QUAD 1/2-H-BRIDGE DRIVER IC Check for Samples: DRV8844 ## **FEATURES** - Quad 1/2-H-Bridge DC Motor Driver - Can Drive Four Solenoids, Two DC Motors, One Stepper Motor, or Other Loads - Full Individual Half Bridge Control - Low MOSFET On-Resistance - 2.5-A Maximum Drive Current at 24 V, 25°C - Floating Input Buffers Allow Dual (Bipolar) Supplies (up to ±30 V) - Built-In 3.3-V, 10-mA LDO Regulator - Industry Standard IN/IN Digital Control Interface - 8-V to 60-V Operating Supply Voltage Range - Thermally Enhanced Surface Mount Package #### **APPLICATIONS** - Textile Machines - Office Automation Machines - Gaming Machines - Factory Automation - Robotics ## **DESCRIPTION** The DRV8844 provides four individually controllable 1/2-H-bridge drivers. It can be used to drive two DC motors, one stepper motor, four solenoids, or other loads. The output driver channel for each channel consists of N-channel power MOSFET's configured in a 1/2-H-bridge configuration. The DRV8844 can supply up to 2.5-A peak or 1.75-A RMS output current per channel (with proper PCB heatsinking at 24 V and 25°C) per H-bridge. Separate inputs to independently control each 1/2-H-bridge are provided. To allow operation with split supplies, the logic inputs and nFAULT output are referenced to a separate floating ground pin. Internal shutdown functions are provided for over current protection, short circuit protection, under voltage lockout and overtemperature. The DRV8844 is available in a 28-pin HTSSOP package with PowerPAD™ (Eco-friendly: RoHS & no Sb/Br). #### ORDERING INFORMATION(1) | T _A | PACKAGE ⁽²⁾ | | ORDERABLE PART
NUMBER | TOP-SIDE
MARKING | |----------------|----------------------------|--------------|--------------------------|---------------------| | -40°C to 85°C | DowerDADIM (LITECOD) DIAID | Reel of 2000 | DRV8844PWPR | DD\/0044 | | | PowerPAD™ (HTSSOP) - PWP | Tube of 50 | DRV8844PWP | DRV8844 | ⁽¹⁾ For the most current packaging and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ⁽²⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. # **DEVICE INFORMATION** # **Functional Block Diagram** # **Table 1. TERMINAL FUNCTIONS** | NAME PIN I/O ⁽¹⁾ | | I/O ⁽¹⁾ | DESCRIPTION | EXTERNAL COMPONENTS OR CONNECTIONS | | | | |-----------------------------|-----------------------------|--------------------|---|--|--|--|--| | POWER AND | GROUND | | | | | | | | VNEG | NEG 6, 9, 14,
28, PPAD - | | Negative power supply (dual supplies) or ground (single supply) | | | | | | LGND | 19 | ļ | Logic input reference ground | Connect to logic ground. This may be any voltage between VNEG and VM - 8 V. | | | | | VM | 4, 11 | - | Main power supply | Connect to motor supply (8 V - 60 V). Both pins must be connected to same supply. Bypass to VNEG with a 10-µF (minimum) capacitor. | | | | | V3P3OUT | 15 | 0 | 3.3-V regulator output | Bypass to VNEG with a 0.47-µF 6.3-V ceramic capacitor. Can be used to supply VREF. | | | | | CP1 | 1 | Ю | Charge pump flying capacitor | Connect a 0.01-µF 100-V capacitor between | | | | | CP2 | 2 | Ю | Charge pump flying capacitor | CP1 and CP2. | | | | | VCP | 3 | Ю | High-side gate drive voltage | Connect a 0.1-µF 16-V ceramic capacitor to VM. | | | | | CONTROL | | | | | | | | | IN1 | 27 | I | Channel 1 input | Logic input controls state of OUT1. Internal pulldown. | | | | | EN1 | 26 | I | Channel 1 enable | Logic high enables OUT1. Internal pulldown. | | | | | IN2 | 25 | I | Channel 2 input | Logic input controls state of OUT2. Internal pulldown. | | | | | EN2 | 24 | I | Channel 2 enable | Logic high enables OUT2. Internal pulldown. | | | | | IN3 | 23 | Ţ | Channel 3 input | Logic input controls state of OUT3. Internal pulldown. | | | | | EN3 | 22 | I | Channel 3 enable | Logic high enables OUT3. Internal pulldown. | | | | | IN4 | 21 | Ţ | Channel 4 input | Logic input controls state of OUT4. Internal pulldown. | | | | | EN4 | 20 | I | Channel 4 enable | Logic high enables OUT4. Internal pulldown. | | | | | nRESET | 16 | 1 | Reset input | Active-low reset input initializes internal logic and disables the H-bridge outputs. Internal pulldown. | | | | | nSLEEP | 17 | 1 | Sleep mode input | Logic high to enable device, logic low to enter low-power sleep mode. Internal pulldown. | | | | | STATUS | | | | | | | | | nFAULT | 18 | OD | Fault | Logic low when in fault condition (overtemp, overcurrent, UVLO). Open-drain output. | | | | | OUTPUT | | | | | | | | | OUT1 | 5 | 0 | Output 1 | | | | | | OUT2 | 7 | 0 | Output 2 | Connect to loads. | | | | | OUT3 | 8 | 0 | Output 3 | | | | | | OUT4 | 10 | 0 | Output 4 | | | | | | NO CONNECT | · | | | | | | | | NC | 12, 13 | - | No connect | No connection to these pins | | | | ⁽¹⁾ Directions: I = input, O = output, OZ = tri-state output, OD = open-drain output, IO = input/output #### **ABSOLUTE MAXIMUM RATINGS** over operating free-air temperature range, all voltages relative to VNEG terminal (unless otherwise noted) (1) (2) | | | VALUE | UNIT | |------------------|--|------------------------|------| | VM | Power supply voltage range | -0.3 to 65 | V | | | Logic ground voltage range (LGND) | –0.5 to VM - 8 | V | | | Digital pin voltage range | LGND - 0.5 to LGND + 7 | V | | | Peak motor drive output current, t < 1 μS | Internally limited | Α | | | Continuous motor drive output current ⁽³⁾ | 2.5 | Α | | TJ | Operating virtual junction temperature range | -40 to 150 | °C | | T _{stg} | Storage temperature range | -60 to 150 | °C | - (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability. - (2) All voltage values are with respect to VNEG terminal, unless otherwise specified. - (3) Power dissipation and thermal limits must be observed. # THERMAL INFORMATION | | | DRV8844 | | |------------------|---|---------|-------| | | THERMAL METRIC(1) | PWP | UNITS | | | | 16 PINS | | | θ_{JA} | Junction-to-ambient thermal resistance ⁽²⁾ | 31.6 | | | θ_{JCtop} | Junction-to-case (top) thermal resistance (3) | 15.9 | | | θ_{JB} | Junction-to-board thermal resistance (4) | 5.6 | 20044 | | ΨЈТ | Junction-to-top characterization parameter ⁽⁵⁾ | 0.2 | °C/W | | ΨЈВ | Junction-to-board characterization parameter ⁽⁶⁾ | 5.5 | 1 | | θ_{JCbot} | Junction-to-case (bottom) thermal resistance ⁽⁷⁾ | 1.4 | 1 | - (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. - (2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a. - (3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88. - (4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8. - (5) The junction-to-top characterization parameter, ψ_{JT}, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA}, using a procedure described in JESD51-2a (sections 6 and 7). - (6) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7). - (7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88. # RECOMMENDED OPERATING CONDITIONS over operating free-air temperature range, all voltages relative to VNEG terminal (unless otherwise noted) | | | MIN | NOM MAX | UNIT | |-------------------|---|-----|---------|------| | V_{M} | Motor power supply voltage range ⁽¹⁾ | 8 | 60 | V | | I _{V3P3} | V3P3OUT load current | 0 | 10 | mA | ⁽¹⁾ All V_M pins must be connected to the same supply voltage. # **ELECTRICAL CHARACTERISTICS** $T_A = 25$ °C, over operating free-air temperature range, all voltages relative to VNEG terminal (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------|--------------------------------------|---|------------|------------|-------------|------| | POWER S | SUPPLIES | | • | | | | | I _{VM} | VM operating supply current | V _M = 24 V, f _{PWM} < 50 kHz | | 1 | 5 | mA | | I _{VMQ} | VM sleep mode supply current | V _M = 24 V | | 500 | 800 | μA | | V _{UVLO} | VM undervoltage lockout voltage | V _M rising | | 6.3 | 8 | V | | V3P3OUT | REGULATOR | | | | | | | V _{3P3} | V3P3OUT voltage | IOUT = 0 to 1 mA | 3.18 | 3.3 | 3.52 | V | | LOGIC-LE | EVEL INPUTS | • | • | | | | | V _{IL} | Input low voltage | | | LGND + 0.6 | LGND + 0.7 | V | | V _{IH} | Input high voltage | | LGND + 2.2 | | LGND + 5.25 | V | | V _{HYS} | Input hysteresis | | 50 | | 600 | mV | | I _{IL} | Input low current | VIN = LGND | -5 | | 5 | μΑ | | I _{IH} | Input high current | VIN = LGND + 3.3 V | | | 100 | μΑ | | R _{PD} | Internal pulldown resistance | | | 100 | | kΩ | | nFAULT (| OUTPUT (OPEN-DRAIN OUTPUT) | | | | | | | V _{OL} | Output low voltage | $I_O = 5 \text{ mA}$ | | | LGND + 0.5 | V | | I _{OH} | Output high leakage current | $V_O = LGND + 3.3 V$ | | | 1 | μΑ | | H-BRIDG | E FETS | | | | | | | | HS FET on resistance | $V_M = 24 \text{ V}, I_O = 1 \text{ A}, T_J = 25^{\circ}\text{C}$ | | 0.24 | | | | D | TIS LET OIL TESISTAILCE | $V_{M} = 24 \text{ V}, I_{O} = 1 \text{ A}, T_{J} = 85^{\circ}\text{C}$ | | 0.29 | 0.39 | Ω | | R _{DS(ON)} | LS FET on resistance | $V_M = 24 \text{ V}, I_O = 1 \text{ A}, T_J = 25^{\circ}\text{C}$ | | 0.24 | | 12 | | | L3 1 L1 on resistance | $V_M = 24 \text{ V}, I_O = 1 \text{ A}, T_J = 85^{\circ}\text{C}$ | | 0.29 | 0.39 | | | I _{OFF} | Off-state leakage current | | -2 | | 2 | μΑ | | PROTECT | TION CIRCUITS | | | | | | | I _{OCP} | Overcurrent protection trip level | | 3 | | | Α | | t _{DEAD} | Output dead time | | | 90 | | ns | | t _{OCP} | Overcurrent protection deglitch time | | | 5 | | μs | | T _{TSD} | Thermal shutdown temperature | Die temperature | 150 | 160 | 180 | °C | # **SWITCHING CHARACTERISTICS**(1) over operating free-air temperature range (unless otherwise noted) | NUMBER | PARAMETER | TEST CONDITIONS | MIN | MAX | UNIT | |--------|----------------|--|-----|-----|------| | 1 | t ₁ | Delay time, ENx high to OUTx high, INx = 1 | 130 | 330 | ns | | 2 | t ₂ | Delay time, ENx low to OUTx low, INx = 1 | 275 | 475 | ns | | 3 | t ₃ | Delay time, ENx high to OUTx low, INx = 0 | 100 | 300 | ns | | 4 | t ₄ | Delay time, ENx low to OUTx high, INx = 0 | 200 | 400 | ns | | 5 | t ₅ | Delay time, INx high to OUTx high | 300 | 500 | ns | | 6 | t ₆ | Delay time, INx low to OUTx low | 275 | 475 | ns | | 7 | t _R | Output rise time, resistive load to VNEG | 30 | 150 | ns | | 8 | t _F | Output fall time, resistive load to VNEG | 30 | 150 | ns | (1) Not production tested – specified by design Figure 1. DRV8844 Switching Characteristics #### **FUNCTIONAL DESCRIPTION** # **Output Stage** The DRV8844 contains four 1/2-H-bridge drivers using N-channel MOSFETs. A block diagram of the output circuitry is shown in Figure 2. Figure 2. Motor Control Circuitry The output pins are driven between VM and VNEG. VNEG is normally ground for single supply applications, and a negative voltage for dual supply applications. Note that there are multiple VM motor power supply pins. All VM pins must be connected together to the motor supply voltage. # **Logic Inputs** The logic inputs and nFAULT output are referenced to the LGND pin. This pin would be connected to the logic ground of the source of the logic signals (e.g., microcontroller). This allows LGND to be at a different voltage than VNEG; for example, you could drive a load by with bipolar power supplies by driving VM with +24 V and VNEG with -24 V, and connect LGND to 0 V (ground). #### **Bridge Control** The INx input pins directly control the state (high or low) of the OUTx outputs; the ENx input pins enable or disable the OUTx driver. Table 2 shows the logic. # Table 2. H-Bridge Logic | INx | ENx | OUTx | |-----|-----|------| | X | 0 | Z | | 0 | 1 | L | | 1 | 1 | Н | The inputs can also be used for PWM control of, for example, the speed of a DC motor. When controlling a winding with PWM, when the drive current is interrupted, the inductive nature of the motor requires that the current must continue to flow. This is called recirculation current. To handle this recirculation current, the Hbridge can operate in two different states, fast decay or slow decay. In fast decay mode, the H-bridge is disabled and recirculation current flows through the body diodes; in slow decay, the motor winding is shorted. To PWM using fast decay, the PWM signal is applied to the ENx pin; to use slow decay, the PWM signal is applied to the INx pin. Table 3 is an example of driving a DC motor using OUT1 and OUT2 as an H-bridge: **Table 3. PWM Function** | IN1 | EN1 | IN2 | EN2 | FUNCTION | |-----|-----|-----|-----|-------------------------| | PWM | 1 | 0 | 1 | Forward PWM, slow decay | | 0 | 1 | PWM | 1 | Reverse PWM, slow decay | | 1 | PWM | 0 | PWM | Forward PWM, fast decay | | 0 | PWM | 1 | PWM | Reverse PWM, fast decay | The drawings below show the current paths in different drive and decay modes: Figure 3. Current Paths ## **Charge Pump** Since the output stages use N-channel FETs, a gate drive voltage higher than the VM power supply is needed to fully enhance the high-side FETs. The DRV8844 integrates a charge pump circuit that generates a voltage above the VM supply for this purpose. The charge pump requires two external capacitors for operation. Refer to the block diagram and pin descriptions for details on these capacitors (value, connection, etc.). The charge pump is shut down when SLEEPn is active low. Submit Documentation Feedback Figure 4. Charge Pump ## nRESET and nSLEEP Operation The nRESET pin, when driven active low, resets the internal logic. It also disables the H-bridge drivers. All inputs are ignored while nRESET is active. Driving nSLEEP low will put the device into a low power sleep state. In this state, the H-bridges are disabled, the gate drive charge pump is stopped and all internal clocks are stopped. In this state all inputs are ignored until nSLEEP returns inactive high. When returning from sleep mode, some time (approximately 1 ms) needs to pass before the motor driver becomes fully operational. Note that nRESET and nSLEEP have internal pulldown resistors of approximately $100 \text{ k}\Omega$. These signals need to be driven to logic high for device operation. The V3P3OUT LDO regulator remains operational in sleep mode. #### **Protection Circuits** The DRV8844 is fully protected against undervoltage, overcurrent and overtemperature events. #### **Overcurrent Protection (OCP)** An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than the OCP deglitch time, the channel experiencing the overcurrent will be disabled and the nFAULT pin will be driven low. The driver will remain off until either RESET is asserted or VM power is cycled. Overcurrent conditions on both high and low side devices; i.e., a short to ground, supply, or across the motor winding will all result in an overcurrent shutdown. #### Thermal Shutdown (TSD) If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. Once the die temperature has fallen to a safe level operation will automatically resume. #### **Undervoltage Lockout (UVLO)** If at any time the voltage on the VM pins falls below the undervoltage lockout threshold voltage, all outputs will be disabled, internal logic will be reset, and the nFAULT pin will be driven low. Operation will resume when VM rises above the UVLO threshold. #### THERMAL INFORMATION #### **Thermal Protection** The SDRV8844 has thermal shutdown (TSD) as described above. If the die temperature exceeds approximately 150°C, the device will be disabled until the temperature drops to a safe level. Any tendency of the device to enter TSD is an indication of either excessive power dissipation, insufficient heatsinking, or too high an ambient temperature. ## **Power Dissipation** Power dissipation in the SDRV8844 is dominated by the power dissipated in the output FET resistance, or RDS(ON). Average power dissipation of each H-bridge when running a DC motor can be roughly estimated by Equation 1. $$P = 2 \bullet R_{DS(ON)} \bullet (I_{OUT})^2 \tag{1}$$ where P is the power dissipation of one H-bridge, $R_{DS(ON)}$ is the resistance of each FET, and I_{OUT} is the RMS output current being applied to each winding. I_{OUT} is equal to the average current drawn by the DC motor. Note that at start-up and fault conditions this current is much higher than normal running current; these peak currents and their duration also need to be taken into consideration. The factor of 2 comes from the fact that at any instant two FETs are conducting winding current (one high-side and one low-side). The total device dissipation will be the power dissipated in each of the two H-bridges added together. The maximum amount of power that can be dissipated in the device is dependent on ambient temperature and heatsinking. Note that R_{DS(ON)} increases with temperature, so as the device heats, the power dissipation increases. This must be taken into consideration when sizing the heatsink. #### Heatsinking The PowerPAD™ package uses an exposed pad to remove heat from the device. For proper operation, this pad must be thermally connected to copper on the PCB to dissipate heat. On a multi-layer PCB with a ground plane, this can be accomplished by adding a number of vias to connect the thermal pad to the ground plane. On PCBs without internal planes, copper area can be added on either side of the PCB to dissipate heat. If the copper area is on the opposite side of the PCB from the device, thermal vias are used to transfer the heat between top and bottom layers. For details about how to design the PCB, refer to TI application report SLMA002, " PowerPAD™ Thermally Enhanced Package" and TI application brief SLMA004, " PowerPAD™ Made Easy", available at www.ti.com. In general, the more copper area that can be provided, the more power can be dissipated. # PACKAGE OPTION ADDENDUM 24-Jan-2013 #### **PACKAGING INFORMATION** www.ti.com | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Top-Side Markings | Samples | |------------------|--------|--------------|--------------------|------|-------------|----------------------------|------------------|---------------------|--------------|-------------------|---------| | | (1) | | Drawing | | | (2) | | (3) | | (4) | | | DRV8844PWP | ACTIVE | HTSSOP | PWP | 28 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | -40 to 85 | DRV8844 | Samples | | DRV8844PWPR | ACTIVE | HTSSOP | PWP | 28 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | -40 to 85 | DRV8844 | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device. # PACKAGE MATERIALS INFORMATION www.ti.com 26-Jan-2013 # TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | # QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE ## *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | DRV8844PWPR | HTSSOP | PWP | 28 | 2000 | 330.0 | 16.4 | 6.9 | 10.2 | 1.8 | 12.0 | 16.0 | Q1 | www.ti.com 26-Jan-2013 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-------------|--------------|-----------------|------|------|-------------|------------|-------------| | DRV8844PWPR | HTSSOP | PWP | 28 | 2000 | 367.0 | 367.0 | 38.0 | PWP (R-PDSO-G28) # PowerPAD™ PLASTIC SMALL OUTLINE NOTES: - All linear dimensions are in millimeters. - This drawing is subject to change without notice. - Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side. - This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com www.ti.com. E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. - E. Falls within JEDEC MO-153 PowerPAD is a trademark of Texas Instruments. # PWP (R-PDSO-G28) PowerPAD™ SMALL PLASTIC OUTLINE #### THERMAL INFORMATION This PowerPAD[™] package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC). For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com. The exposed thermal pad dimensions for this package are shown in the following illustration. Top View Exposed Thermal Pad Dimensions 4206332-38/AC 07/12 NOTE: A. All linear dimensions are in millimeters **A** Exposed tie strap features may not be present. PowerPAD is a trademark of Texas Instruments # PWP (R-PDSO-G28) # PowerPAD™ PLASTIC SMALL OUTLINE #### NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets. - E. For specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. Publication IPC-7351 is recommended for alternate designs. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil - F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u> RFID www.ti-rfid.com OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u> Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>