DS90CR563,DS90CR564

DS90CR563/DS90CR564 LVDS 18-Bit Color Flat Panel Display (FPD) Link- 65 MHz

Literature Number: SNLS109

DS90CR563/DS90CR564 LVDS 18-Bit Color Flat Panel Display (FPD) Link—

. 65

MHz

National Semiconductor

DS90CR563/DS90CR564 LVDS 18-Bit Color Flat Panel Display (FPD) Link— 65 MHz

General Description

Block Diagrams

The DS90CR563 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CR564 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of 65 MHz, 18 bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughput is 171 Mbytes per second. These devices are offered with rising edge data strobes for convenient interface with a variety of graphics and LCD panel controllers.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 65 MHz shift clk support
- Up to 171 Mbytes/s bandwidth
- Cable size is reduced to save cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design (< 550 mW typ)
- Power-down mode saves power (< 0.25 mW)</p>
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard
- Single pixel per clock XGA (1024 x 768)
- Supports VGA, SVGA, XGA and higher
- 1.3 Gbps throughput

© 1998 National Semiconductor Corporation DS012617

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.3V to +6V				
CMOS/TTL Input Voltage	-0.3V to (V _{CC} + 0.3V)				
CMOS/TTL Output Voltage	–0.3V to (V _{CC} + 0.3V)				
LVDS Receiver Input Voltage	–0.3V to (V _{CC} + 0.3V)				
LVDS Driver Output Voltage	–0.3V to (V _{CC} + 0.3V)				
LVDS Output Short Circuit Duration	Continuous				
Junction Temperature	+150°C				
Storage Temperature	–65°C to +150°C				
Lead Temperature (Soldering, 4 sec)	+260°C				
Maximum Package Power Dissipation @ +25°C					
MTD48 (TSSOP) Package:					

DS90CR563	1.98W
DS90CR564	1.89W
Package Derating:	
DS90CR563	16 mW/°C above +25°C
DS90CR564	15 mW/°C above +25°C
This device does not meet 20	00V ESD rating (Note 4).

Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage (V _{CC})	4.75	5.0	5.25	V
Operating Free Air	-10	+25	+70	°C
Temperature (T _A)				
Receiver Input Range	0		2.4	V
Supply Noise Voltage (V _{CC})			100	mV _{P-P}

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Conditior	ıs	Min	Тур	Max	Units
CMOS/	TTL DC SPECIFICATIONS						
VIH	High Level Input Voltage					V _{cc}	V
VIL	Low Level Input Voltage					0.8	V
V _{OH}	High Level Output Voltage	I _{OH} = -0.4 mA	$I_{OH} = -0.4 \text{ mA}$				V
Vol	Low Level Output Voltage	I _{OL} = 2 mA			0.1	0.3	V
V _{CL}	Input Clamp Voltage	I _{CL} = -18 mA			-0.79	-1.5	V
I _{IN}	Input Current	V _{IN} = V _{CC} , GND, 2.5V or $0.4V$			±5.1	±10	μA
los	Output Short Circuit Current	V _{OUT} = 0V				-120	mA
LVDS D	DRIVER DC SPECIFICATIONS	-					
V _{OD}	Differential Output Voltage	$R_{L} = 100\Omega$		250	290	450	mV
ΔV_{OD}	Change in V _{OD} between Complementary Output States					35	mV
V _{CM}	Common Mode Voltage				1.25	1.375	V
ΔV_{CM}	Change in V _{CM} between Complementary Output States					35	mV
V _{он}	High Level Output Voltage				1.3	1.6	V
V _{OL}	Low Level Output Voltage			0.9	1.01		V
l _{os}	Output Short Circuit Current	$V_{OUT} = 0V, R_L = 100\Omega$			-2.9	-5	mA
I _{oz}	Output TRI-STATE® Current	$\overline{Power Down} = 0V, V_{OUT} = 0V \text{ or } V_{CC}$			±1	±10	μA
LVDS F	RECEIVER DC SPECIFICATIONS						
V _{TH}	Differential Input High Threshold	V _{CM} = +1.2V				+100	mV
V _{TL}	Differential Input Low Threshold			-100			mV
I _{IN}	Input Current	$V_{IN} = +2.4V$	V _{CC} = 5.5V			±10	μA
		V _{IN} = 0V				±10	μA
TRANS	MITTER SUPPLY CURRENT	-					
I _{CCTW}	Transmitter Supply Current,	$R_{L} = 100\Omega, C_{L} = 5 \text{ pF},$	f = 32.5 MHz		49	63	mA
	Worst Case	Worst Case Pattern	f = 37.5 MHz		51	64	mA
		(Figures 1, 3)	f = 65 MHz		70	84	mA
I _{CCTG}	Transmitter Supply Current,	$R_{L} = 100\Omega, C_{L} = 5 \text{ pF},$	f = 32.5 MHz		40	55	mA
	16 Grayscale	16 Grayscale Pattern	f = 37.5 MHz		41	55	mA
		(Figures 2, 3)	f = 65 MHz		55	67	mA

	ecommended operating supply a	nd temperature ranges unless othe	rwise specified				
Symbol	Parameter	Conditio	ns	Min	Тур	Max	Units
TRANS	MITTER SUPPLY CURRENT	•					
I _{CCTZ}	Transmitter Supply Current, Power Down	Power Down = Low			1	25	μA
RECEI	ER SUPPLY CURRENT	1				1	
ICCRW	Receiver Supply Current, Worst Case	C _L = 8 pF, Worst Case Pattern	f = 32.5 MHz		64	77	mA
			f = 37.5 MHz		70	85	mA
		(Figures 1, 4)	f = 65 MHz		110	140	mA
I _{CCRG}	Receiver Supply Current,	C _L = 8 pF,	f = 32.5 MHz		35	55	mA
	16 Grayscale	16 Grayscale Pattern	f = 37.5 MHz		37	55	mA
		(Figures 2, 4)	f = 65 MHz		55	67	mA
I _{CCRZ}	Receiver Supply Current, Power Down	Power Down = Low			1	10	μA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Typical values are given for V_{CC} = 5.0V and T_A = +25 $^{\circ}$ C.

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and ΔV _{OD}).

Note 4: ESD Rating: HBM (1.5 k Ω , 100 pF)

 $\text{PLL V}_{\text{CC}} \geq 1000\text{V}$

•

All other pins $\geq 2000 V$

EIAJ (0 Ω , 200 pF) \geq 150V

Transmitter Switching Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter		Min	Тур	Max	Units
LLHT	LVDS Low-to-High Transition Time (Figure 3)		0.75	1.5	ns	
LHLT	LVDS High-to-Low Transition Time (Figure 3)		0.75	1.5	ns	
TCIT	TxCLK IN Transition Time (Figure 5)				8	ns
TCCS	TxOUT Channel-to-Channel Skew (Note 5) (Figure 6	5)			350	ps
TCCD	TxCLK IN to TxCLK OUT Delay @ 25°C, V _{CC} = 5.0V	1	3.5		8.5	ns
	(Figure 9)					
TCIP	TxCLK IN Period (Figure 7)		15	Т	50	ns
TCIH	TxCLK IN High Time (Figure 7)	0.35T	0.5T	0.65T	ns	
TCIL	TxCLK IN Low Time (Figure 7)	0.35T	0.5T	0.65T	ns	
TSTC	TxIN Setup to TxCLK IN (Figure 7)	f = 65 MHz	5	3.5		ns
THTC	TxIN Hold to TxCLK IN (Figure 7)		2.5	1.5		ns
TPDD	Transmitter Powerdown Delay (Figure 18)				100	ns
TPLLS	Transmitter Phase Lock Loop Set (Figure 11)				10	ms
TPPos0	Transmitter Output Pulse Position 0 (Figure 13)		-0.30	0	0.30	ns
TPPos1	Transmitter Output Pulse Position 1		1.70	1/7 T _{clk}	2.50	ns
TPPos2	Transmitter Output Pulse Position 2		3.60	2/7 T _{clk}	4.50	ns
TPPos3	Transmitter Output Pulse Position 3		5.90	3/7 T _{clk}	6.75	ns
TPPos4	Transmitter Output Pulse Position 4	8.30	4/7 T _{clk}	9.00	ns	
TPPos5	Transmitter Output Pulse Position 5		10.40	5/7 T _{clk}	11.10	ns
TPPos6	Transmitter Output Pulse Position 6	7	12.70	6/7 T _{clk}	13.40	ns

Note 5: This limit based on bench characterization.

	ommended operating supply and temperature ranges unle	ess otherwise specified.				
Symbol	Parameter		Min	Тур	Max	Units
CLHT	CMOS/TTL Low-to-High Transition Time (Figure 4)			2.5	4.0	ns
CHLT	CMOS/TTL High-to-Low Transition Time (Figure 4)			2.0	3.5	ns
RCOP	RxCLK OUT Period	15	Т	50	ns	
RCOH	RxCLK OUT High Time	f = 65 MHz	3.8	5		ns
RCOL	RxCLK OUT Low Time	f = 65 MHz	7.8	9		ns
RSRC	RxOUT Setup to RxCLK OUT	f = 65 MHz	2.5	4.2		ns
RHRC	RxOUT Hold to RxCLK OUT	4.0	5.2		ns	
RCCD	RxCLK IN to RxCLK OUT Delay @ 25°C, V _{CC} = 5.0V		6.4		10.7	ns
	(Figure 10)					
RPLLS	Receiver Phase Lock Loop Set (Figure 12)			10	ms	
RSKM	RxIN Skew Margin (Note 6) (Figure 14)	V _{CC} = 5V, T _A =25°C	600			ps
RPDD	Receiver Powerdown (Figure 17)			1	μs	

Note 6: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account transmitter output skew (TCCS) and the setup and hold time (internal data sampling window), allowing for LVDS cable skew dependent on type/length and source clock (TxCLK IN) jitter. RSKM ≥ cable skew (type, length) + source clock jitter (cycle to cycle)

AC Timing Diagrams

FIGURE 1. "Worst Case" Test Pattern

.

DS90CR563 Pin Descriptions—FPD Link Transmitter (Continued)

Pin Name	I/O	No.	Description
PLL GND	I	2	Ground pins for PLL
LVDS V _{CC}	1	1	Power supply pin for LVDS outputs
LVDS GND	1	3	Ground pins for LVDS outputs

DS90CR564 Pin Descriptions—FPD Link Receiver

Pin Name	I/O	No.	Description
RxIN+	1	3	Positive LVDS differential data inputs
RxIN-	1	3	Negative LVDS differential data inputs
RxOUT	0	21	TTL level data outputs. This includes: 6 Red, 6 Green, 6 Blue, and 3 control lines—FPLINE, FPFRAME, DRDY (also referred to as HSYNC, VSYNC, Data Enable)
RxCLK IN+	1	1	Positive LVDS differential clock input
RxCLK IN-	1	1	Negative LVDS differential clock input
FPSHIFT	0	1	TTL level clock output. The falling edge acts as data strobe
OUT			
PWR DOWN	1	1	TTL level input. Assertion (low input) maintains the receiver outputs in the previous state
V _{cc}	1	4	Power supply pins for TTL outputs
GND	1	5	Ground pins for TTL outputs
PLL V _{CC}	1	1	Power supply for PLL
PLL GND	1	2	Ground pin for PLL
LVDS V _{CC}	1	1	Power supply pin for LVDS inputs
LVDS GND	1	3	Ground pins for LVDS inputs

Connection Diagrams

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated