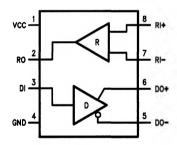
DS8921/DS8921A/DS8921AT Differential Line Driver and Receiver Pair

General Description

The DS8921, DS8921A are Differential Line Driver and Receiver pairs designed specifically for applications meeting the ST506, ST412 and ESDI Disk Drive Standards. In addition, these devices meet the requirements of the EIA Standard RS-422.

The DS8921, DS8921A receivers offer an input sensitivity of 200 mV over a \pm 7V common mode operating range. Hysteresis is incorporated (typically 70 mV) to improve noise margin for slowly changing input waveforms.


The DS8921, DS8921A drivers are designed to provide unipolar differential drive to twisted pair or parallel wire transmission lines. Complementary outputs are logically ANDed and provide an output skew of 0.5 ns (typ.) with propagation delays of 12 ns.

The DS8921, DS8921A are designed to be compatible with TTL and CMOS.

Features

- 12 ns typical propagation delay
- Output skew 0.5 ns typical
- Meet the requirements of EIA Standard RS-422
- Complementary Driver Outputs
- High differential or common-mode input voltage ranges of ±7V
- ±0.2V receiver sensitivity over the input voltage range
- Receiver input hysteresis-70 mV typical
- DS8921AT industrial temperature operation (-40°C to +85°C)

Connection Diagram

TL/F/8512-1

Order Number DS8921M, DS8921AN, DS8921AM, DS8921ATM, DS8921ATM, DS8921ATN or DS8921ATJ

See NS Package Number J08A, M08A or N08E

Truth Table

Receiver		Driver		
Input	V _{OUT}	Input	V _{OUT}	Vout
$V_{ID} \ge V_{TH}$ (MAX)	1	1	1	0
$V_{\text{ID}} \leq V_{\text{TH}}$ (MIN)	0	0	0	1
Open	1			

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7 V
Driver Input Voltage	-0.5V to $+7V$
Output Voltage	5.5V
Receiver Output Sink Current	50 mA
Receiver Input Voltage	±10V
Differential Input Voltage	±12V

Maximum Package Power Dissipation @ +25°C
J Package 1220 mW
M Package 730 mW
N Package 1160 mW

Derate J Package	9.8 mW/°C above +25°C
Derate M Package	9.3 mW/°C above +25°C
Derate N Package	5.8 mW/°C above + 25°C
Storage Temperature Range	-65°C to +165°C
Lead Temperature (Soldering,	4 sec.) + 260°C
Maximum Junction Temperatur	re +150°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage	4.5	5.5	V
Temperature (T _A)			
DS8921/DS8921A	0	70	°C
DS8921AT	-40	+85	°C

DS8921/DS8921A Electrical Characteristics (Notes 2, 3 and 4)

Symbol	Conditions	Min	Тур	Max	Units
EIVER					
V _{TH}	-7V ≤ V _{CM} ≤ +7V	-200	± 35	+200	mV
V _{HYST}	$-7V \le V_{CM} \le +7V$	15	70		mV
R _{IN}	V _{IN} = -7V, +7V (Other Input = GND)	4.0	6.0		kΩ
I _{IN}	V _{IN} = 10V			3.25	mA
'IN	V _{IN} = -10V			-3.25	mA
V _{OH}	I _{OH} = -400 μA	2.5			٧
V _{OL}	I _{OL} = 8 mA			0.5	٧
Isc	V _{CC} = MAX, V _{OUT} = 0V	-15		-100	mA
/ER		-			
V _{IH}		2.0			V
V _{IL}				0.8	V
I _{IL}	V _{CC} = MAX, V _{IN} = 0.4V		-40	-200	μΑ
l _{IH}	V _{CC} = MAX, V _{IN} = 2.7V			20	μА
l _l	V _{CC} = MAX, V _{IN} = 7.0V			100	дА
V _{CL}	V _{CC} = MIN, I _{IN} = -18 mA			-1.5	V
VoH	$V_{CC} = MIN, I_{OH} = -20 \text{ mA}$	2.5			V
V _{OL}	$V_{CC} = MIN, I_{OL} = +20 \text{ mA}$			0.5	V
OFF	V _{CC} = 0V, V _{OUT} = 5.5V			100	μА
V _T				0.4	V
V _T		2.0			V
Vos - Vos				0.4	٧
Isc	V _{CC} = MAX, V _{OUT} = 0V	-30		-150	mA
ER and RECEIVI	ER				
loc	V _{CC} = MAX, V _{OUT} = Logic 0			35	mA

Receiver Switch	ing Charact	teristics (<i>Figures 1</i> and <i>2</i>)
-----------------	-------------	--	---

Symbol	Conditions	Min	Тур	Max			Units
				8921	8921A	8921AT	J
T _{pLH}	C _L = 30 pF (Figures 1, 2)		14	22.5	20	20	ns
T _{pHL}	C _L = 30 pF (Figures 1, 2)		14	22.5	20	20	ns
T _{pLH} -T _{pHL}	C _L = 30 pF (Figures 1, 2)		0.5	5	3.5	5	ns

Driver Switching Characteristics (Figures 3 and 4)

SINGLE ENDED CHARACTERISTICS

Symbol Conditions	Min	lin Typ	Max			Units	
			8921	8921A	8921AT		
T _{pLH}	C _L = 30 pF (Figures 3, 4)		10	15	15	15	ns
T _{pHL}	C _L = 30 pF (Figures 3, 4)		10	15	15	15	ns
T _{TLH}	C _L = 30 pF (Figures 7, 8)		5	8	8	9.5	ns
T _{THL}	C _L = 30 pF (Figures 7, 8)		5	8	8	9.5	ns
Skew	CL = 30 pF (Figures 3, 4)		1	5	3.5	3.5	ns

Driver Switching Characteristics (Figures 3 and 5)

DIFFERENTIAL CHARACTERISTICS (Note 6)

Symbol	Conditions M	Min	Min Typ	Max			Units
				8921	8921A	8921AT	Ointo
Т _р н	C _L = 30 pF (Figures 3, 5, 6)		10	15	15	15	ns
T _{pHL}	C _L = 30 pF (Figures 3, 5, 6)		10	15	15	15	ns
T _{pLH} -T _{pHL}	C _L = 30 pF (Figures 3, 5, 6)		0.5	6	2.75	2.75	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The Table of "Electrical Characteristics" provides conditions for actual device operation.

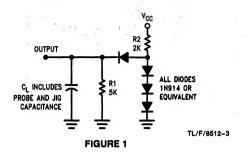
Note 2: All currents into device pins are shown as positive values; all currents out of the device are shown as negative; all voltages are referenced to ground unless otherwise specified. All values shown as max or min are classified on absolute value basis.

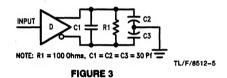
Note 3: All typical values are $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

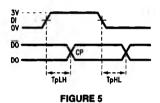
Note 4: Only one output at a time should be shorted.

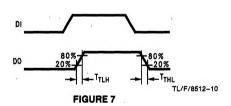
Note 5: Difference between complementary outputs at the 50% point.

Note 6: Differential Delays are defined as calculated results from single ended rise and fall time measurements. This approach in establishing AC performance specifications has been taken due to limitations of available Automatic Test Equipment (ATE).

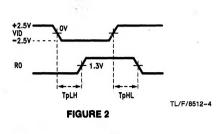

The calculated ATE results assume a linear transition between measurement points and are a result of the following equations:

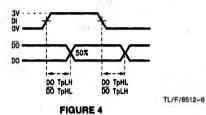

$$T_{cr} = \frac{(T_{fb} \times T_{rb}) - (T_{ra} \times T_{fa})}{T_{rb} - T_{ra} - T_{fa} + T_{fb}}$$

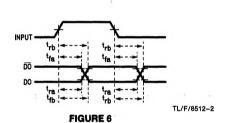

Where: T_{cr} = Crossing Point

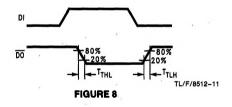

Tra, Trb, Tra and Trb are time measurements with respect to the input. See Figure 6.

AC Test Circuits and Switching Diagrams

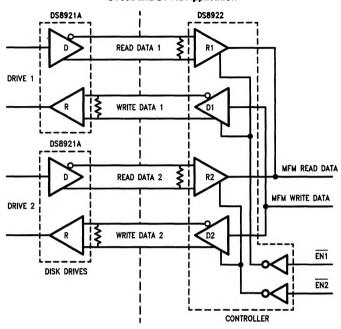


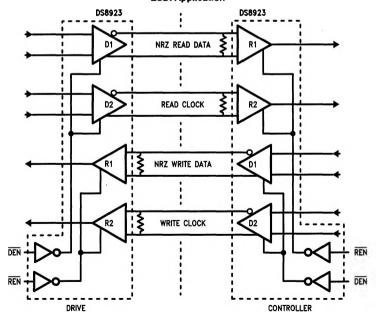






TL/F/8512-7




Typical Applications

ST506 and ST412 Application

TL/F/8512-8

ESDI Application

TL/F/8512-9