.2.2 A/AD Reset State

After a BCP reset, the index registers and the A and AD

buses will be zero. In the DP8344A, their states were unde-

fined after a reset.

6.6.2.3 RIC

Each time instruction memory is selected via ÀRIC[1,0]Ó
(i.e., ÀRICÓ is set to XXXX XX01 binary), the next read (or

write) of instruction memory by a remote processor will al-

ways return (or update) the low order 8 bits of the 16 bit

instruction location pointed to by the program counter. In

the DP8344A, setting ÀRICÓ had no affect on which instruc-

tion memory byte would next be fetched and an algorithm

had to be developed to determine this. (See Section 4.1.2

for more information.)

6.6.2.4 Transceiver

When the Transceiver is reset, DATA-OUT now goes into a

state equal to [TIN] Z [ATA], which eliminates coincident

transitions on DATA-OUT and DATA-DLY with TX-ACT.

(See Section 3.2 for more information.

6.7 REPORT BUGS

6.7.1 History

The DP8344 Data Sheet Reference, first published

10/29/87 (rev. 3.6), listed a total of 13 bugs. All these bugs

were corrected in the DP8344A, released to production April

1989. Subsequent to this date, an additional bug has been

reported. This bug is present in all versions of the BCP:

DP8344, DP8344A and DP8344B.

For additional information regarding differences in function-

ality between the DP8344B and DP8344A, see Section 6.6.

6.7.2 LJMP, LCALL Address Decode

The LJMP and LCALL instructions to the address range

Af00h through AF7Fh do not function correctly. Both condi-

tional and unconditional LCALL or LJMP instructions to this

address range will not decode as LCALL or LJMP instruc-

tions. Instead the address field will be incorrectly decoded

as the instruction. Thus a LJMP or LCALL to an instruction

in the address range AF00h through AF7Fh will be decoded

as a RETF instruction.

LJMP AF00Example: the instruction

AF00will be decoded as

RETF 000, 00which is

Note that LJMP and LCALL to all other addresses work cor-

rectly.

The LJMP or LCALL instruction should therefore not be

used to transfer program control to an instruction in the

range AF00h to AF7Fh.

6.7.2.1 Suggested Work-around

The simplest work-around is not to place any code neces-

sary for system operation in the affected address range.

This can be accomplished by creating a section of ‘‘filler’’

code that will occupy the instruction address range AF00h
to AF7Fh. As an example, the ‘‘filler’’ section of code could

be as follows:

FILLER: .SECT X ; Start of ‘‘filler’’ code section

.REPEAT 128 ; Repeat the following

instruction 128 times

JMP $; Jump to self

.ENDR ; End of repeat block

.END

The JMP $ instruction causes an infinite loop at that instruc-

tion. Thus one would be able to determine if the program

inadvertently entered the ‘‘filler’’ section of code. The re-

peat 128 instruction causes the section to occupy 128 bytes

of instruction memory which is the size of the affected ad-

dress range.

Next, by using the Linker in the DP8344 BCP Assembler

System, one can specify that this ‘‘filler’’ section of code

must occupy instruction memory starting at address AF00h
by using the -L option. For example, the following com-

mands can be entered at the DOS command line to invoke

the Assembler and Linker (this assumes that the ‘‘filler’’

section is located in the file FILLER.BCP):

NBCPASM FILLER.BCP

NLINK -LFILLER4AF00 FILLR.BCO

This will prevent any other section of code from occupying

the range which the ‘‘filler’’ section of code is located in.

Hence, one would not have to be concerned about using

labels to specify the address in LJMP and LCALL instruc-

tion.

6.8 GLOSSARY

3270ÐAn IBM communication protocol originally devel-

oped for the 370 class mainframe that implements a star

topology using a single coax cable per slave device. In this

master-slave protocol, all communication is initiated by the

controller (master) and responses are returned by the ter-

minal or other attached device (slave). The data is transmit-

ted using biphase encoding at a bit rate of 2.3587 MHz.

3299ÐA communications protocol that is the 3270 proto-

col with an eight bit address frame added to the beginning

of each controller transmission between the start se-

quence and the first coax word. Currently, IBM only uses

three bits of the address field which allows up to eight devic-

es to communicate with the controller through a multiplex-

er.

5250ÐAn IBM communications protocol originally devel-

oped for the Series 3 that became widely used on the Sys-

tem 34/36/38 family of minicomputers and currently the

AS/400. It uses a multidrop bus topology on twin-ax cable.

This protocol is a master-slave type. The data is transmitted

using bi-phase encoding at a bit rate of 1 MHz.

accumulatorÐThe implied source register of one operand

for some arithmetic operations. In the BCP, R8 in the cur-

rently enabled bank acts as the accumulator.

ALUÐThe Arithmetic Logic Unit, a component of the CPU

that performs all arithmetic (addition and subtraction), logi-

cal (AND, OR, XOR, compare, bit test, and complement),

rotational, and shifting operations.

ALU flagsÐBits that indicate the result of certain ALU func-

tions.

181

Obs
ole

te

6.0 Reference Section (Continued)

banked registersÐTwo or more sets of CPU registers that

occupy the same register space, but only one of which is

accessible at a time.

barrel shifterÐDedicated hardware for shifting and rotat-

ing.

BCPÐAn abbreviation for Biphase Communications Proc-

essor, the National Semiconductor DP8344.

biphaseÐIn this communications signal encoding tech-

nique, the data is divided into discrete bit time intervals de-

noted by a transition in the center of the bit time. This tech-

nique combines the clock and data information into one

transmission. In 3270 and 3299 protocols, a mid-bit tran-

sition from low to high represents a bi-phase 1, and a mid-

bit transition from high to low represents a bi-phase 0. For

the 5250 protocol, the definition of biphase logic levels is

reversed. Biphase encoding is also called Manchester II

encoding.

BIRQÐThe Bidirectional Interrupt ReQuest. Without any

other notation, BIRQ will refer to the BIRQ interrupt itself.

BIRQ with a bar on top of it (BIRQ) is used where the pin is

referenced. BIRQ in brackets ([BIRQ]) is bit 4 in the
ÀCCRÓ register.

coaxÐ(1) RG-62A/U 93X coaxial cable that is used in

3270 protocol systems. (2) Sometimes, this term is used to

refer to the 3270 protocol itself.

code violationÐA violation of the bi-phase encoding for-

mat that is part of the start sequence. In 3270, 3299, and

the general purpose 8-bit mode, the code violation is 1(/2

bit times low and then 1(/2 bit times high. In the 5250 proto-

col, the signal levels are reversed.

communications protocolÐA set of rules which defines

the physical, electrical, control, and formatting specifica-

tions required to successfully transfer data between two

systems.

context switchÐSwitching between two theoretically inde-

pendent functions that should not affect each other except

under specified circumstances.

controllerÐThe master device that initiates all communica-

tion to the slave device and controls the manner in which

the slave presents the information. It acts as the interface,

both physically and logically, between the slave terminals

and printers and a host processor.

CPU-CLKÐThe clock that the operation of the BCP’s CPU

is synchronized to. The period of this clock which defines

T-state boundaries is either that of OCLK or one-half of

OCLK depending on the configuration of the BCP. The tim-

er clock is also derived from CPU-CLK.

CUTÐControl Unit Terminal. A mode of the controller

where attached devices have limited intelligence and are

perceived to be hardware extensions of the controller. The

controller directs all printer, screen, and keyboard activity.

DFTÐDistributed Function Terminal. A controller mode

that supports multiple logical terminals in the same device.

The controller communicates in higher level commands via

data placed in the buffer. The slave device has a greater

amount of intelligence than the CUT mode device and is

responsible for the terminal operation.

direct coupledÐThe connection of the transceiver to the

transmission cable in a manner that does not isolate it from

DC voltages. Contrast this with transformer coupled.

dual port memoryÐA memory architecture that allows two

different processors to access the same memory range al-

ternately.

ending sequenceÐA defined sequence of bits signifying

the end of a transmission. In 3270 and 3299, it consists of a

bi-phase 0 followed by a low to high transition on the bit

time boundary and two mini-code violations.

FIFOÐA section of memory or, as in the case of the BCP

transceiver, a set of registers that are accessed in a First-In

First-Out method. In other words, the first data placed in the

FIFO by a write will be the first data removed by a read.

fill bitsÐFill bits are bi-phase 0’s used only in the 5250

protocol. A minimum of three fill bits are required between

each frame of a multi-frame message. This number may

be increased by the controller to approximately 243 per the

SetMode command. There are always only three fill bits af-

ter the last frame of the transmission.

general purpose 8-bit modeÐA generic communications

mode similar to 3270 and 5250 frame formatting using 8-bit

serial data and bi-phase signal encoding. The BCP sup-

ports both promiscuous and non-promiscuous modes.

Harvard architectureÐA computer architecture where the

instruction and data memory are organized into two inde-

pendent memory banks, each with their own address and

data buses.

hold timeÐThe amount of time the line is driven at the end

of 5250 transmissions to suppress noise on the cabling sys-

tem.

ICLKÐThe clock that identifies the start of each instruction

when it rises and indicates when the next instruction ad-

dress is valid when it falls.

immediate addressing modeÐAn addressing method

where one operand, the data for Move instructions and the

address for Jump instructions, is contained in the instruction

itself.

immediate-relative addressing modeÐAn addressing

method that adds an unsigned 8-bit immediate number to

the index register IZ to form the data memory address of an

operand.

indexed addressing modeÐAn addressing method that

uses the contents of an index register as the data memory

address for one of the operands in an instruction.

interrupt latencyÐThe time from when an interrupt first

occurs until it begins executing at its interrupt vector.

jitterÐTiming variations for signals of different harmonic

content that move the edges of a transmitted signal in time

causing uncertainty in their decoding.

jitter toleranceÐThe total amount of time an edge of a

transmitted bit may move and still have its data bit decoded

correctly.

LIFOÐA sequence of registers or memory locations that

are accessed in a Last-In First-Out method; in other words,

the last data written into the LIFO will be the first to be

removed by a read. Also known as a stack.

limited register setÐIn the BCP, the first 16 register ad-

dress locations (R0–R11 in both banks and R12–R15) that

can be used in all instructions.

182

Obs
ole

te

6.0 Reference Section (Continued)

line holdÐThe act of driving the transmission line during

5250 transmissions at the end of a message to allow the

receivers to unsync. This insures that the receivers will not

see line noise as the start of another frame when the line

floats.

line interfaceÐAll the circuity between the BCP and the

communications cable medium.

line reflectionÐEnergy from a transmission that is not ab-

sorbed by a load impedance and can cause interference in

that signal.

Manchester II encodingÐSee bi-phase encoding.

maskÐ(1) A mechanism that allows the program to specify

whether interrupts will be accepted by the CPU. (2) To dis-

able the accepting of an interrupt by the CPU.

mid-bitÐIn bi-phase encoding, the transition in the center

of a bit time.

mini-code violationÐA violation of the bi-phase encoding

format that is part of the ending sequence in 3270, 3299,

and the general purpose 8-bit mode. The mini-code viola-

tion has no mid-bit transition being high for the entire bit

time. There is no mini-code violation in 5250.

multidropÐA communication method where all the slave

devices are attached to the same cable and respond to

controller commands and data only when their own ad-

dress frame precedes the transmitted frame.

multi-frame messageÐSeveral bytes of data together in

the same uninterrupted message that have only one start

sequence and one ending sequence.

multiplexerÐA device that receives 3299 protocol trans-

missions from a controller, strips off the address field, and

determines over which of eight ports to transmit the mes-

sage in 3270 format. The device then directs the response

from the terminal back to the controller.

non-promiscuousÐA receiver mode that only enables a

data available interrupt when the address frame of the mes-

sage matches that previously specified. The 5250 and gen-

eral purpose 8-bit modes of the BCP support both pro-

miscuous and non-promiscuous modes.

NRZÐNon Return to Zero. A data format that uses a high

level to represent a data 1 and a low level to represent a

data 0. The signal level does not return to a zero level in

each bit time. See also NRZI.

NRZIÐNon Return to Zero Inverted. A data format similar

to NRZ but with the signal levels reversed.

OCLKÐThe external Oscillator CLocK connected to the

BCP. This frequency, from a crystal or a clock, cannot be

changed by the BCP itself. CPU-CLK is derived from OCLK;

in addition, the transceiver can be configured so that TCLK

is derived from OCLK.

parityÐA one bit code, usually following data, that makes

the total number of 1’s in a data word odd or even, including

the parity bit itself. It is included as an error checking mech-

anism.

POLLÐA command issued by a controller to determine

changes in terminal status, such as keyboard activity or key-

lock.

POLL/ACK (PACK)ÐA command issued by a controller

to indicate to the terminal that the controller has recognized

the non-zero status response of the terminal to its POLL,

hence its full name poll/acknowledge.

popÐTo remove data from a stack.

predistortionÐThe initial voltage step in a Manchester

encoded bit used to change frequency components of the

signal to limit introducing jitter.

promiscuousÐA receiver mode that enables a data avail-

able interrupt regardless of the contents of the transmission

address frame. The 5250 and general purpose 8-bit

modes of the BCP support both promiscuous and non-pro-

miscuous modes.

pushÐTo place data onto a stack.

quiesce pulseÐA bi-phase 1 bit that is placed at the be-

ginning of a transmission to charge the cable in preparation

for the transmission of data. In addition, the quiesce pulses

are used as part of the identifying start sequence. Typical-

ly, five quiesce pulses are placed there.

register addressing modeÐAn addressing method that

uses only operands contained in registers.

register-relative addressing modeÐAn instruction ad-

dressing mode that adds the unsigned 8-bit value in the

current accumulator to any one of the index registers form-

ing a data memory address for one of the instruction’s oper-

ands.

remote accessÐAn access to dual port memory by a

device other than the BCP.

repeaterÐA device used to extend the communication dis-

tance between a controller and a slave device by receiving

the message and re-transmitting it.

RIASÐThe Remote Interface and Arbitration System that

allows a remote processor and the BCP to share the same

memory with arbitration of any conflict while the BCP is run-

ning. A remote processor may also stop and start the BCP

as well as read and write the Program Counter.

soft-loadableÐA feature of a processor system that allows

another processor to provide it with instructions and data.

stackÐSee LIFO.

start sequenceÐA unique arrangement of bits that begin

each transmission to ensure proper frame alignment and

synchronization. Each transmission begins with five bi-

phase encoded 1’s quiesce pulses, a code violation, and

the sync bit of the first frame.

station addressÐThe identification number of a 5250 ter-

minal or other slave device that will specify which device on

a multidrop line a message is sent to.

sync bitÐA bi-phase 1 that is placed as the first bit of a

frame.

T-stateÐThe period of CPU-CLK.

TCLKÐThe Transceiver CLocK that runs both the transmit-

ter and receiver at a frequency equal to eight times the re-

quired serial data rate. The clock can be obtained from a

scaled OCLK or from X-TCLK.

time-outÐAn interrupt that occurs when the timer reaches

a count of zero.

transceiverÐThe TRANSmitter used for sending mes-

sages and the reCEIVER used for reading messages.

transformer coupledÐThe isolation of the transceiver

from the transmission cable through the use of a transform-

er. Contrast this with direct coupled.

trapÐA BCP instruction that forces a software interrupt.

183

Obs
ole

te

D
P
8
3
4
4
B

B
ip

h
a
s
e

C
o
m

m
u
n
ic

a
ti
o
n
s

P
ro

c
e
s
s
o
rÐ

B
C

P
6.0 Reference Section (Continued)

TT/ARÐTransmission Turn-around / Auto Response. An

acknowledgement by the terminal or other slave device that

a write command has successfully been received or that a

POLL command status response is all zero.

twin-axÐ(1) The shielded pair cable that is used in a 5250

communications systems. (2) Sometimes used to refer to

the IBM 5250 communications protocol itself.

unmaskÐEnable the accepting of an interrupt by the CPU.

wait stateÐAdditional T-states that may be added to a

memory access to increase the time from address genera-

tion to the beginning of either a memory read or write. The

BCP may add as many as seven data wait states and three

instruction wait states.

X-TCLKÐThe eXternal Transceiver CLocK. An indepen-

dent clock source that the BCP transceiver operation may

synchronize to rather than from OCLK.

Physical Dimensions inches (millimeters)

Plastic Chip Carrier (V)

Order Number DP8344B

NS Package Number V84A

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Obs
ole

te

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

