

MOTOROLA Semiconductor Technical Data

Advance Information

DSP56654/D Rev. 1, 10/00

DSP56654 Integrated Cellular Baseband Processor Data Sheet

Part 1 Introduction

Motorola designed the DSP56654 to support the rigorous demands of the cellular subscriber market. Optimized for GSM, the high level of on-chip integration in the DSP56654 minimizes application system design complexity and component count, resulting in very compact implementations.

Figure 1-1. DSP56654 System Block Diagram

This document contains information on a new product. Specifications and information herein are subject to change without notice.
© Copyright Motorola, Inc., 2000. All rights reserved.

This integration also yields very low power consumption and cost-effective system performance. The DSP56654 combines the power of Motorola's 32-bit M•CORE ™ MicroRISC Engine (MCU) and the DSP56600 digital signal processor (DSP) core with on-chip memory, protocol timer, and custom peripherals to provide a single-chip cellular base-band processor. Figure 1-1 shows the basic block diagram of the DSP56654.

1.1 Introduction to the DSP56654

Refer to Section 1.2 for information on this data sheet and on the DSP56654.

1.2 Content Organization

This section outlines the information contained in this document.

Part 1, "Introduction" 1	
1.1, "Introduction to the DSP56654"1	-2
1.2, "Content Organization" 1	-2
1.3, "Data Conventions" 1	1-3
1.4, "Features" 1	-4
1.5, "Target Applications" 1	-5
1.6, "Product Documentation" 1	1-5
1.7, "Ordering Information" 1	-6
Part 2, "Signal/Connection Descriptions"	2-1
2.1, "DSP56654 Pin Description"	
2.2, "PBGA/MBGA Package Description"	
2.3, "DSP56654 Signal/Pin Identification"	
2.4, "DSP56654 Signal Description"	
2.5, "Power"	
2.6, "Ground"	
2.7, "PLL and Clock"	
2.8, "Address Bus"	
2.9, "Data Bus"	
2.10, "Bus Control"	
2.11, "DSP X-Y Visibility Port (35 Pins)"	
2.12, "Chip Selects"	
2.13, "Reset, Mode, and Multiplexer Control"	
2.14, "Interrupts"	
2.15, "Timers"	
2.16, "Keypad Port"	
2.17, "Serial Data Port A (UARTA)"	
2.18, "Serial Data Port B (UARTB)"	
2.19, "Serial Control Port A (QSPIA)"	
2.20, "Serial Control Port B(QSPIB)"	
2.21, "SmartCard Port"	
2.22, "Serial Audio Codec Port"	
2.23, "Baseband Codec Port"	30
2.24, "Emulation Port"	
2.25, "Debug Control Port"	
2.26, "JTAG Port"	

Part 3, "Specifications"	3-1
3.1, "General Characteristics"	
3.2, "Maximum Ratings"	
3.3, "Thermal Characteristics"	3-2
3.4, "DC Electrical Characteristics"	3-2
3.5, "Clock Requirements"	
3.6, "External Bus Interface Requirements"	3-3
3.7, "AC Electrical Characteristics"	
3.8, "Internal Clocks"	
3.9, "PLL Characteristics"	3-5
3.10, "RESET, Mode Select, and Interrupt Timing"	3-5
3.11, "External Interface Module Timing"	3-7
3.12, "Emulation Port Timing"	3-10
3.13, "SmartCard Timing"	3-10
3.14, "QSPI Timing"	
3.15, "Audio Serial Codec and Baseband Serial Codec Timing"	3-13
3.16, "JTAG Port Timing"	3-18
Part 4, "Pin-Out and Package Information"	4-1
4.1, "256-Pin BGA Details"	4-1
4.1.1, "PBGA Package Mechanical Drawing"	4-1
4.1.2, "MBGA Package Mechanical Drawing"	4-2
4.2, "Ordering Drawings"	
Part 5, "Design Considerations"	5-1
5.1, "Heat Dissipation"	
5.2, "Electrical Design Considerations"	

1.3 Data Conventions

This data sheet uses the following conventions:

- The overbar (e.g., "OVERBAR") is used to indicate a signal that is active when pulled low (e.g., "RESET").
- "Asserted" means that a high true signal (i.e., an active high) is high or that a low true signal (i.e., an active low) is low.
- "Deasserted" means that a high true signal is low or that a low true signal is high.

Please refer to the examples in Table 1-1.

Signal/Symbol	Logic State	Signal State	Voltage
PIN	True	Asserted	V _{IL} /V _{OL}
PIN	False	Deasserted	V _{IH} /V _{OH}
PIN	True	Asserted	V _{IH} /V _{OH}
PIN	False	Deasserted	V _{IL} /V _{OL}

Table 1-1. Data Conventions

1.4 Features

The DSP56654 offers the following suite of features.

- RISC M•CORE MCU
 - 32-bit load/store RISC architecture
 - Fixed 16-bit instruction length
 - 16-entry 32-bit general-purpose register file
 - 32-bit internal address and data buses
 - Efficient four-stage, fully interlocked execution pipeline
 - Special branch, byte, and bit manipulation instructions
 - Support for byte, half-word, and word memory accesses
 - Fast interrupt support via vectoring/auto-vectoring and a 16-entry dedicated alternate register file
- High-performance DSP56600 core
 - $-1 \times \text{engine}$ (e.g., 70 MHz = 70 MIPS)
 - Fully pipelined 16×16 -bit parallel multiplier-accumulator (MAC)
 - Two 40-bit accumulators including extension bits
 - 40-bit parallel barrel shifter
 - Highly parallel instruction set with unique DSP addressing modes
 - Position-independent code support
 - Nested hardware DO loops
 - Fast auto-return interrupts
 - On-chip support for software patching and enhancements
 - Realtime trace capability via external address bus
- On-chip memories
 - 4K × 32-bit MCU ROM
 - 512 × 32-bit MCU RAM
 - 40K × 24-bit DSP Program RAM
 - 2K × 24-bit DSP Program ROM
 - 31K × 16-bit DSP data RAM, split into 16K × 16-bit X data RAM and 15K × 16-bit Y data RAM spaces
 - 2K × 16 DSP/MCU Interface, dual port RAM (part of the 16K ×16 X data RAM
- On-chip peripherals
 - Fully programmable phase-locked loop (PLL) for DSP clock generation
 - External interface module (EIM) for glueless system integration
 - External 22-bit address and 16-bit data MCU buses
 - Thirty-two source MCU interrupt controller
 - Intelligent MCU/DSP interface (MDI) dual 2K × 16-bit dual port RAM (shares 2K DSP X data RAM) with messaging status and control
 - Viterbi accelerator for GSM equalizer and channel decoder

- Serial audio codec port
- Serial baseband codec port
- One DMA channel connected to selectable peripherals
- Protocol timer frees the MCU from radio channel timing events
- Two queued serial peripheral interface (QSPI) communicate with external peripherals
- Keypad port capable of scanning up to an 8×8 matrix keypad
- Software watchdog timer, DSP timer, O/S programmable interrupt timer, and MCU general purpose timers
- Pulse width modulation (PWM) output
- Two universal asynchronous receiver/transmitter (UARTs) with FIFO
- IEEE 1149.1-compliant boundary scan Joint Test Action Group (JTAG) test access port (TAP)
- Integrated DSP/M•CORE On-Chip Emulation (OnCETM) module
- DSP address bus visibility and DSP data bus visibility modes for system development
- ISO 7816-compatible SmartCard port
- Operating features
 - Comprehensive static and dynamic power management
 - M•CORE operating frequency: dc to 16.8 MHz at 1.8 V
 - DSP operating frequency: dc to 58.8 MHz at 1.8 V
 - Internal operating voltage range: 1.8–2.5 V with 3.3 V-tolerant input/output (I/O)
 - Operating temperature: –40° to 85°C ambient
 - 256-pin 17 × 17mm plastic ball grid array (PBGA) package

1.5 Target Applications

The DSP56654 is intended for use in cellular subscriber applications, primarily GSM, and other applications needing both DSP and control processing.

1.6 Product Documentation

The four manuals listed in Table 1-2 are required for a complete description of the DSP56654 and are necessary to design with the part properly. Documentation is available from a local Motorola distributor, a Motorola semiconductor sales office, a Motorola Literature Distribution Center, or the World Wide Web.

Document Name	Description of Contents	Order Number
DSP56600 Family Manual	Detailed description of the DSP56600 family core processor architecture and instruction set	DSP56600FM/AD
M•CORE Reference Manual	Detailed description of the M•CORE MCU and instruction set	MCORERM/AD

Table 1-2.	DSP56654	Documentation
------------	----------	---------------

DSP56654 User's Manual	Detailed description of DSP56654 memory, peripherals, and interfaces	DSP56654UM/D
DSP56654 Technical Data	DSP56654 pin and package descriptions; electrical and timing specifications	DSP56654/D

Table 1-2. DSP56654 Documentation (Continued)

1.7 Ordering Information

Table 1-3 lists the pertinent information needed to place an order. Consult a Motorola Semiconductor sales office or authorized distributor to determine availability and to order parts.

Part	Supply Voltage	Package Type	Pin Count	Order Number
DSP56654	3 V	Plastic ball grid array (PBGA)	256	Customer Specific
DSP56654	3 V	Map ball grid array (MBGA)	256	Customer Specific

Table 1-3. DSP56654 Ordering Information

Part 2 Signal/Connection Descriptions

The pins and signals of the DSP56654 are described in the following sections. Figure 2-1 and Figure 2-2 are top and bottom views of the package, respectively, showing the pin-outs. Subsequent tables list the pins by number and signal name. Figure 2-3 on page 2-12 is a representational pin-out of the chip grouping the signals by their function. Subsequent tables identify the signals of each group.

2.1 DSP56654 Pin Description

The following section provides information about the available packages for this product, including diagrams of the package pinouts and tables describing how the signals of the DSP56654 are allocated for the 256-pin PBGA/MBGA packages. Top and bottom views of the PBGA/MBGA package are shown in Figure 2-1 and Figure 2-2 with their pin-outs, while Table 2-1 on page 2-4 identifies the signal associated with each pin.

2.2 PBGA/MBGA Package Description

2.3 DSP56654 Signal/Pin Identification

I

Table 2-1. DSP56654 PBGA/MBGA Signal Identification by Pin Number

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
A1	XYA6	B11	HV _{DD}	D5	TOUT2
A2	XYA5	B12	SRDB2	D6	TOUT6
A3	XYA4	B13	SCOB	D7	TOUT7
A4	XYA0	B14	SRDB	D8	TOUT12
A5	ΤΟυτο	B15	EV _{DD}	D9	SPICS0A
A6	TOUT5	B16	SCOA	D10	SPICS0B
A7	HGND	C1	LGND	D11	QSCKB
A8	TOUT11	C2	XYA7	D12	MOSIB
A9	QSCKA	C3	XYA8	D13	SRDA
A10	SPICS3B	C4	XYRW	D14	PSTAT2
A11	HGND	C5	TOUT1	D15	PSTAT3
A12	SCKB2	C6	TOUT3	D16	STDA
A13	SC1B	C7	TOUT8	E1	XYA13
A14	STDB	C8	HV _{DD}	E2	XYA12
A15	SC2A	C9	MOSIA	E3	XYA14
A16	SC1A	C10	SPICS1B	E4	XYA15
B1	LV _{DD}	C11	MISOB	E5	A15
B2	ХҮАЗ	C12	DSP_IRQ	E6	TOUT13
B3	XYA2	C13	SCKB	E7	TOUT14
B4	XYST	C14	SC2B	E8	TOUT15
B5	XYSEL	C15	SCKA	E9	SPICS3A
B6	TOUT4	C16	EGND	E10	SPICS2A
B7	TOUT9	D1	XYA9	E11	SPICS1A
B8	TOUT10	D2	XYA10	E12	SPICS4B
B9	MISOA	D3	XYA11	E13	PSTAT0
B10	SPICS2B	D4	XYA1	E14	KGND

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
E15	PSTAT1	G8	GND _{SUBSTRATE}	J2	A0
E16	KV _{DD}	G9	GND _{SUBSTRATE}	J3	EB1
F1	A19	G10	GND _{SUBSTRATE}	J4	A2
F2	A20	G11	DSP_DE	J5	AV _{DD}
F3	A21	G12	TDI	J6	A5
F4	A18	G13	RTSA/IC2A/RESET_IN	J7	GND _{SUBSTRATE}
F5	A10	G14	RXA/IC1/TDI	J8	GND _{SUBSTRATE}
F6	GND _{SUBSTRATE}	G15	TXA/TDO	J9	GND _{SUBSTRATE}
F7	SPICS4A	G16	TEST	J10	GND _{SUBSTRATE}
F8	QV _{CC}	H1	A12	J11	QV _{CCH}
F9	QV _{CCH}	H2	A13	J12	RXB
F10	QGND	H3	A14	J13	ROW7/RIA/SCKA/TCK
F11	GND _{SUBSTRATE}	H4	A11	J14	ROW4
F12	TDO	H5	A8	J15	ROW5/IC2B
F13		H6	A6	J16	ROW6/DCDA/SC2A/ DSP_DE
	MCU_DE	H7	GND _{SUBSTRATE}		
F14	SIZ1	H8	GND _{SUBSTRATE}	K1	EB0
F15	SIZO	H9	GND _{SUBSTRATE}	K2	CKIL
F16	MUX_CTL	H10	GND _{SUBSTRATE}	K3	QV _{CCH}
G1	AV _{DD}	H11	MCU_DE	K4	СКІН
G2	AGND	H12	TMS	K5	AGND
G3	A16	H13	ТСК	K6	A4
G4	A17	H14	TRST	K7	GND _{SUBSTRATE}
G5	A9	H15	GGND	K8	GND _{SUBSTRATE}
G6	A7	H16	GV _{DD}	K9	GND _{SUBSTRATE}
G7	GND _{SUBSTRATE}	J1	A1	K10	GND _{SUBSTRATE}

Table 2-1. DSP56654 PBGA/MBGA Signal Identification by Pin Number (Continued)

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
K11	ТХВ	M5	XYD2	N16	INT0
K12	RTSB	M6	XYD7	P1	CS4
K13	ROW1	M7	QV _{CC}	P2	CS2
K14	ROW2	M8	QV _{CCH}	P3	D4
K15	ROW3	M9	XYD9	P4	D7
K16	GGND	M10	XYD10	P6	D10
L1	QGND	M11	XYD11	P5	D8
L2	СКОН	M12	GV _{DD}	P7	D15
L3	FGND	M13	INT6/DSRA/STDA/TRST	P8	XYD3
L4	QV _{CC}	M14	INT5	P9	XYD15/TXA
L5	A3	M15	INT3	P10	PGND
L6	GND _{SUBSTRATE}	M16	INT4	P11	BGND
L7	QGND	N1	CV _{DD}	P12	SENSE
L8	MV _{DD}	N2	CS1	P13	RESET_OUT
L9	MGND	N3	CS0	P14	COL7/PWM
L10	XYD8	N4	CGND	P15	COL6/OC1
L11	GND _{SUBSTRATE}	N5	D9	P16	COL5
L12	CTSB	N6	D13	R1	CS5
L13	QV _{CC}	N7	D14	R2	CS3
L14	INT7/DTRA/SCLKA/SRDA/	N8	XYD6	R3	D3
	TMS	N9	XYD12	R4	D6
L15	ROW0	N10	P1GND	R5	DV _{DD}
L16	QGND	N11	SIMCLK	R6	D11
M1	ŌĒ	N12	SIMDATA	R7	XYD0
M2	R/W	N13	COL0	R8	XYD4
M3	СКО	N14	INT2	R9	XYD14/RXA
M4	FV _{DD}	N15	INT1	R10	PCAP

Table 2-1. DSP56654 PBGA/MBGA Signal Identification by Pin Number (Continued)

Table 2-1. DSP56654 PBGA/MBGA Signal Identification by Pin Number (Continued)

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
R11	BV _{DD}	Т3	D2	T11	PWR_EN
R12	MOD	T4	D5	T12	SIMRESET
R13	RESET_IN	T5	DGND	T13	ST0
R14	COL1	T6	D12	T14	COL3
R15	COL2	T7	XYD1	T15	GGND
R16	COL4	T8	XYD5	T16	GV _{DD}
T1	D0	Т9	XYD13		
T2	D1	T10	PV _{CC}		

Table 2-2. DSP56654 PBGA/MBGA Signal Identification by Name

Signal Name	Pin No.	Signal Name	Pin No.	Pin No. Signal Name	
A0	J2	A17	G4	COL3	T14
A1	J1	A18	F4	COL4	R16
A2	J4	A19	F1	COL5	P16
A3	L5	A20	F2	COL6	P15
A4	K6	A21	F3	COL7	P14
A5	J6	AGND	G2, K5	CS0	N3
A6	H6	AV _{DD}	G1, J5	CS1	N2
A7	G6	BGND	P11	CS2	P2
A8	H5	BV _{DD}	R11	CS3	R2
A9	G5	CGND	N4	CS4	P1
A10	F5	СКІН	K4	CS5	R1
A11	H4	CKIL	K2	CTSA	F13
A12	H1	СКО	M3	CTSB	L12
A13	H2	СКОН'	L2	CV _{DD}	N1
A14	H3	COL0	N13	D0	T1
A15	E5	COL1	R14	D1	T2
A16	G3	COL2	R15	D2	Т3

Table 2-2. DSF 50054 FBGA/MBGA Signal identification by Name (Continued)					
Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
D3	R3	GV _{DD}	H16,M12,	PSTAT1	E15
D4	P3		T16	PSTAT2	D14
D5	T4	HGND	A7,A11	PSTAT3	D15
D6	R4	HV _{DD}	B11, C8	PV _{CC}	T10
D7	P4	INTO	N16	PWR_EN	T11
D8	P5	INT1	N15	QGND	F10, L1, L7,
D9	N5	INT2	N14		L16
D10	P6	INT3	M15	QSCKA	A9
D11	R6	INT4	M16	QSCKB	D11
D12	T6	INT5	M14	QV _{CC}	F8, L4, L13, M7
D13	N6	INT6	M13		1717
D14	N7	INT7	L14	QV _{CCH}	F9, J11, K3,
D15	P7	KGND	E14	M8	IVIO
DGND	T5	KV _{DD}	E16	R6	INT0
DSP_DE	G11	LGND	C1	R/W	M2
DSP_IRQ	C12	LV _{DD}	B1	RESET_IN	G13, R13
DV _{DD}	R5	MCU_DE	H11	RESET_OUT	P13
EBO	K1	MISOA	B9	ROW0	L15
EB1	J3	MISOB	C11	ROW1	K13
EGND	C16	MOD	R12	ROW2	K14
EV _{DD}	B15	MOSIA	C9	ROW3	K15
FGND	L3	MOSIB	D12	ROW4	J14
FV _{DD}	M4	MUX_CTL	F16	ROW5	J15
GGND	H15,K16,	ŌE	M1	ROW6	J16
	T15	P1GND	N10	ROW7	J13
GND _{SUBSTRATE}	F6,F11,	PCAP	R10	RTSA	G13
	G7-10, H7-10,J7-	PGND	P10	RTSB	K12
	10,K7-10, L6,L11	PSTAT0	E13	RXA	G14
	1		1		1

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
RXB	J12	SRDB2	B12	XYA0	A4
SC1A	A16	ST0	T13	XYA1	D4
SC1B	A13	STDA	D16	XYA2	B3
SC2A	A15	STDB	A14	XYA3	B2
SC2B	C14	тск	H13	XYA4	A3
SCKA	C15	TD0	F12	XYA5	A2
SCKB	C13	TDI	G12	XYA6	A1
SCKB2	A12	TEST	G16	XYA7	C2
SCOA	B16	TMS	H12	XYA8	C3
SCOB	B13	TRST	H14	XYA9	D1
SENSE	P12	ТХА	G15	XYA10	D2
SIMCLK	N11	ТХВ	K11	XYA11	D3
SIMDATA	N12	ΤΟυΤο	A5	XYA12	E2
SIMRESET	T12	TOUT1	C5	XYA13	E1
SIZ0	F15	TOUT2	D5	XYA14	E3
SIZ1	F14	TOUT3	C6	XYA15	E4
SPICS0A	D9	TOUT4	B6	XYD0	R7
SPICS0B	D10	TOUT5	A6	XYD1	Т7
SPICS1A	E11	TOUT6	D6	XYD2	M5
SPICS1B	C10	TOUT7	D7	XYD3	P8
SPICS2A	E10	TOUT8	C7	XYD4	R8
SPICS2B	B10	TOUT9	B7	XYD5	Т8
SPICS3A	E9	TOUT10	B8	XYD6	N8
SPICS3B	A10	TOUT11	A8	XYD7	M6
SPICS4A	F7	TOUT12	D8	XYD8	L10
SPICS4B	E12	TOUT13	E6	XYD9	M9
SRDA	D13	TOUT14	E7	XYD10	M10
SRDB	B14	TOUT15	E8	XYD11	M11

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
XYD12	N9	XYD15	P9	XYST	B4
XYD13	Т9	XYRW	C4		
XYD14	R9	XYSEL	B5		

Table 2-2. DSP56654 PBGA/MBGA Signal Identification by Name (Continued)

2.4 DSP56654 Signal Description

DSP56654 signals are organized into 23 functional groups as summarized in Table 2-3. Figure 2-3 is a diagram of DSP56654 signals by functional group.

Functional Group	Number of Signals	Detailed Description	
Power (V _{CCX})		24	Table 2-4
Ground (GND _X)		21	Table 2-5
Substrate ground (GND)		20	Table 2-6
PLL and Clock		5	Table 2-6
Address bus	External Interface	22	Table 2-7
Data bus	Module	16	Table 2-8
Bus control	(EIM)	4	Table 2-9
Chip selects		6	Table 2-11
Reset, mode, and multiplexer control		5	Table 2-12
External interrupts		9	Table 2-13
Protocol Timers		16	Table 2-14
Keypad Port		16	Table 2-15
Serial data port A (UARTA)		4	Table 2-16
Serial data port B (UARTB)		4	Table 2-17
Serial control port A (QSPIA)		8	Table 2-18
Serial control port B (QSPIB)		8	Table 2-19
SmartCard port (SIM)	5	Table 2-20	
Serial audio codec port (SAP)		6	Table 2-21
Baseband codec port		8	Table 2-22

 Table 2-3.
 Signal Functional Group Allocations

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

Functional Group		Number of Signals	Detailed Description
Emulation port	Develop- ment and	6	Table 2-23
Debug control port	Test	2	Table 2-24
JTAG test access port (TAP)		6	Table 2-25
DSP X-Y Visibility Port]	35	Table 2-10

Table 2-3. Signal Functional Group Allocations (Continued)

2.5 Power

Table	2-4.	Power

Power Names	Description
AV _{DD}	Address bus power—These lines supply power to the address bus.
BV _{DD}	SmartCard interface power—This line supplies isolated power for SmartCard interface I/O drivers.
CV _{DD}	Bus control power—This line supplies power to the bus control logic.
DV _{DD}	Data bus power—These lines supply power to the data bus.
EV _{DD}	Audio codec port power—This line supplies power to audio codec I/O drivers.
FV _{DD}	Clock output power —This line supplies a quiet power source for the CKOUT output. Ensure that the input voltage to this line is well-regulated and uses an extremely low impedance path to tie to the V _{CC} power rail. Use a 0.1 μ F bypass capacitor located as close as possible to the chip package to connect between the FV _{DD} line and the FGND line.
GV _{DD}	GPIO power —This line supplies power to the GPIO, keypad, data port, interrupts, STO, and JTAG I/O drivers.
HV _{DD}	Baseband codec and timer power —This line supplies power to the baseband codec, timer and QSPI I/O drivers.
QV _{CCH}	Quiet power high —These lines supply a quiet power source to the pre-driver voltage converters. This value should be greater than or equal to the maximum value of the power supplies of the chip I/O drivers (i.e., the maximum of AV _{DD} , BV _{DD} , CV _{DD} , DV _{DD} , EV _{DD} , FV _{DD} , GV _{DD} , HV _{DD} , and KV _{DD}).
KV _{DD}	Emulation port power—This line supplies power to the emulation port I/O drivers.
MV _{DD}	DSP Visibility Address and Port Control Power — This line supplies power to the DSP Visibility Address and Port Control system.
PV _{CC}	Analog PLL circuit power —This line is dedicated to the analog PLL circuits and must remain noise-free to ensure stable PLL frequency and performance. Ensure that the input voltage to this line is well-regulated and uses an extremely low impedance path to tie to the V _{CC} power rail. Use a 0.1 μ F capacitor and a 0.01 μ F capacitor located as close as possible to the chip package to connect between the PV _{CC} line and the PGND and P1GND lines.
QV _{CC}	Quiet power —These lines supply a quiet power source to the internal logic circuits. Ensure that the input voltage to this line is well-regulated and uses an extremely low impedance path to tie to the V _{CC} power rail. Use a 0.1 μ F bypass capacitor located as close as possible to the chip package to connect between the QV _{CC} lines and the QGND lines.

2.6 Ground

Table 2-5. Ground

Ground Names	Description
AGND	Address bus ground—These lines connect system ground to the address bus.
BGND	SmartCard interface ground—These lines connect system ground to the SmartCard bus.
CGND	Bus control ground—This line connects ground to the bus control logic.
DGND	Data bus ground—These lines connect system ground to the data bus.
EGND	Audio codec port ground—These lines connect system ground to the audio codec port.
FGND	Clock output ground —This line supplies a quiet ground connection for the clock output drivers. Ensure that this line connects through an extremely low impedance path to ground. Use a 0.1 μ F bypass capacitor located as close as possible to the chip package to connect between the FV _{DD} line and the FGND line.
GGND	GPIO ground —These lines connect system ground to GPIO, keypad, data port, interrupts, STO, and JTAG I/O drivers.
HGND	Baseband codec and timer ground —These lines connect system ground to the baseband codec, timer and QSPI I/O drivers.
KGND	Emulation port ground —These lines connect system ground to the emulation port I/O drivers.
LGND	DSP Visibility Address and Port Control Ground—This line grounds the DSP Visibility Adress and Port Control system
MGND	DSP Visibility Address Data/Data-Port Ground — This line grounds the DSP Visibility Address and Data Port Control system.
PGND	Analog PLL circuit ground—This line supplies a dedicated quiet ground connection for the analog PLL circuits and must remain relatively noise-free to ensure stable PLL frequency and performance. Ensure that this line connects through an extremely low impedance path to ground. Use a 0.1 μ F capacitor and a 0.01 μ F capacitor located as close as possible to the chip package to connect between the PV _{CC} line and the PGND line.
P1GND	Analog PLL circuit ground —This line supplies a dedicated quiet ground connection for the analog PLL circuits and must remain relatively noise-free to ensure stable PLL frequency and performance. Ensure that this line connects through an extremely low impedance path to ground. Use a 0.1 μ F capacitor and a 0.01 μ F capacitor located as close as possible to the chip package to connect between the P1V _{CC} line and the P1GND line.
QGND	Quiet ground —These lines supply a quiet ground connection for the internal logic circuits. Ensure that this line connects through an extremely low impedance path to ground. Use a 0.1 μ F bypass capacitor located as close as possible to the chip package to connect between the QV _{CC} line and the QGND line.
GND _{SUBSTRATE}	Substrate ground—These lines must be tied to ground.

Address Bus

2.7 PLL and Clock

Table 2-6.	PLL and Clock Signals
------------	-----------------------

Signal Name	Signal Type	State during Reset	Signal Description
СКІН	Input	Input	High frequency clock input —This signal provides the high frequency input clock, a 13 to 16.8 MHz.300mVpp sine wave input. If the frequency needs to be higher, it must be driven at CMOS levels and the CKIHF bit of the CKCTL register must be set.
CKIL	Input	Input	Low frequency clock input —This signal provides the low frequency input clock and should be less than or equal to the frequency of CKIH. With a value of 32,768 Hz square wave, this is the default input clock after reset.
СКО	Output	Driven low	DSP/MCU output clock —This signal provides an output clock synchronized to the DSP or MCU core internal clock phases, according the selected programming option. The choices of clock source and enabling/disabling the output signal are software selectable.
СКОН	Output	Driven low	High frequency clock output —This signal provides an output clock derived from the CKIH input. This signal can be enabled or disabled by software and defaults to disabled logic-low at reset.
PCAP	Input/ Output	Indeter- minate	PLL capacitor —This signal is used to connect the required external filter capacitor to the PLL filter. Connect one end of the capacitor to PCAP and the other to V_{CCP} . The value of the capacitor can be found in Table 3-8 on page 3-5.

2.8 Address Bus

Table 2-7.	Address	Bus Signals
------------	---------	-------------

Signal Names	Signal Type	State during Reset	Signal Description
A0–21	Output	Driven low	Address bus—These signals specify the address for external memory accesses. If there is no external bus activity, A0–A21 remain at their previous values to reduce power consumption.

2.9 Data Bus

Table 2-8. Data Bus Signals

Signal Names	Signal Type	State during Reset	Signal Description
D0-D15	Input/ Output	Input	Data bus —These signals provide the bidirectional data bus for external memory accesses. D0–D15 are held at their last logic state when there is no external bus activity and during hardware reset. This is done with weak "keepers" inside the I/O buffers.

2.10 Bus Control

Signal Name	Signal Type	State during Reset	Signal Description
R/W	Output	Driven high	Read/write —This signal indicates the bus access type. A high signal indicates a bus read. A low signal indicates a write to the bus. When accessing memory it can also be used as write enable (\overline{WE}) signal. When accessing a peripheral chip, the signal acts as a read/write. The signal is set to high during hardware reset.
EBO	Output	Driven high	Enable byte 0 —When driven low, this signal indicates access to data byte 0 (D8–D15) during a read or write cycle. This pin may also act as a write byte enable, if so programmed. This output is used when accessing 16-bit wide SRAM.
EB1	Output	Driven high	Enable byte 1 —When driven low, this signal indicates access to data byte 1 (D0–D7) during a read or write cycle. This pin may also act as a write byte enable, if so programmed. This output is used when accessing 16-bit wide SRAM.
ŌĒ	Output	Driven high	Bus select —When driven low, this signal indicates that the current bus access is a read cycle and enables slave devices to drive the data bus with a read.

Table 2-9. Bus Control Signals

2.11 DSP X-Y Visibility Port (35 Pins)

Table 2-10. DSP X-Y Visibility Port Signals

Signal Name	Signal Type	State during Reset	Signal Description
XYA0-15	Output	N/C	DSP X or Y Address Bus Visibility - These signals reflect the value of the internal DSP Address lines XAB0-15 or YAB0-15, according to the XYSEL bit in the DSP operating mode register (OMR).

Table 2-10.	DSP X-Y	Visibility	Port Signals	(Continued)
-------------	---------	------------	---------------------	-------------

Signal Name	Signal Type	State during Reset	Signal Description
XYD15	Output	GPI	DSP X or Y Data Bus Visibility - This signal can be programmed as an output signal, reflecting the value of the internal DSP Data lines XDB15 or YDB15, according to the XYSEL bit in the DSP OMR.
ТХА	Output		UARTA Transmit - The UART A transmit pin. GPIO pin. The GPIO function can be controlled from two sets of registers:
GPIO	Input/		The emulation port registers, if the bit GPC9 in GPCR is cleared.
	Output		The UART port control registers, if the bit GPC9 in GPCR is set.
			The default state at reset is general purpose input pin controlled from the emulation port registers.
XYD14 RXA	Output	GPI	DSP X or Y Data Bus Visibility - This signal can be programmed as an output signal, reflecting the value of the internal DSP Data line XDB14 or YDB14, according to the XYSEL bit in the DSP Operating Mode Register. UART A Receive - the UART A receive pin.
GPIO	Input/		GPIO pin. The GPIO function can be controlled from two sets of registers:The emulation port registers, if the bit GPC9 in GPCR is cleared.
	Output		 The emulation port registers, if the bit GPC9 in GPCR is cleared. The UART port control registers, if the bit GPC9 in GPCR is set.
			The default state at reset is general purpose input pin controlled from the
			emulation port registers.
XYD13-6	Output Input/	GPI	DSP X or Y Data Bus Visibility) - These signals can be programmed as output signals, reflecting the value of the internal DSP Data lines XDB13-6 or YDB13- 6, according to the XYSEL bit in the DSP OMR. GPIO pins.
	Output		The default state at reset is general purpose input pins.
XYD5-0	Output	N/C	DSP X or Y Data Bus Visibility - These signals reflect the value of the internal DSP Data lines XDB5-0 or YDB5-0, according to the XYSEL bit in the DSP OMR.
			The default state at reset is not connected.
XYST	Output	N/C	(DSP X or Y Strobe Visibility - When high, this signal indicates that a valid data transfer cycle is active over the internal DSP X or Y bus, according to the XYSEL bit in the DSP OMR.
			The default state at reset is not connected.
XYSEL	Output	N/C	DSP X or Y Select Visibility - When high, this signal indicates that the DSP X bus is selected for "visibility" in the DSP X-Y visibility port. When XYSEL is low, the DSP Y bus is selected for "visibility" in the DSP X-Y visibility port. This pin reflects the XYSEL bit in the DSP OMR. The default state at reset is not connected.
	Outrout	N/C	
XYRW	Output	N/C	DSP X or Y Read/Write Visibility - This output signal indicates if the current cycle on the internal DSP X or Y bus, according to the XYSEL bit in the DSP OMR, is a read cycle (when XYRW is high) or a write cycle (when XYRW is low). The default state at reset is not connected.

2.12 Chip Selects

Table 2-11.	Chip Select Signals
-------------	---------------------

Signal Name	Signal Type	State during Reset	Signal Description
CSO	Output	Chip- driven	Chip select 0 —This signal is asserted low based on the decode of the internal address bus bits A[31:24] and is typically used as the external flash memory chip select. After reset, accesses using this CS have a default of 15 wait states.
CS1-CS4	Output	Driven high	Chip select 1–chip select 4—These signals are asserted low based on the decode of the internal address bus bits A[31:24] of the access address. When not selected as chip select signals, these signals become general purpose outputs (GPOs). After reset, these signals are GPOs that are driven high.
CS5	Output	Driven low	Chip select 5—This signal is asserted high based on the decode of the internal address bus bits A[31:24] of the access address.When not selected as a chip select signal, this signal becomes a GPO. After reset, this signal is a GPO that is driven low.

2.13 Reset, Mode, and Multiplexer Control

Signal Name	Signal Type	State during Reset	Signal Description
RESET_IN	Input	Input	Reset input —This signal is an active low Schmitt trigger input that provides a reset signal to the internal circuitry. The input is valid if it is asserted for at least three CKIL clock cycles. This pin has a 47k Ω pull-up resistor. Note: If MUX_CTL is held high, the RTS signal of the serial data port (UART) becomes the RESET_IN input line. Its input is valid if it is asserted for at least four CKIL clock cycles. (See Table 2-16 on page 2-24.)

Table 2-12. Reset, Mode, and Multiplexer Control Signals (C	ontinued)
---	-----------

Signal Name	Signal Type	State during Reset	Signal Description	
RESET_OUT	Output	Pulled low	 Note: Reset output—This signal is asserted CKIL clock cycles under one of the follo RESET_IN is pulled low for at least three CKII The alternate RESET_IN signal is enabled by pulled low for at least four CKIL clock cycles The watchdog count expires This signal is asserted immediately after the qua RESET_IN signal, remains asserted during RESI stretched for at least eight more CKIL clock cycles deasserted. Three CKIL clock cycles before RESI deasserted. Four CKIL clock cycles before the R negated, the MCU boot mode is latched from the 	wing conditions: L clock cycles MUX_CTL and is lifier detects a valid ET_IN assertion, and is as after RESET_IN is SET_OUT is ESET_OUT pin is
MOD	Input	Input	Mode select —This signal selects the MCU boot reset. If MOD is driven low at least four CKIL clo RESET_OUT is deasserted, then the internal MC first access and the M•CORE fetches the first wo location the external Flash memory. If MOD is dr clock cycles before RESET_OUT deassertion, th ROM is enabled and the M•CORE fetches the fir location in the internal ROM.	ck cycles before CU ROM ignores the ord from the first iven high four CKIL ien the internal MCU
MUX_CTL	Input	Input	Multiplexer control —This input allows the designate alternate set of pins to be used for RESET_IN, the signals, and the JTAG signals as defined below:	
			Normal (MUX_CTL low)	Alternate (MUX_CTL high)
			Interrupt signals INT6/STDA/DSR	TRST
			(See Table 2-13) INT7/SRDA/DTR/SCLK	TMS
			Keypad signals ROW6/SC2A/DCD (See Table 2-15) ROW7/SCKA/RI	DSP_DE
				TCK
			Serial Data Port TxD (UART) signals RxD/IC1	TDO TDI
			(See Table 2-16) RTS/IC2A	RESET_IN
			CTS	MCU_DE
			If MUX_CTL is driven low, the normal functions a MUX_CTL is driven high, the alternate functions Note: The user is responsible to ensure that t normal and alternate functions are mad provisions are made in the on-chip hard smooth switch. The external command	are selected. ransition between e smoothly. No lware to assure such a
			this signal <u>must</u> ensure that <u>critical pins</u> TMS and TRST signals and RESET_IN inactive values during and after the swit) are driven with tch.
			The MUX_CTL signal has an internal 100 k Ω pu	i-down resistor.
STO	Output	Chip driven	Soft turn off —This is a general purpose output p affected by reset.	bin. Its logic state is not

For Reset, mode, and MUX control signals equipped with resistors, all pull-ups and pull-downs are automatically disconnected when the pin is an output.

2.14 Interrupts

Signal Name	Signal Type	State during Reset	Signal Description
INT0-INT3	Input or Output	Input	Interrupt 0–interrupt 3 —These signals can be programmed as interrupt inputs or GPIO signals. The signals have on-chip 100 k Ω pull-up resistors.
			As Schmitt trigger interrupt inputs the signals can be programmed to be level sensitive, positive edge-triggered, or negative edge-triggered. When edge-triggered, triggering occurs at a voltage level and is not directly related to the fall time of the interrupt signal; however, as signal fall time of the interrupt signal increases, the probability of generating multiple interrupts due to this noise also increases.
			The signals are GPIOs when not programmed as interrupts. After reset, the default state for these signals is general purpose input (GPI).
INT4–INT5	Input or Output	Input	Interrupt 4–interrupt 5 —These signals can be programmed as interrupt inputs or GPIO signals, and have $10-27k\Omega$ pull-up resistors.
			As Schmitt trigger interrupt inputs, the signals can be programmed to be level sensitive, positive edge-triggered, or negative edge-triggered. When edge-triggered, triggering occurs at a voltage level and is not directly related to the fall time of the interrupt signal; however, as signal fall time of the interrupt signal increases, the probability of generating multiple interrupts due to this noise also increases.
			The signals are GPIOs when not programmed as interrupts. After reset, the default state for these signals is GPI.
Normal:			MUX_CTL driven low
INT6	Input or Output	Input	Interrupt 6 —When selected, this signal can be programmed as an interrupt input or a GPIO signal, and has a $47k\Omega$ pull-up resistor.
			As a Schmitt trigger interrupt input, the signal can be programmed to be level sensitive, positive edge-triggered, or negative edge-triggered. When edge-triggered, triggering occurs at a voltage level and is not directly related to the fall time of the interrupt signal; however, as signal fall time of the interrupt signal increases, the probability of generating multiple interrupts due to this noise also increases.
STDA	Output		Audio codec serial transmit data (alternate)—When programmed as STDA, this signal transmits data from the serial transmit shift register in the serial audio codec port.
			Note: When this signal is used as STDA, the primary STDA signal is disabled. (See Table 2-21.)
DSRA	Output		Data set ready —When programmed as GPIO output, this signal can be used as the DSR output for serial data port A. (See Table 2-16)
			The signal is a GPIO when not programmed as one of the above functions. After reset, the default state for this signal is GPI.

Table 2-13. Interrupt Signals

Signal Name	Signal Type	State during Reset	Signal Description	
Alternate:	·		MUX_CTL driven high	
TRST	Input	Input	Test Reset—When selected, this signal acts as the TRST input for the JTAG TAP controller. The signal is a Schmitt trigger input that asynchronously initializes the JTAG test controller when asserted.Note:When this signal is enabled, the primary TRST signal is	
			disconnected from the TAP controller. (See Table 2-25.)	
Normal:			MUX_CTL driven low	
INT7	Input or Output	Input	Interrupt 7 —When selected, this signal can be programmed as an interrupt input or a GPIO signal, and has a $47k\Omega$ pull-up resistor.	
			As a Schmitt trigger interrupt input, the signal can be programmed to be level sensitive, positive edge-triggered, or negative edge-triggered. When edge-triggered, triggering occurs at a voltage level and is not directly related to the fall time of the interrupt signal; however, as signal fall time of the interrupt signal increases, the probability of generating multiple interrupts due to this noise also increases.	
SRDA	Input		Audio codec serial receive data (alternate)—When programmed as SRDA, this signal receives data into the serial receive shift register in the serial audio codec port.	
			Note: When this signal is used as SRDA, the primary SRDA signal is disabled. (See Table 2-21.)	
DTRA	Input		Data terminal ready —When programmed as GPIO, this signal is used as the DTR positive and negative edge-triggered interrupt input for serial data port A. (See Table 2-16.)	
SCLK	Input		Serial clock –When so programmed, this signal provides the input clock for the serial data port (UART). (See Table 2-16.)	
			The signal is a GPIO when not programmed as one of the above functions. After reset, the default state for this signal is GPI.	
Alternate:		1	MUX_CTL driven high	
TMS	Input	Input	Test Mode SelectWhen selected, this signal acts as the TMS input for the JTAG TAP controller. The signal is used to sequence that TAP controller state machine. The TMS is sampled on the rising edge of TCINote:When this signal is enabled, the primary TMS signal is disconnected from the TAP controller. (See Table 2-25.)	
DSP_IRQ	Input	Input	DSP external interrupt request —This active low Schmitt trigger input can be programmed as a level-sensitive or negative edge-triggered maskable interrupt request input during normal instruction processing. If the DSP is in the stop state and DSP_IRQ is asserted, the DSP exits the stop state. This signal has an on-chip 47 k Ω pull-up resistor.	

For interrupt signals equipped with resistors, all pull-ups and pull-downs are automatically disconnected when the pin is an output.

īmers

2.15 Timers

Table 2-14. Timer Signals

Signal Name	Signal Type	State during Reset	Signal Description
TOUT0– TOUT15	Input or Output	Input	Timer output 0–15—These are Layer 1 Timer Output signals.Note:These signals are GPIOs when not used as timer outputs.After reset, the default state for these signals are GPIs.

2.16 Keypad Port

	Table 2-15.	Keypad Port	t Signals
--	-------------	-------------	-----------

Signal Name	Signal Type	State during Reset	Signal Description	
COL0-COL5	Input or Output	Input	Column strobe 0–5 —These signals function as keypad column strobes that can be programmed as regular or open-drain outputs. When not used as column strobe signals, these are GPIO signals. After reset, the default state is GPI.	
COL6 OC1	Input or Output Output	Input	 Column strobe 6—This signal functions as a keypad column strobe that can be programmed as a regular or open drain output. MCU timer output compare —When programmed as OC1, this is the MCU timer 1 output compare signal. When not programmed as OC1 and not used as a column strobe signal, this is a GPIO signal. After reset, the default state is GPI. 	
COL7 PWM	Input or Output Output	Input	 Column strobe 7—This signal functions as a keypad column strobe that can be programmed as a regular or open-drain output. Pulse width modulator output—When so programmed, this is the pulse width modulator output. When not programmed as PWM and not used as a column strobe signal, this is a GPIO signal. After reset, the default state is GPI. 	
ROW0– ROW4	Input or Output	Input	Row sense 0–4 —These signals function as keypad row senses. When not used as row sense signals, these are GPIO signals. After reset, the default state is GPI. These signals have on-chip 22 k Ω pull-up resistors.	
ROW5 IC2B	Input or Output Input	Input	 Row sense 5—This signal functions as a keypad row sense. MCU input compare 2 timer—When so programmed, this signal can be the input capture for the MCU input compare 2 timer. When not programmed as IC2B and not used as a row sense signal, this is a GPIO signal. After reset, the default state is GPI. 	
Normal:	<u> </u>	ļ	MUX_CTL driven low	

Signal Name	Signal Type	State during Reset	Signal Description
ROW6	Input or Output	Input	Row sense 6 —This signal functions as a keypad row sense and is equipped with an on-chip $100k\Omega$ pull-up resistor.
SC2A	Input or Output		Audio codec serial control 2 (alternate)—When programmed as SC2A, this signal provides I/O frame synchronization for the serial audio codec port. In synchronous mode, the signal provides the frame sync for both the transmitter and receiver. In asynchronous mode, the signal provides the frame sync for the transmitter only. As SC2A, this pin has a $100k\Omega$ pull-down resistor.
			Note: When this signal is used as SC2A, the primary SC2A signal is disabled. (See Table 2-21.)
DCDA	Output		Data carrier detect —When programmed as GPIO output, this signal can be used as the Carrier-Data-Detect for the Serial Data Port A. (See Table 2-16.)
			After reset, the default state is GPI.
Alternate:			MUX_CTL driven high
DSP_DE	Input	Input	Digital signal processor debug event —As an input signal, this signal provides a means to enter the debug mode of operation from an external command converter. An an output signal, it acknow-ledges that the DSP has entered the debug mode. When program-med as DSP_DE, this signal has an open-drain $100k\Omega$ pull-up.
	Output		When the DSP enters the debug mode due to a debug request or as the result of meeting a breakpoint condition, it asserts DSP_DE as an output signal for three clock cycles.
			Note: When this signal is enabled, the primary DSP_DE signal is disabled. (See Table 2-24.)
Normal:		I	MUX_CTL driven low
ROW7	Input or Output	Input	Row sense 7—This signal functions as a keypad row sense.
SCKA	Input		Audio codec serial clock (alternate)—When programmed as SCKA, this signal provides the serial bit rate clock for the serial audio codec port. In synchronous mode, the signal provides the clock input or output for both the transmitter and receiver. In asynchronous mode, the signal provides the clock for the transmitter only. Note: When this signal is used as SCKA, the primary SCKA signal is disabled. (See Table 2.21.)
RIA	Output		disabled. (See Table 2-21.) Ring indica<u>tor</u>—When programmed as GPIO output, this signal can be
			used as the RI output for the serial data port. (See Table 2-16.) After reset, the default state is GPI
Alternate:		1	MUX_CTL driven high

Signal Name	Signal Type	State during Reset	Signal Description	
ТСК	Input	Input	Test clock —When selected, this signal provides the TCK input for the JTAG TAP controller. The signal is used to synchronize the JTAG test logic. This signal is equipped with a $47k\Omega$ pull-up resistor.	
			Note: When this signal is enabled, the primary TCK signal is disconnected from the TAP controller. (See Table 2-25.)	

Table 2-15.	Keypad Port Signals	(Continued)
-------------	---------------------	-------------

For keypad port signals equipped with resistors, all pull-ups and pull-downs are automatically disconnected when the pin is an output.

2.17 Serial Data Port A (UARTA)

Signal Name	Signal Type	State during Reset	Signal Description	
Normal:			MUX_CTL driven low	
ТХА	Input or Output	Input	UART transmit —This signal transmits data from UARTA. The signal is a GPIO when not programmed as the TXA signal. After reset, the default state for this signal is GPI.	
Alternate:			MUX_CTL driven high	
TDO	Output		 Test data output—When selected, this signal provides the TDO serial output for test instructions and data from the JTAG TAP controller. TDO is a tri-state signal that is actively driven in the shift-IR and shift-DR controller states. Note: When this signal is enabled, the primary TDO signal is disconnected from the TAP controller. (See Table 2-25.) 	
Normal:			MUX_CTL driven low	
RXA	Input or Output	Input	UART receive —This signal receives data into UARTA.	
IC1	Input		Input compare 1 —When so programmed, the signal connects to an Input capture/output compare Timer used for autobaud mode support. The signal is a GPIO when not programmed as one of the above functions. This signal has an on-chip 47 k Ω pull-up resistor. After reset, the default state for this signal is GPI.	
Alternate:	1	1	MUX_CTL driven high	

Table 2-16. UARTA Signals

Signal Name	Signal Type	State during Reset	Signal Description	
TDI	Input	Input	Test data in —When selected, this signal provides the TDI serial input for test instructions and data for the JTAG TAP controller. TDI is sampled on the rising edge of TCK.	
			Note: When this signal is enabled, the primary TDI signal is disconnected from the TAP controller. (See Table 2-25.)	
Normal:	1		MUX_CTL driven low	
RTSA	Input or Output	Input	Request to send —This signal functions as the UARTA RTS signal.	
IC2A	Input		Input compare 2 A —When so programmed, this signal connects to an Input Capture Timer channel.	
			The signal is a GPIO when not programmed as one of the above functions. After reset, the default state for this signal is GPI.	
Alternate:	I	1	MUX_CTL driven high	
RESET_IN	Input	Input	Reset input —This signal is an active low Schmitt trigger input that provides a reset signal to the internal circuitry. The input is valid if it is asserted for at least three CKIL clock cycles.	
			Note: When this signal is enabled, the primary RESET_IN signal is disabled. (See Table 2-12.)	
Normal:			MUX_CTL driven low	
CTSA	Input or Output	Input	Clear to send —This signal functions as the UARTA $\overline{\text{CTS}}$ signal, and is equipped with a 47k Ω pull-up.	
			Note: The signal is a GPIO when not used as \overline{CTS} .	
			After reset, the default state for this signal is GPI.	
Alternate:			MUX_CTL driven high	
MCU_DE	Input	Input	Microcontroller debug event —As an input signal, this signal provides a means to enter the debug mode of operation from an external command converter. An an output signal, it acknowledges that the MCU has entered the debug mode. The signal is equipped with an open-drain $100k\Omega$ pull-up resistor.	
	Output		When the MCU enters the debug mode due to a debug request or as the result of meeting a breakpoint condition, it asserts MCU_DE as an output signal for several clock cycles.	
			Note: When this signal is enabled, the primary MCU_DE signal is disabled. (See Table 2-24.)	

Table 2-16. UARTA Signals (Continued)

Note: There are four additional signals that support UART operation, provided as follows:

- DSR—data set ready. This is an alternate function for the INT6 signal. (See Table 2-13 on page 2-20.)
- DTR—data terminal ready. This is an alternate function for the INT7 signal. (See Table 2-13 on page 2-20.)

- DCD—data carrier detect. This is an alternate function for the ROW6 signal. (See Table 2-15 on page 2-22.)
- RI—ring indicator. This is an alternate function for the ROW7 signal. (See Table 2-15 on page 2-22.)

For UARTA signals equipped with resistors, all pull-ups and pull-downs are automatically disconnected when the pin is an output.

2.18 Serial Data Port B (UARTB)

Signal Name	Signal Type	State during Reset	Signal Description	
ТХВ	Input or Output	Input	UART transmit —This signal transmits data from UARTB. The signal is a GPIO when not programmed as the TXB signal. After reset, the default state for this signal is GPI.	
RXB	Input or Output	Input	UART receive —This signal receives data into UARTB, and is equipped with a $47k\Omega$ pull-up. The signal is a GPIO when not programmed as the RXB signal. After reset, the default state for this signal is GPI.	
RTSB	Input or Output	Input	Request to send —This signal functions as the UARTB $\overline{\text{RTS}}$ signal. The signal is a GPIO when not programmed as one of the above functions. After reset, the default state for this signal is GPI.	
CTSB	Input or Output	Input	Clear to send —This signal functions as the UARTA $\overline{\text{CTS}}$ signal, and is equipped with a 47k Ω pull-up. The signal is a GPIO when not used as $\overline{\text{CTSA}}$. After reset, the default state for this signal is GPI.	

Table 2-17. UARTB Signals

2.19 Serial Control Port A (QSPIA)

Table 2-18. Serial Control Port A Signals

Signal Name	Signal Type	State during Reset	Signal Description
SPICS0A- SPICS3A	Output	Input	Synchronous peripheral chip Select 0–3—The output signals provide chip select signals for Queued Serial Peripheral Interface A (QSPIA). The signals are programmable as active high or active low. Each signal has an on-chip 100 k Ω pull-up resistor.
	Input or Output		These are GPIO signals when the chip select functions are not being used. After reset, the default state for each signal is GPI.

Signal Name	Signal Type	State during Reset	Signal Description	
SPICS4A	Output	Input	Synchronous peripheral chip select 4—This output signal provides a chip select signal for QSPIA. This signal is programmable as active high or active low. This signal has an on-chip 100 k Ω pull-down resistor.	
	Input or Output		This is a GPIO signal when the chip select function is not being used. After reset, the default state is GPI.	
QSCKA	Output	Input	Serial clock — This output signal provides the serial clock from QSPIA for the accessed peripherals. There is a programmable number of clock cycles delay between the assertion of the chip select signal and the first transmission of the serial clock. The polarity and phase of QSCKA are programmable.	
	Input or Output		This is a GPIO signal when the SCK function is not being used. After reset, the default state is GPI.	
MISOA	Input	Input	Synchronous master in slave out —This input signal provides serial data input to QSPIA. Input data can be sampled on the rising or falling edge of QSCKA and received in QSPI RAM LSB first.	
	Input or Output		This is a GPIO signal when the function is not being used. After reset, the default state is GPI.	
MOSIA	Output	Input	Synchronous master out slave in —This output signal provides serial data from QSPIA. Output data can be programmed to change state on the rising or falling edge of QSCKA and transmitted LSB first.	
	Input or Output		This is a GPIO signal when the function is not being used. After reset, the default state is GPI.	

Table 2-18.	Serial Control Port A	Signals	(Continued)
-------------	-----------------------	---------	-------------

For serial control port signals equipped with resistors, all pull-ups and pull-downs are automatically disconnected when the pin is an output.

2.20 Serial Control Port B(QSPIB)

Table 2-19. Serial Control Port B Signa

Signal Name	Signal Type	State during Reset	Signal Description
SPICS0B/1B/ 3B/4B	Output	Input	Synchronous peripheral chip Selects—The output signals provide chip select signals for the Queued Serial Peripheral Interface B (QSPIB). The signals are programmable as active high or active low. Each signal has an on-chip 100 k Ω pull-up resistor.
	Input or Output		These are GPIO signals when the chip select functions are not being used. After reset, the default state for each signal is GPI.

	Ia	able 2-19.	Serial Control Port B Signals (Continued)
ne	Signal Type	State during	Signal Description

Signal Name	Signal Type	during Reset	Signal Description
SPICS2B			Synchronous peripheral chip select —This output signal provides a chip select signal for QSPIB. This signal is programmable as active high or active low. This signal has an on-chip 100 k Ω pull-down resistor.
	Input or Output		This is a GPIO signal when the chip select function is not being used. After reset, the default state is GPI.
QSCKB	Output	Input Serial clock — This output signal provides the serial clock from Q the accessed peripherals. There is a programmable number of cloc cycles delay between the assertion of the chip select signal and the transmission of the serial clock. The polarity and phase of QSCKE programmable.	
	Input or Output		This is a GPIO signal when the QSCKB function is not being used. After reset, the default state is GPI.
MISOB	Input Input or	Input	Synchronous master in slave out —This input signal provides serial data input to QSPIB. Input data can be sampled on the rising or falling edge of QSCKB and received in QSPI RAM LSB first.
	Output		This is a GPIO signal when the function is not being used. After reset, the default state is GPI.
MOSIB	Output	Input	Synchronous master out slave in —This output signal provides serial data from QSPIB. Output data can be programmed to change state on the rising or falling edge of QSCKB and transmitted LSB first.
	Input or Output		This is a GPIO signal when the function is not being used. After reset, the default state is GPI.

For serial control port signals equipped with resistors, all pull-ups and pull-downs are automatically disconnected when the pin is an output.

2.21 SmartCard Port

After reset, the default state of all SmartCard port pins is GPI. For SmartCard port signals equipped with resistors, all pull-ups and pull-downs are automatically disconnected when the pin is an output.

Table 2-20.	SmartCard	Port Signals
-------------	-----------	--------------

Signal Name	Signal Type	State during Reset	Signal Description
SIMCLK	Output	Input	SIM clock —This signal is an output clock from the SmartCard port to the SmartCard.
	Input or Output		This signal is a GPIO signal when the SmartCard port is not being used.

Signal Name	Signal Type	State during Reset	Signal Description	
SENSE	Input Input or Output	Input	SIM sense —This signal is a Schmitt trigger input that signals when a SmartCard is inserted or removed. This signal is a GPIO signal when the SmartCard port is not being used. The signal has an on-chip 100 k Ω pull-down resistor.	
SIMDATA	Input/ Output Input or Output	Input	M data —This bidirectional signal is used to transmit data to and receive ata from the SmartCard. In the output state, the signal is open drain. his signal is a GPIO signal when the SmartCard port is not being used. he signal has an on-chip 47 k Ω pull-up resistor.	
SIMRESET	Output Input or Output	Input	SIM Reset —This signal is an output reset signal from the SmartCard port to the SmartCard. The SmartCard port can activate the reset of an attached SmartCard by driving SIMRESET low. This signal is a GPIO signal when the SmartCard port is not being used.	
PWR_EN	Output Input or Output	Input	SIM power enable —This active high output enables the external device that supplies V_{CC} to the SmartCard. If this pin is driven high, the external device supplies power to the SmartCard. Driving the signal low cuts off power to card. This permits effective power management and power sequencing for SmartCard enable/disable. This signal is a GPIO signal when the SmartCard port is not being used. This signal has an on-chip 100 k Ω pull-down resistor.	

Table 2-20. SmartCard Port Signals (Continued)

2.22 Serial Audio Codec Port

After reset, the default state of all serial audio codec pins is Hi-Z. For serial audio codec port signals equipped with resistors, all pull-ups and pull-downs are automatically disconnected when the pin is an output.

Signal Name	Signal Type	State during Reset	Signal Description	
STDA	Input or Output	Input	Audio codec transmit data— This output signal transmits serial data from the audio codec serial transmitter shift register. It is equipped with a $100k\Omega$ pull-up resistor.	
			This is a GPIO signal when STDA is not being used.	
			Note: This signal is disabled if the alternate STDA function on INT6 is selected. (See Table 2-13.)	
SRDA	Input or Output	Input	Audio codec receive data — This input signal receives serial data and transfers the data to the audio codec receive shift register. It is equipped with a $100k\Omega$ pull-down resistor.	
			This is a GPIO signal when SRDA is not being used.	
			Note: This signal is disabled if the alternate SRDA function on INT7 is selected. (See Table 2-13.)	

Table 2-21. Serial Audio Codec Port Signals

Baseband Codec Port

Signal Name	Signal Type	State during Reset	Signal Description	
SCKA	Input or Output	Input	Audio codec serial clock — This bidirectional signal provides the serial bit rate clock when only one clock is being used or the TxD clock otherwise. It is equipped with a $100k\Omega$ pull-down resistor.This is a GPIO signal when the serial audio codec port is not being used.Note:This signal is disabled if the alternate SCKA function on ROW7 is selected. (See Table 2-15.)	
SCOA	Input or Output	Input	 Audio codec serial clock 0—This signal's function is determined by the SCLK mode. Synchronous mode—serial I/O flag 0 Asynchronous mode—receive clock I/O This is a GPIO signal when SC0A is not being used. 	
SC1A	Input or Output	Input	 Audio codec serial clock 1—This signal's function is determined by the SCLK mode. Synchronous mode—serial I/O flag 0 Asynchronous mode—receiver frame sync I/O This is a GPIO signal when SC1A is not being used. 	
SC2A	Input or Output	Input	 Audio codec serial clock 2—This signal's function is determined by the SCLK mode. Synchronous mode—transmitter and receiver frame sync I/O Asynchronous mode—transmitter frame sync I/O It is equipped with a 100kΩ pull-down resistor. This is a GPIO signal when SC2A is not being used. Note: This signal is disabled if the alternate SC2A function on ROW6 is selected. (See Table 2-15.) 	

Table 2-21. Serial Audio Codec Port Signals (Continued)

2.23 Baseband Codec Port

After reset, the default state of the baseband codec port pins is Hi-Z. For baseband codec port signals equipped with resistors, all pull-ups and pull-downs are automatically disconnected when the pin is an output.

Table 2-22.	Baseband	Codec	Port	Signals
-------------	----------	-------	------	---------

Signal Name	Signal Type	State during Reset	Signal Description
STDB	Output Input or Output	Input	Baseband codec transmit data — This output signal transmits serial data from the baseband codec serial transmitter shift register. This signal is equipped with a 100 pull-up resistor. This is a GPIO signal when STDB is not being used.

Table 2-22. Baseband Godec Fort Signals (Continued)				
Signal Name	Signal Type	State during Reset	Signal Description	
SRDB	Input Input or Output	Input	Baseband codec receive data — This input signal receives serial data and transfers the data to the baseband codec receive shift register. This signal is equipped with a $100k\Omega$ pull-down resistor. This is a GPIO signal when SRDB is not being used.	
SCKB	Input or Output	Input	Baseband codec serial clock — This bidirectional Schmitt trigger input signal providing the serial bit rate clock for the interface. The SCKB is a clock input or output used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchro-nous modes. SCKB may be programmed as a general purpose I/O pin when the SCK function is not being used. If the bit MAGEN in the CKCTL Register is set, the SCK pin of the BBP is connected to the SCKB pin through the MAGIC interface logic and, therefore, if it is programmed as a general purpose input pin (in the BBP) it will not reflect the SCKB pin value, but the output value of the MAGIC interface logic. This pin is connected to the BBP SCK pin or left not connected, according to the value of the bit MAGIOEN in the CKCTL Register. This signal is equipped with an internal 100kW pull-down resistor.	
SCOB	Input or Output	Input	 Baseband codec serial clock 0—This signal's function is determined by the SCLK mode. Synchronous mode—serial I/O flag 0 Asynchronous mode—receive clock I/O This signal is equipped with a 100kΩ pull-down resistor. This is a GPIO signal when SC0B is not being used. 	
SC1B	Input or Output	Input	 Baseband codec serial clock 1—This signal's function is determined by the SCLK mode. Synchronous mode—serial I/O flag 0 Asynchronous mode—receiver frame sync I/O This signal is equipped with a 100KkΩ pull-down resistor. This is a GPIO signal when SC1B is not being used. 	
SC2B	Input or Output	Input	 Baseband codec serial clock 2—This signal's function is determined by the SCLK mode. Synchronous mode—transmitter and receiver frame sync I/O Asynchronous mode—transmitter frame sync I/O This signal is equipped with a 100kΩ pull-down resistor. This is a GPIO signal when SC2B is not being used. 	
SRDB2	Input/ Output	GPI	Serial Receive Data Pin Multiplexed - receives serial data and transfers the data to the receive shift register. SRDB2 is input when data is being received. SRDB2 may be programmed as a general purpose I/O pin when the SRD function is not being used. This pin is connected to the BBP SRD pin or left not connected, according to the value of the bit MAGIOEN in the CKCTL Register. The SRDB2 pin has an internal 100k Ω pulldown resistor. The default state at reset is general purpose input.	

Table 2-22.	Baseband	Codec Port	Signals	(Continued)
-------------	----------	-------------------	---------	-------------

Table 2-22.	Baseband	Codec Port	Signals	(Continued)
-------------	----------	-------------------	---------	-------------

Signal Name	Signal Type	State during Reset	Signal Description
SCKB2	Input/ Output		Serial Clock Pin Multiplexed - is a bidirectional (Schmitt trigger input pin providing the serial bit rate clock for the interface. The SCKB2 is a clock input or output used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchro-nous modes. SCKB2 may be programmed as a general purpose I/O pin when the SCK function is not being used. If the bit MAGEN in the CKCTL Register is set, the SCK pin of the BBP is connected to the SCKB2 pin through the MAGIC interface logic and, therefore, if it is programmed as a general purpose input pin (in the BBP) it will not reflect the SCKB2 pin value, but the output value of the MAGIC interface logic. This pin is connected to the BBP SCK pin or left not connected, according to the value of the bit MAGIOEN in the CKCTL Register. The SCKB pin has an internal 100k Ω pulldown resistor. The default state at reset is general purpose input.

2.24 Emulation Port

After reset, the default state for the emulation port pins is GPI.

Table 2-23.	Emulation Port Signals	
-------------	------------------------	--

Signal Name	Signal Type	State during Reset	Signal Description
SIZ0-SIZ1	Input or Output	Input	Data size 0–1 —These signals encode the data size for the current MCU access.
			When not programmed as data size signals, these are GPIO signals. The signals have on-chip 100 $k\Omega$ pull-up resistors.
PSTAT0– PSTAT3	Input or Output	Input	Pipeline state 0–3 —These signals encode the internal MCU execution unit status.
			When not programmed as pipeline state signals, these are GPIO signals. The signals have on-chip 100 $k\Omega$ pull-up resistors.

2.25 Debug Control Port

If the MUX_CTL signal is driven high, the alternate $\overline{MCU_DE}$ and $\overline{DSP_DE}$ signal locations are selected, and this interface is disabled. For debug port control signals equipped with resistors, all pullups and pull-downs are automatically disconnected when the pin is an output.

Signal Name	Signal Type	State during Reset	Signal Description
MCU_DE	Input	Input	Microcontroller debug event —As an input signal, this signal provides a means to enter the debug mode of operation from an external command converter. An an output signal, it acknowledges that the MCU has entered the debug mode. This signal is equipped with an open-drain $47k\Omega$ pull-up resistor.
	Output		When the MCU enters the debug mode due to a debug request or as the result of meeting a breakpoint condition, it asserts MCU_DE as an output signal for three clock cycles.
DSP_DE	Input	Input	Digital signal processor debug event —As an input signal, this signal provides a means to enter the debug mode of operation from an external command converter. An an output signal, it acknow-ledges that the DSP has entered the debug mode. This signal is equipped with an open-drain $4k\Omega$ pull-up resistor.
	Output		When the DSP enters the debug mode due to a debug request or as the result of meeting a breakpoint condition, it asserts DSP_DE as an output signal for three clock cycles.

Table 2-24. Debug Port Control Signals

2.26 JTAG Port

When the bottom connector pins are selected as a debug port by holding the MUX_CTL pin at a logic high, the dedicated JTAG pins become inactive. That is, they are disconnected from the JTAG TAP controller. For JTAG signals equipped with resistors, all pull-ups and pull-downs are automatically disconnected when the pin is an output.

Table 2-25.	JTAG Port Signals
-------------	-------------------

Signal Name	Signal Type	State during Reset	Signal Description
TMS	Input	Input	Test mode select —TMS is an input signal used to sequence the test controller's state machine. TMS is sampled on the rising edge of TCK and has an internal 47 k Ω pull-up resistor. MUX_CTL high : INT7 is connected to the TAP controller and functions as TMS, see Table 2-13.)
TDI	Input	Input	Test data input —TDI is a serial test data input signal used for test instructions and data. TDI is sampled on the rising edge of TCK and has an internal 47 k Ω pull-up resistor. MUX_CTL high : RxD is connected to the TAP controller and functions as TDI, see Table 2-16.)

Signal Name	Signal Type	State during Reset	Signal Description
TDO	Output	Tri- stated	Test data output —TDO is a test data serial output signal used for test instructions and data. TDO is tri-statable and is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCK. MUX_CTL high : TxD is connected to the TAP controller and functions as TDO, see Table 2-16.)
тск	Input	Input	Test clock —TCK is a test clock input signal used to synchronize the JTAG test logic. It has an internal 47 k Ω pull-up resistor. MUX_CTL high : ROW7 is connected to the TAP controller and functions as TCK, see Table 2-15.)
TRST	Input	Input	Test Reset —TRST is an active-low Schmitt-trigger input signal used to asynchronously initialize the test controller. TRST has an internal 47 k Ω pull-up resistor. MUX_CTL high : INT6 is connected to the TAP controller and functions as TRST, see Table 2-13.)
TEST	Input	Input	Factory test mode —Selects factory test mode. Reserved. This pin has an internal $100k\Omega$ pulldown resistor.

Table 2-25. JTAG Port Signals (Co

2-34

Part 3 Specifications

3.1 General Characteristics

The DSP56654 is fabricated in high-density CMOS. The DSP56654 specifications are preliminary and are from design simulations, and may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after full characterization and device qualifications are complete.

3.2 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or V_{CC}).

Note: In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification will never occur in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 3-1.	Absolute Maximum	Ratings (GND = 0 V)
------------	------------------	---------------------

Rating	Symbol	Value	Unit
Internal supply voltage	V _{CCI}	-0.3 to +2.75	V
External supply voltage	V _{DDE}	-0.3 to +3.6	V
Operating temperature range	T _A	-40 to +85	°C
Storage temperature	T _{STG}	-55 to +125	°C

3.3 Thermal Characteristics

Characteristic	Symbol	BGA Value ¹	Unit
Junction-to-ambient thermal resistance ²	$R_{\theta JA}$ or θ_{JA}	TBD	°C/W
Junction-to-case thermal resistance ³	$R_{\theta JC}$ or θ_{JC}	TBD	°C/W
Thermal characterization parameter	Ψ_{JT}	TBD	°C/W

Table 3-2. Thermal Characteristics

1. These are measured values; testing is not complete. Values were measured on a non-standard four-layer thermal test board (two internal planes) at one watt in a horizontal configuration.

 Junction-to-ambient thermal resistance is based on measurements on a horizontal-single-sided printed circuit board per SEMI G38-87 in natural convection. (SEMI is Semiconductor Equipment and Materials International, 805 East Middlefield Rd., Mountain View, CA 94043, (415) 964-5111)

3. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with the exception that the cold plate temperature is used for the case temperature.

3.4 DC Electrical Characteristics

Characteristics	Symbol	Min	Тур	Мах	Units
Internal supply voltage	V _{CCI}	1.8		2.5	V
External supply voltage	V _{DDE}	V _{CCI}		3.4	V
I/O predriver supply voltage	V _{CCHQ}	V _{DDE}		3.4	V
Input high voltage	V _{IH}	$0.7 \times V_{DDE}$		V _{DDE} + 0.2	V
Input low voltage	V _{IL}	-0.3		$0.2 \times V_{DDE}$	V
Input leakage current	I _{IN}	-10		10	μΑ
Output high voltage (I _{OH} = -400 μA)	V _{OH}	$0.9 \times V_{DDE}$		V _{DDE}	V
Output low voltage (I _{OL} = 800 μA)	V _{OL}	0		$0.1 \times V_{DDE}$	V
Total stop mode (DSP and MCU stopped, PLL powered down, timers disabled)	I _{CC_STOP}	_	60	_	μΑ
DSP run current at 58.8 MHz (MCU stopped, timers disabled, DSP running algorithm from internal memory, BBP and SAP active)	ICCDSP_RUN	—	35	_	mA
PLL supply current (16.8 MHz input, DSP freq = 58.8 MHz, MCU clock = 16.8 MHz)	I _{CC_PLL}	_	1.6	—	mA
DSP wait current at 58.8 MHz (MCU stopped, timers disabled, BBP and SAP active)	I _{CC_DSP_WAIT}	_	4.5	_	mA

Table 3-3. DC Electrical Characteristics

Characteristics	Symbol	Min	Тур	Max	Units
MCU run current at 16.8 MHz (DSP and DSP PLL stopped, timers disabled, MCU peripherals active)	I _{CC_MCU_RUN}	_	9	_	mA
MCU doze current at 16.8 MHz (DSP and DSP PLL stopped, timers disabled, MCU peripherals active)	I _{CC_MCU_DOZ} E	_	3	_	mA
MCU wait current at 16.8 MHz (DSP and DSP PLL stopped, timers disabled, MCU peripherals active)	I _{CC_MCU_WAIT}	_	3	_	mA
Layer 1 Timer current (MCU and DSP stopped; 16.8 MHz to timer)	I _{CC_TIMER}	_	500	_	μA
Input capacitance per pin	C _{IN}	2	_	2.5	pF
Pull-up resistor value ¹	_	50%	100 %	180%	-

Table 3-3.	DC Electrical Characteristics	(Continued)

1. Applies to 22K and 47K resistors.

3.5 Clock Requirements

Characteristics	Symbol	Min	Тур	Мах	Units
CKIH input frequency	f ₁	0		16.8	MHz
CKIL input frequency	f ₂	0	32.768	f ₁	kHz
MCU internal frequency	f _{MCU-CLK}	DC	_	16.8	MHz
DSP internal frequency	f _{DSP-CLK}	_	_	58.8	MHz
CKIH input voltage	V _{I-CKIH}	285	_	V _{IH}	mV _{PP}
CKIL input high voltage	V _{IH-CKIL}	1.8	_	2.77	V
CKIH input impedance	R _{I-CKIH}	TBD	—	TBD	MΩ

Table 3-4. Clock Requirements

3.6 External Bus Interface Requirements

When the MCU is operating at 16.8 MHz, the bus interface can access 100 ns access time external memory with one wait state or 15 ns access time external memory with no wait states.

3.7 AC Electrical Characteristics

The characteristics listed in this section are given for $V_{CCI} = 1.8$ V and $V_{DDE} = 3.3$ V with a capacitive load of 50 pF.

3.8 Internal Clocks

For each occurrence of T_{DH} , T_{DL} , T_{DC} , or I_{DCYC} , substitute with the numbers in Table 3-6. DF, MF, and PDF are the DSP PLL division, multiplication, and pre-division factors set in registers.

Characteristics	Symbol	Min	Max	Unit
Input frequency to the DSP PLL	EfD	0	16.8	MHz
DSP PLL input clock cycle time with PLL disabled with PLL enabled 	ET _{DC}	59.5 59.5	~~	ns ns

Characteristics	Symbol	Expression
Internal DSP operation frequency with PLL enabled	fD	$(EfD \times MF) / (PDF \times DF)$
Internal DSP operation frequency with PLL disabled	fD	EfD/2
 Internal DSP clock high period with PLL disabled with PLL enabled and MF ≤ 4 with PLL enabled and MF > 4 	T _{DH}	$\begin{array}{l} ET_{DC} \\ (Min) \ 0.49 \times ET_{DC} \times PDF \times DF/MF \\ (Max) \ 0.51 \times ET_{DC} \times PDF \times DF/MF \\ (Min) \ 0.47 \times ET_{DC} \times PDF \times DF/MF \\ (Max) \ 0.53 \times ET_{DC} \times PDF \times DF/MF \end{array}$
 Internal clock low period with PLL disabled with PLL enabled and MF ≤ 4 with PLL enabled and MF > 4 	T _{DL}	$\begin{array}{l} ET_{DC} \\ (Min) \ 0.49 \times ET_{DC} \times PDF \times DF/MF \\ (Max) \ 0.51 \times ET_{DC} \times PDF \times DF/MF \\ (Min) \ 0.47 \times ET_{DC} \times PDF \times DF/MF \\ (Max) \ 0.53 \times ET_{DC} \times PDF \times DF/MF \end{array}$
Internal clock cycle time with PLL enabled	T _{DC}	$ET_{DC} \times PDF \times DF/MF$
Internal clock cycle time with PLL disabled	T _{DC}	$2 \times \text{ET}_{\text{DC}}$
DSP Instruction cycle time	I _{DCYC}	T _{DC}

Table 3-6. Internal DSP Clocks

Table 3-7. MCU Clocks

Characteristics	Symbol	Min	Max	Unit
Frequency of the internal MCU-CLK clock	fM	0	16.8	MHz
Internal MCU-CLK clock cycle time	T _{MC}	59.5	8	ns

3.9 PLL Characteristics

Characteristics	Expression	Min	Мах	Unit
VCO frequency when PLL enabled ¹	$MF \times EfD \times 2 / PDF$	30	120	MHz
PLL external capacitor (PCAP pin to V_{CCP}) • MF \leq 4 • MF > 4	C _{PCAP} ²	MF × 580– 100 MF × 830	MF × 780– 140 MF × 1470	pF

Table 3-8. PLL Characteristics

1. The VCO output is further divided by 2 when PLL is enabled. If the division factor (DF) is 1, the operating frequency is <u>VCO</u>.

2

3.10 RESET, Mode Select, and Interrupt Timing

Num	Characteristics	Expression	MCU @16.8 MHz DSP @58.8 MHz		Unit
			Min	Max	
1	RESET_IN duration to guarantee reset	3 × T _{CKIL} + 0.05	91.6		μs
2	Delay from RESET_IN assertion to RESET_OUT assertion	min: $4.5 \times T_{CKIL}$ max: $5.5 \times T_{CKIL}$	137. 33	167.8 5	μs
3	Duration of RESET_OUT assertion	$7 imes T_{CKIL}$	213. 62	_	μs
4	Delay from RESET_IN assertion to all pins at Reset value (periodically sampled and not 100% tested)	min: 4.5 × T _{CKIL} max: 5.5 × T _{CKIL}	137. 33	167.8 5	μs μs
5	MOD select setup time	$3.5 imes T_{CKIL} + 0.02$	107	_	μs
6	MOD select hold time	_	0	_	ns
7	Minimum edge-triggered DSP_IRQ assertion width	—	15	—	ns
8	Minimum edge-triggered DSP_IRQ deassertion width		15	_	ns
9	Minimum edge-triggered INTn width high		TBD	_	ns
10	Minimum edge-triggered INTn width low		TBD	_	ns

Table 3-9. Res	et, Mode Select, and Interrupt Timing	
----------------	---------------------------------------	--

^{2.} C_{PCAP} is the value of the PLL capacitor (connected between PCAP pin and V_{CCP}). (The recommended value for Cpcap is (680 \pm MF - 120) pF for MF \pm 4 and (1100 \pm MF) pF for MF > 4.)

Figure 3-2. Operating Mode Select Timing

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

Figure 3-4. INT0–INT7 External Interrupt Timing

3.11 External Interface Module Timing

The EIM provides the bus interface between the DSP56654 and external memory and peripherals. It uses the external address bus, data bus, bus control signals, and the chip select signals.

Num	Characteristics		MCU @16.8 MHz		
		Min	Max		
11	CLK rise to address and R/W valid		15	ns	
12	CLK rise to address and R/W invalid (output hold)	0	15	ns	
13	CLK rise to CS asserted	0	15	ns	
14	CLK rise to CS deasserted (output hold)	0	15	ns	
15	CLK fall to \overline{OE} , \overline{EB} asserted (read, OEA = 0), \overline{EB} asserted (write) ²	0	15	ns	
16	CLK rise to \overline{OE} , \overline{EB} asserted (read, OEA = 1) ²	0	15	ns	
17	CLK rise to \overline{OE} , \overline{EB} deasserted (output hold) (read) ²	0	15	ns	
	CLK rise to $\overline{\text{EB}}$ deasserted (output hold) (write, WEN = 0)	0	15	ns	
18	CLK fall to \overline{EB} deasserted (output hold) (write, WEN = 1)	0	15	ns	
19	CLK fall to \overline{OE} , \overline{EB} asserted (WSC = 0) ²	0	15	ns	
20	CLK rise to \overline{OE} , \overline{EB} deasserted (output hold) (WSC = 0) ²	0	15	ns	
21	Data-in valid to CLK rise (set-up)	3	—	ns	

Table 3-10. EIM External Bus Output AC Timing Specifications¹

Num	Characteristics		MCU @16.8 MHz	
			Max	
22	CLK rise to data-in invalid (hold)	7	_	ns
23	CLK rise to data-out valid	0	20	ns
24	CLK rise to data-out invalid (output hold)	0	20	ns
25	CLK rise to data-out high impedance	0	20	ns
26	CLK fall to data-out valid (WSC = 0)	0	20	ns
27	CLK rise to data-out invalid (output hold) (WSC = 0)	0	20	ns
28	CLK rise to data-out high impedance (WSC = 0)	0	20	ns

Table 3-10.	EIM External Bus	Output AC	Timing Specifications ¹
-------------	------------------	------------------	------------------------------------

1. The following notes apply to this table:

 Input and output timings are measured at the 50% point of the waveforms. The specifications assume a capacitive load of 50 pF.

• These timings were measured with respect to the input clock edges.

2. EB outputs are asserted for reads if the EBC bit in the corresponding CS control register is clear.

Figure 3-5. EIM Read/Write Timing

3.12 Emulation Port Timing

Num	Characteristics Expression		@16.8 MHz		Unit	
Num	Characteristics	LAPIESSION	Min Max	Onit		
11	CKO rise to SIZ Valid			TBD	ns	
12	CKO rise to SIZ Invalid (output hold)		TBD	_	ns	
13	CKO rise to PSTAT Valid		_	TBD	ns	
14	CKO rise to PSTAT Invalid (output hold)		TBD	-	ns	

Table 3-11. Emulation Port AC Timing Specifications

Figure 3-6. SIZ / PSTAT Timing

3.13 SmartCard Timing

Table 3-12.	SmartCard Port	to SmartCard	AC Timing
-------------	----------------	--------------	------------------

Num	Characteristics	CK @ 16.	Unit	
		Min	Мах	
31	SIMRESET low to SIMCLK low	1.18	200/f	μs
32	SIMCLK deactivated to SIMDATA tri-state to low	1.18	200/f	μs
33	SIMDATA low to PWR_EN low	1.18	200/f	μs
34	SIMRESET low	40000/f	—	ns
35	SENSE high to SIMRESET low	57	76	μs

Figure 3-7. SmartCard Interface Power-Down AC Timing

3.14 QSPI Timing

The QSPI uses the signals in the serial control port to select individual serial peripherals (using the SPI chip select signals) and transfer data between peripherals and the DSP56654.

Num	Characteristics	Symbol	Expression	mCU @ 16.8 Mi		Unit
				Min	Max	
301	Cycle time	T _{QCYC}	_	1	504	T _{MC}
302	Clock (SCK) high or low time	T _{SW}	_		252	T _{MC}
303	Chip-select lag time	T _{LAG}	_	1	∞	T _{QCYC}
304	Inter-queue transfer delay	T _{TD}	_	1	∞	T _{QCYC}
305	Chip-select lead time	T _{LEAD}	_	1	128	T _{QCYC}

Num	Characteristics	Symbol Expression			CU 8 MHz	Unit
				Min	Max	
306	Data setup time (inputs)	Τ _{SU}	—	0		nS
307	Data hold time (inputs)	T _{HI}	_	0.5	—	T _{QCYC}
308	Data valid (after SCK edge)	T _V	—	—	6	nS
309	Data hold time (outputs)	Т _{НО}	—	-2	—	nS
310	Rise time	Τ _Ι	_	_	10	nS
311	Fall time	Τ _F	—	—	10	nS

Figure 3-8. QSPI Timings for CPHA = 0

3.15 Audio Serial Codec and Baseband Serial Codec Timing

The audio serial codec port (also called the serial audio port or SAP) and the baseband serial codec port (also called the baseband port or BBP) have the same timing specifications. The timing table uses the following acronyms to describe the signal parameters:

- SSICC = BBP/SAP clock cycle time
- TXC (SCKA/SCKB Pin) = transmit clock
- RXC (SC0A/SC0B or SCKA/SCKB Pin) = receive clock
- FST (SC2A/SC2B Pin) = transmit frame sync
- FSR (SC1A/SC1B or SC2A/SC2B Pin) = receive frame sync
- i ck = internal clock
- x ck = external clock
- i ck a = internal clock, asynchronous mode ("asynchronous" implies that TXC and RXC are two different clocks)
- i ck s = internal clock, synchronous mode ("synchronous" implies that TXC and RXC are the same clock)
- bl = bit length
- wl = word length
- wr = word length relative

Num	Characteristics	Symbol	Expression		_CLK 8 MHz	Case	Unit
			-	Min	Max		
430	Clock cycle ¹	^t SSICC	$\begin{array}{c} 4 \times T_{DC} \\ 3 \times T_{DC} \end{array}$	68 51		i ck x ck	ns ns
431	Clock high period • for internal clock • for external clock	_	$2 \times T_{DC} - 12.2$ $1.5 \times T_{DC}$	21.8 25.5	_	i ck x ck	ns ns
432	Clock low period • for internal clock • for external clock	_	$2 \times T_{DC} - 12.2$ $1.5 \times T_{DC}$	21.8 25.5		i ck x ck	ns ns
433	RXC rising edge to FSR out (bl) high	_	_	_	45.1 26.8	x ck i ck a	ns ns
434	RXC rising edge to FSR out (bl) low	-	_	_	45.1 26.8	x ck i ck a	ns ns
435	RXC rising edge to FSR out (wr) high ²	_	_	—	47.6 29.3	x ck i ck a	ns ns
436	RXC rising edge to FSR out (wr) low ²	_	_	_	47.6 29.3	x ck i ck a	ns ns
437	RXC rising edge to FSR out (wl) high	_	_	—	45.9 25.6	x ck i ck a	ns ns
438	RXC rising edge to FSR out (wl) low	_	_	_	45.1 26.8	x ck i ck a	ns ns
439	Data in setup time before RXC (SCK in synchronous mode) falling edge	_	_	0.0 23.2	_	x ck i ck	ns ns
440	Data in hold time after RXC falling edge	_	_	6.1 3.6	_	x ck i ck	ns ns
441	FSR input (bl, wr) high before RXC falling edge ²	_	_	1.2 28.0	_	x ck i ck a	ns ns
442	FSR input (wl) high before RXC falling edge	-	—	1.2 28.0	_	x ck i ck a	ns ns
443	FSR Input hold time after RXC falling edge	-	—	3.6 0.0		x ck i ck a	ns ns
444	Flags input setup before RXC Falling edge	-	—	0.0 23.2	_	x ck i ck s	ns ns
445	Flags input hold time after RXC falling edge		—	7.3 0.0		x ck i ck s	ns ns
446	TXC rising edge to FST out (bl) high	-	—		35.4 18.3	x ck i ck	ns ns
447	TXC rising edge to FST out (bl) low	-	_		37.8 20.7	x ck i ck	ns ns

Table 3-14.	SAP and	BBP Timing
-------------	---------	-------------------

Num	Characteristics	Symbol	Expression	DSP_CLK @ 58.8 MHz		Case	Unit
				Min	Max		
448	TXC rising edge to FST out (wr) high ²		—	_		x ck i ck	ns ns
449	TXC rising edge to FST out (wr) low ²	_	_	_	10.0	x ck i ck	ns ns
450	TXC rising edge to FST out (wl) high	_	_	_		x ck i ck	ns ns
451	TXC rising edge to FST out (wl) low		—	_		x ck i ck	ns ns
452	TXC rising edge to data out enable from high impedance	_	_	_	37.8 20.7	x ck i ck	ns ns
454	TXC rising edge to data out valid	_	35 + 0.5 × T _{DC}	_	43.5 25.6	x ck i ck	ns ns
455	TXC rising edge to data out high impedance ³		—	_		x ck i ck	ns ns
457	FST input (bl, wr) set-up time before TXC falling edge ²	_		2.0 21.0		x ck i ck	ns ns
458	FST input (wl) to data out enable from high impedance ³		—		32.9		ns
460	FST input (wl) setup time before TXC falling edge			2.0 21.0		x ck i ck	ns ns
461	FST input hold time after TXC falling edge	_	—	4.0 0.0		x ck i ck	ns ns
462	Flag output valid after TXC rising edge		_	_		x ck i ck	ns ns

Table 3-14. SAP and BBP Timing (Continued)

 For internal clock, external clock cycle is defined by I_{CYC} and BBP/SAP control register.
 Word relative frame sync signal wave form, relates to clock, as the bit length frame sync signal wave form, but spreads from one serial clock before first bit clock (same as bit length frame sync signal), until the one before last bit clock of the first word in frame.

3. Periodically sampled and not 100% tested.

Figure 3-10. BBP and SAP Transmitter Timing

Figure 3-11. BBP and SAP Receiver Timing

3.16 JTAG Port Timing

Num	Characteristics	Expression	DSP_ @ 58.	Unit		
			Min	Max		
500	TCK frequency of operation $1/(3 \times T_{DC})$		0.0	19.6	MHz	
501	TCK cycle time in crystal mode —		45.0	—	ns	
502	TCK clock pulse width measured at 1.5 V —		20.0	—	ns	
503	TCK rise and fall times —		0.0	3.0	ns	
504	Boundary scan input data setup time —		5.0	—	ns	
505	Boundary scan input data hold time	—	24.0	—	ns	
506	TCK low to output data valid —		0.0	40.0	ns	
507	TCK low to output high impedance —		0.0	40.0	ns	
508	TMS, TDI data setup time —		5.0	—	ns	
509	TMS, TDI data hold time	—	25.0	—	ns	
510	TCK low to TDO data valid	—	0.0	44.0	ns	
511	TCK low to TDO high impedance	—	0.0	44.0	ns	
512	TRST assert time	_	100.0	_	ns	
513	TRST setup time to TCK low	—	40.0	—	ns	

Table 3-15. JTAG Timing

Figure 3-12. Test Clock Input Timing Diagram

Figure 3-14. TRST Timing Diagram

Part 4 Pin-Out and Package Information

This section provides information about the available packages for this product. The DSP56654 is available in a 256-pin PBGA and MBGA package.

4.1 256-Pin BGA Details

The DSP56654 is offered in the JEDEC-standard, 17-mm Plastic BGA and Map BGA with 1-mmpitch solder balls. Refer to Section 4.1.1, "PBGA Package Mechanical Drawing," on page 4-1 and Section 4.1.2, "MBGA Package Mechanical Drawing," on page 4-2 for package drawing and dimensions, respectively.

4.1.1 PBGA Package Mechanical Drawing

∠56-Pin BGA Details

DETAIL K ROTATED 90° CLOCKWISE

DIM	MIN	MAX	NOTES
А	1.25	1.60	1. DIMENSIONS ARE IN MILLIMETERS.
A1	0.27	0.47	2. INTERPRET DIMENSIONS AND TOLERANCES PER
A2	1.16	REF	ASME Y14.5M−1994.
b	0.40	0.60	/3 DIMENSION & IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO DATUM
D	17.00	BSC	PLANE Z.
Е	17.00	BSC	4 DATUM Z (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
е	1.00	BSC	A DADALLEUSA MEASUREMENT SUALL EVOLUDE ANY
S	0.50	BSC	5 PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

4.2 Ordering Drawings

Complete mechanical information regarding DSP56654 packaging is available by facsimile through Motorola's Mfax system. Call the following number to obtain information by facsimile:

(602) 244-6591

The Mfax automated system requests the following information:

- The receiving facsimile telephone number including area code or country code
- The caller's personal identification number (PIN)

Note: For first time callers, the system provides instructions for setting up a PIN, which requires entry of a name and telephone number.

- The type of information requested:
 - Instructions for using the system
 - A literature order form
 - Specific part technical information or data sheets
 - Other information described by the system messages

A total of three documents may be ordered per call.

The DSP56654 256-pin PBGA package mechanical drawing is referenced as Case 1216-02 Rev. A. The DSP56654 256-pin MBGA package mechanical drawing is referenced as Case 1216-01 Rev. B.

Part 5 Design Considerations

5.1 Heat Dissipation

An estimation of the DSP56654 chip junction temperature, T_J , in °C can be obtained from the equation:

Equation 1: $T_J = T_A + (P_D \times R_{\theta JA})$

Where:

 T_A = ambient temperature °C

 $R_{\theta JA}$ = package junction-to-ambient thermal resistance °C/W

 P_D = power dissipation in package

Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

Equation 2:
$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

Where:

 $R_{\theta JA}$ = package junction-to-ambient thermal resistance °C/W

 $R_{\theta JC}$ = package junction-to-case thermal resistance °C/W

 $R_{\theta CA}$ = package case-to-ambient thermal resistance °C/W

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or otherwise change the thermal dissipation capability of the area surrounding the device on a printed circuit board. This model is most useful for ceramic packages with heat sinks; ninety percent of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the printed circuit board, analysis of the device thermal performance may need the additional modeling capability of a system level thermal simulation tool.

The thermal performance of plastic packages is more dependent on the temperature of the printed circuit board to which the package is mounted. Again, if the estimations obtained from $R_{\theta JA}$ do not satisfactorily answer whether the thermal performance is adequate, a system level model may be appropriate.

A complicating factor is the existence of three common ways for determining the junction-to-case thermal resistance in plastic packages:

- To minimize temperature variation across the surface, the thermal resistance is measured from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink.
- To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance is measured from the junction to where the leads are attached to the case.
- If the temperature of the package case (T_T) as determined by a thermocouple, the thermal resistance is computed using the value obtained by the equation $(T_J T_T)/P_D$.

As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the first definition. From a practical standpoint, this value is also suitable for determining the junction temperature from a case thermocouple reading in forced convection environments. In natural

convection, using the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will estimate a junction temperature slightly hotter than actual temperature. Hence, the new thermal metric, thermal characterization parameter or Ψ_{JT} , has been defined to be $(T_J - T_T)/P_D$. This value gives a better estimate of the junction temperature in natural convection when using the surface temperature of the package. Remember that surface temperature readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy.

Note: Table 3-2 on page 3-2 of this document contains the package thermal values for this chip.

5.2 Electrical Design Considerations

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or V_{CC}).

Use the following list of recommendations to assure correct DSP operation:

- Provide a low-impedance path from the board power supply to each V_{CC} pin on the DSP and from the board ground to each GND pin.
- Use at least four 0.1 μ F bypass capacitors positioned as close as possible to the four sides of the package to connect the V_{CC} power source to GND.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{CC} and GND pins are less than 0.5 inch per capacitor lead.
- Use at least a four-layer printed circuit board (PCB) with two inner layers for V_{CC} and GND.
- Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal. This recommendation particularly applies to the address and data buses as well as the R/W, DSP_IRQ, and INT0–INT7 signals.
- Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{CC} and GND circuits.
- All inputs must be terminated (i.e., not allowed to float) using CMOS levels.
- Take special care to minimize noise levels on the PLL supply pins (both V_{CC} and GND).

This document contains information on a new product. Specifications and information herein are subject to change without notice.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use. even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and with such unintended or unauthorized use. even if such claim alleges that Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. All other tradenames, trademarks, and registered trademarks are the property of their respective owners.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado, 80217 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan, Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors

