4\ Freescale Semiconductor, Inc.

Freescale Semiconductor

DSP56300 Assembly Code Development
Using the Freescale Toolsets

by

Ralph Lansford

.

Z “freescale

For More Information On This semiconductor
Go to: www.freescale

© Freescale Semiconductor, Inc., 2004. All rights reserved.

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

For More Information On This Product,

Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

Freescale Semiconductor, Inc.

TABLE OF CONTENTS

SECTION 1 INTRODUCTION 1-1
1.1 INTRODUCTION e 1-3
1.2 TERMS AND DEFINITIONS 1-3
1.3 SCOPE. . . e 1-4
SECTION 2 SOFTWARE DEVELOPMENT FLOW............. 2-1
2.1 SOFTWARE DEVELOPMENT FLOW 2-3
2.1.1 The “make” Function o e 2-3
2.1.2 Filename Conventions. ottt 2-3
2.1.3 TargetBoards 2-4
2.2 SHARED TOOLSET RESOURCES. 2-6
SECTION 3 SOFTWAREBUILDPROCESS 3-1
3.1 INTRODUCTION e 3-3
3.2 PROJECT MAKEFILE. 3-4
3.2.1 UNIX Example. s 3-4
3.2.2 Porting from UNIXto DOS. 3-7
3.3 ASSEMBLY CODEFILES 3-8
3.4 LINKERFILES 3-13
3.5 LISTING FILES e 3-15
3.6 EXECUTABLEFILE. 3-20

SECTION 4 USAGE OF SIMULATOR VERSUS DEBUGGER. . .. 4-1

4.1 OVERVIEW . .. e 4-3
4.2 RELATIVE ADVANTAGES 4-3
4.3 USER COMMAND DIFFERENCES. 4-4
SECTION 5 HELPFUL CODING AND DEBUGGING TIPS. 5-1
5.1 ASSEMBLY CODING. e 5-3
5.1.1 Using the One-Line Assembler 5-3
51.2 Using the Help Command for Registers 5-4
5.2 DEBUGGING e 5-7

DSP56300 Assembly Code Development ii

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

LIST OF FIGURES

Figure 2-1 Assembly Code Development Flow. 2-5
Figure 3-1 File Hierarchy for Example Software Project. 3-3
Figure 3-2 makefile COMPONENTS.ttt i 3-6

DSP56300 Assembly Code Development v

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Vi

DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

LIST OF TABLES

Table 2-1 Shared Toolset Resources 2-6
Table 4-1 Input and Output Commands: Simulator vs Debugger 4-6
DSP56300 Assembly Code Development vii

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Vil DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

LIST OF EXAMPLES

Example 3-1 makefile Listing 3-5
Example 3-2 Shell Script for Multi-File UNIX to DOS Conversion 3-7
Example 3-3 makefile Explicit Rule Syntax Comparison 3-8
Example 3-4 aPPL.ASM . . . 3-9
Example 3-5 EQUALES.ASIM . . . o o 3-11
Example 3-6 lllegal Forward References with Non-Included Equates 3-11
Example 3-7 apPL_SubS.asm 3-12
Example 3-8 COM _FL.aSM 3-12
Example 3-9 COM_f2.aSM . . . o 3-13
Example 3-10 appl.cli 3-14
Example 3-11 appl.ctl 3-15
Example 3-12 appl.Ist 3-16
Example 3-13 appl.map 3-18
Example 3-14 Executable Image Viewed from Simulator 3-20
Example 5-1 Simulator Confirmation of Legal Instruction 5-3
Example 5-2 Simulator Alert of lllegal Register 5-3
Example 5-3 Simulator Alert of lllegal Addressing 5-4
Example 5-4 Simulator Generation of Register Template 5-4
Example 5-5 Register Template SavedinFile 5-5

DSP56300 Assembly Code Development IX

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Example 5-6 Simulator Output of Register Values 5-6
Example 5-7 Register Display Used in Code Comments 5-6
Example 5-8 Simple Command File Pair 5-7
Example 5-9 Nested Command Files 5-7
X DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

SECTION 1
INTRODUCTION

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

miwuduction

1.1 INTRODUCTION e 1-3
1.2 TERMS AND DEFINITIONS 1-3
1.3 SCOPE ... 1-4
1-2 DSP56300 Assembly Code Development

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Introduction

Introduction

1.1 INTRODUCTION

The purpose of this application report is to provide integrated supplementary
information for the Motorola assembly code toolsets used for the Motorola DSP56300
family of Digital Signal Processors (DSPs). It covers various aspects of the DSP56300
Assembler, Linker, Simulator, and debugger. A detailed example is supplied for
management of multifile assembly code projects in the UNIX environment.
Overview-level information concerning the Simulator and the Application Development
System (ADS) is related, along with helpful tips for facilitating software development
that will be especially beneficial to users new to the toolset.

It is assumed that the reader already has the user’s manuals for the Motorola DSP56300
Assembler, Linker, Simulator, and debugger. These may be found on the Motorola DSP
World Wide Web site, beginning at the following address:

http:/Awww.motorola-dsp.com/documentation

Note: The example code presented in this application report may be downloaded
from the Motorola DSP website at the following address:

http:/AMwwv.motorola-dsp.com/documentation/appnotes

1.2 TERMS AND DEFINITIONS

A number of tools are described in this document and represented by acronyms. The
following list provides a reference point for the four terms most crucial to the reader’s
understanding of the processes under examination.

= ADM—Application Development Modules. This is the DSP evaluation board in the
ADS. The ADM generally does not contain analog/digital conversion hardware.

= ADS—Application Development System. This is a multiboard DSP development
system consisting of a host card (available for several platforms), a Command
Converter (universal for all platforms and all Motorola DSPs), an ADM, and the
Motorola debugger (in both text-based and Graphical User Interface versions). As
opposed to an Evaluation Module system, ADS versions are available for several
platforms, but the ADS generally does not include analog/digital conversion
hardware.

e CLAS—Callable modules Linker relocatable Assembler and Simulator. This includes
the Assembler, Linker, Simulator (in both text-based and Graphical User Interface
versions), librarian, lint, and various object file format conversion utilities.

DSP56300 Assembly Code Development 1-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
miwuduction

Scope

C source code is included, allowing the user to integrate these tools into
customer-designed tools by using the callable modules, which the Linker may
then link into an executable object file.

= DSP563xxEVM—Evaluation Module. This is a single board, generally including a
codec (analog/digital converter). It comprises the hardware portion of a low-cost
DSP evaluation system that employs an IBM-compatible PC as the development
host. The Domain debugger is the software portion of the evaluation module
system.

1.3 SCOPE

This document addresses the use of the following software tools:

= UNIX and DOS-based “make” utilities
e From “CLAS” package:

— Motorola DSP56300 Assembler (asm56300)

— Motorola DSP Linker (dspink)

— Motorola DSP56300 Simulator (sim56300/gui56300)
e From “ADS” package:

— Motorola DSP56300 debugger (ads56300/gds56300)

This document does NOT address the use of the following software tools:

e C Compilers (e.g., Motorola “g563c™)

= Domain debugger (for Evaluation Modules; runs only on IBM PC-compatible
computer)

Note: The Domain debugger implements the same features as the Motorola
debugger but uses a somewhat different interface.

1-4 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

SECTION 2
SOFTWARE DEVELOPMENT FLOW

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ounware Development Flow

2.1 SOFTWARE DEVELOPMENT FLOW. 2-3
2.1.1 The “make” Function. i, 2-3
2.1.2 Filename Conventions 2-3
2.1.3 TargetBoards. 2-4
2.2 SHARED TOOLSETRESOURCES 2-6
2-2 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Development Flow

Software Development Flow

21 SOFTWARE DEVELOPMENT FLOW

Figure 2-1 illustrates the software development process flow for DSP56300 assembly
code using the UNIX environment and an ADS system. Except for the Domain
debugger and the C Compiler, the most commonly used software and hardware tools
are included. Several noteworthy aspects in this figure are discussed in Section 2.1.1
through Section 2.1.3.

2.1.1 The “make” Function

The “make” function is used to provide integrated control over the entire assembly and
linking process, also called the “build” process. The UNIX file called “makefile”
contains all pertinent control information the UNIX “make” command needs to actuate
this process. An example makefile is shown in Example 3-1 on page 3-5.

2.1.2 Filename Conventions

The following filename conventions are observed in Figure 2-1 on page 2-5:

= Assembler and Linker input and output files designated by command line
options are shown along with the associated command line option (e.g., “-L” to
generate a listing file).

= Note that for a single source file project, the linking process may be bypassed by
including the Assembler command line option “-A” (Absolute object file).

= The Linker command line file may be arbitrarily named; “*.cli”” is shown in the
figure as an example choice.

= The srec output filename extensions designate the target memory space for the
file.

DSP56300 Assembly Code Development 2-3
For More Information On This Product,
Go to: www.freescale.com

wr
PRt

Freescale Semiconductor, Inc.

ounware Development Flow

Software Development Flow

2.1.3

Target Boards

The Command Converter version must be at least 5.0 for connection with a
DSP563xx target and at least 6.0 for a multi-DSP connection (as is depicted in the
user target board in Figure 2-1).

Three different types of targets may be used (ADM, Evaluation Module, or user
target board). Only one such target may be used at a given time; this is done by
connecting the On-Chip Emulation (OnCE™)/ Joint Test Action Group (JTAG)
cable from the Command Converter to the JTAG connector on the chosen target
board. The ability to use either an ADM or an Evaluation Module allows the
usage of all devices in the DSP56300 family with the same toolset and platform. It
may be necessary to modify jumper connections on an Evaluation Module in
order to reconfigure it for connection to a Command Converter. The Evaluation
Module User’s Manual should be consulted for reconfiguration instructions.

A multi-DSP connection uses a daisy-chain configuration, in which TDO (Test
Data Output) from a DSP’s JTAG port is connected to TDI (Test Data Input) in the
JTAG port of the next DSP in the chain. The other JTAG signals from the
Command Converter go to all target DSPs in parallel (not shown in Figure 2-1).
The Motorola ADS debugger supports JTAG daisy-chains of up to twenty-four
DSPs.

A development host computer, which communicates with a target DSP through the
DSP’s JTAG port, is indicated in Figure 2-1. This should not be confused with a
target host computer, used in some applications to interface with a target DSP
through the DSP’s host port.

DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Development Flow

CCode Module F|Ies> C Equate Files)}

(“makefile”)

Y

" Utility)

—

Software Development Flow

*.asm)

\

/ Y

Assembly Files

Assembler L Listing Files
“B” (wio “-A”) (asm56300) (*.Ist)
“-G” (Debug) wpn
-F" (Command Line File
Relocatable (*.cli)
Object Files
(*.cln) “R” ("Linker Control File
(*.ctl)
y y
“.B” Linker
“.G" (Debug) (dsplnk)
Executable
Object File [V
(COFF Format: 'M:/ Map Files
.cld) \ (.map)

|

For More Information On This Product,
Go to: www.freescale.com

\i
\i
ADS Debugger Simulator
(ads50300: Text) (sim56300: Tex) (Sreotre)
gds56300: GUI gui56300: GUI
Y CLAS Y
Host Card S-record Files
(DSPxxHOST) (*.P, *. X, Y, *.L)
- * Development Host Computer t
Universal (PC, Sun, HP)
Command Converter ' ' EPROM
(DSPCOMMAND) [OnCE™/JTAG
I ITAG AA1049
yJTAG JTAG %
DSP563xx ADM DSP563xx EVM , 101 TDO User
DSP DSP Earg%t
= oar
TDO TDI
ADS
Hardware: Software: (Document) (Application) Firmware
Figure 2-1 Assembly Code Development Flow
DSP56300 Assembly Code Development 2-5

Freescale Semiconductor, Inc.
ounware Development Flow

Shared Toolset Resources

2.2 SHARED TOOLSET RESOURCES

Table 2-1 shows how software and hardware tools are shared among various DSP
device types. Examples of Motorola DSP families are the DSP56000, DSP56300, and

DSP56600 families.

Table 2-1 Shared Toolset Resources

Tool Applicability Software Tools Hardware Tools
For all DSPs Linker, utilities host card, Command Converter
Per DSP family Assembler, Simulator, | (n/a)
ADS debugger
Per DSP device (n/a) ADM, Evaluation Module
2-6 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

SECTION 3
SOFTWARE BUILD PROCESS

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

osunware Build Process

3.1 INTRODUCTION e 3-3
3.2 PROJECT MAKEFILE 3-4
3.2.1 UNIX Example. 3-4
3.2.2 Porting from UNIXtoDOS 3-7
3.3 ASSEMBLY CODEFILES. 3-8
3.4 LINKERFILES. e 3-13
3.5 LISTING FILES e 3-15
3.6 EXECUTABLEFILE 3-20
3-2 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Build Process

Introduction

3.1 INTRODUCTION

In this section an example software project is used to illustrate the build process
(assembly and linking) outlined in the previous section. The sample files have been
written to demonstrate key concepts while remaining as simple and short as possible.
This section uses italics for files and boldface for commands.

Figure 3-1 illustrates the involved file hierarchy for the project. In this figure, files output
from the Assembler and Linker are italicized. The file makefile is used to build two
different executable applications, appl.cld and app2.cld, each of which utilizes several
code modules (assembly source files). Some code modules are particular to a given
application (those in the appl/ and app2/ directories), while others are common to both
applications (those in proj_dir/ and common/). The makefile directs the Assembler to
put listing files in list/, and object files in obj/. It also tells the Linker to put the memory
map files in the directory related to the project being built (appl/ or app2/).

proj_dir/

makefile

equates.asm

appl.cld

app2.cld

appl/ app2/ common/ list/ obj/
appl.asm app2.asm com_fl.asm appl.ist appl.cin
applsubs.asm app2subs.asm com_f2.asm applsubs.ist applsubs.cin
appl.cli app2.cli app2.Ist app2.cin
appl.ctl app2.ctl app2subs.ist app2subs.cin
appl.ma aop2.ma com_f1.Ist com_fl.cin
PP P PP P com_f2.Ist com_f2.cin
AA1050

Figure 3-1 File Hierarchy for Example Software Project

The following sections discuss the files necessary to build the appl.cld application but
not the app2.cld application, as that information would be redundant.

DSP56300 Assembly Code Development 3-3
For More Information On This Product,
Go to: www.freescale.com

} { Freescale Semiconductor, Inc.

osunware Build Process

Project makefile

3.2 PROJECT MAKEFILE

Subsections of Section 3.2 explain both the use of makefile in the Sun UNIX environment
and the means by which it can be ported to DOS for IBM-compatible PC use.

3.2.1 UNIX Example

A listing of the makefile, which runs under the SUN implementation of the UNIX make
command, is contained in Example 3-1. The mechanics of the makefile are covered in
Figure 3-2 on page 3-6. The applications appl.cld and app2.cld are created from the
UNIX command line prompt by making proj_dir/ the working directory and then typing
make appl or make app2, respectively. The cleanup option can be invoked with make
clean in order to remove the Assembler output files. This is useful when a rebuild is
desired to use dependency files that have not been changed since the previous build of
the same application. All path specifications in the makefile are relative to the directory
containing the makefile.

3-4 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Software Build Process

Example 3-1 makefile Listing

Project makefile

#

file: "makefile”

version: 961105

#target files: appl.cld, app2.cld

#H.

host: {host type}

#0p sys: {name / version}

assembler: asm56300 {version}
linker: dsplnk {version}

target: 563xx

target bd: {adm /evm / user target board}
H.

7+

appl: appl.cld
app2: app2.cld
appl.cld:applfiles\

commonfiles

dsplnk -fappl/appl.cli

app2.cld:app2files\
commonfiles
dsplink -fapp2/app2.cli

app1ifiles:obj/appl.cin\
obj/appl_subs.cin

appZ2files:obj/app2.cin\
obj/app2_subs.cin

commonfiles:obj/com_f1.cln\
obj/com_f2.cin

obj/%.cln : appl/%.asm
asm56300 -bobj/$*.cln -llist/$*.Ist appl/$*

obj/%.cln : app2/%.asm
asm56300 -bobj/$*.cln -llist/$*.Ist app2/$*

ohj/%.cln : common/%.asm
asm56300 -bobj/$*.cln -llist/$*.Ist common/$*

clean:
rm *.cld obj/*.cin list/*.Ist

DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ounwvare Build Process

Project makefile

The various components of the makefile are described in Figure 3-2. In this figure, only
the parts of the file used to build appl.cld are shown. The figure shows the chain of
targets and dependencies, whereby a dependency in one link of the chain becomes a
target in the next link of the chain. Note that the command lines passed to the operating
system shell (such as the assembly and link command lines) must have a tab and not a
space as the very first character or the make process will fail, giving a “Fatal error in
reader” message.

Target Target List Terminator Dependency
appl: appl.cld Line Continuation Character

/

appl.cld: afplfiles .
commonfiles Dependency List
dsplnk -fappl/appl.cli
S~ command

applfiles: obi/appl.cin \
obj/appl_subs.cln

commonfiles: objlcom_flcln \
objlcom_f2.cln

Pattern Matching Wildcard Metacharacter

/

obj/%.cln: appl/%.asm .
asm56300 -bobj/$* cln -list$* Ist appl/$* Explicit Rule
Dynamic Macro for Basename

Target Dependency of Current Target

— "
obj/%.cln : common/%.asm

— Y
/4 asm56300 -bobj/$*.cin -llist/$*.Ist common/$*

Suffix (Class)

Prefix (Location)

AA1051
Figure 3-2 makefile Components

The syntax required in a makefile may differ according to the make implementation
employed. The make implementations vary according to the platform used (e.g., DOS
vs. UNIX) and the vendor’s implementation of the operating system being run on a
given platform.

3-6 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Build Process

Project makefile

In the UNIX environment, additional information on the makefile and the make
command may be obtained from the on-line manual pages (man make at the UNIX
prompt).

3.2.2 Porting from UNIX to DOS

If the project is being used in the DOS environment, the following changes must be
made:

1. Change all directory and filenames to legal DOS names and use “\” instead of
“/” to denote directories. This would apply to the files themselves and to the file
references in the makefile.

2. From the UNIX environment, convert each involved file to the DOS format using
the unix2dos command. This just changes the carriage return/line feed format
for end-of-line designators. Since unix2dos can only convert one file at a time, the
following shell script may prove handy:

Example 3-2 Shell Script for Multi-File UNIX to DOS Conversion

foin/csh
foreach FILE (/bin/s))
if (1-d$FILE)then #don't try to convert nested directories
unix2dos $FILE $FILE
endif
end
exit0
Note: The UNIX dos2unix command performs the opposite conversion. This

is useful for porting from DOS to UNIX.

3. Convert the makefile explicit rule syntax to the format required by the chosen DOS
make implementation. For example, the following comparison illustrates the
differences in explicit rule syntax between the SunOS make (UNIX) and the
Borland make (DOS).

DSP56300 Assembly Code Development 3-7
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ounwvare Build Process

Assembly Code Files

Example 3-3 makefile Explicit Rule Syntax Comparison

SunOS make (UNIX):

objo.cn: appl.asm
asm56300 -bobj/s* cin -list/s* Ist app1/$*

Borland make (DOS):

{app1}.asm.cin:
asm56300 -bob)\$&.cln list$&.Ist app1\&*

3.3 ASSEMBLY CODE FILES

In this section, examples are given in dummy code to show the assembly source code
files. Note that like C Compilers, the Assembler is case-sensitive.

Assembly code file appl.asm (Example 3-4) contains several sections. Sections are
useful because the Linker can independently relocate them in memory (e.g., to ensure
that frequently run code is placed in faster internal memory). They are also useful for
privacy implementations (limiting the scope of variables).

3-8 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Software Build Process

Example 3-4 appl.asm

Assembly Code Files

; file: "applasm”

; revision: 961105

; target file: applcd

; description: main file for "appl" application; demonstrates multifile
; assembly coding techniques

section appl vec

xref start ; reference to extemal symbol
org po ; beginning of exception 'vector table
jmp start
ds $le ; define storage block (available for
; remainder of vector table)
endsec

section appl main

include ‘equates.asm’

xdef start ; symbol declaration for extemal usage
xref al sublcfl subcf2 subdatal,data?
org p:START ; absolute origin (linker cannot relocate)
stat move #>VALlal ; move immediate value to reg, 1t justified
jsr al subl ; jJump to (extemal) subroutine
jsr cfl_sub
jsr cf2_sub
move ylxdatal
jmp start
endsec
section appl data
xdef datal,data?
org X
datal ds 1
data2 ds 1
endsec

DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

3-9

|
y

'
A

Freescale Semiconductor, Inc.
ounwvare Build Process

Assembly Code Files

Relocatable portions of code or data may be designated by using an indefinite origin for
a given memory space (such as “x:”). The first such portion in a given assembly source
file will be mapped beginning at location zero in the specified memory space in the
relocatable image that the Assembler produces. The Linker may relocate this portion of
the code or data to a new address in the executable image. The relocation may be seen by
comparing the *.Ist and *.map files.

Privacy limitations may be imposed on symbols (which are memory locations or values,
such as equates). Symbols defined within a section are not normally visible outside that
section. The Assembler directive xdef is used inside a “source” section to define the
symbol for use in another section (the “destination” section). The xref directive is used
inside the “destination” section to reference symbols defined using xdef in the “source”
section. These two sections may or may not be in the same file.

An alternate method is to declare a symbol as a global inside a section or to define the
symbol outside any section. This results in a globally defined symbol that can be
referenced from other sections without using xref. More detailed information on this
and related subjects may be found in the Software Project Management section in the
Motorola DSP Assembler Reference Manual.

In a section, externally defined symbols result in “holes” in the relocatable image file
generated by the Assembler. These “holes” are unresolved external references. The
Linker must then “plug” the holes by resolving the references.

Example 3-5 depicts a minimal equate file to illustrate the process of equate file inclusion
in the assembly source code files. Note that this file is included locally (inside a section)
in appl.asm, applsubs.asm, com_fl.asm, and com_f2.asm. This results in the multiple
listings of “START” and “VAL1” as absolute local variables in the “Symbol Listing by
Name” section of appl.map (Example 3-13). If equate.asm were included globally (outside
any section) in more than one source file used in a given build, the Linker would give a
“Duplicate global symbol™ error.

Practical equate files are often long enough that the programmer may want to suppress
their display in the listing file created for each source file that includes them. This
redundant information may be eliminated by using the nolist Assembler directive
immediately before the include directive in the source file and the list directive
immediately afterward.

3-10 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Build Process

Assembly Code Files

Example 3-5 equates.asm

; file: "equates.asm’*

; revision: 961105

; description: equate file for "appl" and "app2" applications
START equ $100

VALL equ 1

An alternate way of using an equate file is to explicitly specify it in the build process (in
makefile) rather than including it in each source file that uses it. The result is assembly of
the equate file into a separate relocatable image file (*.cIn). This could be referred to as
the “discrete equate file method”, as opposed to the “included equate file method”
previously described.

This method has the advantage of equate file inclusion in the dependency process. If the
equate file is edited, a succeeding build will automatically cause any files dependent on
it to be reassembled and relinked (for the application being rebuilt).

However, this method has a major disadvantage in terms of reuse of the equates. Even if
the equates to be reused are global symbols or are referenced using xdef/xref, they can
not be used in expressions in separately assembled files. Although the Linker can fill
“holes” in the relocatable image files using external references, it is not designed to
perform any calculations using the value of the external reference. The Assembler will
catch this error before the process gets to the link stage and will issue a warning. Using
the “discrete equate file method”, the following statements would cause the Assembler
to give an error saying, “Expression contains forward references*.

Example 3-6 Illegal Forward References with Non-Included Equates

org P:START+$100 ; The file defining START and VAL is notincluded
move #VAL1+1lal ; inthisfle. Althree of these statements
VAL2 equ VAL1+1 ; Will result in errors during assembly.
DSP56300 Assembly Code Development 3-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ounwvare Build Process

Assembly Code Files

Example 3-7 appl _subs.asm

file: "appl subs.asm"
;revision: 961105
; description: subroutines used for "appl" application

section appl_subs
include 'equates.asm' ; this allows equates from the included file to
; be reused in this file in expressions,
;including nested equates
xdef al subl
org p:
al subl move #>VAL1+1,b1 ; equate reused in an expression
1ns
endsec
Example 3-8 com_fl.asm
file: "com_flasm"
;revision: 961105

; description: routines common to “appl" and "app2" applications

sectioncom_f1

include ‘equates.asm’

xdef cf1._sub
org p:
cfl_sub move #>VAL1+$c0x1
1ns
endsec
3-12 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Build Process

Linker Files

Example 3-9 com_f2.asm

file: "com_f2.asm’”
;revision: 961105
; description: routines common to “appl" and "app2" applications

section com_f2

include 'equates.asm’

xdef cf2_sub
org p:
cf2_sub move #>VAL1+$clyl
1ns
endsec

3.4 LINKER FILES

Example 3-10 shows the Linker command line extension file appl.cli , which may be used
to prevent unusably long command lines (especially when large numbers of files are
involved). Each relocatable image file (*.cIn) must be listed. The -p option is used to
specify that the *.cIn files are in the obj/ directory. (This is the relative path from the
directory containing the makefile.)

DSP56300 Assembly Code Development 3-13

For More Information On This Product,
Go to: www.freescale.com

} { Freescale Semiconductor, Inc.

osunware Build Process

Linker Files

Example 3-10 appl.cli

file: applcli
;revision: 961105
; description: linker command line extension file for "app" application

- appl.cd
-mappl/appl.map
+ appl/applct

- oy

applcin
appl_subscin
com flchn

com _f2.cn

Example 3-11 lists the Linker control file appl.ctl. The Linker provides various means of
generating warning messages if code “overflows” into undesired memory regions
(which either may be allocated for other purposes or may not physically exist in the
target system). The region command specifies the size of an allocated block and is used
in conjunction with the base command, which denotes the beginning location for the
block. (Related commands are memory, which specifies the upper boundary of an
available region, and reserve, which specifies both the lower and upper boundaries of an
unavailable region.)

Using the Linker section command in the format shown in the figure, the sections are
linked in the order listed. (The result of this can be seen in the Section Link Map by
Address table in appl.map in Example 3-13.) The linking order can be significant in some
cases. For example, sections containing relocatable portions of code or data that should
be placed in lower memory (i.e., faster internal memory) should be listed first. Section
names may be the same or different from file names.

If a*.ctl file is not used, the Linker will link sections in correspondence to the order in
which the source file names are provided to the Linker and the order of the sections in
each source file.

3-14 DSP56300 Assembly Code Development
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Build Process

Listing Files

Example 3-11 appl.ctl

; file: appl.ct
;revision: 961105
; description: linker control file for "appl" application

reserve pi$400.$4FF

region region_namel p:$400
base p:$0

section appl_vec
section appl_main
sectionappl_subs

sectioncom_f2 : these two sections listed in reverse order from that
sectioncom_f1 ; used inappl.cli; inker uses order shown here
endr

3.5 LISTING FILES

Example 3-12 and Example 3-13 show the Assembler listing (appl.Ist) for the main
application file and Linker listing (appl.map) for the application, respectively.

DSP56300 Assembly Code Development 3-15
For More Information On This Product,
Go to: www.freescale.com

} { Freescale Semiconductor, Inc.

osunware Build Process

Listing Files

Example 3-12 appl.Ist

Motorola DSP56300 Assembler Version6.1.1 96-11-06 09:02:02 appl/appl.asm

Page 1
1 ;
2 ;fle; "applasm’
3 Jrevision: 961105
4 ; targetfile: appl.cd
5 ; description: main file for “appl"* application;
demonstrates multifle
6 ; assembly coding techniques
7 ;
8
9
10 section appl_vec
11
12 xref start
; reference to extemal symbol
13
14 P:000000 og po

; beginning of exception *vector" table
15 P:0000000AF080 jmp start

000100
16
17 P:000002 ds $fe
; define storage block (available for
18 ; remainder of vector table)
19
2 endsec
21
22 .
23 section appl_main
24
25 include 'equates.asm’
; alows "nested equates”
26 ;
27 ;fle; “"equates.asm’
28 ;revision; 961105
29 ; description: equiate file for "appl" and "app2"
applications
30 ;
31
32 000100 START equ $100
33 000001 VALL equ 1
A
3-16 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Build Process

Listing Files
Example 3-12 appl.lst (Continued)
35 xdef start
; symbol declaration for extemnal usage
36 xref al sublcfl sub,cf2_subdatal data?
37
38 P:000100 og P.START
; absolute origin (linker cannot relocate)
39
40 P:00010054F400 start move #VALlal
; move immediate value to reg, 1t justified
000001
41 P.0001020BFO80 jsr al subl
; jJump to (extemal) subroutine
000000
42 P0001040BFO80 jsr cfl sub
000000
43 P:0001060BFOB0 jsr cf2 sub
000000
44 P:000108477000 move ylxdatal
000000
45 P.00010AOC0100 jmp start
46
a7 endsec
48
49 ;
50 section appl data
51
52 xdef dataldata?
53
54 X:000000 og X
55
56 X000000 daal ds 1
57 X000001 daa2 ds 1
58
59 endsec
60
61
0 Emors
0 Wamings
DSP56300 Assembly Code Development 3-17

For More Information On This Product,
Go to: www.freescale.com

} { Freescale Semiconductor, Inc.

osunware Build Process

Listing Files

Example 3-13 appl.map

Motorola DSP Linker Version6.1.1 96-11-06 09:02:04 appl/appl.map Page 1
Section Link Map by Address
X Memory (0 - default)

Stat End Length Section
000000 000001 2 appl data
000002 FFFFFF 16777214 UNUSED

P Memory (0 - defaul)

Stat End Length Section

000000 OOOOFF 256 appl vec Abs
000100 00010A 11 appl main Abs
00010B 00010D 3 appl subs
00010E 000110 3 com 2

000111 000113 3 com fl

000114 OO03FF 748 UNUSED
000400 OOO4FF 256 RESERVE
000500 FFFFFF 16775936 UNUSED

Section Link Map by Name
Section Memory Stat End Length
GLOBAL None
RESERVE P@ 000400 O00O4FF 256

appl_data X() 000000 000001 2
appl man Abs P(0) 000100 00010A 11
appl_subs P(@ 00010B 00010D 3
appl vec Abs P(0) 000000 OOOOFF 256

com f1 P(O) 000111 000113 3
com 2 PO 00010E 000110 3
3-18 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Software Build Process

Listing Files
Example 3-13 appl.map (Continued)
Symbol Listing by Name
Section Attributes
appl man ABSLOCAL
appl subs ABSLOCAL
com fl ABSLOCAL
com 2 ABS LOCAL
appl main ABSLOCAL
appl subs ABSLOCAL
com f1 ABS LOCAL
— comf2 ABSLOCAL
al subl..... int P:00010B appl subs RELEXTERN
CfL_sub........int P:000111 com f1 REL EXTERN
cf2_sub........int P:00010E com 12 REL EXTERN
datal..........int X:000000 appl data RELEXTERN
data?......... int X:000001 appl data RELEXTERN
s@t.......int P000100 appl main ABSEXTERN
Symbol Listing by Value
Value Name Value Name Value Name
000000 datal 000001 VALL 000001 VALL
000001 VALL 000001 VALL 000001 data2
000100 START 000100 START 000100 START
000100 START 000100 Start 00010B al subl
00010E cf2 sub 000111 cfl sub
DSP56300 Assembly Code Development 3-19

For More Information On This Product,
Go to: www.freescale.com

} { Freescale Semiconductor, Inc.

osunware Build Process

Executable File

3.6 EXECUTABLE FILE

Example 3-14 shows the executable image (appl.cld) as viewed from the Simulator. The
actual characters entered at the Simulator command line are displayed in boldface. For
illustrative purposes, the different source code sections have been manually separated
by blank lines.

Example 3-14 Executable Image Viewed from Simulator

MOTOROLA DSP56300 SIMULATOR: VERSION 6.1.6 10-22-96

radix hex
| oad appl
Loading file: /appl.cld

di sassemble p:0#4

p:$000000 0afd80 000100 =jmp >$100 ; p:start
p:$000002000000 =nop
p:$000003000000 =nop

p:$000004 000000 =nop

di sassemble p:100#10

p:$000100 54400 000001 = move #>$1,al
p:$000102 0bf080 00010b = jsr>$10b ; p:al subl
p:$000104 00f080 000111 =jsr >$111 ; picfL_sub
p:$000106 0bf080 00010e =jsr >$10e ; picf2_sub
p:$000108 477000 000000 = move y1,x>$0 ; x.datal
p:$00010a0c0100 =jmp <$100; pstart

P:$00010b 55400 000002 = move #>$2,b1
p$00010d00000c =rts

p:$00010e 47400 0000c2 = move #>$c2,y1
p:$00011000000c =1is

p:$000111 45400 0000c1 = move #>$c1.x1
p:$00011300000c =rs

p:$000114000000 =nop
p:$000115000000 =nop
p:$000116 000000 =nop
p:$000117000000 =nop

quit

3-20 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

P

Freescale Semiconductor, Inc.

SECTION 4

USAGE OF SIMULATOR VERSUS
DEBUGGER

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

uaage of Simulator versus Debugger

4.1 OVERVIEW . . . e 4-3
4.2 RELATIVE ADVANTAGES 4-3
4.3 USER COMMAND DIFFERENCES 4-4
4-2 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Usage of Simulator versus Debugger

Overview

41 OVERVIEW

The Simulator and debugger both allow comprehensive evaluation of the target DSP as
well as emulation of user algorithms.

The DSP56300 Simulator is based on behavioral level models of the devices and
therefore gives a fully accurate representation of the actual behavior of the device as it
has been designed (for a particular mask set revision). An alternate type of simulation is
based on the design specification for the device. This method was used for the DSP56000
Simulator and results in generally faster simulation times, but in rare cases it can mean a
less accurate representation of the behavior of the actual device.

Because it would serve little purpose to simulate all hardware on the DSP, the DSP56300
Simulator does not cover the entire device. Since the DSP56300 Simulator does not have
to interface with ports on an actual hardware device, it does not emulate the JTAG and
OnCE circuitry in the DSP. Also, the Phase-Locked Loop (PLL) is not emulated, as the
simulation time is based on integral numbers of core clock cycles (as opposed to cycles
on the DSP’s EXTAL clock input pin). Aside from these limitations, the Simulator exactly
simulates all core functions, peripheral actions, pipeline activities, exception processing,
and internal and external memory accesses of the DSP.

The ADS allows the user to exercise all functionality of the target device. This
accessibility comes through control of the OnCE circuitry, which is accessed via the
JTAG interface in the DSP.

4.2 RELATIVE ADVANTAGES

Obviously, the hardware debugger will require far less time than the software Simulator
to execute a given portion of code. However, for certain situations there are advantages
to either method.

The Simulator may be easier to use than the debugger for the following cases:

< Short algorithms (the slowness of the simulation time becomes less of an issue)

= Large files (downloads of large files from the debugger to the target board can
be slow)

= Detailed analysis of complicated internal workings of the DSP, such as usage of
the instruction pipeline

DSP56300 Assembly Code Development 4-3

For More Information On This Product,
Go to: www.freescale.com

wr
PRt

Freescale Semiconductor, Inc.

uaage of Simulator versus Debugger

User Command Differences

The ADS is necessary, or tends to be more useful, in these situations:

DSP interfaced with external hardware that can not easily be simulated
Timing needs investigation with a resolution smaller than single core clock cycles
Very long algorithms (may take a prohibitively long time to simulate)

Usage of peripherals which are running much more slowly than the core clock:
the Simulator must execute every core clock cycle, regardless of the peripheral
clock division.

Obviously, there are many other situations in which usage of the actual hardware is
necessary (for observing voltage levels, measuring current consumption, etc.).

4.3

USER COMMAND DIFFERENCES

The commands and usage of the Simulator and debugger are designed to be as close to
identical as possible. However, there are a few differences that are either related to the
nature of simulation or that result from hardware that is not simulated.

Cxxxxx and host commands—The debugger uses special commands that are
dedicated to the nontarget boards comprising the ADS. The Cxxxxx commands
(cchange, cdisplay, cforce, etc.) are used to perform actions on the Command
Converter board. The host command is used to configure the Host board. These
commands do not exist in the Simulator.

Display command—Because they are not simulated, the Simulator does not
display the registers in the PLL and JTAG/ONnCE subsections of the DSP.
However, the Simulator displays several count registers—for example, clock
cycle and instruction count registers—that are not part of the actual DSP and are
not provided by the debugger.

Go and break commands—Due to the lack of JTAG/OnCE simulation, the
Simulator handles the go and break commands differently than does the
debugger. The debugger uses the break command to specify the breakpoint
occurrence count (i.e., to stop on the nth occurrence) because this functionality is
built into the OnCE circuitry. The Simulator uses the go command to specify the
breakpoint occurrence count. This allows the user to resume execution and use a
different occurrence count with a single command.

History command—The history command displays the last 32 executed
instructions along with the addresses from which they were fetched. This
command is available on the Simulator but not the debugger.

DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Usage of Simulator versus Debugger

User Command Differences

Input and output commands—The debugger needs to use the JTAG/ONnCE
interface in order to transfer blocks of data between a file (or the console) in the
development host computer and the target DSP’s internal or external memory. In
the course of these actions, the OnCE module forces the DSP to execute
instructions that actually do the reads or writes of the DSP’s memory. Because
the Simulator bypasses the debug interface by not simulating it, it offers
simplified input and output functions as well as features not included in the
debugger. The Simulator also provides reporting and formatting functions not
available in the debugger, such as instruction timing and history information.
Table 4-1 compares the Simulator and debugger implementations of input and
output.

Load command—The methodology required to use the load command is subtly
different in the Simulator than it is in the debugger. This issue also involves
various other commands that access external memory locations.

— With the debugger, it is necessary to perform any appropriate initialization of
Bus Interface Unit (BIU) registers before executing a program load that will
result in writes to external memory locations (either program or data). This
must be done because the OnCE module actuates downloads to memory by
forcing core (specifically, Program Control Unit) writes to the designated
addresses, without regard to whether the addresses are internal or external.
The BIU register initialization may be done by explicitly entered debugger
commands, by debugger command files, or by previously executed DSP code.
Note that this must also be done before any other debugger accesses to
external memory locations (display, change, etc.).

— Using the Simulator, no BIU register initialization is necessary before program
loads (or before other Simulator accesses to external memory locations).

— Also note that the BIU must always be initialized before the user code
attempts to access external memory locations (true whether the Simulator or
debugger is used).

Radix command—The default radix is decimal in the Simulator, but hexadecimal
in the debugger. A possible way to avoid confusion is to begin commonly used
Simulator command files with “radix hex”.

Reset and force commands—Using the Simulator, the DSP being simulated is
reset with the reset command, and halted by typing control-C. On the debugger,
these functions are performed by using the force command—"force reset", or
"force break", respectively.

DSP56300 Assembly Code Development 4-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
uaage of Simulator versus Debugger

User Command Differences

Table 4-1 Input and Output Commands: Simulator vs. Debugger

Categories

USER CODE.

Extra instructions needed?
Simulator: No.
Debugger: Yes. The user code must load registers with values that specify file number,
data block size, memory space, and starting location in the target DSP’s memory.
The "debug" instruction must then be executed in the user program.

DATA MOVEMENT.

1. Block moves (address range) implemented?

Simulator: No. The "load" command must be used instead. Loads are fast on the
Simulator, but code must first be assembled into a loadable object file.

Debugger: Yes. Block moves can be useful early in code development, before
peripherals are used. The debugger uses this method (rather than the data stream
method) because large data transfers across a serial link to the host are most
efficient in batch mode.

2. Data stream (single location) implemented?
Simulator: Yes. Several types of data streams are implemented:
Host<—>Single memory address:
= Simulate interface to custom memory-mapped peripherals.
= Bypass on-chip peripherals.
Host<—>Pins:
e To/from a pin or pin group.
Pin<—>Pin:
= Within the same device (interconnected using "input" command).
= Between devices (create up to 32 DSPs using "device" commands; interconnect
using "input" commands).
Memory<—>Memory:
< Transfers may be made between given memory address and memory address
on another simulated DSP. Can be used to simulated dual-ported memory
shared by two DSPs.
Debugger: No.

4-6 DSP56300 Assembly Code Development
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Usage of Simulator versus Debugger

User Command Differences

Table 4-1 Input and Output Commands: Simulator vs. Debugger (Continued)

Categories

REPORTING AND FORMATTING.

1. Time information (cycle count) provided?
Simulator: Yes. Timing information may be specified for control ("input" command)
and generated for results ("output" command).
Debugger: No.

2. History info (instruction execution) provided?
Simulator: Yes. Provided by "ouput" command. Can provide more detail than
"history" command (e.g., provides info on wait states and pipeline stalls).
Debugger: No.

3. String format available?
Simulator: Yes. Provided by "output” command. Null-terminated strings (useful for
C code debugging).
Debugger: No.

DSP56300 Assembly Code Development 4-7
For More Information On This Product,
Go to: www.freescale.com

} { Freescale Semiconductor, Inc.

uaage of Simulator versus Debugger

User Command Differences

4-8 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

SECTION 5

HELPFUL CODING AND DEBUGGING
TIPS

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ieipful Coding and Debugging Tips

5.1 ASSEMBLY CODING e 5-3
5.1.1 Using the One-Line Assembler. 5-3
51.2 Using the Help Command for Registers 5-4
5.2 DEBUGGING. e 5-7
5-2 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Helpful Coding and Debugging Tips

Assembly Coding

5.1 ASSEMBLY CODING

The following sections contain a few useful tips for quicker, easier, and more error-free
assembly code writing.

5.1.1 Using the One-Line Assembler

The DSP56300 instruction set is highly orthogonal (i.e., address mode choices and
register choices apply equally to many different instructions). However, the number of
registers, the parallel move architecture, and the multiple instruction classes can
sometimes make the selection of operands and modes time consuming and tedious. A
very convenient way to check a line of assembly code for legal address modes, register
choices, and syntax is to use the one-line assembler built into the Simulator.

For example, suppose the user needs an instruction with a parallel X memory and
register data move (a “move X:R:” instruction), such as “move x:(r0)+,x0 a,y0”. From the
Simulator, the user would enter the commands shown below. User entries are in bold,;
note that the instruction, space, and semicolon are inserted before the existing “nop”.

Example 5-1 Simulator Confirmation of Legal Instruction

MOTOROLA DSP56300 SIMULATOR: VERSION 6.0.33 06-26-96

asmpo

p:$000000000000 =nop

Change: movex(f0y+x0ay0; nop press {Retum} - the one-line assembler
advances to the next instruction

p:$3000001 000000 =nop press {up-amow} to see ifthe
instruction was entered as desired

p:$000000109800 =move x(10)+x0ay0

However, if the y register is used instead of y0, the resultant instruction is illegal:

Example 5-2 Simulator Alert of Illegal Register

Change: move x(0y+x0ay; nop
Invalid register specified
DSP56300 Assembly Code Development 5-3

For More Information On This Product,
Go to: www.freescale.com

} { Freescale Semiconductor, Inc.

ieipful Coding and Debugging Tips

Assembly Coding

As another example, consider the following illegal “movep” instruction:

Example 5-3 Simulator Alert of Illegal Addressing

Change: movep x:$1000,0:$2000 ; nop
/O short addressing must be used for source operand

Changing the X memory address to a valid 1/0 short location (e.g., $fffffe) will result in
a legal instruction and no error message from the Simulator.

5.1.2 Using the Help Command for Registers

Another very useful trick involves the use of the Simulator or debugger “help
register_name” feature to create a miniature “programming sheet”.

As an example, suppose the Address Attribute Register 0 (AARO0) needs to be
programmed. The user can perform the following actions from the Simulator:

Example 5-4 Simulator Generation of Register Template

MOTOROLA DSP56300 SIMULATOR: VERSION 6.0.33 06-26-96

log s progsheet
Output log file:fjorogsheetlog

help aar0

Read-White core register. X:fffffo

Port A Address Attribute Register

BB
AABBBBBBBBBBBBBBBBBBBBBB
CCAAAAAAAAAANNNNPBYXPAAA
11CCCCCCCCCCCCCCAAEEEATT
1098765432103210CMNNNP10

222211111111110000000000<BitNumber
321098765432109876543210

log off

5-4 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Helpful Coding and Debugging Tips

Assembly Coding

This results in the file progsheet.log containing the following:

Example 5-5 Register Template Saved in File

help aar0

Read-White core register. X:fffffo

Port A Address Attribute Register

{BB}
{AABBBBBBBBBBBBBBBBBBBBBB}
{CCAAAAAAAAAANNNNPBYXPAAA}
{L1CCCCCCCCCCCCCCAAEEEATT}
{1098765432103210CMNNNP10}

222211111111110000000000<BitNumber
321098765432109876543210
log off

The curly braces can be removed by using a text editor to search for all occurrences of *{*
or ‘}’ and to replace each occurrence with a null string. This realigns the bit names with
the bit values. A shortcut method that avoids the curly braces altogether is to merely

select and copy the output from the Simulator window and paste it into a text editor
window.

The same technigue may also be used for the documentation of actual register values.
For example, to enable communication with the entire 32 Kword SRAM bank on the
DSP56301ADM, using either X or Y accesses to locations $8000 through $8fff, one could
create the Simulator output shown in the following example:

DSP56300 Assembly Code Development 5-5
For More Information On This Product,
Go to: www.freescale.com

V¥ ¢
i

Freescale Semiconductor, Inc.

ieipful Coding and Debugging Tips

Assembly Coding

Example 5-6 Simulator Output of Register Values

MOTOROLA DSP56300 SIMULATOR: VERSION 6.0.33 06-26-96
radix h
change aar0 8931

help aar0

Read-White core register. X:fffffo

Port A Address Attribute Register

BB
AABBBBBBBBBBBBBBBBBBBBBB
CCAAAAAAAAAANNNNPBYXPAAA
11CCCCCCCCCCCCCCAAEEEATT
1098765432103210CMNNNP10

222211111111110000000000<BitNumber
321098765432109876543210

A suitable portion of the output may then be pasted into the assembly code and
commented out as follows:

Example 5-7 Register Display Used in Code Comments

BB
‘AABBBBBBBBBBBBBBBBBBBBBB
. CCAAAAAAAAAANNNNPBYXPAAA
11CCCCCCCCCCCCCCAAEEEATT
1098765432103210CMNNNP10

Notes:

1. The demarcations of the nibble boundaries were manually added to the
above examples for illustrative purposes. This may be included as a
feature in later versions of the tools.

2. The debugger must be used to generate the displays of OnCE or PLL
registers.

5-6

DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Helpful Coding and Debugging Tips

Debugging
5.2 DEBUGGING

A simple way to speed up the debugging process is to use command files. A common
example of this would be the use of the following pair of files to modify the Status
Register (SR):

Example 5-8 Simple Command File Pair

mask.cmd:
csrsr{$300; disable all maskable interrupts

unmask.cmd:
c sr sr&$fffcff ; enable all levels of inteupts

The user need only type “mask {Return}” and “unmask {Return}” from the debugger
command line. The comments in the command file are displayed during the execution of

the file; in some cases this can be an aid in keeping track of what various command files
are doing.

Command files can also be nested. For example, the command file appl.cmd could be
used to load and run the program appl.cld on the DSP56301ADM. The pc.cmd part of this
program might be run by itself in order to reinitialize the Program Counter when one
wanted to restart the program but did not need to reset anything or reload the program.

Example 5-9 Nested Command Files

appl.cmd:
fs reset the cormmand converter and DSP
lappl load appl.cd
pc iniialize the program courtter
g begin execution
pc.cmd:
cpcO

Another easily overlooked but useful feature is the use of the radix and display
commands in conjunction. Besides changing the default radix for command line entry,
radix can be used to specify the display format (decimal, hexadecimal, etc.) for any
register or memory location (both of which can be enabled for automatic display with
the display command). This functionality also applies to the Simulator.

&S

DSP56300 Assembly Code Development 5-7
For More Information On This Product,
Go to: www.freescale.com

} { Freescale Semiconductor, Inc.

ieipful Coding and Debugging Tips

Debugging

5-8 DSP56300 Assembly Code Development

For More Information On This Product,
Go to: www.freescale.com

	DSP56300 Assembly Code Development Using the Motor...
	1 Introduction
	1.1 Introduction
	1.2 Terms and Definitions
	1.3 Scope

	2 Software Development Flow
	2.1 Software Development Flow
	2.1.1 The “make” Function
	2.1.2 Filename Conventions
	2.1.3 Target Boards

	2.2 Shared Toolset Resources

	3 Software Build Process
	3.1 Introduction
	3.2 Project makefile
	3.2.1 UNIX Example
	3.2.2 Porting from UNIX to DOS

	3.3 Assembly Code Files
	3.4 Linker Files
	3.5 Listing Files
	3.6 Executable File

	4 Usage of Simulator versus Debugger
	4.1 Overview
	4.2 Relative Advantages
	4.3 User Command Differences

	5 Helpful Coding and Debugging Tips
	5.1 Assembly Coding
	5.1.1 Using the One-Line Assembler
	5.1.2 Using the Help Command for Registers

	5.2 Debugging

