April 1999

DSV14196+3.3V Supply EIA/TIA-232 5

Driver

. × ა

Receiver

National Semiconductor

DSV14196 +3.3V Supply EIA/TIA-232 5 Driver x 3 Receiver

General Description

The DSV14196/DSV14196T is a five driver, three receiver device which conforms to the EIA/TIA-232-E and the ITU-T V.28 standards.

The flow-through pinout facilitates simple non-crossover board layout. The DSV14196/DSV14196T provides a peripheral side one-chip solution for the common 9-pin serial RS-232 interface between data terminals and data communications equipment.

Features

- Conforms to EIA/TIA-232-E and ITU-T V.28
- 5 drivers and 3 receivers
- Flow-through pinout
- Failsafe receiver outputs high when inputs open
- 20-pin wide SOIC package
- LapLink[®] compatible 230.4 kbps data rate
- +3.3V Logic Interface
- Commercial temperature range option DSV14196 (0°C to 70°C)
- Industrial temperature range option DSV14196T (-40°C to +85°C)

Connection Diagram

Functional Diagram

LapLink® is a registered trademark of Travelling Software.

www.national.com

© 1999 National Semiconductor Corporation DS100853

Absolute Maximum Ratings (Note 1)

•

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	+7V
Supply Voltage (V ⁺)	+15V
Supply Voltage (V ⁻)	–15V
Driver Input Voltage	0V to V_{CC}
Driver Output Voltage (Power Off)	±15V
Receiver Input Voltage	±25V
Receiver Output Voltage (R _{OUT})	0V to V_{CC}
Maximum Power Package Dissipat	ion @ +25°C
M Package	1524 mW
Derate M Package	12.2 mW/°C above 25°C
Storage Temperature Range	-65°C to +150°C

Lead Temperature Range (Soldering, 4 sec.) ESD Ratings (HBM. 1.5 $k\Omega$, 100 pF)

+260°C ≥1.5 kV

Recommended Operating Conditons

	Min	Nom	Max	Units
Supply Voltage (V _{CC})	+3.0	+3.3	+3.6	V
Supply Voltage (V ⁺)	+9.0	+12.0	+13.2	V
Supply Voltage (V ⁻)	-13.2	-12.0	-9.0	V
Operating Free Air				
Temperature (T _A)				
DSV14196	0	+25	+70	°C
DSV14196T	-40	+25	+85	°C

Electrical Characteristics(Note 2) (Note 3) DSV14196

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter		Min	Тур	Max	Units	
DEVIC	E CHARACTERISTICS			ł			
I _{cc}	V _{CC} Supply Current	No Load, All Input		8	16	mA	
I+	V ⁺ Supply Current	No Load, All	$V^{+} = +9V, V^{-} = -9V$		16	26	mA
		Driver Inputs at	V ⁺ = +13.2V, V ⁻ = -13.2V		23	36	mA
I ⁻ V ⁻ Supply Current	0.8V or +2V. All Receiver Inputs	$V^{+} = +9V, V^{-} = -9V$		-18	-26	mA	
		at 0.7V or 2.4V.	V ⁺ = +13.2V, V ⁻ = -13.2V		-25	-36	mA
DRIVE	R CHARACTERISTICS		L				1
VIH	High Level Input Voltage			2.0			V
VIL	Low Level Input Voltage					0.8	V
Т	High Level Input Current	V _{IN} = 3.3V				10	μA
I _{IL}	Low Level Input Current	$V_{IN} = 0V$			-1.1	-1.5	mA
V _{OH}	High Level Output Voltage	$R_{L} = 3 k\Omega, V_{IN} = 0.8V, V^{+} = +9V, V^{-} = -9V$		6	7		V
		$R_L = 3 k\Omega, V_{IN} =$	0.8V, V ⁺ = +12V, V ⁻ = -12V	8	9		V
		$R_L = 7 k\Omega, V_{IN} =$	0.8V, V ⁺ = +13.2V, V ⁻ = -13.2V	10	11.5		V
V _{OL}	Low Level Output Voltage	$R_L = 3 k\Omega, V_{IN} =$	2V, V ⁺ = +9V, V ⁻ = -9V		-7	-6	V
		$R_L = 3 k\Omega, V_{IN} =$	2V, V ⁺ = +12V, V ⁻ = -12V		-10	-8	V
		$R_L = 7 k\Omega, V_{IN} =$	2V, V ⁺ = +13.2V, V ⁻ = -13.2V		-11.5	-10	V
I _{os} +	Output High Short	$V_{OUT} = 0V, V_{IN} = 0.8V$		-6	-12	-18	mA
	Circuit Current (Note 4)						
I _{os} -	Output Low Short	$V_{OUT} = 0V, V_{IN} =$	2.0V	6	12	18	mA
	Circuit Current (Note 4)						
Ro	Output Resistance	$-2V \le V_{OUT} \le +2V$	$V, V^{+} = V^{-} = V_{CC} = 0V$	300			Ω
		$-2V \le V_{OUT} \le +2V$	$V, V^+ = V^- = V_{CC} = Open Circuit$	300			Ω

Over	recommended operating suppl	y and temperature rar	iges unless otherwise specified				
ymbol	Parameter		Conditions	Min	Тур	Max	Units
RECEI	IVER CHARACTERISTICS					L	1
V _{TH}	Input High Threshold (Recognized as a High Signal)	V _{OUT} ≤ 0.4V, I _O = 3	.2 mA	1.5	1.85	2.4	V
V _{TL}	Input Low Threshold (Recognized as a Low Signal)	V _{OUT} ≥ 1.7V, I _O = -	0.5 mA	0.7	0.9	1.3	V
R _{IN}	Input Resistance	$V_{IN} = \pm 3V$ to $\pm 15V$		3.0	3.8	7.0	kΩ
I _{IN}	Input Current	$V_{IN} = +15V$		2.1	4.0	5.0	mA
		V _{IN} = +3V		0.43	0.7	1.0	mA
		V _{IN} = -15V		-2.1	-4.0	-5.0	mA
		$V_{IN} = -3V$		-0.43	-0.7	-1.0	mA
V _{он}	High Level Output Voltage	I_{OH} = -0.5 mA, V_{IN}	= -3V	1.7	2.4		V
	(Note 7)	I _{OH} = -10 μA, V _{IN} =	= -3V	2.7	3.2		V
		I_{OH} = -0.5 mA, V_{IN}	= Open Circuit	1.7	2.4		V
		I _{OH} = -10 μA, V _{IN} =	Open Circuit	2.7	3.2		V
V_{OL}	Low Level Output Voltage	I_{OL} = 3.2 mA, V_{IN} =	+3V		0.2	0.4	V
I _{OSR}	Short Circuit Current	$V_{OUT} = 0V, V_{IN} = 0$	V (Note 4)	-0.6	-1.8	-3.0	mA
DS Over			3) nges unless otherwise specified Conditions	Min	Тур	Мах	Unit:
DS Over	V14196T recommended operating supp Parameter		nges unless otherwise specified	Min	Тур	Max	Units
DS Over Symbol DEVIC	V14196T recommended operating supp Parameter CE CHARACTERISTICS	ly and temperature rai	nges unless otherwise specified Conditions	Min	Тур 8	Max	Units
DS Over	V14196T recommended operating supp Parameter		nges unless otherwise specified Conditions s at +3.3V	Min			
DS Over Symbol DEVIC	V14196T recommended operating supple Parameter CE CHARACTERISTICS V _{CC} Supply Current	ly and temperature ran	nges unless otherwise specified Conditions s at +3.3V $V^+ = +9V, V^- = -9V$	Min	8	16	mA
DS Over Symbol DEVIC I _{CC} I ⁺	V14196T recommended operating supply Parameter CE CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current	No Load, All Input No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All	regress unless otherwise specifiedConditionss at +3.3V $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$	Min	8 16 23	16 26 36	mA mA
DS Over Symbol DEVIC I _{CC} I ⁺	V14196T recommended operating supple Parameter CE CHARACTERISTICS V _{CC} Supply Current	Iv and temperature rat No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All Receiver Inputs	V* = -9V V* = -9V V* = +3.2V, V^- = -9V V* = +9V, V^- = -9V V* = +9V, V^- = -9V	Min	8 16 23 -18	16 26 36 -26	mA mA mA
DS Over Symbol DEVIC Icc I ⁺	V14196T recommended operating supply Parameter CE CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current	No Load, All Input No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All	regress unless otherwise specifiedConditionss at +3.3V $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$	Min	8 16 23	16 26 36	mA mA mA
DS Over Symbol DEVIC I ⁻ I ⁻	V14196T recommended operating supplement CE CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current CE CHARACTERISTICS	Iv and temperature rat No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All Receiver Inputs	V* = -9V V* = -9V V* = +3.2V, V^- = -9V V* = +9V, V^- = -9V V* = +9V, V^- = -9V	Min	8 16 23 -18	16 26 36 -26	mA mA mA
DS Over Symbol DEVIC Icc I ⁺	V14196T recommended operating supply Parameter CE CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current	Iv and temperature rat No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All Receiver Inputs	V* = -9V V* = -9V V* = +3.2V, V^- = -9V V* = +9V, V^- = -9V V* = +9V, V^- = -9V		8 16 23 -18	16 26 36 -26	mA mA mA mA
DS Over 5ymbol DEVIC I _{CC} I ⁺ I ⁻ DRIVE V _{IH}	V14196T recommended operating supply Parameter CE CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current ER CHARACTERISTICS High Level Input Voltage	Iv and temperature rat No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All Receiver Inputs	V* = -9V V* = -9V V* = +3.2V, V^- = -9V V* = +9V, V^- = -9V V* = +9V, V^- = -9V		8 16 23 -18	16 26 36 -26 -36	mA mA mA mA V
DS Over Symbol DEVIC I _{CC} I ⁺ I ⁻ DRIVE V _{IH} V _{IL}	V14196T recommended operating supply Parameter CE CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current V ⁻ Supply Current ER CHARACTERISTICS High Level Input Voltage Low Level Input Voltage	Iv and temperature ran No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All Receiver Inputs at 0.7V or 2.4V.	V* = -9V V* = -9V V* = +3.2V, V^- = -9V V* = +9V, V^- = -9V V* = +9V, V^- = -9V		8 16 23 -18	16 26 36 -26 -36	mA mA mA mA V V
DS Over утво	V14196T recommended operating suppl Parameter CE CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current V ⁻ Supply Current ER CHARACTERISTICS High Level Input Voltage Low Level Input Voltage High Level Input Current	V and temperature ran No Load, All Input No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All Receiver Inputs at 0.7V or 2.4V. V _{IN} = 3.3V V _{IN} = 0V	V* = -9V V* = -9V V* = +3.2V, V^- = -9V V* = +9V, V^- = -9V V* = +9V, V^- = -9V		8 16 23 -18 -25	16 26 36 -26 -36 0.8 10	mA mA mA mA V V V
DS Over ymbol DEVIC I _{CC} I ⁺ I [−] DRIVE V _I H V _I L I _H I _L	V14196T recommended operating suppl Parameter CE CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current V ⁻ Supply Current CHARACTERISTICS High Level Input Voltage High Level Input Voltage High Level Input Current Low Level Input Current	ly and temperature ran No Load, All Input No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All Receiver Inputs at 0.7V or 2.4V. V _{IN} = 3.3V V _{IN} = 0V R _L = 3 kΩ, V _{IN} = 0	V* = +9V, V^- = -9V V* = +9V, V^- = -9V V* = +13.2V, V^- = -13.2V V* = +9V, V^- = -9V V* = +13.2V, V^- = -13.2V	2.0	8 16 23 -18 -25 -1.1	16 26 36 -26 -36 0.8 10	mA mA mA mA MA V V μA mA
DS Over ymbol DEVIC I _{CC} I⁺ I [−] V _{IH} V _{IL} I _H I _I	V14196T recommended operating suppl Parameter CE CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current V ⁻ Supply Current CHARACTERISTICS High Level Input Voltage High Level Input Voltage High Level Input Current Low Level Input Current	ly and temperature ran No Load, All Input No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All Receiver Inputs at 0.7V or 2.4V. V _{IN} = 3.3V V _{IN} = 0V R _L = 3 kΩ, V _{IN} = 0 R _L = 3 kΩ, V _{IN} = 0	nges unless otherwise specified Conditions s at +3.3V $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ $V^+ = +9V, V^- = -9V$ $0.8V, V^+ = +9V, V^- = -9V$	2.0	8 16 23 -18 -25 -1.1 7	16 26 36 -26 -36 0.8 10	mA mA mA mA mA V V V μA MA
DS Over DEVIC I _{CC} I ⁺ I ⁻ DRIVE V _{IH} V _{IL} I _{IH} I _{IL}	V14196T recommended operating suppl Parameter CE CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current V ⁻ Supply Current CHARACTERISTICS High Level Input Voltage High Level Input Voltage High Level Input Current Low Level Input Current	ly and temperature ran No Load, All Input No Load, All Input Driver Inputs at 0.8V or +2V. All Receiver Inputs at 0.7V or 2.4V. V _{IN} = 3.3V V _{IN} = 0V R _L = 3 kΩ, V _{IN} = 0 R _L = 7 kΩ, V _{IN} = 0	nges unless otherwise specified Conditions S at +3.3V $V^+ = +9V, V^- = -9V$ $V^+ = +9V, V^- = -9V$ $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ 0.8V, V^+ = +9V, V^- = -9V 0.8V, V^+ = +12V, V^- = -9V	2.0 5.5 7.5	8 16 23 -18 -25 -1.1 7 9	16 26 36 -26 -36 0.8 10	mA mA mA mA MA V V μA mA V V
DS Over ymbol DEVIC I _{CC} I ⁺ I ⁻ DRIVE V _{IH} V _{IH} I _{IL} V _{OH}	V14196T recommended operating supply Parameter E CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current V ⁻ Supply Current ER CHARACTERISTICS High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current High Level Output Voltage	ly and temperature ran No Load, All Input No Load, All Input Driver Inputs at 0.8V or +2V. All Receiver Inputs at 0.7V or 2.4V. V _{IN} = 3.3V V _{IN} = 0V R _L = 3 kΩ, V _{IN} = 0 R _L = 7 kΩ, V _{IN} = 0 R _L = 3 kΩ, V _{IN} = 0	Images unless otherwise specified Conditions s at +3.3V $V^+ = +9V, V^- = -9V$ $V^+ = +9V, V^- = -9V$ $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ 0.8V, $V^+ = +9V, V^- = -9V$ 0.8V, $V^+ = +12V, V^- = -12V$ 0.8V, $V^+ = +13.2V, V^- = -13.2V$	2.0 5.5 7.5	8 16 23 -18 -25 -25 -1.1 7 9 11.5	16 26 36 -26 -36 0.8 10 -1.9	mA mA mA mA MA V V μA MA V V V V
DS Over ymbol Icc I ⁺ I ⁻ DRIVE V _{IH} V _{IL} I _I I _L V _{OH}	V14196T recommended operating supply Parameter E CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current V ⁻ Supply Current ER CHARACTERISTICS High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current High Level Output Voltage	ly and temperature ran No Load, All Input No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All Receiver Inputs at 0.7V or 2.4V. $V_{IN} = 3.3V$ $V_{IN} = 0V$ $R_{L} = 3 k\Omega, V_{IN} = 0$ $R_{L} = 7 k\Omega, V_{IN} = 0$ $R_{L} = 3 k\Omega, V_{IN} = 0$ $R_{L} = 3 k\Omega, V_{IN} = 0$	nges unless otherwise specified Conditions s at +3.3V $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ 0.8V, $V^+ = +9V, V^- = -9V$ 0.8V, $V^+ = +12V, V^- = -12V$ 0.8V, $V^+ = +13.2V, V^- = -13.2V$ 2V, $V^+ = +9V, V^- = -9V$	2.0 5.5 7.5	8 16 23 -18 -25 -1.1 7 9 11.5 -7	16 26 36 -26 -36 0.8 10 -1.9 -5.5	mA mA mA mA V V V μA MA V V V V V
DS Over ymbol Icc I ⁺ I ⁻ DRIVE V _{IH} V _{IL} I _{IH} I _{IL} V _{OH}	V14196T recommended operating supply Parameter E CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current V ⁻ Supply Current ER CHARACTERISTICS High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current High Level Output Voltage	ly and temperature ran No Load, All Input No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All Receiver Inputs at 0.7V or 2.4V. $V_{IN} = 3.3V$ $V_{IN} = 0V$ $R_{L} = 3 k\Omega, V_{IN} = 0$ $R_{L} = 7 k\Omega, V_{IN} = 0$ $R_{L} = 3 k\Omega, V_{IN} = 0$ $R_{L} = 3 k\Omega, V_{IN} = 0$	nges unless otherwise specified Conditions s at +3.3V $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ $V^+ = +13.2V, V^- = -13.2V$ 0.8V, $V^+ = +12V, V^- = -12V$ 0.8V, $V^+ = +13.2V, V^- = -13.2V$ 2V, $V^+ = +13.2V, V^- = -12V$ 2V, $V^+ = +13.2V, V^- = -13.2V$	2.0 5.5 7.5	8 16 23 -18 -25 -25 -11.1 7 9 11.5 -7 -10	16 26 36 -26 -36 0.8 10 -1.9 -5.5 -7.5	mA mA mA mA mA V V V V V V V V V V V V V
DS Over ymbol DEVIC I _{сс} I ⁺ I ⁻ DRIVE V _{IH} V _{IL} I _{IH} I _{IL} V _{OH}	V14196T recommended operating supply Parameter CE CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current ER CHARACTERISTICS High Level Input Voltage Low Level Input Current Low Level Input Current High Level Output Voltage Low Level Output Voltage Low Level Output Voltage Output High Short	ly and temperature ran No Load, All Input No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All Receiver Inputs at 0.7V or 2.4V. V _{IN} = 3.3V V _{IN} = 0V R _L = 3 kΩ, V _{IN} = 0 R _L = 3 kΩ, V _{IN} = 0 R _L = 3 kΩ, V _{IN} = 1 R _L = 7 kΩ, V _{IN} = 1 R _L =	nges unless otherwise specified Conditions s at +3.3V $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ 0.8V, $V^+ = +12V, V^- = -12V$ 0.8V, $V^+ = +13.2V, V^- = -13.2V$ 2V, $V^+ = +9V, V^- = -9V$ 2V, $V^+ = +13.2V, V^- = -12V$ 2V, $V^+ = +13.2V, V^- = -12V$ 2V, $V^+ = +13.2V, V^- = -13.2V$ 0.8V	2.0 2.0 5.5 7.5 9	8 16 23 -18 -25 -10 -1.1 7 9 11.5 -7 -10 -11.5	16 26 36 -26 -36 0.8 10 -1.9 -5.5 -7.5 -9	mA mA mA mA mA V V V μA mA V V V V V V V V
DS Over Symbol DEVIC I _{сс} I ⁺ I ⁻ DRIVE V _{IH} V _{IL} I _{IH} I _{IL} V _{OH} V _{OL}	V14196T recommended operating supply Parameter CE CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current V ⁻ Supply Current ER CHARACTERISTICS High Level Input Voltage Low Level Input Current Low Level Input Current High Level Output Voltage Low Level Output Voltage Low Level Output Voltage Output High Short Circuit Current (Note 4)	ly and temperature ran No Load, All Input No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All Receiver Inputs at 0.7V or 2.4V. $V_{IN} = 3.3V$ $V_{IN} = 0V$ $R_{L} = 3 k\Omega, V_{IN} = 0$ $R_{L} = 7 k\Omega, V_{IN} = 0$ $R_{L} = 3 k\Omega, V_{IN} = 0$ $R_{L} = 7 k\Omega, V_{IN} = 0$ $R_{L} = 7 k\Omega, V_{IN} = 0$	nges unless otherwise specified Conditions s at +3.3V $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ 0.8V, $V^+ = +12V, V^- = -12V$ 0.8V, $V^+ = +13.2V, V^- = -13.2V$ 2V, $V^+ = +9V, V^- = -9V$ 2V, $V^+ = +13.2V, V^- = -12V$ 2V, $V^+ = +13.2V, V^- = -12V$ 2V, $V^+ = +13.2V, V^- = -13.2V$ 0.8V	2.0 2.0 5.5 7.5 9 -4	8 16 23 -18 -25 -10 -1.1 7 9 11.5 -7 -10 -11.5 -12	16 26 36 -26 -36 0.8 10 -1.9 -5.5 -7.5 -9 -22	mA mA mA mA mA V V V V V V V V V V V V V
DS Over Symbol DEVIC Icc I ⁺ I ⁻ DRIVE V _{IH} V _{IL} I _{IH} I _{IL} V _{OH} V _{OL}	V14196T recommended operating supply Parameter E CHARACTERISTICS V _{CC} Supply Current V ⁺ Supply Current V ⁻ Supply Current V ⁻ Supply Current ER CHARACTERISTICS High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Output Voltage Low Level Output Voltage Output High Short Circuit Current (Note 4) Output Low Short	ly and temperature ran No Load, All Input No Load, All Input No Load, All Driver Inputs at 0.8V or +2V. All Receiver Inputs at 0.7V or 2.4V. V _{IN} = 3.3V V _{IN} = 0V R _L = 3 kΩ, V _{IN} = 0 R _L = 3 kΩ, V _{IN} = 1 R _L = 3 kΩ, V _{IN} = 1 R _L = 3 kΩ, V _{IN} = 1 R _L = 7 kΩ, V _{IN} = 1 V _{OUT} = 0V, V _{IN} = 1	nges unless otherwise specified Conditions s at +3.3V $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ $V^+ = +9V, V^- = -9V$ $V^+ = +13.2V, V^- = -13.2V$ 0.8V, $V^+ = +12V, V^- = -12V$ 0.8V, $V^+ = +13.2V, V^- = -13.2V$ 2V, $V^+ = +9V, V^- = -9V$ 2V, $V^+ = +13.2V, V^- = -12V$ 2V, $V^+ = +13.2V, V^- = -12V$ 2V, $V^+ = +13.2V, V^- = -13.2V$ 0.8V	2.0 2.0 5.5 7.5 9 -4	8 16 23 -18 -25 -10 -1.1 7 9 11.5 -7 -10 -11.5 -12	16 26 36 -26 -36 0.8 10 -1.9 -5.5 -7.5 -9 -22	mA mA mA mA V V μA mA V V V V V V V V V V MA

. .

	ecommended operating supply	and temperature ranges unless otherwise specified				
Symbol	Parameter	Conditions	Min	Тур	Max	Units
RECEIV	ER CHARACTERISTICS					
V _{TH}	Input High Threshold	$V_{OUT} \le 0.5V, I_O = 3.2 \text{ mA}$	1.4	1.85	2.8	V
	(Recognized as a High Signal)					
V _{TL}	Input Low Threshold (Recognized as a Low Signal)	$V_{OUT} \ge 1.7V, I_O = -0.5 \text{ mA}$	0.5	0.9	1.4	V
R _{IN}	Input Resistance	$V_{IN} = \pm 3V$ to $\pm 15V$, TA = 0°C to 70°C	3.0	3.8	7.0	kΩ
I _{IN}	Input Current	$V_{IN} = +15V, TA = 0^{\circ}C \text{ to } +70^{\circ}C$	2.1	4.0	5.0	mA
		$V_{IN} = +3V$, TA = 0°C to +70°C	0.43	0.7	1.0	mA
		$V_{IN} = -15V$, TA = 0°C to +70°C	-2.1	-4.0	-5.0	mA
		$V_{IN} = -3V$, TA = 0°C to +70°C	-0.43	-0.7	-1.0	mA
V _{он}	High Level Output Voltage (Note 7)	$I_{OH} = -0.5 \text{ mA}, V_{IN} = -3V, V_{CC} = 3.3V$	1.8	2.4		V
		$I_{OH} = -10 \ \mu A, \ V_{IN} = -3V, \ V_{CC} = 3.3V$	3.0	3.2		V
		I_{OH} = -0.5 mA, V_{IN} = Open Circuit, V_{CC} = 3.3V	1.8	2.4		V
		I_{OH} = -10 µA, V_{IN} = Open Circuit, V_{CC} = 3.3V	3.0	3.2		V
V _{OL}	Low Level Output Voltage	I _{OL} = 3.2 mA, V _{IN} = +3V		0.2	0.5	V
IOSR	Short Circuit Current	$V_{OUT} = 0V, V_{IN} = 0V$ (Note 4)	-0.4	-1.8	-3.2	mA

· ·

Switc DSV1 T _A = +25	ching Characteristics (Note 3) (N 4196 & DSV14196T 5°C	Note 5) (Note 6)				
Symbol	Parameter	Conditions	Min	Тур	Max	Units
DRIVER O	CHARACTERISTICS					
t _{PHL}	Propagation Delay High to Low	$R_{L} = 3 k\Omega, C_{L} = 50 pF$		60	350	ns
t _{PLH}	Propagation Delay Low to High	(Figures 1, 2)		240	350	ns
t _r , t _f	Rise/Fall Time (Note 8)			40		ns
RECEIVE	R CHARACTERISTICS					
t _{PHL}	Propagation Delay High to Low	$R_{L} = 1.5 \text{ k}\Omega, C_{L} = 15 \text{ pF}$		150	350	ns
t _{PLH}	Propagation Delay Low to High	(includes fixture plus probe),		240	350	ns
t _r	Rise Time	(Figures 3, 4)		40	175	ns
t _f	Fall Time			40	100	ns

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of Electrical Characteristics specifies conditions of device operation.

Note 2: Current into device pins is defined as positive. Current out of the device pins is defined as negative. All voltages are referenced to ground unless otherwise specified. For current, minimum and maximum values are specified as an absolute value and the sign is used to indicate direction. For voltage logic levels, the more positive value is designated as maximum. For example, if -6V is a maximum, the typical value -6.8V is more negative.

Note 3: All typicals are given for: V_{CC} = +3.3V, V⁺ = +12V, V⁻ = -12V, T_A = +25°C.

Note 4: Only one driver output shorted at a time.

Note 5: Generator characteristics for driver input: f = 64 kHz (128 kbps), $t_r = t_f < 10$ ns, $V_{IH} = 3V$, $V_{IL} = 0V$, duty cycle = 50%.

Note 6: Generator characteristics for receiver input: f = 64 kHz (128 kbps), $t_r = t_f = 200$ ns, $V_{IH} = 3V$, $V_{IL} = -3V$, duty cycle = 50%.

Note 7: If receiver inputs are unconnected, receiver output is a logic high.

Note 8: Refer to typical curves. Driver output slew rate is measured from the +3V to the –3V level on the output waveform. Inputs not under test are connected to V_{CC} or GND. Slew rate is determined by load capacitance. To comply with a 30 V/µs maximum slew rate, a minimum load capacitance of 390 pF for DSV14196 or 620 pF for DSV14196T is recommended.

www.national.com

Pin Descriptions

•

Pin # Pin Description Name 2, 3, 4, 7, 9 D_{IN} **Driver Input Pins** D_{OUT} 12, 14, 17, 18, 19 Driver Output Pins, RS-232 Levels Receiver Input Pins, RS-232 Levels 13, 15, 16 R_{IN} 5, 6, 8 Receiver Output Pins R_{OUT} Ground 10 GND V^+ Positive Power Supply Pin (+9.0 \leq V⁺ \leq +13.2) 20 V-11 Negative Power Supply Pin ($-9.0 \le V^- \le -13.2$) 1 V_{cc} Positive Power Supply Pin (+3.3V ±10%)

Transition Time Waveform

Applications Information

In a typical Data Terminal Equipment (DTE) to Data Circuit-Terminating Equipment (DCE) 9-pin de-facto interface implementation, 2 data lines and 6 control lines are required. The data lines are TXD and RXD. The control lines are RTS, DTR, DSR, DCD, CTS and RI.

The DSV14196/DSV14196T is a 5 x 3 Driver/Receiver and offers a single chip solution for this DTE interface. As shown in *Figure 5*, this interface allows for direct flow-thru interconnect. For a more conservative design, the user may wish to insert ground traces between the signal lines to minimize cross talk.

FAILSAFE RECEIVER OUTPUTS

The DSV14196/DSV14196T features failsafe receiver outputs. In failsafe mode, if the receiver input becomes zero or an open-circuit, the receiver output is pulled to a high level.

LapLink COMPATIBILITY

The DSV14196/DSV14196T can easily provide 128 kbps data rate under maximum driver load conditions of C_L = 2500 pF and R_L = 3 kΩ, while power supplies are:

 $V_{\rm CC}$ = +3.0V, V⁺ = 10.8V, V⁻ = -10.8V

MOUSE DRIVING

A typical mouse can be powered from the drivers. Two driver outputs connected in parallel and set to V_{OH} can be used to supply power to the V⁺ pin of the mouse. The third driver output is set to V_{OL} to sink the current from the V⁻terminal. Refer to typical curves of V_{OUT}/I_{OUT}.Typical mouse specifications are:

10 mA at +6V 5 mA at -6V

www.national.com

www.national.com

8

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.