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Chapter 1  
e200z0 and e200z0h Overview

1.1 Overview of the e200z0 and e200z0h Cores
The e200 processor family is a set of CPU cores that implement low-cost versions of the Power 
Architecture™ Book E architecture. e200 processors are designed for deeply embedded control 
applications, which require low cost solutions rather than maximum performance.

The e200z0 and e200z0h processors integrate an integer execution unit, branch control unit, instruction 
fetch and load/store units, and a multi-ported register file capable of sustaining three read and two write 
operations per clock. Most integer instructions execute in a single clock cycle. Branch target prefetching 
is performed by the branch unit to allow single-cycle branches in some cases. 

The e200z0 and e200z0h cores are single-issue, 32-bit Power Architecture Book EVLE-only designs with 
32-bit general purpose registers (GPRs). All arithmetic instructions that execute in the core operate on data 
in the general purpose registers (GPRs).

Instead of the base Power Architecture Book E instruction set support, the e200z0 and e200z0h cores only 
implement the VLE (variable-length encoding) APU, providing improved code density. The VLE APU is 
further documented in the PowerPC™ VLE APU Definition, Version 1.01, a separate document.

In the remainder of this document, the e200z0 and e200z0h core are also referred to as the “e200z0 core” 
or “e200 core” when referring to the whole e200 family. The term ‘e200z0h’ is used where differences 
exist between the e200z0 and e200z0h.

1.1.1 Features 

The following is a list of some of the key features of the e200z0 and e200z0h cores: 

• 32-bit Power Architecture Book EVLE-only programmer’s model

• Single issue, 32-bit CPU

• Implements the VLE APU for reduced code footprint

• In-order execution and retirement

• Precise exception handling

• Branch processing unit

— Dedicated branch address calculation adder

— Branch acceleration using Branch Target Buffer (e200z0h only)

• Supports independent instruction and data accesses to different memory subsystems, such as 
SRAM and Flash memory via independent Instruction and Data bus interface units (BIUs) 
(e200z0h only).
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• Supports instruction and data access via a unified 32-bit Instruction/Data BIU (e200z0 only).

• Load/store unit

— 1 cycle load latency

— Fully pipelined

— Big-endian support only

— Misaligned access support

— Zero load-to-use pipeline bubbles for aligned transfers

• Power management

— Low power design

— Power saving modes: doze, nap, sleep, and wait

— Dynamic power management of execution units

• Testability

— Synthesizeable, full MuxD scan design

— ABIST/MBIST for optional memory arrays

1.1.2 Microarchitecture Summary

The e200 processor utilizes a four stage pipeline for instruction execution. The Instruction Fetch (stage 1), 
Instruction Decode/Register file Read/Effective Address Calculation (stage 2), Execute/Memory Access 
(stage 3), and Register Writeback (stage 4) stages operate in an overlapped fashion, allowing single clock 
instruction execution for most instructions. 

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-bit Barrel 
shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation Unit (CRU), a 
Count-Leading-Zeros unit (CLZ), an 8x32 Hardware Multiplier array, result feed-forward hardware, and 
a hardware divider. 

Arithmetic and logical operations are executed in a single cycle with the exception of the divide and 
multiply instructions. A Count-Leading-Zeros unit operates in a single clock cycle.

The Instruction Unit contains a PC incrementer and a dedicated Branch Address adder to minimize delays 
during change of flow operations. Sequential prefetching is performed to ensure a supply of instructions 
into the execution pipeline. Branch target prefetching from the BTB is performed to accelerate certain 
taken branches in the e200z30h. Prefetched instructions are placed into an instruction buffer with 2 entries 
in e200z0 and 4 entries in e200z0h, each capable of holding a single 32-bit instruction or a pair of 16-bit 
instructions. 

Conditional branches which are not taken execute in a single clock. Branches with successful target 
prefetching have an effective execution time of 1 clock on e200z0h. All other taken branches have an 
execution time of two clocks.

Memory load and store operations are provided for byte, halfword, and word (32-bit) data with automatic 
zero or sign extension of byte and halfword load data as well as optional byte reversal of data. These 
instructions can be pipelined to allow effective single cycle throughput. Load and store multiple word 
instructions allow low overhead context save and restore operations. The load/store unit contains a 
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dedicated effective address adder to allow effective address generation to be optimized. Also, a load-to-use 
dependency does not incur any pipeline bubbles for most cases.

The Condition Register unit supports the condition register (CR) and condition register operations defined 
by the PowerPC™ architecture. The condition register consists of eight 4-bit fields that reflect the results 
of certain operations, such as move, integer and floating-point compare, arithmetic, and logical 
instructions, and provide a mechanism for testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support is provided to 
allow multiple interrupt sources to have unique interrupt handlers invoked with no software overhead.
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Figure 1-1. e200z0h Block Diagram
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.

1.1.2.1 Instruction Unit Features

The features of the e200 Instruction unit are: 

• 32-bit instruction fetch path supports fetching of one 32-bit instruction per clock, or up to two 
16-bit VLE instructions per clock.

Figure 1-2. e200z0 Block Diagram
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• Instruction buffer with 2 entries in e200z0 and 4 entries in e200z0h, each holding a single 32-bit 
instruction, or a pair of 16-bit instructions

• Dedicated PC incrementer supporting instruction prefetches

• Branch unit with dedicated branch address adder supporting single cycle of execution of certain 
branches, two cycles for all others

1.1.2.2 Integer Unit Features

The e200 integer unit supports single cycle execution of most integer instructions: 

• 32-bit AU for arithmetic and comparison operations

• 32-bit LU for logical operations

• 32-bit priority encoder for count leading zero’s function

• 32-bit single cycle barrel shifter for shifts and rotates

• 32-bit mask unit for data masking and insertion 

• Divider logic for signed and unsigned divide in 5 to 34 clocks with minimized execution timing

• 8x32 hardware multiplier array supports 1 to 4 cycle 32x32->32 multiply (early out)

1.1.2.3 Load/Store Unit Features

The e200 load/store unit supports load, store, and the load multiple / store multiple instructions: 

• 32-bit effective address adder for data memory address calculations

• Pipelined operation supports throughput of one load or store operation per cycle

• 32-bit interface to memory dedicated memory interface on e200z0h)

1.1.2.4 e200z0h System Bus Features

The features of the e200z30h System Bus interface are as follows: 

• Independent Instruction and Data Buses

• AMBA AHB Lite Rev 2.0 Specification with support for ARM v6 AMBA Extensions 

— Exclusive Access Monitor

— Byte Lane Strobes

— Cache Allocate Support

• 32-bit address bus plus attributes and control on each bus

• 32-bit read data bus for Instruction Interface

• Separate uni-directional 32-bit read data bus and 32-bit write data bus for Data Interface

• Overlapped, in-order accesses

1.1.2.5 e200z0 System Bus Features

The features of the e200z0 System Bus interface are as follows: 

• Unified Instruction/Data Bus
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• AMBA AHB2.v6 protocol

• 32-bit address bus plus attributes and control

• Separate uni-directional 32-bit read data bus and 32-bit write data bus

• Overlapped, in-order accesses

1.1.2.6 Nexus 2+ Features

The module is compatible with Class 2 of the IEEE-ISTO Std 5001™-2003, with additional Class 3 and 
Class 4 features available. The following features are implemented:

• Program Trace via Branch Trace Messaging (BTM). Branch trace messaging displays program 
flow discontinuities (direct and indirect branches, exceptions, etc.), allowing the development tool 
to interpolate what transpires between the discontinuities. Thus, static code may be traced.

• Ownership Trace via Ownership Trace Messaging (OTM). OTM facilitates ownership trace by 
providing visibility of which process ID or operating system task is activated. An Ownership Trace 
Message is transmitted when a new process/task is activated, allowing the development tool to 
trace ownership flow.

• Run-time access to the processor memory map via the JTAG port. This allows for enhanced 
download/upload capabilities.

• Watchpoint Messaging via the auxiliary interface

• Watchpoint Trigger enable of Program Trace Messaging

• Auxiliary interface for higher data input/output

— Configurable (min/max) Message Data Out pins (nex_mdo[n:0]) 

— One (1) or two (2) Message Start/End Out pins (nex_mseo_b[1:0]) 

— One (1) Read/Write Ready pin (nex_rdy_b) pin

— One (1) Watchpoint Event pin (nex_evto_b) 

— One (1) Event In pin (nex_evti_b) 

— One (1) MCKO (Message Clock Out) pin

• Registers for Program Trace, Ownership Trace and Watchpoint Trigger control.

• All features controllable and configurable via the JTAG port
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Chapter 2  
Register Model
This section describes the registers implemented in the e200z0 and e200z0h cores. It includes an overview 
of registers defined by the PowerPC Book E architecture, highlighting differences in how these registers 
are implemented in the e200 core, and provides a detailed description of e200-specific registers. Full 
descriptions of the architecture-defined register set are provided in Power Architecture Book E 
Specification.

The Power Architecture Book E defines register-to-register operations for all computational instructions. 
Source data for these instructions are accessed from the on-chip registers or are provided as immediate 
values embedded in the opcode. The three-register instruction format allows specification of a target 
register distinct from the two source registers, thus preserving the original data for use by other 
instructions. Data is transferred between memory and registers with explicit load and store instructions 
only.

Figure 2-1, Figure 2-2, and Figure 2-3 show the e200 register set including the registers which are 
accessible while in supervisor mode, and the registers which are accessible in user mode. The number to 
the right of the special-purpose registers (SPRs) is the decimal number used in the instruction syntax to 
access the register (for example, the integer exception register (XER) is SPR 1). 

NOTE
e200z0 and e200z0h are a 32-bit implementation of the Power Architecture 
Book E specification. In this document, register bits are sometimes 
numbered from bit 0 (most significant bit) to 31 (least significant bit), rather 
than the Book E numbering scheme of 32:63, thus register bit numbers for 
some registers in Book E are 32 higher. 

Where appropriate, the Book E defined bit numbers are shown in 
parentheses.
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Figure 2-1. e200z0 Supervisor Mode Programmer’s Model
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Figure 2-2. e200z0h Supervisor Mode Programmer’s Model
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Figure 2-3. e200 User Mode Program Model
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— Link register (LR). The LR provides the branch target address for the Branch to Link Register 
(se_blr, se_blrl) instructions, and is used to hold the address of the instruction that follows a 
branch and link instruction, typically used for linking to subroutines. See “Link Register (LR)”, 
in Chapter 3, “Branch and Condition Register Operations” of Power Architecture Book E 
Specification. 

— Count register (CTR). The CTR holds a loop count that can be decremented during execution 
of appropriately coded branch instructions. The CTR also provides the branch target address 
for the Branch to Count Register (se_bctr, se_bctrl) instructions. See “Count Register (CTR)”, 
in Chapter 3, “Branch and Condition Register Operations” of Power Architecture Book E 
Specification. 

• Supervisor-level registers—In addition to the registers accessible in user mode, Supervisor-level 
software has access to additional control and status registers used for configuration, exception 
handling, and other operating system functions. The Power Architecture Book E defines the 
following supervisor-level registers:

— Processor Control registers

– Machine State Register (MSR). The MSR defines the state of the processor. The MSR can 
be modified by the Move to Machine State Register (mtmsr), System Call (se_sc), and 
Return from Exception (se_rfi, se_rfci, se_rfdi) instructions. It can be read by the Move 
from Machine State Register (mfmsr) instruction. When an interrupt occurs, the contents of 
the MSR are saved to one of the machine state save/restore registers (SRR1, CSRR1, 
DSRR1). 

– Processor version register (PVR). This register is a read-only register that identifies the 
version (model) and revision level of the processor. 

– Processor Identification Register (PIR). This read-only register is provided to distinguish 
the processor from other processors in the system. 

— Storage Control register

– Process ID Register (PID, also referred to as PID0). This register is provided to indicate the 
current process or task identifier. It is used by the optional MMU as an extension to the 
effective address, and by the optional external Nexus2/3 modules for Ownership Trace 
message generation. Although the Power Architecture Book E allows for multiple PIDs, the 
e200z0 and e200z0h implement only one.

— Interrupt Registers

– Data Exception Address Register (DEAR). After most Data Storage Interrupts (DSI), or on 
an Alignment Interrupt, the DEAR is set to the effective address (EA) generated by the 
faulting instruction.

– SPRG0-SPRG1. The SPRG0-SPRG1 registers are provided for operating system or 
interrupt handler use.

– Exception Syndrome Register (ESR). The ESR register provides a syndrome to differentiate 
between the different kinds of exceptions which can generate the same interrupt.

– Interrupt Vector Prefix Register (IVPR). This register together with hardwired offsets which 
replace the IVOR0-15 registers provide the address of the interrupt handler for different 
classes of interrupts.
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– Save/Restore Register 0 (SRR0). The SRR0 register is used to save machine state on a 
non-critical interrupt, and contains the address of the instruction at which execution resumes 
when an se_rfi instruction is executed at the end of a non-critical class interrupt handler 
routine.

– Critical Save/Restore register 0 (CSRR0). The CSRR0 register is used to save machine state 
on a critical interrupt, and contains the address of the instruction at which execution resumes 
when an se_rfci instruction is executed at the end of a critical class interrupt handler routine.

– Save/Restore register 1 (SRR1). The SRR1 register is used to save machine state from the 
MSR on non-critical interrupts, and to restore machine state when se_rfi executes.

– Critical Save/Restore register 1 (CSRR1). The CSRR1 register is used to save machine state 
from the MSR on critical interrupts, and to restore machine state when se_rfci executes.

— Debug facility registers

– Debug Control Registers (DBCR0-DBCR2). These registers provide control for enabling 
and configuring debug events.

– Debug Status Register (DBSR). This register contains debug event status.

– Instruction Address Compare registers (IAC1-IAC4). These registers contain addresses 
and/or masks which are used to specify Instruction Address Compare debug events.

– Data address compare registers (DAC1-2). These registers contain addresses and/or masks 
which are used to specify Data Address Compare debug events.

– e200 does not implement the Data Value Compare registers (DVC1 and DVC2).

2.2 e200-Specific Special Purpose Registers
The PowerPC Book E architecture allows implementation-specific special purpose registers. Those 
incorporated in the e200 core are as follows:

• User-level registers—The user-level registers can be accessed by all software with either user or 
supervisor privileges. They include the following:

— The L1 Cache Configuration register (L1CFG0). This read-only register allows software to 
query the configuration of the L1 Cache. For the e200z0 and e200z0h, this register returns all 
zeros indicating no cache is present.

• Supervisor-level registers—The following supervisor-level registers are defined in e200 in 
addition to the Power Architecture Book E registers described above:

— Configuration Registers

– Hardware implementation-dependent register 0 (HID0). This register controls various 
processor and system functions.

– Hardware implementation-dependent register 1 (HID1). This register controls various 
processor and system functions.

— Exception Handling and Control Registers

– Machine Check Syndrome register (MCSR). This register provides a syndrome to 
differentiate between the different kinds of conditions which can generate a Machine Check.
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– Debug Save/Restore register 0 (DSRR0). When enabled, the DSRR0 register is used to save 
the address of the instruction at which execution continues when se_rfdi executes at the end 
of a debug interrupt handler routine.

– Debug Save/Restore register 1 (DSRR1). When enabled, the DSRR1 register is used to save 
machine status on debug interrupts and to restore machine status when se_rfdi executes.

— Branch Unit Control and Status Register (BUCSR) controls operation of the BTB in e200z0 
and e200z0h.

— L1 Cache Configuration Register (L1CFG0) is a read-only register that allows software to 
query the configuration of the L1 Cache. For the e200z0 and e200z0h this register returns all 
zeros.

— MMU Configuration Register (MMUCFG) is a read-only register that allows software to query 
the configuration of the MMU. For e200z0 and e200z0h, this register returns the value 
0x0000_0003 indicating no MMU is present.

— System version register (SVR). This register is a read-only register that identifies the version 
(model) and revision level of the SoC which includes an e200 Power Architecture processor. 

Note that it is not guaranteed that the implementation of e200 core-specific registers is consistent among 
Power Architecture processors, although other processors may implement similar or identical registers. All 
e200 SPR definitions are compliant with the Freescale EIS specification definitions as documented in the 
EREF: A Programmer’s Reference Manual for Freescale Book E Processors.

2.3 Special Purpose Register Descriptions

2.3.1 Machine State Register (MSR)

The Machine State Register defines the state of the processor. Chapter 5, “Interrupts and Exceptions,” 
describes how the MSR is affected when Interrupts occur. The e200 MSR is shown in Figure 2-4.
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The MSR bits are defined in Table 2-1.

Table 2-1. MSR Field Descriptions

Bit(s) Name Description

0:4
(32:36)

— Reserved1

5
(37)

UCLE2 User Cache Lock Enable
0 Execution of the cache locking instructions in user mode (MSR[PR]=1) disabled; DSI exception taken 

instead, and ILK or DLK set in ESR.
1 Execution of the cache lock instructions in user mode enabled.

6
(38)

Allocated Allocated3 - Allocated for SPE 
Not supported on e200z0 or e200z0h

7:12
(39:44)

— Reserved1

13
(45)

WE Wait State (Power management) enable
0 Power management is disabled.
1 Power management is enabled. The processor can enter a power-saving mode when additional 

conditions are present. The mode chosen is determined by the DOZE, NAP, and SLEEP bits in the 
HID0 register, described in Section 2.3.9, “Hardware Implementation Dependent Register 0 (HID0).”

14
(46)

CE Critical Interrupt Enable
0 Critical Input interrupts are disabled.
1 Critical Input interrupts are enabled.

15
(47)

— Reserved1

16
(48)

EE External Interrupt Enable
0 External Input interrupts are disabled.
1 External Input interrupts are enabled.

17
(49)

PR Problem State
0 The processor is in supervisor mode, can execute any instruction, and can access any resource (for 

example, GPRs, SPRs, MSR, etc.).
1 The processor is in user mode, cannot execute any privileged instruction, and cannot access any 

privileged resource.

18
(50)

FP4 Floating-Point Available 
0 Floating point unit is unavailable. The processor cannot execute floating-point instructions, including 

floating-point loads, stores, and moves. (A FP Unavailable interrupt is generated on attempted 
execution of floating point instructions).

1 Floating Point unit is available. The processor can execute floating-point instructions.

19
(51)

ME Machine Check Enable
0 Machine Check interrupts are disabled. 
1 Machine Check interrupts are enabled.

20
(52)

FE0 Floating-point exception mode 0 (not used by e200)

21
(53)

— Reserved1

22
(54)

DE Debug Interrupt Enable
0 Debug interrupts are disabled. 
1 Debug interrupts are enabled.
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2.3.2 Processor ID Register (PIR)

The processor ID for the processor core is contained in the Processor ID Register (PIR), shown in 
Figure 2-5. The contents of the PIR register are a reflection of hardware input signals to the e200 core. This 
register is read-only.

The PIR fields are defined in Table 2-2.

23
(55)

FE1 Floating-point exception mode 1 (not used by e200)

24
(56)

— Reserved1

25
(57)

— Reserved1

26
(58)

IS Instruction Address Space
0 The processor directs all instruction fetches to address space 0.
1 The processor directs all instruction fetches to address space 1.

27
(59)

DS Data Address Space
0 The processor directs all data storage accesses to address space 0.
1 The processor directs all data storage accesses to address space 1.

28:29
(60:61)

— Reserved1

30
(62)

RI Recoverable Interrupt
0 Machine Check interrupt is not recoverable. 
1 Machine Check interrupt may be recoverable.
This bit is cleared when a Machine check interrupt is taken, or when a critical class interrupt using 
CSRR0/1 is taken. It is not set by hardware, and does not affect processor operation. It is provided as 
a software assist.

30:31
(62:63)

— Reserved1

1 This bit is not implemented, is read as zero, and writes are ignored.
2 This bit is implemented but ignored because no cache is implemented
3 This bits is should be written with zero for future compatibility.
4 This bit is implemented but ignored

0 ID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—286; Read-only

Figure 2-5. Processor ID Register (PIR)

Table 2-1. MSR Field Descriptions (continued)

Bit(s) Name Description
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2.3.3 Processor Version Register (PVR)

The Processor Version Register (PVR), shown in Figure 2-6, contains the processor version number for 
the processor core.

The PVR bit fields are shown in Table 2-3.

2.3.4 System Version Register (SVR)

The System Version Register (SVR), shown in Figure 2-7, contains system version information for an 
e200-based SoC.

Table 2-2. PIR Field Descriptions

Bits Name Description

0:23 — These bits always reads 0.

24:31 ID These bits are a reflection of the values provided on the p_cpuid[0:7] input signals.

1 0 0 0 0 0 Type Version MBG Reserved Major Rev MBG ID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—287; Read-only

Figure 2-6. Processor Version Register (PVR)

Table 2-3. PVR Field Descriptions

Bits Name Description

0–5 Reserved Reserved

6–11 Type A 6-bit number that, together with the version number, uniquely identifies a particular processor version.

12–15 Version A 4-bit number that, together with the version number, uniquely identifies a particular processor version.

16–23 Reserved Reserved

24–27 Major Rev A 4-bit number that, together with the ID number, distinguishes between various releases of a particular 
version (that is, an engineering change level). The value of the revision portion of the PVR is 
implementation-specific. The processor revision level is changed for each revision of the device.

28–31 MBG ID A 4-bit number that, together with the major revision number, distinguishes between various releases of 
a particular version (that is, an engineering change level). The value of the revision portion of the PVR is 
implementation-specific. The processor revision level is changed for each revision of the device.

System Version

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—1023; Read-only

Figure 2-7. System Version Register (SVR)
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This register is used to specify a particular implementation of an e200-based system. This register is 
read-only. The SVR bit fields are shown in Table 2-4.

2.3.5 Integer Exception Register (XER)

The XER bit assignments are shown in Figure 2-8.

The XER fields are defined in Table 2-5.

Table 2-4. SVR Field Descriptions

Bits Name Description

0–31 Version SVR number is SoC specific.
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SPR—1; Read/Write; Reset—0x0

Figure 2-8. Integer Exception Register (XER)

Table 2-5. XER Field Descriptions

Bits Name Description

0
(32)

SO Summary Overflow (per Book E)

1
(33)

OV Overflow (per Book E)

2
(34)

CA Carry (per Book E)

3:24
(35:56)

— Reserved1

1 These bits are not implemented, is read as zero, and writes are ignored.

25:31
(57:63)

Bytecnt2

2 These bits are implemented to support emulation of the string instructions.

Preserved for lswi, lswx, stswi, stswx string instructions
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2.3.6 Exception Syndrome Register

The Exception Syndrome Register (ESR) provides a syndrome to differentiate between exceptions that can 
generate the same interrupt type. e200 adds some implementation-specific bits to this register, as seen in 
Figure 2-9.

The ESR fields are defined in Table 2-6.
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SPR—62; Read/Write; Reset—0x0

Figure 2-9. Exception Syndrome Register (ESR)

Table 2-6. ESR Field Descriptions

Bit(s) Name Description Associated Interrupt Type

0:3
(32:35)

— Allocated1 —

4
(36)

PIL Illegal Instruction exception Program

5
(37)

PPR Privileged Instruction exception Program

6
(38)

PTR Trap exception Program

7
(39)

FP2 Floating-point operation Alignment
Data Storage
Data TLB
Program

8
(40)

ST Store operation Alignment
Data Storage
Data TLB

9
(41)

— Reserved1 —

10
(42)

DLK2 Data Cache Locking Data Storage

11
(43)

ILK2 Instruction Cache Locking Data Storage

12
(44)

AP Auxiliary Processor operation
(Currently unused in e200)

Alignment
Data Storage
Data TLB
Program

13
(45)

PUO Unimplemented Operation exception Program
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2.3.6.1 Power Architecture VLE Mode Instruction Syndrome

The ESR[VLEMI] bit is provided to indicate that an interrupt was caused by a Power Architecture VLE 
instruction. This syndrome bit is set on an exception associated with execution or attempted execution of 
a Power Architecture VLE instruction. This bit is updated for the interrupt types indicated in Table 2-6.

2.3.6.2 Misaligned Instruction Fetch Syndrome

The ESR[MIF] bit is provided to indicate that an Instruction Storage Interrupt was caused by an attempt 
to fetch an instruction from a Book E page which was not aligned on a word boundary. The fetch may have 
been caused by execution of a Branch class instruction from a VLE page to a non-VLE page, a Branch to 
LR instruction with LR[62]=1, a Branch to CTR instruction with CTR[62]=1, execution of an se_rfi 
instruction with SRR0[62]=1, execution of an se_rfci instruction with CSRR0[62]=1, or execution of an 
se_rfdi instruction with DSRR0[62]=1, where the destination address corresponds to an instruction page 
which is not marked as a Power Architecture VLE page.

The ESR[MIF] bit is also used to indicate that an Instruction TLB Interrupt was caused by a TLB miss on 
the second half of a misaligned 32-bit Power Architecture VLE Instruction. For this case, SRR0 points to 
the first half of the instruction, which resides on the previous page from the miss at page offset 0xFFE. The 

14
(46)

BO Byte Ordering exception
Mismatched Instruction Storage exception

Data Storage
Instruction Storage

15
(47)

PIE Program Imprecise exception
(Reserved)

Currently unused in e200 

16:23
(48:55)

— Reserved1 —

24
(56)

EFP Embedded Floating-point APU Operation Allocated, not set by hardware

25
(57)

— Allocated1 —

26
(58)

VLEMI VLE Mode Instruction Data Storage
Instruction Storage
Alignment
Program
System Call

27:29
(59:61)

— Allocated1 —

30
(62)

MIF2 Misaligned Instruction Fetch Instruction Storage
Instruction TLB

31
(63)

XTE External Termination Error (Precise) Data Storage
Instruction Storage

1 These bits are not implemented and should be written with zero for future compatibility.
2 Unused on e200z0h and e200z0.

Table 2-6. ESR Field Descriptions (continued)

Bit(s) Name Description Associated Interrupt Type
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ITLB handler may need to realize that the miss corresponds to the next page, although MMU MAS2 
contents correctly reflects the page corresponding to the miss.

NOTE
This bit is allocated, but is not set by e200z0 and e200z0h because no Book 
E pages exist and no MMU is implemented on these cores.

2.3.6.3 Precise External Termination Error Syndrome

The ESR[XTE] bit is provided to indicate that a precise external termination error DSI or ISI interrupt was 
caused by an instruction. This syndrome bit is set on an external termination error exception that is 
reported in a precise manner via a DSI or ISI as opposed to a machine check.

2.3.7 Machine Check Syndrome Register (MCSR)

When the core complex takes a machine check interrupt, it updates the Machine Check Syndrome register 
(MCSR) to differentiate between machine check conditions. The MCSR is shown in Figure 2-10.

Table 2-7 describes MCSR fields. The MCSR indicates the source of a machine check condition is 
recoverable. When a syndrome bit in the MCSR is set, the core complex asserts p_mcp_out for system 
information.
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SPR—572; Read/Write; Reset—0x0

Figure 2-10. Machine Check Syndrome Register (MCSR)

Table 2-7. Machine Check Syndrome Register (MCSR)

Bit Name Description

0
(32)

MCP Machine check input pin

1
(33)

— Reserved, should be cleared.

2
(34)

CP_PERR1 Cache push parity error
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3
(35)

CPERR1 Cache parity error

4
(36)

EXCP_ERR Bus Error on first instruction fetch for an exception handler

5:26 
(37:58)

— Reserved. Should be cleared.

e200z0h: 
5:10

(37:42)
e200z0: 

5:26 
(37:58)

— Reserved, should be cleared.

11
(43)

NMI Non-maskable interrupt input pin

12:26
(44:58)

— Reserved, should be cleared.

27
(59)

BUS_IRERR  Read bus error on Instruction fetch

28
(60)

BUS_DRERR  Read bus error on data load

29
(61)

BUS_WRERR Write bus error on buffered store

30:31
(62:63)

— Reserved, should be cleared.

1 Unused on e200z0 and e200z0h

Table 2-7. Machine Check Syndrome Register (MCSR) (continued)

Bit Name Description
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2.3.8 Debug Registers

The Debug facility registers are described in Chapter 8, “Debug Support.”

2.3.9 Hardware Implementation Dependent Register 0 (HID0)

The HID0 register is an e200 implementation dependent register used for various configuration and control 
functions.The HID0 register is shown in Figure 2-11.

The HID0 fields are defined in Table 2-8.
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SPR—1008; Read/Write; Reset—0x0

Figure 2-11. Hardware Implementation Dependent Register 0 (HID0)

Table 2-8. Hardware Implementation Dependent Register 0

Bits Name Description

0 EMCP Enable machine check pin (p_mcp_b)
0 p_mcp_b pin is disabled.
1 p_mcp_b pin is enabled. If MSR[ME] = 0, asserting p_mcp_b causes checkstop. If MSR[ME] = 

1, asserting p_mcp_b causes a machine check interrupt.
The primary purpose of this bit is to mask out further machine check exceptions caused by assertion 
of p_mcp_b. 

1:5 — Reserved1

6:7 BPRED2 Branch Prediction (Acceleration) Control
00 - Branch acceleration is enabled.
01 - Branch acceleration is disabled for backward branches.
10 - Branch acceleration is disabled for forward branches.
11 - Branch acceleration is disabled for both branch directions.
This field controls instruction buffer lookahead for branch acceleration. Note that for branches with 
"AA’ = ‘1’, the MSB of the displacement field is still used to indicate forward/backward, even though 
the branch is absolute. This field is used in conjunction with the BUCSR.

8 DOZE Configure for Doze power management mode
0 Doze mode is disabled
1 Doze mode is enabled
Doze mode is invoked by setting MSR[WE] while this bit is set.

9 NAP Configure for Nap power management mode
0 Nap mode is disabled
1 Nap mode is enabled
Nap mode is invoked by setting MSR[WE] while this bit is set.
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10 SLEEP Configure for Sleep power management mode
0 Sleep mode is disabled
1 Sleep mode is enabled
Sleep mode is invoked by setting MSR[WE] while this bit is set.
Only one of DOZE, NAP, or SLEEP should be set for proper operation.

11:13 — Reserved1

14 ICR Interrupt Inputs Clear Reservation
0 External Input, Critical Input, and Non-Maskable Interrupts do not affect reservation status
1 External Input, Critical Input, and Non-Maskable Interrupts clear an outstanding reservation

15 NHR Not hardware reset
0 Indicates to a reset exception handler that a reset occurred if software had previously set this bit
1 Indicates to a reset exception handler that no reset occurred if software had previously set this bit
Provided for software use - set anytime by software, cleared by reset. 

16 — Reserved1

17 TBEN2 TimeBase Enable
0 TimeBase is disabled
1 TimeBase is enabled

18 Reserved2 Reserved

19 DCLREE Debug Interrupt Clears MSR[EE]
0 MSR[EE] unaffected by Debug Interrupt
1 MSR[EE] cleared by Debug Interrupt
This bit controls whether Debug interrupts force External Input interrupts to be disabled, or whether 
they remain unaffected.

20 DCLRCE Debug Interrupt Clears MSR[CE]
0 MSR[CE] unaffected by Debug Interrupt
1 MSR[CE] cleared by Debug Interrupt
This bit controls whether Debug interrupts force Critical interrupts to be disabled, or whether they 
remain unaffected.

21 CICLRDE Critical Interrupt Clears MSR[DE]
0 MSR[DE] unaffected by Critical class interrupt
1 MSR[DE] cleared by Critical class interrupt
This bit controls whether certain Critical interrupts (Critical Input, Watchdog Timer) force Debug 
interrupts to be disabled, or whether they remain unaffected. Machine Check interrupts have a 
separate control bit. 
Note that if Critical Interrupt Debug events are enabled (DBCR0[CIRPT] set (which should only be 
done when the Debug APU is enabled), and MSR[DE] is set at the time of a Critical interrupt, a 
debug event is generated after the Critical Interrupt Handler has been fetched, and the Debug 
handler is executed first. In this case, DSRR0[DE] is cleared, such that after returning from the 
debug handler, the Critical interrupt handler is not run with MSR[DE] enabled.

Table 2-8. Hardware Implementation Dependent Register 0 (continued)

Bits Name Description
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2.3.10 Hardware Implementation Dependent Register 1 (HID1)

The HID1 register is used for bus configuration and system control. HID1 is shown in Figure 2-12.

22 MCCLRDE Machine Check Interrupt Clears MSR[DE]
0 MSR[DE] unaffected by Machine Check interrupt
1 MSR[DE] cleared by Machine Check interrupt
This bit controls whether Machine Check interrupts force Debug interrupts to be disabled, or whether 
they remain unaffected.
Note that if Critical Interrupt Debug events are enabled (DBCR0[CIRPT] set (which should only be 
done when the Debug APU is enabled), and MSR[DE] is set at the time of a Machine Check 
interrupt, a debug event is generated after the Machine Check interrupt handler has been fetched, 
and the Debug handler is executed first. In this case, DSRR0[DE] is cleared, such that after 
returning from the Debug handler, the Machine Check handler is not run with MSR[DE] enabled.

23 DAPUEN Debug APU enable
0 Debug APU disabled
1 Debug APU enabled
This bit controls whether the Debug APU is enabled. When enabled, Debug interrupts use the 
DSRR0/DSRR1 registers for saving state, and the se_rfdi instruction is available for returning from 
a debug interrupt.
When disabled, Debug Interrupts use the critical interrupt resources CSRR0/CSRR1 for saving 
state, the se_rfci instruction is used for returning from a debug interrupt, and the se_rfdi instruction 
is treated as an illegal instruction.
When disabled, the settings of the DCLREE, DCLRCE, CICLRDE, and MCCLRDE bits are ignored 
and are assumed to be ‘1’s
Read and write access to DSRR0/DSRR1 via the mfspr and mtspr instructions is not affected by 
this bit.

24:31 — Reserved1

1 These bits are not implemented and should be written with zero for future compatibility.
2 Unused on e200z0 and e200z0h
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SPR—1009; Read/Write; Reset—0x0

Figure 2-12. Hardware Implementation Dependent Register 1 (HID1)

Table 2-8. Hardware Implementation Dependent Register 0 (continued)

Bits Name Description
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The HID1 fields are defined in Table 2-9.
 

2.3.11 Branch Unit Control and Status Register (BUCSR)

The BUCSR register is used for general control and status of the branch target buffer (BTB). BUCSR is 
shown in Figure 2-13.

The BUCSR fields are defined in Table 2-10.
 

Table 2-9. Hardware Implementation Dependent Register 1

Bits Name Description

0:15 — Reserved1

1 These bits are not implemented and should be written with zero for future compatibility.

16:23 SYSCTL System Control
These bits are reflected on the outputs of the p_hid1_sysctl[0:7] output signals for use in controlling the 
system. They may need external synchronization.

24 ATS Atomic status (read-only)
Indicates state of the reservation bit in the load/store unit. See Section 3.4, “Memory Synchronization and 
Reservation Instructions,” for more detail.

25:31 — Reserved1
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SPR—1013; Read/Write; Reset—0x0

Figure 2-13. Branch Unit Control and Status Register (BUCSR)

Table 2-10. Branch Unit Control and Status Register

Bits Name Description

0:21
[32:53]

— Reserved1

1 These bits are not implemented and should be written with zero for future compatibility.

22
[54]

BBFI Branch target buffer flash invalidate. 
When written to a ‘1’, BBFI flash clears the valid bit of all entries in the branch buffer; clearing occurs 
regardless of the value of the enable bit (BPEN). Note: BBFI is always read as 0.

25:30 
[55:62]

— Reserved1

31
[63]

BPEN Branch target buffer enable. 
0 Branch target buffer prediction disabled
1 Branch target buffer prediction enabled (enables BTB to predict branches)
When the BPEN bit is cleared, no hits are generated from the BTB, and no new entries are allocated. 
Entries are not automatically invalidated when BPEN is cleared, the BBFI bit controls entry invalidation.
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2.3.12 L1 Cache Configuration Register (L1CFG0)

The L1CFG0 register provides configuration information for an L1 cache supplied with this version of the 
e200 CPU core. For e200z0 and e200z0h reads of this register return a value of all zeros.

2.3.13 MMU Configuration Register (MMUCFG)

The MMUCFG register provides configuration information for the MMU supplied with this version of the 
e200 CPU core. For e200z0 and e200z0h, because no MMU is present, reads of this register return a value 
of 0x0000_0003, indicating MMU architecture version 3, and a null MMU.

2.4 SPR Register Access
SPRs are accessed with the mfspr and mtspr instructions. The following sections outline additional access 
requirements.

2.4.1 Invalid SPR References

System behavior when an invalid SPR is referenced depends on the apparent privilege level of the register. 
The register privilege level is determined by bit 5 in the SPR address. If the invalid SPR is accessible in 
user mode, then an illegal exception is generated. If the invalid SPR is accessible only in supervisor mode 
and the CPU core is in supervisor mode (MSR[PR] = 0), then an illegal exception is generated. If the 
invalid SPR address is accessible only in supervisor mode and the core is not in supervisor mode 
(MSR[PR] = 1), then a privilege exception is generated.

References to the SPRs associated with an optional unit (Cache, MMU, EFPU) when the unit is not present 
are treated as references to an invalid SPR unless otherwise defined.

Table 2-11. System Response to Invalid SPR Reference

SPR Address Bit 5  Mode MSR[PR] Response

0 — — Illegal exception

1 supervisor 0 Illegal exception

1 user 1 Privilege exception
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2.4.2 Synchronization Requirements for SPRs

With the exception of the following registers, there are no synchronization requirements for accessing 
SPRs beyond those stated in Power Architecture Book E. Software requirements for synchronization 
before/after accessing these registers are shown in Table 2-12. The notation CSI in the table refers to a 
Context Synchronizing instruction which include se_sc, isync, se_rfi, se_rfci, and se_rfdi.

 

2.4.3 Special Purpose Register Summary

Power Architecture Book E and implementation-specific SPRs for the e200 core are listed in the following 
table. All registers are 32-bits in size. Register bits are numbered from bit 0 to bit 31 (most-significant to 
least-significant). An SPR register may be read or written with the mfspr and mtspr instructions. In the 
instruction syntax, compilers should recognize the mnemonic name given in the table below.

 

Table 2-12. Additional Synchronization Requirements for SPRs

Context Altering Event or Instruction
Required 

Before
Required 

After
Notes

mfspr

DBSR Debug Status Register msync none

HID0 Hardware implementation dependent reg 0 none none

HID1 Hardware implementation dependent reg 1 msync none

mtspr

BUCSR Branch Unit Control and Status Register none CSI

DBCR0 Debug Control Register 0 none CSI

DBCR1 Debug Control Register 1 none CSI

DBCR2 Debug Control Register 2 none CSI

DBSR Debug Status Register msync none

HID0 Hardware implementation dependent reg 0 CSI CSI

HID1 Hardware implementation dependent reg 1 none CSI

PID PID0 register none CSI

Note:
1. Not required if counter is not currently enabled

Table 2-13. Special Purpose Registers

Mnemonic Name
SPR 

Number
Access Privileged

e200-
Specific

BUCSR Branch Unit Control and Status Register 1013 R/W Yes Yes

CSRR0 Critical Save/Restore Register 0 58 R/W Yes No

CSRR1 Critical Save/Restore Register 1 59 R/W Yes No

CTR Count Register 9 R/W No No
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DAC1 Data Address Compare 1 316 R/W Yes No

DAC2 Data Address Compare 2 317 R/W Yes No

DBCR0 Debug Control Register 0 308 R/W Yes No

DBCR1 Debug Control Register 1 309 R/W Yes No

DBCR2 Debug Control Register 2 310 R/W Yes No

DBSR Debug Status Register 304 Read/Clear1 Yes No

DEAR Data Exception Address Register 61 R/W Yes No

DSRR0 Debug save/restore register 0 574 R/W Yes Yes

DSRR1 Debug save/restore register 1 575 R/W Yes Yes

ESR Exception Syndrome Register 62 R/W Yes No

HID0 Hardware implementation dependent reg 0 1008 R/W Yes Yes

HID1 Hardware implementation dependent reg 1 1009 R/W Yes Yes

IAC1 Instruction Address Compare 1 312 R/W Yes No

IAC2 Instruction Address Compare 2 313 R/W Yes No

IAC3 Instruction Address Compare 3 314 R/W Yes No

IAC4 Instruction Address Compare 4 315 R/W Yes No

IVPR Interrupt Vector Prefix Register 63 R/W Yes No

LR Link Register 8 R/W No No

L1CFG0 L1 cache config register 0 515 Read-only No Yes

MCSR Machine Check Syndrome Register 572 R/W Yes Yes

MMUCFG MMU configuration register 1015 Read-only Yes Yes

PID0 Process ID Register 48 R/W Yes No

PIR Processor ID Register 286 Read-only Yes No

PVR Processor Version Register 287 Read-only Yes No

SPRG0 SPR General 0 272 R/W Yes No

SPRG1 SPR General 1 273 R/W Yes No

SRR0 Save/Restore Register 0 26 R/W Yes No

SRR1 Save/Restore Register 1 27 R/W Yes No

SVR System Version Register 1023 Read-only Yes Yes

XER Integer Exception Register 1 R/W No No

Notes:

1 The Debug Status Register can be read using mfspr RT,DBSR. The Debug Status Register cannot be directly 
written to. Instead, bits in the Debug Status Register corresponding to 1 bits in GPR(RS) can be cleared using 
mtspr DBSR,RS.

Table 2-13. Special Purpose Registers (continued)

Mnemonic Name
SPR 

Number
Access Privileged

e200-
Specific
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2.4.4 Reset Settings 

Table 2-14 shows the state of the Power Architecture Book E architected registers and other optional 
resources immediately following a system reset.

Table 2-14. Reset Settings for e200 Resources

Resource System Reset Setting

Program Counter p_rstbase[0:29] || 2’b00

GPRs Unaffected1

CR Unaffected1

BUCSR 0x0000_0000

CSRR0 Unaffected1

CSRR1 Unaffected1

CTR Unaffected1

DAC1 0x0000_0000

DAC2 0x0000_0000

DBCR0 0x0000_0000

DBCR1 0x0000_0000

DBCR2 0x0000_0000

DBSR 0x1000_0000

DEAR Unaffected1

DSRR0 Unaffected1

DSRR1 Unaffected1

ESR 0x0000_0000

HID0 0x0000_0000

HID1 0x0000_0000

IAC1 0x0000_0000

IAC2 0x0000_0000

IAC3 0x0000_0000

IAC4 0x0000_0000

IVPR Unaffected1

LR Unaffected1

L1CFG02 —

MCSR 0x0000_0000

MMUCFG2 —

MSR 0x0000_0000

PID0 0x0000_0000
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PIR2 —

PVR2 —

SPRG0 Unaffected1

SPRG1 Unaffected1

SRR0 Unaffected1

SRR1 Unaffected1

SVR2 —

XER 0x0000_0000

1 Undefined on m_por assertion, unchanged on p_reset_b assertion
2 Read-only register

Table 2-14. Reset Settings for e200 Resources (continued)

Resource System Reset Setting
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Chapter 3  
Instruction Model
This chapter provides additional information about the Power Architecture Book E as it relates specifically 
to e200.

The e200z0 and e200z0h cores are a 32-bit implementation of the Power Architecture Book E as defined 
in Power Architecture Book E Specification v 2.0. This architecture specification includes a recognition 
that different processor implementations may require clarifications, extensions or deviations from the 
architectural descriptions. e200z0 and e200z0h are unique in that they support only the VLE instruction 
set encodings. The VLE APU is described in PowerPC VLE, version 1.01.

3.1 Unsupported Instructions and Instruction Forms
The e200 core does not support the instructions listed in Table 3-1. An unimplemented instruction 
exception is generated if the processor attempts to execute one of these instructions.

3.2 Optionally Supported Instructions and Instruction Forms
e200 cores optionally supports the instructions listed in Table 3-2 if a cache and/or TLB is present. An 
instruction exception may be generated if the processor attempts to execute one of these instructions and 
the related functional block is not present, or the specific instruction may be treated as a no-op. 

Table 3-1. List of Unsupported Instructions

Type/Name Mnemonics

String Instructions lswi, lswx, stswi, stswx

Device control register and Move from APID mfapidi, mfdcrx, mtdcrx

Table 3-2. List of Optionally Supported Instructions

Type/Name Mnemonics Unit

Cache Management Instructions1

1 These instructions are not supported and are treated as no-ops, with the exception of dcbz which results in an 
Alignment Interrupt, and dcbi, which is treated as a privileged no-op.

dcba, dcbf, dcbi, dcbt, dcbtst, dcbst, dcbz,
icbi, icbt

Data Cache/ Unified Cache
Instruction Cache/Unified Cache

Cache Locking Instructions2

2 These instructions are not supported and are treated as no-ops.

dcbtls, dcbtstls, dcblc,
icbtls, icblc

Data Cache/ Unified Cache
Instruction Cache/Unified Cache

TLB Management Instructions3

3 These instructions are not supported and are treated as unimplemented.

tlbivax, tlbre, tlbsx, tlbsync, tlbwe TLB

DCR Management3 mfdcr, mtdcr DCR
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3.3 Memory Access Alignment Support
The e200 core provides hardware support for unaligned memory accesses; however, there is a performance 
degradation for accesses that cross a 32-bit (4-byte) boundary. For these cases, the throughput of the 
load/store unit is degraded to 1 misaligned load every 2 cycles. Stores that are misaligned across a 32-bit 
(4-byte) boundary can be translated at a rate of 2 cycles per store. Frequent use of unaligned memory 
accesses result in an impact on performance.

NOTE
Accesses that cross a 32-bit boundary may be restarted.

3.4 Memory Synchronization and Reservation Instructions
The msync instruction provides a synchronization function and a memory barrier function. This instruction 
waits for all preceding instructions and data memory accesses to complete before the msync instruction 
completes. Subsequent instructions in the instruction stream are not initiated until after the msync 
instruction ensures these functions have been performed.

On the e200 core, the mbar instruction behaves identically to the msync instruction. The mbar instruction 
MO field is ignored by the e200 core.

The e200 core implements the lwarx and stwcx. instructions as described in Book E. If the EA is not a 
multiple of 4 for either instruction, an alignment interrupt is invoked.

As allowed by Power Architecture Book E, the e200 core does not require that for a stwcx. instruction to 
succeed, the EA of the stwcx. instruction must be to the same reservation granule as the EA of a preceding 
lwarx instruction. Reservation granularity is implementation-dependent. The e200 core does not define a 
reservation granule explicitly; reservation granularity is defined by external logic. When no external logic 
is provided, the e200 core performs no address comparison checking, thus the effective implementation 
granularity is “null”. 

The e200 core implements an internal reservation status flag (HID1[ATS]) representing reservation status. 
This flag is set when a lwarx instruction is executed and completes without error, and remains set until it 
is cleared by one of the following mechanisms: 

• Execution of a stwcx. instruction is completed without error, or

• The e200 core p_rsrv_clr input signal is asserted, or

• The reservation is invalidated when an external input, critical input (on e200z0), or non-maskable 
interrupt (on e200z0h) is signaled and the HID0[ICR] bit is set.

When the e200 core decodes a stwcx. instruction, it checks the value of the local reservation flag 
(HID1[ATS]). If the status indicates that no reservation is active, then the stwcx. instruction is treated as 
a nop. No exceptions are taken, and no access is performed, thus no data breakpoint occurs, regardless of 
matching the data breakpoint attributes.

 The e200 core provides the input signal p_hresp[2:0], which is sampled at termination of a stwcx. store 
transfer to allow an external agent or mechanism to indicate that the stwcx. instruction has failed to update 
memory, even though a reservation existed for the store at the time it was issued. This is not considered an 
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error, and causes the condition codes for the stwcx. instruction to be written as if a reservation did not exist 
for the stwcx. instruction. In addition, any outstanding reservation is cleared.

The p_rsrv_clr input signal is not intended for normal use in managing reservations. It is provided for 
specialized system applications. The normal bus protocol is used to manage reservations using external 
reservation logic in systems with multiple coherent bus masters, using the transfer type and transfer 
response signals. In single coherent master systems, no external logic is required, and the internal 
reservation flag is sufficient to support multi-tasking applications.

3.5 Branch Prediction
In the e200z0h, the instruction fetching mechanism uses a branch target buffer to detect branch instructions 
early. This branch instruction lookahead scheme allows branch targets to be fetched early, thereby hiding 
some taken branch bubbles. 

3.6 Interruption of Instructions by Interrupt Requests
In general, the e200 core samples pending non-maskable interrupts, external input, and critical input 
interrupt requests at instruction boundaries. However, in order to reduce interrupt latency, long running 
instructions may be interrupted prior to completion. Instructions in this class include divides (divw[uo][.]), 
load multiple word and store multiple word. When interrupted prior to completion, the value saved in 
SRR0/CSRR0 is the address of the interrupted instruction. The instruction is restarted from the beginning 
after returning from the interrupt handler.

3.7 New e200 Instructions
The e200 core implements the Freescale EIS isel APU as described below which extends the Power 
Architecture Book E instruction set. The e200 wait instruction implements a wait for interrupt function 
and is described below. The e200 se_rfdi instruction returns from a Debug interrupt and is also described 
below. 

3.7.1 ISEL APU

The ISEL APU defines the isel instruction which provides a means to select one of two registers and place 
the result in a destination register under the control of a predicate value supplied by a bit in the condition 
register. This instruction can be used to eliminate branches in software and in many cases improve 
performance. This instruction can also increase program execution time determinism by eliminating the 
need to predict the target and direction of the branches replaced by the integer select function. The 
instruction form and definition is as follows.
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isel isel
Integer Select

isel RT, RA, RB, crb

if RA=0 then a ← 320 else a ← GPR(RA)

c = CRcrb

if c then GPR(RT) ← a

else GPR(RT) ← GPR(RB)

For isel, if the bit of the CR specified by (crb) is set, the contents of RA|0 are copied into RT. If the bit of 
the CR specified by (crb) is clear, the contents of RB are copied into RT.

Other registers altered:

• None

3.7.2 Debug APU

e200 implements the EIS Debug APU, as documented in the EREF: A Programmer’s Reference Manual 
for Freescale Book E Processors, to support the capability to handle the Debug interrupt as an additional 
interrupt level. To support this interrupt level, a new “return from debug interrupt” (se_rfdi) instruction is 
defined as part of the Debug APU, along with a new pair of save/restore registers, DSRR0, and DSRR1.

When the Debug APU is enabled (HID0[DAPUEN] = 1), the se_rfdi instruction provides a means to 
return from a debug interrupt. See Section 2.3.9, “Hardware Implementation Dependent Register 0 
(HID0),” for more information about enabling the Debug APU. 

The instruction forms and definition are as follows.

se_rfdi se_rfdi
Return From Debug Interrupt

se_rfdi

MSR ←DSRR1

PC ←DSRR032:62 || 0b0

31 RT RA RB crb 0 1 1 1 1 0

0 5 6 10 11 15 16 20 21 25 26 30 31

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 15



Instruction Model

e200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor 3-5
 

The se_rfdi instruction is used to return from a Debug interrupt, or as a means of simultaneously 
establishing a new context and synchronizing on that new context. 

The contents of Debug Save/Restore Register 1 are place into the Machine State Register. If the new 
Machine State Register value does not enable any pending exceptions, then the next instruction is fetched, 
under control of the new Machine State Register value from the address DSRR032:62|| 0b0. If the new 
Machine State Register value enables one or more pending exceptions, the interrupt associated with the 
highest priority pending exception is generated; in this case the value placed into Save/Restore Register 0 
or Critical Save/Restore Register 0 by the interrupt processing mechanism is the address of the instruction 
that would have been executed next had the interrupt not occurred (such as the address in Debug 
Save/Restore Register 0 at the time of the execution of the se_rfdi).

Execution of this instruction is privileged and context synchronizing.

Special Registers Altered: 

• MSR

When the Debug APU is disabled (HID0[DAPUEN]=0), this instruction is treated as an illegal instruction.

3.7.3 WAIT APU

The wait instruction allows software to cease all synchronous activity, waiting for an asynchronous 
interrupt to occur. The instruction can be used to cease processor activity in both user and supervisor 
modes. Asynchronous interrupts which cause the waiting state to be exited if enabled are critical input, 
external input, machine check pin (p_mcp_b). Nonmaskable interrupts (p_nmi_b) also cause the waiting 
state to be exited.

wait wait
Wait for Interrupt

wait 

The wait instruction provides an ordering function for the effects of all instructions executed by the 
processor executing the wait instruction and stops synchronous processor activity. Executing a wait 
instruction ensures that all instructions have completed before the wait instruction completes, causes 
processor instruction fetching to cease, and ensures that no subsequent instructions are initiated until an 
asynchronous interrupt or a debug interrupt occurs.

Once the wait instruction has completed, the program counter points to the next sequential instruction. The 
saved value in xSRR0 when the processor re-initiates activity points to the instruction following the wait 
instruction.

Execution of a wait instruction places the CPU in the “waiting” state and is indicated by assertion of the 
p_waiting output signal. The signal is negated after leaving the “waiting” state.

0 5 6 10 11 15 16 20 21 31

0 1 1 1 1 1 /// 0 0 0 0 1 1 1 1 1 0 /
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Software must ensure that interrupts responsible for exiting the waiting state are enabled before executing 
a wait instruction.

3.8 Unimplemented SPRs and Read-Only SPRs
e200 fully decodes the SPR field of the mfspr and mtspr instructions. If the SPR specified is undefined 
and not privileged, an illegal instruction exception is generated. If the SPR specified is undefined and 
privileged and the CPU is in user mode (MSR[PR=1]), a privileged instruction exception is generated. If 
the SPR specified is undefined and privileged and the core is in supervisor mode (MSR[PR=0]), an illegal 
instruction exception is generated.

For the mtspr instruction, if the SPR specified is read-only and not privileged, an illegal instruction 
exception is generated. If the SPR specified is read-only and privileged and the core is in user mode 
(MSR[PR=1]), a privileged instruction exception is generated. If the SPR specified is read-only and 
privileged and the core is in supervisor mode (MSR[PR=0]), an illegal instruction exception is generated.

For e200z0 and e200z0h, the following SPRs are not implemented and attempted access via a mtspr or 
mfspr instruction results in an unimplemented instruction exception, unless the register is privileged and 
the access attempt is made in user mode, in which case a privileged instruction exception occurs.

3.9 Invalid Forms of Instructions

3.9.1 Load and Store with Update Instructions

Power Architecture Book E defines the case when a load with update instruction specifies the same register 
in the RT and RA field of the instruction as an invalid format. For this invalid case, the e200 core performs 
the instruction and update the register with the load data. In addition, if RA=0 for any load or store with 
update instruction, the e200 core updates RA (GPR0).

3.9.2 Load Multiple Word (e_lmw) Instruction

Power Architecture Book E defines as invalid any form of the e_lmw instruction in which RA is in the 
range of registers to be loaded, including the case in which RA=0. On e200, invalid forms of the e_lmw 
instruction is executed as follows:

• Case 1: RA is in the range of RT, RA!=0. In this case, address generation for individual loads to 
register targets in is done using the architectural value of RA which existed when beginning 

Table 3-3. List of Unimplemented SPRs

Type Name

TImebase DEC, DECAR, TCR, TSR, TBU, TBL

Software-Use Special Purpose Registers USPRG0, SPRG2-7

Interrupt Vector Offset Registers IVOR0-151

1 These SPRs are hardwired to specific values, and are readable, but a mtspr results in 
an unimplemented or privileged exception.
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execution of this e_lmw instruction. RA is overwritten with a value fetched from memory as if it 
had not been the base register. Note that if the instruction is interrupted and restarted, the base 
address may be different if RA has been overwritten.

• Case 2: RA=0 and RT=0. In this case, address generation for all loads to register targets RT=0 to 
RT=31 is done substituting the value of 0 for the RA operand.

3.9.3 Instructions with Reserved Fields Non-Zero

Power Architecture Book E defines certain bit fields in various instructions as reserved and specifies that 
these fields be set to zero. Per the Book E recommendation, e200 ignores the value of the reserved field 
(bit 31) in X-form integer load and store instructions. For all other instructions, e200 generates an illegal 
instruction exception if a reserved field is non-zero.

3.10 Optionally Supported APU Instructions
e200 cores optionally support several APUs. If a core does not implement a particular APU, it may treat 
these instructions as illegal, or may treat them as unimplemented. e200z0 and e200z0h treat the Embedded 
Floating-Point APU instructions (efsxxx, brinc) as unimplemented instructions because other cores of the 
e200 family implement this APU. All other non-supported APUs are treated as illegal instructions.
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Chapter 4  
Instruction Pipeline and Execution Timing
This section describes the e200 instruction pipeline and instruction timing information. The core is 
partitioned into the following subsystems:

• Instruction unit

• Control unit

• Integer unit

• Load/store unit

• Core interface

4.1 Overview of Operation
A block diagram of the e200 cores are shown in Figure 4-2 and Figure 4-1. The instruction fetch unit 
prefetches instructions from memory into the instruction buffers. The decode unit decodes each instruction 
and generates information needed by the branch unit and the execution units. 

The instruction fetch unit attempts to supply a constant stream of instructions to the execution pipeline. In 
the e200z0h it does so by decoding and detecting branches early in the instruction buffer, making branch 
predictions, and prefetching their branch targets into the instruction buffer. By prefetching the branch 
targets early, some or all of the branch pipeline bubbles can be hidden from the execution pipeline.

The instruction issue unit attempts to issue a single instruction each cycle to one of the execution units. 
Source operands for each of the instructions are provided from the GPRs or from the operand feed-forward 
muxes. Data or resource hazards may create stall conditions which cause instruction issue to be stalled for 
one or more cycles until the hazard is eliminated.

The execution units write the result of a finished instruction onto the proper result bus and into the 
destination registers. The writeback logic retires an instruction when the instruction has finished 
execution. Up to two results can be simultaneously written.
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Figure 4-1. e200z0h Block Diagram
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Figure 4-2. e200z0 Block Diagram
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4.1.1 Control Unit

The control unit coordinates the instruction fetch unit, branch unit, instruction decode unit, instruction 
issue unit, completion unit and exception handling logic.

4.1.2 Instruction Unit

The instruction unit controls the flow of instructions to the instruction buffers and decode unit. A set of 
instruction prefetch buffers allow the instruction unit to fetch instructions ahead of actual execution, and 
serve to decouple memory and the execution pipeline.

4.1.3 Branch Unit

In the e200z0h the branch unit contains a single entry Branch Target Buffer (BTB) to accelerate execution 
of branch instructions. 

Conditional branches which are not taken execute in a single clock on e200. Branches with successful 
target prefetching have an effective execution time of one clock in the e200z0h. All other taken branches 
have an execution time of two clocks on e200.

4.1.4 Instruction Decode Unit

The decode unit includes the instruction buffers. A single instruction can be decoded each cycle. The major 
functions of the decode logic are:

• Opcode decoding to determine the instruction class and resource requirements for each instruction 
being decoded.

• Source and destination register dependency checking.

• Execution unit assignment.

• Determine any decode serializations, and inhibit subsequent instruction decoding.

The decode unit operates in a single processor clock cycle.

4.1.5 Exception Handling

The exception handling unit includes logic to handle exceptions, interrupts, and traps.

4.2 Execution Units
The core data execution units consist of the integer unit, and the load/store unit. Included in the execution 
units section are the 32 general purpose registers (GPRs). Instructions with data dependencies begin 
execution when all such dependencies are resolved.

4.2.1 Integer Execution Unit

The integer execution unit is used to process arithmetic and logical instructions. Adds, subtracts, 
compares, count leading zeros, shifts and rotates execute in a single cycle. 
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Multiply instructions have a data-dependent latency and throughput rate of 1–4 cycles.

Divide instructions have a latency of 5–34 cycles depending on the operand data. While the divide is 
running, the rest of the pipeline is unavailable for additional instructions (blocking divide).

4.2.2 Load/Store Unit

The load/store unit executes instructions that move data between the GPRs and the memory subsystem. A 
load followed by a dependent instruction does not incur any pipeline stall, except when the dependent 
instruction is a load/store instruction, and the latter instruction is using the previous load data for its 
effective address (EA) calculation, in which case a 1 cycle “register-busy” pipeline stall is incurred.

Loads, when free of the above effective address calculation dependency, execute with a maximum 
throughput of one per cycle and one cycle latency. Store data can be fed-forward from an immediately 
preceding load with no stall.

4.3 Instruction Pipeline
The four stage processor pipeline consists of stages for instruction fetch (IFETCH), instruction decode 
(DECODE), execution (EXECUTE), and result writeback (WB). For memory operations, the effective 
address generation occurs in the decode stage, while the memory access occurs in the execute stage. 

The processor also contains an instruction prefetch buffer to allow buffering of instructions prior to the 
decode stage. Instructions proceed from this buffer to the instruction decode stage by entering the 
instruction decode register IR. 

Table 4-1. Pipeline Stages

Stage Description

IFETCH Instruction Fetch From Memory 

DECODE/EA Instruction Decode / Register Read/ Operand 
Forwarding / EA Calculation

EXECUTE/MEM Instruction Execution / Memory Access

WB Write Back to Registers
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Figure 4-3. Pipeline Diagram
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4.3.2 Instruction Buffers

e200 contains a set of instruction buffers which supply instructions into the Instruction Register (IR) for 
decoding. 

In normal sequential execution, instructions are loaded into the IR from Slot 0, and whenever a slot is 
empty, a 32-bit prefetch is initiated which fills the earliest empty slot beginning with Slot 0. 

If the instruction buffer empties, instruction issue stalls, and the buffer is refilled. The first returned 
instruction is forwarded directly to the IR. 

4.3.2.1 Branch Prediction in e200z0h

In e200z0h the HID0[BPRED] field is used to control whether prediction will be made for forward or 
backward branches (or both).

To resolve branch instructions and improve the accuracy of branch predictions, e200 implements a 
dynamic branch prediction mechanism using a 1-entry branch target buffer (BTB), a fully associative 
address cache of branch target addresses. The BTB on e200 is purposefully small to reduce cost and power. 
It is expected to accelerate the execution of loops. 

An entry is allocated in the BTB whenever a branch resolves as taken and the BTB is enabled. Branches 
that have not been allocated are always predicted as not taken. Entries in the BTB are allocated on taken 
branches using a FIFO replacement algorithm.

Figure 4-4. e200 Instruction Buffers

Figure 4-5. e200 Instruction Buffers
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Each BTB entry holds a 2-bit branch history counter, whose value is incremented or decremented on a 
BTB hit, depending on whether the branch was taken. The counter can assume four different values: 
strongly taken, weakly taken, weakly not taken, and strongly not taken. 

A branch will be predicted as taken on a hit in the BTB with a counter value of strongly or weakly taken. 
In this case the target address contained in the BTB is used to redirect the instruction fetch stream to the 
target of the branch prior to the branch reaching the instruction decode stage. In the case of a mispredicted 
branch, the instruction fetch stream returns to the sequential instruction stream after the branch has been 
resolved.

When a branch is predicted taken and the branch is later resolved (in the branch decode stage), the value 
of the counter is updated. A branch whose counter indicates weakly taken is resolved as taken, the counter 
increments so that the prediction becomes strongly taken. If the branch resolves as not taken, the prediction 
changes to weakly not-taken. The counter saturates in the strongly taken states when the prediction is 
correct.

e200 does not implement the static branch prediction that is defined by the PowerPC architecture. The BO 
prediction bit in branch encodings is ignored. 

Dynamic branch prediction is enabled by setting BUCSR[BPEN]. Clearing BUCSR[BPEN] disables 
dynamic branch prediction, in which case e200 predicts every branch as not taken. Additional control is 
available in the HID0[BPRED] field to control whether forward or backward branches (or both) are 
candidates for entry into the BTB, and thus for branch prediction. Once a branch is in the BTB, 
HID0[BPRED] has no further effect on that branch entry.

The BTB uses virtual addresses for performing tag comparisons. On allocation of a BTB entry, the 
effective address of a taken branch, along with the current Instruction Space (as indicated by MSR[IS]) is 
loaded into the entry and the counter value is set to weakly taken. The current PID value is not maintained 
as part of the tag information. 

e200 does support automatic flushing of the BTB when the current PID value is updated by a mtcr PID0 
instruction. Software is otherwise responsible for maintaining coherency in the BTB when a change in 
effective to real (virtual to physical) address mapping is changed. This is supported by the BUCSR[BBFI] 
control bit. 

Figure 4-6. e200 Branch Target Buffer
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branch addr[0:30] target address[0:30]IS counter entry 0 
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4.3.3 Single-Cycle Instruction Pipeline Operation

Sequences of single-cycle execution instructions follow the flow in Figure 4-7. Instructions are issued and 
completed in program order. Most arithmetic and logical instructions fall into this category.

4.3.4 Basic Load and Store Instruction Pipeline Operation

The effective address (EA) calculations for load and store instructions are performed in the decode stage. 
The memory access occurs in the execution stage. 

If a load instruction is followed by an dependent ALU instruction, the load data is driven from the memory 
in the MEM stage and feed-forwarded into the dependent ALU instruction in the following cycle. As a 
result, the is no load-to-use pipeline bubble. Figure 4-7 shows the instruction flow for a load instruction 
followed by a dependent add instruction.

 

Figure 4-7. Basic Pipeline Flow, Single Cycle Instructions

Figure 4-8. A Load Followed By A Dependent Add Instruction
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Back-to-back load/store instructions are executed in a pipelined fashion, provided that their effective 
address calculations are not dependent on their previous load instructions. Figure 4-9 shows the basic pipe 
line flow for two back-to-back load instructions. In this case, the 2nd load does not depend on its previous 
load data for its EA calculation. Notice that the memory access of the first load instruction overlaps in time 
with the EA calculation of the second load instruction.

When a load is followed by a load or a store instruction that depends on the first load data for EA 
calculation, a pipeline stall is incurred. Figure 4-10 shows the instruction flow for a load instruction 
followed by a dependent store instruction through EA calculation. The second store instruction, in this 
case, is dependent on the first load instruction for its EA calculation.

A store instruction that depends on its previous load for its store data does not stall the pipeline. 

Figure 4-9. Back-to-back Load Instructions

Figure 4-10. A Load Followed By A Dependent Store Instruction
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4.3.5 Change-of-Flow Instruction Pipeline Operation

A branch instruction takes either one or two cycles to execute. Simple change of flow instructions require 
2 cycles to refill the pipeline with the target instruction for taken branches and branch and link instructions 
with no prediction.

For branch type instructions in e200z0h, in some situations this 2 cycle timing may be reduced by 
performing the target fetch speculatively while the branch instruction is still being fetched into the 
instruction buffer. The branch target address is obtained from the BTB. The resulting branch timing 
reduces to a single clock  when the target fetch is initiated early enough and the branch is taken.

Figure 4-11. Basic Pipeline Flow, Branch Instructions

Figure 4-12. Basic Pipeline Flow, Branch Speculation
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(speculative fetch)

BTB hit TFETCH Slot0 . . .

. . .
EXEC
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4.3.6 Basic Multi-Cycle Instruction Pipeline Operation

The multiply, divide, and load and store multiple instructions require multiple cycles in the execute stage.

Instructions must complete and write back results in order. A single cycle instruction which follows a 
multi-cycle instruction must wait for completion of the multi-cycle instruction prior to its writeback in 
order to meet the in-order requirement. Result feed-forward paths are provided so that execution may 
continue prior to result writeback.

4.3.7 Additional Examples of Instruction Pipeline Operation for Load and 
Store

Figure 4-14 shows an example of pipelining two non-data dependent load or store instructions with a 
following data dependent single cycle instruction. While the first load or store begins accessing memory 
in the MEM stage, the next load or store can be calculating a new effective address in the DEC/EA stage. 
The add in this example does not stall even though there is a data dependency on its preceding load 
instruction.

Figure 4-13. Basic Pipeline Flow, Multi-cycle Instructions

Figure 4-14. Pipelined Load/Store Instructions

IFETCH DECODE WBLMW/STMW/DIV Inst.

Time Slot

EXEC0 EXECn. . .

1st LD/ST (no wait)

Time Slot

2nd LD/ST (no wait)

ADD 

IFETCH WBDEC / EA

IFETCH MEM WB DEC / EA

WB IFETCH EXECUTE DEC

MEM
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For memory access instructions, wait-states may occur. This causes a following memory access instruction 
to stall because the following memory access may not be initiated as shown in Figure 4-15. Here, the first 
ld/st instruction incurs a wait-state on the bus interface, causing succeeding instructions to stall.

4.3.8 Move to/from SPR Instruction Pipeline Operation

Most mtspr and mfspr instructions are treated like single cycle instructions in the pipeline, and do not 
cause stalls. Exceptions are for the MSR, and the Debug SPRs that do cause stalls. The following figures 
show examples of mtspr and mfspr instruction timing. 

Figure 4-16 applies to the Debug SPRs. These instructions do not begin execution until all previous 
instructions have finished their execute stage. If the previous instruction of mfspr or mtspr is a multicycle 
instruction, the mfspr and mtspr instructions do not begin execution until its previous instruction moves 
into the WB stage as shown in Figure 4-16. In addition, execution of subsequent instructions is stalled until 
the mfspr and mtspr instructions complete.

Figure 4-15. Pipelined Load/Store Instructions with Wait-state

Figure 4-16. mtspr, mfspr Instruction Execution—(1)

1st LD/ST (with wait)

Time Slot

2nd LD/ST (no wait)

ADD 

IFETCH Stall (wait)DEC / EA WB

IFETCH Stall MEM DEC / EA WB

EXECUTE IFETCH DEC Stall WB

MEM

Time Slot

mtspr, mfspr

DEC EXE1IFETCH WBPrev Instr. (multicycle)

DEC EXEIFETCH WB

DEC StallIFETCH EXE WBNext Instruction

EXEn. . .

. . .

. . .

Stall

Stall
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Figure 4-17 applies to the mtmsr instruction and the wrtee and wrteei instructions. Execution of 
subsequent instructions is stalled until these instructions writeback.

4.4 Control Hazards
Several internal control hazards exist in e200 which can cause certain instruction sequences to incur one 
or more stall cycles. These include the following:

• mfspr instruction preceded by a mtspr instruction—issue stalls until the mtspr completes

4.5 Instruction Serialization
The types of serialization required by the core are as follows: 

• Completion serialization

• Dispatch (Decode/Issue) serialization

• Refetch serialization

4.5.1 Completion Serialization

A completion serialized instruction is held for execution until all prior instructions have completed. The 
instruction then executes after it is next to complete in program order. Results from these instructions are 
not available for or forwarded to subsequent instructions until the instruction completes. Instructions 
which are completion serialized are:

• Instructions that access or modify system control or status registers. for example, mcrxr, mtmsr, 
wrtee, wrteei, mtspr, mfspr (except to CTR/LR), 

• Instructions defined by the architecture as context or execution synchronizing: se_isync, msync, 
se_rfi, se_rfci, se_rfdi, se_sc.

Figure 4-17. mtmsr, wrtee, wrteei Instruction Execution 

Time Slot

mtmsr, wrtee, wrteei

DEC EXEIFETCHPrev Instr.

DEC EXEIFETCH WB

DEC StallIFETCH EXE WB
Next Instruction

WB
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4.5.2 Dispatch Serialization

Some instructions are dispatch-serialized by the core. An instruction that is dispatch-serialized prevents 
the next instruction from decoding until all instructions up to and including the dispatch-serialized 
instruction completes. Instructions which are dispatch serialized are se_isync, mbar, msync, se_rfi, 
se_rfci, se_rfdi, se_sc.

4.5.3 Refetch Serialization

Refetch serialized instructions inhibit dispatching of subsequent instructions and force a pipeline refill to 
refetch subsequent instructions after completion. These include:

• The context synchronizing instruction isync.

• The se_rfi, se_rfci, se_rfdi, and se_sc instructions.

4.6 Interrupt Recognition and Exception Processing
Figure 4-18 shows timing for interrupt recognition and exception processing overhead. This example 
shows best-case response timing when an interrupt is received and processed during execution of a 
sequence of single-cycle instructions.
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Figure 4-18. Interrupt Recognition and Handler Instruction Execution 

Time Slot

IFETCH EXE WBDEC
Single cycle
Instructions

DEC/ --IFETCH --

p_extint_b
final sample point

p_iack

IFETCH EXE WBDEC1st Instruction of handler

1 2 3 4 5 6 7 8 9 10

ec_excp_detected*

update_esr*

update_msr*

* - internal operations

oldpc_->srr0*

oldmsr_->srr1*

Abort
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Figure 4-19 shows timing for interrupt recognition and exception processing overhead. This example 
shows best-case response timing when an interrupt is received and processed during execution of a load 
or store instruction. The fetch for the handler is delayed until completion of the load or store, regardless of 
the number of wait-states.

Figure 4-19. Interrupt Recognition and Handler Instruction Execution—
Load/Store in Progress

Time Slot

DEC/EA wait waitMemLoad/Store
Instructions

IFETCH Abort --DEC --

p_extint_b

final sample point

p_iack

IFETCH EXE WBDEC1st Instruction of handler

1 2 3 4 5 6 7 8 9 10

IFETCH Stall StallDEC/ Stall

ec_excp_detected*

oldpc_->srr0*

oldmsr_->srr1*

update_esr*

update_msr*

* - internal operations

11

WB

Abort
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Figure 4-20 shows timing for interrupt recognition and exception processing overhead. This example 
shows best-case response timing when an interrupt is received and processed during execution of a 
multicycle interruptible instruction.

Figure 4-20. Interrupt Recognition and Handler Instruction Execution—
Multi-Cycle Instruction Abort

Time Slot

Next Instruction

IFETCH EXE AbortDEC -- --Multi-cycle
Interruptible

IFETCH Abort --DEC --

1 2 3 4 5 6 7 8 9 10

p_extint_b

final sample point

p_iack

IFETCH EXE WBDEC1st Instruction of handler

ec_excp_detected*

oldpc_->srr0*

oldmsr_->srr1*

update_esr*

update_msr*

* - internal operations

Instruction
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4.7 Instruction Timings
Instruction timing in number of processor clock cycles for various instruction classes is shown in 
Table 4-2. Pipelined instructions are shown with cycles of total latency and throughput cycles. Divide and 
multiply instructions are not pipelined and block other instructions from executing during execution.

Load/store multiple instruction cycles are represented as a fixed number of cycles plus a variable number 
of cycles where ‘n’ is the number of words accessed by the instruction. In addition, cycle times marked 
with an ‘&’ require variable number of additional cycles due to serialization.

Table 4-2. Instruction Class Cycle Counts

Class of Instructions Latency Throughput Special Notes

integer: add, sub, shift, rotate, logical, 
cntlzw class instructions

1 1 —

integer: compare 1 1 —

Branch 2/1 2/1 Branches take either 2 or 1 cycles to execute. 
(Taken/Not Taken)

 multiply 1-4 1-4 data dependent timing

 divide 5-34 5-34 data dependent timing

CR logical 1 1 —

loads (non-multiple) 1 1 —

load multiple 1 + n 1 + n Actual timing depends on n and address alignment.
(n = number of registers transferred) 

stores (non-multiple) 1 1 —

store multiple 1 + n 1 + n Actual timing depends on n and address alignment.
(n = number of registers transferred) 

mtmsr, wrtee, wrteei 2& 2 —

mcrf 1 1 —

mfspr, mtspr 2& 2& applies to Debug SPRs, optional unit SPRS

mfspr, mfmsr 1 1 applies to internal, non Debug SPRs

mfcr, mtcr 1 1 —

se_rfi, se_rfci, se_rfdi 3 — —

se_sc 3 — —

tw 3 — Trap taken timing
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4.8 Operand Placement on Performance
The placement (location and alignment) of operands in memory affects relative performance of memory 
accesses, and in some cases, affects it significantly. Table 4-3 indicates the effects for the e200 core.

In Table 4-3, optimal means that one effective address (EA) calculation occurs during the memory 
operation. Good means that multiple EA calculations occur during the memory operation which may cause 
additional bus activities with multiple bus transfers. Poor means that an alignment interrupt is generated 
by the storage operation.

Table 4-3. Performance Effects of Storage Operand Placement

Operand

Size
Byte
Align

Performance

4 Byte 4
<4

optimal
good

2 Byte 2
<2

optimal
good

1 Byte 1 optimal

lmw, stmw 4
<4

good
poor

string N/A —

Notes:
Optimal: One EA calculation occurs.

Good: Multiple EA calculations occur which may 
cause additional bus activities with multiple bus 
transfers.

Poor: Alignment Interrupt occurs.
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Chapter 5  
Interrupts and Exceptions
The Power Architecture Book E document defines the mechanisms by which the e200 core implements 
interrupts and exceptions. The document uses the terminology ‘interrupt’ as the action in which the 
processor saves its old context and begins execution at a pre-determined interrupt handler address. 
‘Exceptions’ are referred to as events which, when enabled, cause the processor to take an interrupt. This 
section uses the same terminology.

The Power Architecture exception mechanism allows the processor to change to supervisor state as a result 
of unusual conditions arising in the execution of instructions, and from external signals, bus errors, or 
various internal conditions. When interrupts occur, information about the state of the processor is saved to 
machine state save/restore registers (SRR0/SRR1, CSRR0/CSRR1, or DSRR0/DSRR1) and the processor 
begins execution at an address (interrupt vector) determined by the Interrupt Vector Prefix register (IVPR), 
and one of the hardwired Interrupt Vector Offset values. Processing of instructions within the interrupt 
handler begins in supervisor mode. 

Multiple exception conditions can map to a single interrupt vector, and may be distinguished by examining 
registers associated with the interrupt. The Exception Syndrome register (ESR) is updated with 
information specific to the exception type when an interrupt occurs. 

To prevent loss of state information, interrupt handlers must save the information stored in the machine 
state save/restore registers, soon after the interrupt has been taken. Three sets of these registers are 
implemented; SRR0 and SRR1 for non-critical interrupts, CSRR0 and CSRR1 for critical interrupts, and 
DSRR0 and DSRR1 for debug interrupts (when the Debug APU is enabled). Hardware supports nesting 
of critical interrupts within non-critical interrupts, and debug interrupts within both critical and non-critical 
interrupts. It is up to the interrupt handler to save necessary state information if interrupts of a given class 
are re-enabled within the handler. 

The following terms are used to describe the stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an exception is 
identified by the processor. This is also referred to as an exception event.

Taken An interrupt is said to be taken when control of instruction execution is passed to 
the interrupt handler; that is, the context is saved and the instruction at the 
appropriate vector offset is fetched and the interrupt handler routine begins.

Handling Interrupt handling is performed by the software linked to the appropriate vector 
offset. Interrupt handling is begun in supervisor mode.

Returning from an interrupt is performed by executing an se_rfi, se_rfci, or se_rfdi instruction to restore 
state information from the respective machine state save/restore register pair.
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5.1 e200 Interrupts
As specified by the Power Architecture Book E specification, interrupts can be either precise or imprecise, 
synchronous or asynchronous, and critical or non-critical. Asynchronous exceptions are caused by events 
external to the processor’s instruction execution; synchronous exceptions are directly caused by 
instructions or an event somehow synchronous to the program flow, such as a context switch. A precise 
interrupt architecturally guarantees that no instruction beyond the instruction causing the exception has 
(visibly) executed. Critical interrupts are provided with a separate save/restore register pair 
(CSRR0/CSRR1) to allow certain critical exceptions to be handled within a non-critical interrupt handler. 

The types of interrupts handled are shown in Table 5-1.

These classifications are discussed in greater detail in Section 5.7, “Interrupt Definitions.” Interrupts 
implemented in e200 and the exception conditions that cause them are listed in Table 5-2.

Table 5-1. Interrupt Classifications

Interrupt Types Synchronous/Asynchronous Precise/Imprecise Critical/Non-Critical/Debug

System Reset Asynchronous, non-maskable Imprecise —

Machine Check — — Critical

Critical Input Interrupt Asynchronous, maskable Imprecise Critical

External Input Interrupt Asynchronous, maskable Imprecise Non-critical

Instruction-based Debug Interrupts Synchronous Precise Critical / Debug

Debug Interrupt (UDE)
Debug Imprecise Interrupt

Asynchronous Imprecise Critical / Debug

Data Storage / Alignment Interrupts
Instruction Storage Interrupts

Synchronous Precise Non-critical

Table 5-2. Exceptions and Conditions

Interrupt Type
Corresponding Interrupt 

Vector Offset
Causing Conditions

System reset none, vector to
[p_rstbase[0:29]] || 2’b00

Reset by assertion of p_reset_b
Debug Reset Control

Critical Input IVOR 01 p_critint_b is asserted and MSR[CE]=1

Machine check IVOR 1 p_mcp_b is asserted and MSR[ME] =1
1. Bus error (XTE) with MSR[EE]=0 and current MSR[ME]=1

Non-maskable interrupt (p_nmi_b recognized asserted) regardless of MSR[ME]

Data Storage IVOR 2 Access control. (unused on Zen Z0n2p and Zen Z0Hn2p)
Precise external termination error (p_tea_b assertion and precise recognition) 
and MSR[EE]=1

Instruction 
Storage

IVOR 3 Access control. (unused on Zen Z0n2p and Zen Z0Hn2p)
Precise external termination error (p_tea_b assertion and precise recognition) 
and MSR[EE]=1. See Section 6.2, “Internal Interface Signals,” for a definition of 
internal signals.

External Input IVOR 41 p_extint_b is asserted and MSR[EE]=1.
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5.2 Exception Syndrome Register
The Exception Syndrome Register (ESR) provides a syndrome to differentiate between exceptions that can 
generate the same interrupt type. e200 adds some implementation specific bits to this register, as seen in 
Figure 5-1.

Alignment IVOR 5 lmw, stmw not word aligned.
lwarx or stwcx. not word aligned.

Program IVOR 6 Illegal, Privileged, Trap, Unimplemented Operation.

Floating-point 
unavailable

IVOR 7 Unused

System call IVOR 8 Execution of the System Call (se_sc) instruction

AP unavailable IVOR 9 Unused

Decrementer IVOR 10 Unused

Fixed Interval 
Timer

IVOR 11 Unused 

Watchdog 
Timer

IVOR 12 Unused

Data TLB Error IVOR 13 Unused

Instruction TLB 
Error

IVOR 14 Unused

Debug IVOR 15 Trap, Instruction Address Compare, Data Address Compare, Instruction 
Complete, Branch Taken, Return from Interrupt, Interrupt Taken, External Debug 
Event, Unconditional Debug Event

Reserved IVOR 16-31 —

1 Autovectored External and Critical Input interrupts use this IVOR. Vectored interrupts supply an interrupt vector offset directly.
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Figure 5-1. Exception Syndrome Register (ESR)

Table 5-2. Exceptions and Conditions (continued)

Interrupt Type
Corresponding Interrupt 

Vector Offset
Causing Conditions
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The ESR bits are defined in Table 5-3.

Table 5-3. ESR Bit Settings

Bit(s) Name Description Associated Interrupt Type

0:3
(32:35)

— Allocated1 —

4
(36)

PIL Illegal Instruction exception Program

5
(37)

PPR Privileged Instruction exception Program

6
(38)

PTR Trap exception Program

7
(39)

FP2 Floating-point operation —

8
(40)

ST Store operation Alignment
Data Storage

9
(41)

— Reserved3 —

10
(42)

DLK4 Data Cache Locking Data Storage

11
(43)

ILK3 Instruction Cache Locking Data Storage

12
(44)

AP Auxiliary Processor operation
(Not used by e200)

Alignment (not on e200)
Data Storage (not on e200)
Data TLB (not on e200)
Program (not on e200)

13
(45)

PUO Unimplemented Operation exception Program

14
(46)

BO Byte Ordering exception
Mismatched Instruction Storage exception

—

15
(47)

PIE Program Imprecise exception
(Reserved)

Currently unused by e200 

16:23
(48:55)

— Reserved3 —

24
(56)

—  Reserved Allocated, is not set by 
hardware

25
(57)

— Allocated1 —

26
(58)

VLEMI VLE Mode Instruction Data Storage
Instruction Storage
Alignment
Program
System Call

27:29
(59:61)

— Allocated1 —



Interrupts and Exceptions

e200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor 5-5
 

5.3 Machine State Register
The Machine State Register defines the state of the processor. The e200 MSR is shown in Figure 5-2.

The MSR bits are defined in Table 5-4. 

30
(62)

MIF Misaligned Instruction Fetch Instruction Storage
Instruction TLB

31
(63)

XTE External Termination Error (Precise) Data Storage
Instruction Storage

1 These bits are not implemented and should be written with zero for future compatibility.
2 Unused
3 These bits are not implemented, and should be written with zero for future compatibility.
4 Unused
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Figure 5-2. Machine State Register (MSR)

Table 5-4. MSR Bit Settings

Bit(s) Name Description

0:4
(32:36)

— Reserved1

5
(37)

UCLE2 User Cache Lock Enable
0 Execution of the cache locking instructions in user mode (MSR[PR]=1) disabled; DSI 

exception taken instead, and ILK or DLK set in ESR.
1 Execution of the cache lock instructions in user mode enabled.

6
(38)

— Reserved1

7:12
(39:44)

— Reserved1

Table 5-3. ESR Bit Settings (continued)

Bit(s) Name Description Associated Interrupt Type
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13
(45)

WE Wait State (Power management) enable. This bit is defined as optional in the Power 
Architecture Book E architecture.
0 Power management is disabled.
1 Power management is enabled. The processor can enter a power-saving mode when 

additional conditions are present. The mode chosen is determined by the DOZE, NAP, and 
SLEEP bits in the HID0 register, described in Section 2.3.9, “Hardware Implementation 
Dependent Register 0 (HID0).”

14
(46)

CE Critical Interrupt Enable
0 Critical Input interrupts are disabled.
1 Critical Input interrupts are enabled.

15
(47)

— Preserved1

16
(48)

EE External Interrupt Enable
0 External Input interrupts are disabled.
1 External Input interrupts are enabled.

17
(49)

PR Problem State
0 The processor is in supervisor mode, can execute any instruction, and can access any 

resource (for example, GPRs, SPRs, MSR, etc.).
1 The processor is in user mode, cannot execute any privileged instruction, and cannot 

access any privileged resource.

19
(51)

ME Machine Check Enable
0 Machine Check interrupts are disabled. Checkstop mode is entered when the p_mcp_b 

input is recognized asserted or an ISI exception occurs on a fetch of the first instruction of 
an exception handler.

1 Machine Check interrupts are enabled.

20
(52)

FE0 Floating-point exception mode 0 (not used by e200)

21
(53)

— Reserved1

22
(54)

DE Debug Interrupt Enable
0 Debug interrupts are disabled. 
1 Debug interrupts are enabled.

23
(55)

FE1 Floating-point exception mode 1 (not used by e200)

24
(56)

— Reserved1

25
(57)

— Preserved1

26
(58)

IS Instruction Address Space
0 The processor directs all instruction fetches to address space 0.
1 The processor directs all instruction fetches to address space 1.

27
(59)

DS Data Address Space
0 The processor directs all data storage accesses to address space 0.
1 The processor directs all data storage accesses to address space 1.

Table 5-4. MSR Bit Settings (continued)

Bit(s) Name Description
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5.4 Machine Check Syndrome Register (MCSR)
When the core complex takes a machine check interrupt, it updates the Machine Check Syndrome register 
(MCSR) to differentiate between machine check conditions. The MCSR is shown in Figure 5-3.

Table 5-5 describes MCSR fields. The MCSR indicates the source of a machine check condition is 
recoverable. When a syndrome bit in the MCSR is set, the core complex asserts p_mcp_out for system 
information. 

 

28:29
(60:61)

— Reserved1

30
(62)

RI

Recoverable Interrupt
0 Machine Check interrupt is not recoverable. 
1 Machine Check interrupt may be recoverable.
This bit is cleared when a Machine check or critical class interrupt which uses CSRR0/1 is 
taken (see Table 5-1). It is not set by hardware, and does not affect processor operation. It is 
provided as a software assist to determine if machine check interrupts may possibly be 
recoverable.

30:31
(62:63)

— Preserved1

1  These bits are not implemented, are read as zero, and writes are ignored.
2 This bit is implemented, but ignored
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Figure 5-3. Machine Check Syndrome Register (MCSR)

Table 5-5. Machine Check Syndrome Register (MCSR)

Bit Name Description Recoverable

0
(32)

MCP Machine check input pin Maybe

1
(33)

— Reserved, should be cleared. —

Table 5-4. MSR Bit Settings (continued)

Bit(s) Name Description
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5.5 Interrupt Vector Prefix Register (IVPR)
The Interrupt Vector Prefix Register is used during interrupt processing for determining the starting 
address of a software handler used to handle an interrupt. The hardwired Interrupt Vector Offset value for 
a particular interrupt type is concatenated with the value held in the Interrupt Vector Prefix register (IVPR) 
to form an instruction address from which execution is to begin. Note that for Zen Z0n2p and Zen Z0Hn2p 
the IVPR has been extended from 16 to 20 bits, allowing the vector table to reside on any 4-Kbyte 
boundary. The format of IVPR is shown in Figure 5-4.

2
(34)

CP_PERR1 Cache push parity error Unlikely

3
(35)

CPERR1 Cache parity error Precise 

4
(36)

EXCP_ERR Bus Error on first instruction 
fetch for an exception handler

Precise 

e200z0: 
5:26
(37:
(58))

e200z0h: 
5:10(37:

42)

— Reserved, should be cleared. —

11
(43)

NMI Non-maskable interrupt input 
pin

Maybe

12:26
(44:58)

— Reserved, should be cleared. —

27
(59)

BUS_IRERR  Read bus error on Instruction 
fetch

Unlikely

28
(60)

BUS_DRERR  Read bus error on data load Unlikely

29
(61)

BUS_WRERR  Write bus error on data store Unlikely

30:31
(62:63)

— Reserved, should be cleared. —

1 This bit is implemented, but is never set by hardware.

Vector Base 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—63; Read/Write

Figure 5-4. e200 Interrupt Vector Prefix Register (IVPR)

Table 5-5. Machine Check Syndrome Register (MCSR) (continued)

Bit Name Description Recoverable



Interrupts and Exceptions

e200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor 5-9
 

The IVPR fields are defined in Table 5-6. 

5.6 Interrupt Vector Offset Values (IVORxx)
Interrupt Vector Offset Registers are not implemented in Zen Z0n2p and Zen Z0Hn2p. Instead, hardwired 
values are used for interrupt offsets to the IVPR contents during interrupt processing for determining the 
starting address of a software handler used to handle an interrupt. The associated hardwired value of the 
Interrupt Vector Offset selected for a particular interrupt type is concatenated with the value held in the 
Interrupt Vector Prefix register (IVPR) to form an instruction address from which execution is to begin as 
shown in Figure 5-5.

The hardwired Vector Offsets are listed in Table 5-7.

Table 5-6. IVPR Register Fields

Bit(s) Name Description

0:19
(32:51)

Vec Base Vector Base
This field is used to define the base location of the vector table, aligned to a 4Kbyte boundary. This field 
provides the high-order 20 bits of the location of all interrupt handlers. The IVORxx  value appropriate for 
the type of exception being processed are concatenated with the IVPR Vector Base to form the address 
of the handler in memory.

20:31
(52:63)

— Reserved1

1  These bits are not implemented, are read as zero, and writes are ignored.

IVPR0:19 Vector Offset

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-5. e200 Interrupt Vector Addresses

Table 5-7. Hardwired Vector Offset Values

Interrupt Type Corresponding Interrupt Vector Offset Register 12-Bit Hex Offset

Critical Input IVOR 01 0x000

Machine check IVOR 1 0x010

Data Storage IVOR 2 0x020

Instruction Storage IVOR 3 0x030

External Input IVOR 41 0x040

Alignment IVOR 5 0x050

Program IVOR 6 0x060

Floating-point unavailable IVOR 7 Unused

System call IVOR 8 0x080

AP unavailable IVOR 9 Unused

Decrementer IVOR 10 Unused
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5.7 Interrupt Definitions

5.7.1 Critical Input Interrupt (IVOR0)

A Critical Input exception is signalled to the processor by the assertion of the critical interrupt pin 
(p_critint_b). When e200 detects the exception, if the exception is enabled by MSR[CE], e200 takes the 
Critical Input interrupt. The p_critint_b input is a level-sensitive signal expected to remain asserted until 
e200 acknowledges the interrupt. If p_critint_b is negated early, recognition of the interrupt request is not 
guaranteed. After e200 begins execution of the critical interrupt handler, the system can safely negate 
p_critint_b.

A Critical Input interrupt may be delayed by other higher priority exceptions or if MSR[CE] is cleared 
when the exception occurs. 

Table 5-8 lists register settings when a Critical Input interrupt is taken.

Fixed Interval Timer IVOR 11 Unused

Watchdog Timer IVOR 12 Unused

Data TLB Error IVOR 13 Unused

Instruction TLB Error IVOR 14 Unused

Debug IVOR 15 0x0F0

1 Autovectored External and Critical Input interrupts use this IVOR. Vectored interrupts supply an interrupt 
vector offset directly.

Table 5-8. Critical Input Interrupt—Register Settings

Register Setting Description

CSRR0 Set to the effective address of the instruction that the processor would have attempted to execute next 
if no exception conditions were present.

CSRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
WE 0
CE 0
EE 0
PR 0

FP 0
ME —
FE0 0
DE —/01

FE1 0
IS 0
DS 0
RI 02

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:19 || 12’h000 (autovectored) 
IVPR0:19 || p_voffset[0:9] || 2’b00 (non-autovectored)

Table 5-7. Hardwired Vector Offset Values (continued)

Interrupt Type Corresponding Interrupt Vector Offset Register 12-Bit Hex Offset
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When the Debug APU is enabled, the MSR[DE] bit is not automatically cleared by a Critical Input 
interrupt, but can be configured to be cleared via the HID0 register (HID0[CICLRDE]). Refer to 
Section 2.3.9, “Hardware Implementation Dependent Register 0 (HID0).”

IVOR0 is the vector offset used by autovectored Critical Input interrupts to determine the interrupt handler 
location. e200 also provides the capability to directly vector Critical Input interrupts to multiple handlers 
by allowing a Critical Input interrupt request to be accompanied by a vector offset. The p_voffset[0:9] input 
signals are appended with 2’b00 and used in place of the IVOR0 value to form the interrupt vector when 
a Critical Input interrupt request is not autovectored (p_avec_b negated when p_critint_b asserted).

5.7.2 Machine Check Interrupt (IVOR1)

e200 implements the Machine Check exception as defined in Power Architecture Book E except for 
automatic clearing of the MSR[DE] bit (see later paragraph). e200 initiates a Machine Check interrupt if 
MSR[ME]=1 and any of the machine check sources listed in Table 5-2 is detected. As defined in Power 
Architecture Book E, the interrupt is not taken if MSR[ME] is cleared, in which case the processor 
generates an internal checkstop condition and enters the checkstop state. When a processor is in the 
checkstop state, instruction processing is suspended and generally cannot continue without restarting the 
processor. Note that other conditions may lead to the checkstop condition; the disabled machine check 
exception is only one of these.

e200 implements the Machine Check Syndrome register (MCSR) to record the source(s) of machine 
checks.

The MSR[DE] bit is not automatically cleared by a Machine Check exception, but can be configured to be 
cleared or left unchanged via the HID0 register (HID0[MCCLRDE]). Refer to Section 2.3.9, “Hardware 
Implementation Dependent Register 0 (HID0).” 

5.7.2.1 Machine Check Interrupt Enabled (MSR[ME]=1)

Machine Check interrupts are enabled when MSR[ME]=1. When a Machine Check interrupt is taken, 
registers are updated as shown in Table 5-9.

1 DE is cleared when the Debug APU is disabled. Clearing of DE is optionally supported by control in HID0 when the 
Debug APU is enabled.

2 RI is cleared by all critical class interrupts using CSRR0/1 and the machine check interrupt. These interrupt handlers 
should set RI to ‘1’ early in the handler after CSRR0/1 have been saved to allow for improved recoverability.

Table 5-9. Machine Check Interrupt—Register Settings

Register Setting Description

CSRR0 On a best-effort basis e200 sets this to the address of some instruction that was executing or about to 
be executing when the machine check condition occurred. 

CSRR1 Set to the contents of the MSR at the time of the interrupt
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The Machine Check input pin p_mcp_b can be masked by HID0[EMCP].

In general, most Machine Check exceptions are unrecoverable in the sense that execution cannot resume 
in the context that existed before the interrupt; however, system software can use the machine check 
interrupt handler to try to identify and recover from the machine check condition.

The Machine Check Syndrome register is provided to identify the source(s) of a machine check and may 
be used to identify recoverable events.

The interrupt handler should set MSR[ME] as soon as possible to avoid entering the checkstop state if 
another machine check condition were to occur.

5.7.2.2 Checkstop State

A checkstop condition can occur for several reasons. The exception related conditions are:

• MSR[ME]=0 and a machine check occurs (other than a non-maskable interrupt on e200z0h).

• First instruction in an interrupt handler can not be executed due to a bus error termination, and 
MSR[ME]=0.

• Bus error termination for a buffered store and MSR[ME]=0.

• Precise external termination error and MSR[EE]=0 and MSR[ME]=0

When a processor is in the checkstop state, instruction processing is suspended and generally cannot 
resume without the processor being reset. To indicate that a checkstop condition exists, the p_chkstop 
output pin is asserted whenever the CPU is in the checkstop state.

When a debug request is presented to the e200 core while in the checkstop state, the p_wakeup signal is 
asserted, and when m_clk is provided to the CPU, it temporarily exits the checkstop state and enters Debug 
mode. The p_chkstop output is negated for the duration of the time the CPU remains in a debug session 
(p_debug_b asserted). When the debug session is exited, the CPU re-enters the checkstop state. Note that 
the external system logic may be in an undefined state following a checkstop condition, such as having an 

MSR UCLE 0
WE 0
CE 0
EE 0
PR 0

FP 0
ME 0
FE0 0
DE 0/—1

FE1 0
IS 0
DS 0
RI 02

ESR Unchanged

MCSR Updated to reflect the source(s) of a machine check

DEAR Unchanged

Vector IVPR0:19 || 12’h010

1 DE is cleared when the Debug APU is disabled. Clearing of DE is optionally supported by control in HID0 when the 
Debug APU is enabled.

2 RI is cleared by all critical class interrupts using CSRR0/1 and the machine check interrupt. These interrupt handlers 
should set RI to ‘1’ early in the handler after CSRR0/1 have been saved to allow for improved recoverability.

Table 5-9. Machine Check Interrupt—Register Settings (continued)

Register Setting Description
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outstanding bus transaction, or other inconsistency, thus no guarantee can be made in general about 
activities performed in debug mode while a checkstop is still outstanding. Debug logic does have the 
capability of generating assertion of the p_resetout_b signal via the DBCR0 register though.

5.7.2.3 Non-Maskable Interrupts (NMI) in e200z0h

e200 implements a non-maskable interrupt in addition to the machine check sources defined by Power 
Architecture Book E. The non-maskable interrupt is signaled via the p_nmi_b input. Non-maskable 
interrupt are not gated by MSR[ME], and a non-maskable interrupt occurring with MSR[ME]=0 does not 
result in a checkstop condition. e200 provides the MSR[RI] bit to indicate whether these non-maskable 
interrupts are potentially recoverable. Because a non-maskable interrupt overwrites the CSRR0/1 
registers, if these registers are currently holding essential state because a critical class interrupt handler has 
not yet been able to save this state away safely, and a non-maskable interrupt occurs, no recovery from the 
earlier critical class interrupt is possible. The machine check handler may use the value of CSRR1[RI] to 
determine if this has occurred. If CSRR1[RI] is cleared, then no recovery is possible, because MSR[RI] 
was 0 at the time of the non-maskable interrupt, indicating that the CSRR0/1 registers had not yet been 
saved. Critical class and machine check interrupt handlers should save the state of CSRR0/1 and then set 
MSR[RI] to ‘1’ as soon as is practical to ensure the best chance of recovery from a non-maskable interrupt.

5.7.3 Data Storage Interrupt (IVOR2)

A Data Storage interrupt (DSI) may occur if no higher priority exception exists and one of the following 
exception conditions exists:

• External Termination Error (precise) and MSR[EE]=1

 Precise external termination errors occur when a load or store is terminated by assertion of p_tea_b 
(ERROR termination response). See Section 6.2, “Internal Interface Signals,” for a definition of internal 
signals.

Table 5-10 lists register settings when a DSI is taken.

Table 5-10. Data Storage Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting load/store instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
RI —

ESR Access:
External Termination Error (Precise):

[ST], [VLEMI]. All other bits cleared.
[ST], [VLEMI], XTE. All other bits cleared.

MCSR Unchanged

DEAR For Access exceptions, set to the effective address of a byte within the page whose access caused the violation. 

Vector IVPR0:19 || 12’h020
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5.7.4 Instruction Storage Interrupt (IVOR3)

An Instruction Storage interrupt (ISI) occurs when no higher priority exception exists and a precise 
external termination error occurs when an instruction fetch is terminated by assertion of p_tea_b (ERROR 
termination response) and MSR[EE]=1. See Section 6.2, “Internal Interface Signals,” for a definition of 
internal signals.

Table 5-11 lists register settings when an ISI is taken.

5.7.5 External Input Interrupt (IVOR4)

An External Input exception is signalled to the processor by the assertion of the external interrupt pin 
(p_extint_b). The p_extint_b input is a level-sensitive signal expected to remain asserted until e200 
acknowledges the external interrupt. If p_extint_b is negated early, recognition of the interrupt request is 
not guaranteed. When e200 detects the exception, if the exception is enabled by MSR[EE], e200 takes the 
External Input interrupt.

An External Input interrupt may be delayed by other higher priority exceptions or if MSR[EE] is cleared 
when the exception occurs.

Table 5-12 lists register settings when an External Input interrupt is taken.

Table 5-11. Instruction Storage Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
RI —

ESR XTE, VLEMI. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:19 || 12’h030

Table 5-12. External Input Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next 
if no exception conditions were present.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
RI —
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IVOR4 is the vector offset value used by autovectored External Input interrupts to determine the interrupt 
handler location. e200 also provides the capability to directly vector External Input interrupts to multiple 
handlers by allowing a External Input interrupt request to be accompanied by a vector offset. The 
p_voffset[0:9] input signals are appended with 2’b00 and used in place of the IVOR4 value when an 
External Input interrupt request is not autovectored (p_avec_b negated when p_extint_b asserted).

5.7.6 Alignment Interrupt (IVOR5)

e200 implements the Alignment Interrupt as defined by Power Architecture Book E. An Alignment 
exception is generated when any of the following occurs:

• The operand of e_lmw or e_stmw not word aligned

• The operand of lwarx or stwcx. not word aligned

Execution of a dcbz instruction is attemptedTable 5-13 lists register settings when an alignment interrupt 
is taken.

5.7.7 Program Interrupt (IVOR6)

e200 implements the Program Interrupt as defined by Power Architecture Book E. A program interrupt 
occurs when no higher priority exception exists and one or more of the following exception conditions 
defined in Power Architecture Book E occur:

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:19 || 12’h040 (autovectored) 
IVPR0:19 || p_voffset[0:9] || 2’b00 (non-autovectored)

Table 5-13. Alignment Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting load/store instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
RI —

ESR [ST], VLEMI. All other bits cleared.

MCSR Unchanged

DEAR Set to the effective address of a byte of the load or store whose access caused the violation.

Vector IVPR0:19 || 12’h050

Table 5-12. External Input Interrupt—Register Settings (continued)
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• Illegal Instruction exception

• Privileged Instruction exception

• Trap exception

• Unimplemented Operation exception

e200 invokes an Illegal Instruction program exception on attempted execution of the following 
instructions:

• Instruction from the illegal instruction class

• mtspr and mfspr instructions with an undefined SPR specified

• mtdcr and mfdcr instructions with an undefined DCR specified

e200 invokes a Privileged Instruction program exception on attempted execution of the following 
instructions when MSR[PR]=1 (user mode):

• A privileged instruction

• mtspr and mfspr instructions which specify a SPRN value with SPRN5=1 (even if the SPR is 
undefined).

e200 invokes an Trap exception on execution of tw instructions if the trap conditions are met and the 
exception is not also enabled as a Debug interrupt.

All other defined or allocated instructions that are not implemented by e200 cause a illegal instruction 
program exception.

Table 5-14 lists register settings when a Program interrupt is taken.

Table 5-14. Program Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
RI —

ESR Illegal:
Privileged:
Trap:
Unimplemented:

PIL, VLEMI. All other bits cleared.
PPR, VLEMI. All other bits cleared.
PTR, VLEMI. All other bits cleared.
PUO, VLEMI. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:19 || 12’h060
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5.7.8 System Call Interrupt (IVOR8)

A System Call interrupt occurs when a System Call (se_sc) instruction is executed and no higher priority 
exception exists.

Exception extensions implemented in e200 for Power Architecture VLE include modification of the 
System Call Interrupt definition to include updating the ESR.

Table 5-15 lists register settings when a System Call interrupt is taken.

5.7.9 Auxiliary Processor Unavailable Interrupt (IVOR9)

An Auxiliary Processor Unavailable exception is defined by Power Architecture Book E to occur when an 
attempt is made to execute an APU instruction which is implemented but configured as unavailable, and 
no higher priority exception condition exists.

e200 does not utilize this interrupt.

5.7.10 Debug Interrupt (IVOR15)

e200 implements the Debug Interrupt as defined in Power Architecture Book E with the following 
changes:

• When the Debug APU is enabled, Debug is no longer a critical interrupt, but uses DSRR0 and 
DSRR1 for saving machine state on context switch

• A Return from debug interrupt instruction (se_rfdi) is implemented to support the new machine 
state registers

• A Critical Interrupt Taken debug event is defined to allow critical interrupts to generate a debug 
event

• A Critical Return debug event is defined to allow debug events to be generated for se_rfci 
instructions

Table 5-15. System Call Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction following the sc instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
RI —

ESR VLEMI All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:19 || 12’h080
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There are multiple sources that can signal a Debug exception. A Debug interrupt occurs when no higher 
priority exception exists, a Debug exception exists in the Debug Status Register, and Debug interrupts are 
enabled (both DBCR0[IDM]=1 (internal debug mode) and MSR[DE]=1). Enabling debug events and 
other debug modes are discussed further in Chapter 8, “Debug Support.” With the Debug APU enabled, 
(See Section 2.3.9, “Hardware Implementation Dependent Register 0 (HID0)”) the Debug interrupt has its 
own set of machine state save/restore registers (DSRR0, DSRR1) to allow debugging of both critical and 
non-critical interrupt handlers. In addition, the capability is provided to allow interrupts to be handled 
while in a debug software handler. External and Critical interrupts are not automatically disabled when a 
Debug interrupt occurs but can be configured to be cleared via the HID0 register (HID0[DCLREE, 
DCLRCE]). Refer to Section 2.3.9, “Hardware Implementation Dependent Register 0 (HID0).” When the 
Debug APU is disabled, Debug interrupts use the CSRR0 and CSRR1 registers to save machine state.

An Instruction Address Compare (IAC) debug exception occurs when there is an instruction address match 
as defined by the debug control registers and Instruction Address Compare events are enabled. This could 
either be a direct instruction address match or a selected set of instruction addresses. IAC has the highest 
interrupt priority of all instruction-based interrupts, even if the instruction itself may have encountered an 
Instruction Storage exception.

A Branch Taken (BRT) debug exception is signalled when a branch instruction is considered taken by the 
branch unit and branch taken events are enabled. The Debug interrupt is taken when no higher priority 
exception is pending.

A Data Address Compare (DAC) exception is signalled when there is a data access address match as 
defined by the debug control registers and Data Address Compare events are enabled. This could either be 
a direct data address match or a selected set of data addresses. The Debug interrupt is taken when no higher 
priority exception is pending.

e200 does not implement the Data Value Compare debug mode, specified in Power Architecture Book E.

The e200 implementation provides IAC linked with DAC exceptions. This results in a DAC exception 
only if one or more IAC conditions are also met. See Chapter 8, “Debug Support,” for more details.

A Trap (TRAP) debug exception occurs when a program trap exception is generated while trap events are 
enabled. If MSR[DE] is set, the Debug exception has higher priority than the Program exception in this 
case, and is taken instead of a Trap type Program Interrupt. The Debug interrupt is taken when no higher 
priority exception is pending. If MSR[DE] is cleared when a trap debug exception occurs, a Trap exception 
type Program interrupt occurs instead.

A Return (RET) debug exception occurs when executing an se_rfi instruction and return debug events are 
enabled. Return debug exceptions are not generated for se_rfci or se_rfdi instructions. If MSR[DE]=1 at 
the time of the execution of the se_rfi, a Debug interrupt occurs provided there exists no higher priority 
exception which is enabled to cause an interrupt. CSRR0 (Debug APU disabled) or DSRR0 (Debug APU 
enabled) is set to the address of the se_rfi instruction. If MSR[DE]=0 at the time of the execution of the 
se_rfi, a Debug interrupt does not occur immediately, but the event is recorded by setting the DBSR[RET] 
and DBSR[IDE] status bits. 

A Critical Return (CRET) debug exception occurs when executing an se_rfci instruction and critical return 
debug events are enabled. Critical return debug exceptions are only generated for se_rfci instructions. If 
MSR[DE]=1 at the time of the execution of the se_rfci, a Debug interrupt occurs provided there exists no 
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higher priority exception which is enabled to cause an interrupt. CSRR0 (Debug APU disabled) or DSRR0 
(Debug APU enabled) is set to the address of the se_rfci instruction. If MSR[DE]=0 at the time of the 
execution of the se_rfci, a Debug interrupt does not occur immediately, but the event is recorded by setting 
the DBSR[CRET] and DBSR[IDE] status bits. Note that critical return debug events should not normally 
be enabled unless the Debug APU is enabled to avoid corruption of CSRR0/1.

An Instruction Complete (ICMP) debug exception is signalled following execution and completion of an 
instruction while this event is enabled.

A mtmsr or mtdbcr0 which causes both MSR[DE] and DBCR0[IDM] to end up set, enabling precise 
debug mode, may cause an Imprecise (Delayed) Debug exception to be generated due to an earlier 
recorded event in the Debug Status register.

An Interrupt Taken (IRPT) debug exception occurs when a non-critical interrupt context switch is detected. 
This exception is imprecise and unordered with respect to the program flow. Note that an IRPT Debug 
interrupt only occurs when detecting a non-critical interrupt on e200. The value saved in CSRR0/DSRR0 
is the address of the non-critical interrupt handler. 

A Critical Interrupt Taken (CIRPT) debug exception occurs when a critical interrupt context switch is 
detected. This exception is imprecise and unordered with respect to the program flow. Note that a CIRPT 
Debug interrupt only occurs when detecting a critical interrupt on e200. The value saved in 
CSRR0/DSRR0 is the address of the critical interrupt handler. Note that Critical Interrupt Taken debug 
events should not normally be enabled unless the Debug APU is enabled to avoid corruption of CSRR0/1.

An Unconditional Debug Event (UDE) exception occurs when the Unconditional Debug Event pin 
(p_ude) transitions to the asserted state.

External Debug exceptions occur when enabled and one of the External Debug Event pins (p_devt1, 
p_devt2) transitions to the asserted state.

The Debug Status Register (DBSR) provides a syndrome to differentiate between debug exceptions that 
can generate the same interrupt. For more details see Chapter 8, “Debug Support.”

Table 5-16 lists register settings when a Debug interrupt is taken.

Table 5-16. Debug Interrupt—Register Settings

Register Setting Description

CSRR0/ 
DSRR01

Set to the effective address of the excepting instruction for IAC, BRT, RET, CRET, and TRAP.
Set to the effective address of the next instruction to be executed following the excepting instruction for DAC and 
ICMP.
For a UDE, IRPT, CIRPT, DCNT, or DEVT type exception, set to the effective address of the instruction that the 
processor would have attempted to execute next if no exception conditions were present.

CSRR1/ 
DSRR1

Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
WE 0
CE —/02

EE —/02

PR 0

FP 0
ME —
FE0 0
DE 0

FE1 0
IS 0
DS 0
RI —/02,3
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5.7.11 System Reset Interrupt

e200 implements the System Reset interrupt as defined in Power Architecture Book E. The System Reset 
exception is a non-maskable, asynchronous exception signalled to the processor through the assertion of 
system-defined signals. 

A System reset may be initiated by either asserting the p_reset_b input signal, during power-on reset by 
asserting m_por, by Watchdog Timer Reset Control, or by Debug Reset Control. The m_por signal must 
be asserted during power up and must remain asserted for a period that allows internal logic to be reset. 

The p_reset_b signal must also remain asserted for a period that allows internal logic to be reset. This 
period is specified in the hardware specifications. If m_por or p_reset_b are asserted for less than the 
required interval, the results are not predictable.

When a reset request occurs, the processor branches to the system reset exception vector (value on 
p_rstbase[0:29] concatenated with 2’b00) without attempting to reach a recoverable state. If reset occurs 
during normal operation, all operations cease and the machine state is lost. e200 internal state after a reset 
is defined in Section 2.4.4, “Reset Settings.”

For reset initiated by Debug Reset Control, e200 implements DBSR[MRR] to aid software in determining 
the cause. Debug Reset Control provides the capability to assert the p_resetout_b signal. External logic 
may factor this signal into the p_reset_b input signal to cause a e200 reset to occur.

DBSR4 Unconditional Debug Event:
Instr. Complete Debug Event:
Branch Taken Debug Event:
Interrupt Taken Debug Event:
Critical Interrupt Taken Debug Event:
Trap Instruction Debug Event:
Instruction Address Compare:
Data Address Compare:
Return Debug Event:
Critical Return Debug Event:
External Debug Event:
and optionally, an
Imprecise Debug Event flag

UDE
ICMP
BRT
IRPT
CIRPT
TRAP
{IAC1, IAC2, IAC3, IAC4}
{DAC1R, DAC1W, DAC2R, DAC2W}
RET
CRET
{DEVT1, DEVT2}

{IDE}

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:19 || 12’h0F0

1 Assumes that the Debug interrupt is precise
2 Conditional based on control bits in HID0. If HID0[DAPUEN] = 1, RI is unaffected because DSRR0/1 are used, otherwise it is 

cleared because CSRR0/1 are updated.
3 RI is cleared by all critical class interrupts using CSRR0/1 and the machine check interrupt. These interrupt handlers should 

set RI to ‘1’ early in the handler after CSRR0/1 have been saved to allow for improved recoverability.
4 Note that multiple DBSR bits may be set

Table 5-16. Debug Interrupt—Register Settings (continued)



Interrupts and Exceptions

e200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor 5-21
 

Table 5-17 shows the DBSR register bits associated with reset status.

Table 5-18 lists register settings when a System Reset interrupt is taken.

5.8 Exception Recognition and Priorities
The following list of exception categories describes how e200 handles exceptions up to the point of 
signaling the appropriate interrupt to occur. Also, instruction completion is defined as updating all 
architectural registers associated with that instruction as necessary, and then removing the instruction from 
the pipeline.

• Interrupts caused by asynchronous events (exceptions). These exceptions are further distinguished 
by whether they are maskable and recoverable. 

— Asynchronous, non-maskable, non-recoverable:

System reset by assertion of p_reset_b

Has highest priority and is taken immediately regardless of other pending exceptions or 
recoverability. (Includes Debug Reset Control) 

— Asynchronous, non-maskable, possibly non-recoverable:

Non-maskable interrupt by assertion of p_nmi_b
Has priority over any other pending exception except system reset conditions. 
Recoverability is dependent on whether CSRR0/1 are holding essential state info and are 
overwritten when the NMI occurs. 

— Asynchronous, maskable, possibly non-recoverable:

Table 5-17. DBSR Most Recent Reset

Bit(s) Name Function

2:3
(34:35)

MRR 00 No reset occurred because these bits were last cleared by software
01 A reset occurred because these bits were last cleared by software
10 Reserved
11 Reserved

Table 5-18. System Reset Interrupt—Register Settings

Register Setting Description

CSRR0 Undefined.

CSRR1 Undefined.

MSR UCLE 0
WE 0
CE 0
EE 0
PR 0

FP 0
ME 0
FE0 0
DE 0

FE1 0
IS 0
DS 0
RI 0

ESR Cleared

DEAR Undefined

Vector [p_rstbase[0:29]] || 2’b00
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Machine check interrupt

Has priority over any other pending exception except system reset conditions. 
Recoverability is dependent on the source of the exception. Typically unrecoverable.

— Asynchronous, maskable, recoverable: 

External Input, Critical Input, Unconditional Debug, and External Debug Event interrupts

Before handling this type of exception, the processor needs to reach a recoverable state. A 
maskable recoverable exception remains pending until taken or cancelled by software.

• Synchronous, non instruction-based interrupts. The only exception is this category is the Interrupt 
Taken debug exception, recognized by an interrupt taken event. It is not considered 
instruction-based but is synchronous with respect to the program flow.

— Synchronous, maskable, recoverable:

Interrupt Taken debug event. 

The machine is in a recoverable state due to the state of the machine at the context switch 
triggering this event.

• Instruction-based interrupts. These interrupts are further organized by the point in instruction 
processing in which they generate an exception. 

— Instruction Fetch:

Instruction Storage and Instruction Address Compare debug exceptions.

Once these types of exceptions are detected, the excepting instruction is tagged. When the 
excepting instruction is next to begin execution and a recoverable state has been reached, 
the interrupt is taken. If an event prior to the excepting instruction causes a redirection of 
execution, the instruction fetch exception is discarded (but may be encountered again).

— Instruction Dispatch/Execution:

Program, System Call, Data Storage, Alignment, Debug (Trap, Branch Taken, Ret) interrupts.

These types of exceptions are determined during decode or execution of an instruction. The 
exception remains pending until all instructions before the exception causing instruction in 
program order complete. The interrupt is then taken without completing the 
exception-causing instruction. If completing previous instructions causes an exception, that 
exception takes priority over the pending instruction dispatch/execution exception, which is 
discarded (but may be encountered again when instruction processing resumes).

— Post-Instruction Execution

Debug (Data Address Compare, Instruction Complete) interrupt.

These Debug exceptions are generated following execution and completion of an instruction 
while the event is enabled. If executing the instruction produces conditions for another type 
of exception with higher priority, that exception is taken and the post-instruction exception 
is discarded for the instruction (but may be encountered again when instruction processing 
resumes)
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5.8.1 Exception Priorities

Exceptions are prioritized as described in Table 5-19. Some exceptions may be masked or imprecise, 
which affect their priority. Non-maskable exceptions such as reset and machine check may occur at any 
time and are not delayed even if an interrupt is being serviced, thus state information for any interrupt may 
be lost. Reset and most machine checks are non-recoverable.

 

Table 5-19. e200 Exception Priorities

Priority Exception Cause IVOR

Asynchronous Exceptions

0 System reset Assertion of p_reset_b or Debug Reset Control none

1
Machine check Assertion of p_mcp_b, exception on fetch of first instruction of an interrupt 

handler, bus error on buffered store, Bus error (XTE) with MSR[EE]=0 and current 
MSR[ME]=13, assertion of p_nmi_b

1

2 — — —

31

Debug:
1. UDE

2. DEVT1

3. DEVT2

4. DCNT12

5. DCNT22

6. IDE

1. Assertion of p_ude (Unconditional Debug Event)

2. Assertion of p_devt1 and event enabled (External Debug Event 1)

3. Assertion of p_devt2 and event enabled (External Debug Event 2)

4. Debug Counter 1 exception

5. Debug Counter 2 exception

6. Imprecise Debug Event (event imprecise due to previous higher priority 
interrupt

15

41 Critical Input Assertion of p_critint_b 0

51,2 Watchdog Timer Watchdog Timer first enabled time-out 12

61 External Input Assertion of p_extint_b 4

71,2 Fixed-Interval Timer Posting of a FIT exception in TSR due to programmer-specified bit transition in the 
Time Base register

11

81,2 Decrementer Posting of a Decrementer exception in TSR due to programmer-specified 
Decrementer condition

10

Instruction Fetch Exceptions

9
Debug:

IAC (unlinked)
Instruction address compare match for enabled IAC debug event and 
DBCR0[IDM] asserted

15

102 ITLB Error Instruction translation lookup miss in the TLB 14

11
Instruction Storage 1. Access control. (unused on Zen Z0n2pZen Z0Hn2p)

2. Precise external termination error (p_tea_b assertion and precise 
recognition) and MSR[EE]=1

3

Instruction Dispatch/Execution Interrupts

12
Program:

Illegal Attempted execution of an illegal instruction.
6

13
Program:
Privileged Attempted execution of a privileged instruction in user-mode

6
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142 Floating-point 
Unavailable

Any floating-point unavailable exception condition.
7

15
Program:

Unimplemented Attempted execution of an unimplemented instruction.
6

16

Debug:
1. BRT

2. Trap

3. RET

4. CRET

1. Attempted execution of a taken branch instruction

2. Condition specified in tw instruction met.

3. Attempted execution of a se_rfi instruction.

4. Attempted execution of an se_rfci instruction.

Note: Exceptions requires corresponding debug event enabled, MSR[DE]=1, 
and DBCR0[IDM]=1.

15

17

Program:
Trap Condition specified in tw instruction met and not trap debug.

15

System Call Execution of the System Call (se_sc) instruction. 8

18
Alignment  lmw, stmw, lwarx, or stwcx. not word aligned.

dcbz with cache disabled or not present
5

19

Debug with 
concurrent DSI 
exception:
1. DAC/IAC linked3

2. DAC unlinked3

Debug with concurrent DSI exception. DBSR[IDE] also set.

Data Address Compare linked with Instruction Address Compare
Data Address Compare unlinked
Note: Exceptions requires corresponding debug event enabled, MSR[DE]=1, and 
DBCR0[IDM]=1. In this case, the Debug exception is considered imprecise, and 
DBSR[IDE] is set. Saved PC points to the load or store instruction causing the 
DAC event.

15

202 Data TLB Error Data translation lookup miss in the TLB. 13

21
Data Storage 1. Access control. (unused on Zen Z0n2pZen Z0Hn2p)

2. Precise external termination error (p_tea_b assertion and precise 
recognition) and MSR[EE]=1

2

222,4 Alignment dcbz to W=1 or I=1 storage with cache enabled 5

23

Debug:
1. IRPT

2. CIRPT

1. Interrupt taken (non-critical)

2. Critical Interrupt taken (critical only)

Note: Exceptions requires corresponding debug event enabled, MSR[DE]=1, 
and DBCR0[IDM]=1.

15

Table 5-19. e200 Exception Priorities (continued)

Priority Exception Cause IVOR
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5.9 Interrupt Processing
When an interrupt is taken, the processor uses SRR0/SRR1 for non-critical interrupts, CSRR0/CSRR1 for 
critical and machine check interrupts, and either CSRR0/CSRR1 or DSRR0/DSRR1 for debug interrupts 
to save the contents of the MSR and to assist in identifying where instruction execution should resume after 
the interrupt is handled. 

When an interrupt occurs, one of SRR0/CSRR0/DSRR0 is set to the address of the instruction that caused 
the exception, or to the following instruction if appropriate. 

SRR1 is used to save machine state (selected MSR bits) on non-critical interrupts and to restore those 
values when an se_rfi instruction is executed. CSRR1 is used to save machine status (selected MSR bits) 
on critical interrupts and to restore those values when an se_rfci instruction is executed. DSRR1 is used 
to save machine status (selected MSR bits) on debug interrupts when the Debug APU is enabled and to 
restore those values when an se_rfdi instruction is executed. 

The Exception Syndrome register is loaded with information specific to the exception type. Some interrupt 
types can only be caused by a single exception type, and thus do not use an ESR setting to indicate the 
interrupt cause.

Post-Instruction Execution Exceptions

24

Debug:
1. DAC/IAC linked3

2. DAC unlinked3
1. Data Address Compare linked with Instruction Address Compare

2. Data Address Compare unlinked

Notes: Exceptions requires corresponding debug event enabled, MSR[DE]=1, 
and DBCR0[IDM]=1. Saved PC points to the instruction following the load or 
store instruction causing the DAC event.

15

25

Debug:
1. ICMP 1. Completion of an instruction.

Note: Exceptions requires corresponding debug event enabled, MSR[DE]=1, 
and DBCR0[IDM]=1.

15

1 These exceptions are sampled at instruction boundaries, thus may actually occur after exceptions which are due to a currently 
executing instruction. If one of these exceptions occurs during execution of an instruction in the pipeline, it is not processed until 
the pipeline has been flushed, and the exception associated with the excepting instruction may occur first.

2 Unused on Zen Z0n2p and Zen Z0Hn2p
3 When no Data Storage Interrupt or Data TLB Error occurs, e200 implements the data address compare debug exceptions as 

post-instruction exceptions which differs from the Power Architecture Book E definition. When a TEA (either a DTLB error or 
DSI, or a Machine Check (if MSR[EE]=0)) occurs in conjunction with an enabled DAC or linked DAC/IAC on a load or store class 
instruction, the Debug Interrupt takes priority, and the saved PC value points to the load or store class instruction, rather than 
to the next instruction. In addition, the MMU MAS registers are updated due to the DTLB event.

4 Unused on cacheless cores

Table 5-19. e200 Exception Priorities (continued)

Priority Exception Cause IVOR
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The Machine State register is updated to preclude unrecoverable interrupts from occurring during the 
initial portion of the interrupt handler. Specific settings are described in Table 5-20.

For Alignment or Data Storage interrupts, the Data Exception Address Register (DEAR) is loaded with the 
address which caused the interrupt to occur.

For Machine Check interrupts, the Machine Check Syndrome register is loaded with information specific 
to the exception type. 

Instruction fetch and execution resumes, using the new MSR value, at a location specific to the exception 
type. The location is determined by the Interrupt Vector Prefix Register (IVPR), and an Interrupt Vector 
Offset Register (IVOR) value specific for each type of interrupt (see Table 5-2).

Table 5-20 shows the MSR settings for different interrupt categories.

5.9.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined whether the 
exception is enabled for that condition. 

• System reset exceptions cannot be masked.

• A machine check exception can occur only if the machine check enable bit (MSR[ME]) is set, or 
if a non-maskable interrupt is received. If MSR[ME] is cleared, the processor goes directly into 
checkstop state when a machine check exception condition occurs, unless the machine check is the 

Table 5-20. MSR Setting Due to Interrupt

Bit(s)
MSR 

Definition
Reset 

Setting
Non-Critical 

Interrupt
Critical 

Interrupt
Debug Interrupt

5 (37) UCLE 0 0 0 0

13 (45) WE 0 0 0 0

14 (46) CE 0 — 0 —/01

1 Conditionally cleared based on control bits in HID0

16 (48) EE 0 0 0 —/01

17 (49) PR 0 0 0 0

18 (50) FP 0 0 0 0

19 (51) ME 0 — — —

20 (52) FE0 0 0 0 0

22 (54) DE 0 — —/01 0

23 (55) FE1 0 0 0 0

26 (58) IS 0 0 0 0

27 (59) DS 0 0 0 0

30 (62) RI 0 — 0 —/02

2 Cleared if the Debug APU is disabled, otherwise unaffected

Reserved and preserved bits are unimplemented and read as 0. 
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result of a non-maskable interrupt. Individual machine check exceptions (other than non-maskable 
interrupts) can be enabled and disabled through bit(s) in the HID0 register.

• Asynchronous, maskable non-critical exceptions (such as the External Input) are enabled by setting 
MSR[EE]. When MSR[EE]=0, recognition of these exception conditions is delayed. MSR[EE] is 
cleared automatically when a non-critical or critical interrupt is taken to mask further recognition 
of conditions causing those exceptions.

• Asynchronous, maskable critical exceptions (such as Critical Input) are enabled by setting 
MSR[CE]. When MSR[CE]=0, recognition of these exception conditions is delayed. MSR[CE] is 
cleared automatically when a critical interrupt is taken to mask further recognition of conditions 
causing those exceptions. In addition, MSR[RI] is cleared to indicate that the CSRR0/1 registers 
contain information essential to exception recovery.

• Synchronous and asynchronous Debug exceptions are enabled by setting MSR[DE]. When 
MSR[DE]=0, recognition of these exception conditions is masked. MSR[DE] is cleared 
automatically when a Debug interrupt is taken to mask further recognition of conditions causing 
those exceptions. See Chapter 8, “Debug Support,” for more details on individual control of debug 
exceptions. 

5.9.2 Returning from an Interrupt Handler

The return from interrupt (se_rfi), return from critical interrupt (se_rfci) and return from debug interrupt 
(se_rfdi) instructions perform context synchronization by allowing previously-issued instructions to 
complete before returning to the interrupted process. In general, execution of a return instruction ensures 
the following:

• All previous instructions have completed to a point where they can no longer cause an exception. 
This includes post-execute type exceptions.

• Previous instructions complete execution in the context (privilege and protection) under which 
they were issued.

• The se_rfi instruction copies SRR1 bits back into the MSR.

• The se_rfci instruction copies CSRR1 bits back into the MSR.

• The se_rfdi instruction copies DSRR1 bits back into the MSR.

• Instructions fetched after this instruction execute in the context established by this instruction.

• Program execution resumes at the instruction indicated by SRR0 for se_rfi, CSRR0 for se_rfci and 
DSRR0 for se_rfdi.

Note that the return instruction se_rfi may be subject to a Return type debug exception, and that the return 
from critical interrupt instruction se_rfci may be subject to a Critical Return type debug exception. For a 
complete description of context synchronization, refer to Power Architecture Book E Specification.
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5.10 Process Switching
The following instructions are useful for restoring proper context during process switching: 

• The msync instruction orders the effects of data memory instruction execution. All instructions 
previously initiated appear to have completed before the msync instruction completes, and no 
subsequent instructions appear to be initiated until the msync instruction completes. 

• The isync instruction waits for all previous instructions to complete and then discards any fetched 
instructions, causing subsequent instructions to be fetched (or refetched) from memory and to 
execute in the context (privilege, translation, and protection) established by the previous 
instructions. 

• The stwcx. instructions clears any outstanding reservations, ensuring that a load and reserve 
instruction in an old process is not paired with a store conditional instruction in a new one.
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Chapter 6  
Core Complex Interfaces
This chapter describes the external interfaces to the e200 core complex. Signal descriptions as well as the 
data transfer protocols are documented in the following subsections.

The external interfaces encompass control and data signals supporting instruction and data transfers, 
support for interrupts, including vectored interrupt logic, reset support, power management interface 
signals, debug event signals, processor state information, Nexus/OnCE/JTAG interface signals, and a Test 
interface.

The memory portion of the e200 core interface is comprised of a pair of 32-bit wide system buses, one for 
instructions and the other for data in the e200z0h, and a unified bus on the e200z0. The data memory 
interface supports read and write transfers of 8, 16, 24, and 32 bits, supports misaligned transfers, and 
operates in a pipelined fashion. In the e200z0h the instruction memory interface supports read transfers of 
16 and 32 bits, supports misaligned transfers, and operates in a pipelined fashion.

Single-beat and misaligned transfers are supported for read and write cycles. Incrementing burst transfers 
are supported for instruction prefetch operations.

Misaligned accesses are supported with one or more transfers to a bus interface. If an access is misaligned, 
but is contained within an aligned 32-bit word, the core performs a single transfer, and the memory 
interface is responsible for delivering (reads) or accepting (writes) the data corresponding to the size and 
byte enable signals aligned according to the low order two address bits. If an access is misaligned and 
crosses a 32-bit boundary, the bus interface unite (BIU) performs a pair of transfers beginning at the 
effective address for the first transfer, along with appropriate byte enables, and for the second transfer the 
address is incremented to the next 32-bit boundary, and the size and byte enable signals are driven to 
correspond to the number of remaining bytes to be transferred.
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6.1 Signal Index
This section contains an index of the e200 signals. 

The following prefixes are used for e200 signal mnemonics:

• m denotes master clock and reset signals

• p denotes processor or core-related signals

• j denotes JTAG mode signals

• jd denotes JTAG and Debug mode signals

• ipt denotes Scan and Test Mode signals

• nex denotes Nexus2 signals. Nexus signals support an optional Nexus2 and Nexus3 block on the 
e200z1 core.

NOTE
The “_b” suffix denotes an active low signal. Signals without the active-low 
suffix are active high.

Figure 6-1 and Figure 6-2 group core bus and control signals by function.
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Figure 6-1. e200z0h Signal Groups
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Figure 6-2. e200z0 Signal Groups
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Table 6-1 shows e200 external signal function and type, signal definition, and reset value. Signals are 
presented in functional groups.

Table 6-1. External Interface Signal Definitions

Signal Name Type
Reset
Value

Definition

Clock and Reset-Related Signals

m_clk I — Global system clock

m_por I — Power-on reset

p_reset_b I — Processor reset input

p_resetout_b O — Processor reset output

p_rstbase[0:29] I — Reset exception handler base address

Memory Interface Signals

p_d_hmaster[3:0], p_i_hmaster[3:0] O — Master ID

p_d_haddr[31:0], p_i_haddr[31:0] O — Address buses

p_d_hwrite, p_i_hwrite* O 0 Write signal (always driven low for p_i_hwrite)

p_d_hprot[5:0], p_i_hprot[5:0] O — Protection Codes

p_d_htrans[1:0], p_i_htrans[1:0] O — Transfer Type

p_d_hburst[2:0], p_i_hburst[2:0] O — Burst Type

p_d_hsize[1:0], p_i_hsize[1:0] O — Transfer Size

p_d_hunalign, p_i_hunalign O —  Indicates the current access is a misaligned access.

p_d_hbstrb[3:0], p_i_hbstrb[3:0] O 0 Byte strobes

p_d_hrdata[31:0], p_i_hrdata[31:0] I — Read data buses

p_d_hwdata[31:0] O — Write data bus

p_d_hready, p_i_hready I — Transfer Ready

p_d_hresp[2:0], p_i_hresp[1:0] I — Transfer Response

Interrupt Interface Signals

p_nmi_b I — Non-maskable interrupt request

p_extint_b I — External Input interrupt request

p_critint_b I — Critical Input interrupt request

p_avec_b I — Autovector request
Use internal interrupt vector offset

p_voffset[0:9] I — Interrupt vector offset for vectored interrupts

p_iack O 0 Interrupt Acknowledge. Indicates an interrupt is being 
acknowledge.

p_ipend O 0 Interrupt Pending. Indicates an interrupt is pending internally.

p_mcp_b I — Machine Check input request
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Misc. CPU Signals

p_pid0[0:7] O 0 PID0[24:31] outputs

p_hid1_sysctl[0:7] O 0 HID1[16:23] outputs

CPU Reservation Signals

p_rsrv O 0 Reservation status

p_rsrv_clr I — Clear Reservation flag

CPU State Signals

p_pstat[0:5] O 0 Indicates processor status

p_EE, p_DE, p_CE, p_ME O 0 Reflect the values of these MSR bits

p_mcp_out O 0 Indicates a machine check has occurred

p_chkstop O 0 Indicates a checkstop has occurred

p_doze O 0 Indicates low-power doze mode of operation

p_nap O 0 Indicates low-power nap mode of operation

p_sleep O 0 Indicates low-power sleep mode of operation

p_wakeup O 0 Indicates to external clock control module to enable clocks and 
exit from low-power mode

p_halt I — CPU halt request

p_halted O 0 CPU halted

p_stop I — CPU stop request

p_stopped O 0 CPU stopped

p_waiting O 0 CPU waiting

CPU Debug Event Signals

p_ude I — Unconditional Debug Event

p_devt1 I — Debug Event 1 input

p_devt2 I — Debug Event 2 input

Debug/Emulation Support Signals (Nexus 1/OnCE)

jd_en_once I — Enable full OnCE operation

jd_debug_b O 1 Indicates processor has entered debug session

jd_de_b I — Debug request

jd_de_en O 0 Active -high output enable for DE_b open-drain IO cell

jd_mclk_on I — Indicates the system clock controller is actively toggling m_clk

jd_watchpt[0:5] O 0 Indicate an address watchpoint has occurred

Development Support Signals (Nexus 2)

Table 6-1. External Interface Signal Definitions (continued)

Signal Name Type
Reset
Value

Definition
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nex_mcko O — Nexus 2/3 Clock Output

nex_rdy_b O — Nexus 2/3 Ready Output

nex_evto_b O — Nexus 2/3 Event-Out Output

nex_evti_b I — Nexus 2/3 Event-In Input

nex_mdo[n:0] O — Nexus 2/3 Message Data Output

nex_mseo_b[1:0] O — Nexus 2/3 Message Start/End Output

JTAG-Related Signals

j_trst_b I — JTAG test reset from pad

j_tclk I — JTAG test clock from pad

j_tms I — JTAG test mode select from pad

j_tdi I — JTAG test data input from pad

j_tdo O 0 JTAG test data out to master controller or pad

j_tdo_en O 0 Enables TDO output buffer

j_tst_log_rst O 0 Indicates Test-Logic-Reset state of JTAG controller

j_capture_ir O 0 Indicates Capture_IR state of JTAG controller

j_update_ir O 0 Indicates Update_IR state of JTAG controller

j_shift_ir O 0 Indicates Shift_IR state of JTAG controller

j_capture_dr O 0 Indicates parallel test data register load state of JTAG controller

j_shift_dr O 0 Indicates the TAP controller is in shift DR state

j_update_gp_reg O 0 Updates JTAG controller test data register

j_rti O 0 JTAG controller run-test-idle state

j_key_in I — Input for providing data to be shifted out during Shift_IR state 
when jd_en_once is negated

j_en_once_regsel O 0  external Enable Once register select

j_nexus_regsel O 0  external Nexus register select

j_sncr_regsel O 0  external Shared Nexus Control register select

j_lsrl_regsel O 0  external LSRL register select

Table 6-1. External Interface Signal Definitions (continued)

Signal Name Type
Reset
Value

Definition
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6.2 Internal Interface Signals
Table 6-1 shows e200 internal signal function and type, signal definition, and reset value. Signals are 
presented in functional groups. Note that these signals are for reference purposes and their functionality is 
beyond the scope of this document.

j_gp_regsel[0:11] O 0 General-purpose external JTAG register select

j_id_sequence[0:1] I — JTAG ID Register (2 MSBs of sequence field)

j_id_version[0:3] I — JTAG ID Register Version Field

j_serial_data I — Serial data from external JTAG registers

Test Primary Input/Output Signals

Test Control Interface1 — — Test Mode determination

Scan Test Interface1 — — Scan Configuration and Testing

Memory BIST Interface1 — — Memory BIST Configuration and Testing

1 Please refer to the e200 Test Guide for information on the Test signals

Table 6-2. Internal Interface Signal Definitions

Signal Name Type
Reset
Value

Definition

Data Memory Interface Signals

p_d_addr[0:31] O — Address bus

p_d_rw_b O 1 Read/write

p_d_tc[0:1] O — Transfer Code

p_d_ttype[0:3] O — Transfer Type

p_d_tsiz[0:2] O — Transfer Size

p_d_seq_b O 1 Indicates the current access is in sequential address order 
from the last access.

p_d_misal_b O 1 Indicates the current data access is the first portion of a 
misaligned access.

p_d_err_kill O 1 Indicates the current access will cause an abort if terminated 
with error.

p_d_treq_b O 1 Transfer Request
Indicates a request for a bus cycle.

p_d_tbusy_b O 1 Transfer Busy
Indicates a bus cycle is in progress.

p_d_abort_b O 1 Aborts a requested access.

Table 6-1. External Interface Signal Definitions (continued)

Signal Name Type
Reset
Value

Definition
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p_d_data_in[0:31] I — Input data bus

p_d_data_out[0:31] O — Output data bus

p_d_ta_b I — Transfer Acknowledge

p_d_tea_b I — Transfer Error

p_d_bus_wrerr I —  Buffered Write Bus Error

p_d_tmiss_b I — Translation Miss

p_d_boerr_b I — Byte Ordering Error

p_d_xte_b I — Precise External Termination Error

p_d_xfail_b I — Store Exclusive Failure

Instruction Memory Interface Signals

p_i_addr[0:31] O — Address bus

p_i_tc[0:4] O — Transfer Code

p_i_tsiz[0:2] O — Transfer Size

p_i_seq_b O 1 Indicates the current access is in sequential address order 
from the last access. For sequential instruction fetches.

p_i_err_kill O 1 Indicates the current access will cause an abort if terminated 
with error.

p_i_treq_b O 1 Transfer Request
Indicates a request for a bus cycle.

p_i_tbusy_b O 1 Transfer Busy
Indicates a bus cycle is in progress.

p_i_abort_b O 1 Aborts a requested access.

p_i_data_in[0:31] I — Input data bus

p_i_ta_b I — Transfer Acknowledge

p_i_tea_b I — Transfer Error

p_i_xte_b I — Precise External Termination Error

p_ifsiz I — Instruction Fetch Size
Indicates the port size of the device being accessed.

SPR Interface Signals

p_sprnum[0:9] O — Global SPR address bus

p_spr_out[0:31] O — Global SPR write bus

p_spr_in[0:31] I — Global SPR read bus

p_rd_spr O 0 SPR read control

p_wr_spr O 0 SPR write control

Table 6-2. Internal Interface Signal Definitions (continued)

Signal Name Type
Reset
Value

Definition
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6.3 Signal Descriptions
The following paragraphs provide descriptions of the external signals.

6.3.1 e200 Processor Clock (m_clk)

The m_clk input is the synchronous clock source for the e200 processor core.

Because e200 is designed for static operation, m_clk can be gated off to lower power dissipation (for 
example, during low-power stopped states).

6.3.2 Reset-Related Signals

e200 supports several reset input signals for the CPU and JTAG/OnCE control logic: m_por, p_reset_b, 
p_resetout_b and j_trst_b. The reset domains have been partitioned such that the CPU p_reset_b signal 
does not affect JTAG/OnCE logic and j_trst_b does not affect processor logic. It is possible and desirable 
to access OnCE registers while the processor is running or in reset. Alternatively, it is also possible and 
desirable to assert j_trst_b and clear the JTAG/OnCE logic without affecting the state of the processor.

The synchronization logic between the processor and debug module requires an assertion of either j_trst_b 
or m_por during initial processor power-up reset in order to ensure proper operation. If the pin associated 
with the j_trst_b input is designed with a pull-up resistor and left floating, then assertion of m_por is 
required during the initial power-on processor reset. Similarly, for those systems which do not have a 
power-on reset circuit and choose to tie m_por low, it is required to assert j_trst_b during processor 
power-up reset. Once a power-up reset has been achieved, the two resets can be asserted independently.

A reset output signal p_resetout_b is also provided.

A set of input signals (p_rstbase[0:29]) are provided to relocate the reset exception handler to allow for 
flexible placement of boot code.

These signals are described in detail in the following sub-sections.

Misc. CPU Signals

p_pid0[0:7] O 0 PID0[24:31] outputs

p_pid0_updt O 0 PID0 update status

p_d_cmbusy, p_i_cmbusy I — BIU busy

Test Primary Input/Output Signals

Test Control Interface — — Test Mode determination

Scan Test Interface — — Scan Configuration and Testing

Memory BIST Interface — — Memory BIST Configuration and Testing

Table 6-2. Internal Interface Signal Definitions (continued)

Signal Name Type
Reset
Value

Definition
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6.3.2.1 Power-On Reset (m_por)

The m_por signal is the power-on reset input for the e200 processor. This signal serves the following 
purposes:

• m_por is “ORed” with the j_trst_b function and the resulting signal clears the JTAG TAP controller 
and associated registers as well as the OnCE state machine. This is an asynchronous clear with a 
short assertion time requirement.

• m_por is “ORed” with the p_reset_b function and the resulting signal clears certain CPU registers. 
This is an asynchronous clear with a short assertion time requirement.

6.3.2.2 Reset (p_reset_b)

The p_reset_b input is the active-low reset input for the e200 processor. p_reset_b is treated as an 
asynchronous input and is sampled by the clock control logic in the e200 debug module.

6.3.2.3 Reset Out (p_resetout_b)

The p_resetout_b output is an active-low reset output control signal from the e200 core. p_resetout_b is 
conditionally asserted by Debug control logic (Section 8.3.2.1, “Debug Control Register 0 (DBCR0)”). 
p_resetout_b is not asserted by p_reset_b.

6.3.2.4 Reset Base (p_rstbase[0:29])

The p_rstbase[0:29] inputs are provided to allow system integrators to be able to specify/relocate the base 
address of the reset exception handler. These inputs are used to form the upper 30 bits of the instruction 
access following negation of reset which is used to fetch the initial instruction of the reset exception 
handler. These bits should be driven to a value corresponding to the desired boot memory device in the 
system. These inputs must remain stable in a window beginning two clocks prior to the negation of reset 
and extending into the cycle in which the reset vector fetch is initiated. 

The initial instruction fetch occurs to the location [p_rstbase[0:29]] || 2’b00.

6.3.2.5 JTAG/OnCE Reset (j_trst_b)

The j_trst_b signal (referred to in the IEEE 1149.1 JTAG Specification as the TRST* signal) is an 
asynchronous reset with a short assertion time requirement. It is “ORed” with the m_por function and the 
resulting signal clears the OnCE TAP controller and associated registers as well as the OnCE state 
machine.

6.3.3 Address and Data Buses

Dual instruction and data interfaces are provided by the CPU. They are described together, with 
appropriate differences denoted.
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6.3.3.1 Address Bus (p_d_haddr[31:0], p_i_haddr[31:0])

These outputs provide the address for a bus transfer. Per the AHB definition, p_[d,i]_haddr[31] is the 
MSB and p_[d,i]_haddr[0] is the LSB.

6.3.3.2 Read Data Bus (p_d_hrdata[31:0], p_i_hrdata[31:0])

These inputs provide data to the CPU on read transfers. The data read data bus can transfer 8, 16, 24, or 
32 bits of data per bus transfer. The instruction read data bus can transfer 16 or 32 bits of data per bus 
transfer. Instruction transfers do not use the 8-bit and 24-bit capability. Per AHB definition, 
p_[d,i]_hrdata[31] is the MSB and p_hrdata[0] is the LSB. Table 6-3 shows the relationship of byte 
addresses to read data bus signals.

6.3.3.3 Write Data Bus (p_d_hwdata[31:0])

These outputs transfer data from the CPU on write transfers. The write data bus can transfer 8, 16, 24, or 
32 bits of data per bus transfer. Per AHB definition, p_d_hwdata[31] is the MSB and p_d_hwdata[0] is the 
LSB. Figure 6-4 shows the relationship of byte addresses to write data bus signals.

6.3.4 Transfer Attribute Signals

The following paragraphs describe the transfer attribute signals, which provide additional information 
about the bus transfer cycle. Transfer attributes are driven with address at the beginning of a bus transfer.

Table 6-3. p_hrdata[31:0] Byte Address Mappings

Memory Byte Address Wired to p_d_hrdata Bits

00 7:0

01 15:8

10 23:16

11 31:24

Table 6-4. p_d_hwdata[31:0] Byte Address Mappings

Memory Byte Address Wired to p_d_hwdata Bits

00 7:0

01 15:8

10 23:16

11 31:24
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6.3.4.1 Transfer Type (p_d_htrans[1:0], p_i_htrans[1:0])

The processor drives these signals to indicate the current transfer type. Table 6-5 shows 
p_[d,i]_htrans[1:0] encoding.

If the p_[d,i]_htrans[1:0] encoding is not IDLE or BUSY, a transfer is being requested. e200 does not 
utilize the BUSY encoding, and does not present this type of transfer to a bus slave. Slaves must terminate 
IDLE transfers with a zero wait-state OKAY response and ignore the (non-existent) transfer.

6.3.4.2 Write (p_d_hwrite, p_i_hwrite) 

This output signal defines the data transfer direction for the current bus cycle. A high (logic one) level 
indicates a write cycle, and a low (logic zero) level indicates a read cycle. For p_i_hwrite, the signal is 
internally driven low for all IAHB transfers.

6.3.4.3 Transfer Size (p_d_hsize[1:0], p_i_hsize[1:0]) 

The p_[d,i]_hsize[1:0] signals indicate the data size for a bus transfer. Table 6-6 shows the definitions of 
the p_[d,i]_hsize[1:0] encodings. For misaligned transfers, the transfer size may indicate a size larger than 
the requested size to ensure that all asserted byte strobes are contained within the “container” defined by 
p_[d,i]_hsize[1:0]. Refer to Table 6-10 and Table 6-11 for p_[d,i]_hsize[1:0] encodings used for aligned 
and misaligned transfers.

Table 6-5. p_[d,i]_htrans[1:0] Transfer Type Encoding

p_[d,i]_htrans[1] p_[d,i]_htrans[0] Access type

0 0 IDLE—no data transfer is required

0 1 BUSY—Master is busy, burst transfer continues. (encoding not used by e200)

1 0
NONSEQ—indicates the first transfer of a burst, or a single transfer. Address and 
control signals are unrelated to the previous transfer

1 1
SEQ—indicates the continuation of a burst. Address and control signals are related to 
the previous transfer. Control signals are the same, Address has been incremented by 
the size of the data transferred (optionally wrapped)

Table 6-6. p_[d,i]_hsize[1:0] Transfer Size Encoding

p_[d,i]_hsize[1:0] Transfer Size

00 Byte

01 Halfword (2 bytes)

10 Word (4 bytes)

11 Reserved
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6.3.4.4 Burst Type (p_d_hburst[2:0], p_i_hburst[2:0]) 

The p_[d,i]_hburst[2:0] signals indicate the burst type for a bus transfer. Table 6-7 shows the definitions 
of the p_[d,i]_hburst[2:0] encodings. 

e200 only utilizes SINGLE and INCR (for instruction) burst types. In addition, all INCR bursts are of word 
size aligned to word boundaries.

6.3.4.5 Protection Control (p_d_hprot[5:0], p_i_hprot[5:0])

e200 drives the p_[d,i]_hprot[5:0] signals to indicate the type of access for the current bus cycle. 
p_[d,i]_hprot[0] indicates instruction/data, p_[d,i]_hprot[1] indicates user/supervisor. p_[d,i]_hprot[5] 
indicates whether the access is Exclusive (such as for a lwarx or stwcx.). p_[d,i]_hprot[4:2] (Allocate, 
Cacheable, Bufferable) are used to indicate particular cache attributes for the access and are driven to 
default values of 3’b000. Table 6-8 shows the definitions of the p_[d,i]_hprot[5:0] signals.

 

Table 6-7. p_[d,i]_hburst[2:0] Burst Type Encoding

p_hburst[2:0] Burst Type

000 SINGLE—No burst, single beat only

001 INCR—Incrementing burst of unspecified length 

010 WRAP4—4-beat wrapping burst—Unused

011 INCR4—4-beat incrementing burst—Unused 

100 WRAP8—8-beat wrapping burst—Unused 

101 INCR8—8-beat incrementing burst—Unused 

110 WRAP16—16-beat wrapping burst—Unused 

111 INCR16—16-beat incrementing burst—Unused 

Table 6-8. p_[d,i]_hprot[5:0] Protection Control Encoding

p_hprot[5] p_hprot[4] p_hprot[3] p_hprot[2] p_hprot[1] p_hprot[0] Transfer Type

— — — — — 0 Instruction Access

— — — — — 1 Data Access

— — — — 0 — User mode access

— — — — 1 — Supervisor mode access

0 — — — — — Not Exclusive

1 — — — — — Exclusive Access
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Note that all signals are provided on both I and D ports, although they do not all change state (for example, 
p_d_hprot0 is always high, etc.).

6.3.5 Byte Lane Specification

Read transactions transfer from 1 to 4 bytes of data on the p_[d,i]_hrdata[31:0] bus. The byte lanes 
involved in the transfer are determined by the starting byte number specified by the lower address bits in 
conjunction with the transfer size and byte strobes. Addressing of the byte lanes is shown big-endian (left 
to right). The byte of memory corresponding to address 0 is connected to B0 (p_[d,i]_h{r,w}data[7:0]) and 
the byte of memory corresponding to address 3 is connected to B3 (p_[d,i]_h{r,w}data[31:24]). The CPU 
internally permutes read data as required for the current access. Misaligned transfers are indicated with the 
p_[d,i]_hunalign signal to indicate that byte strobes do not correspond exactly to size and low-order 
address bits.

6.3.5.1 Unaligned Access (p_d_hunalign, p_i_hunalign)

The p_[d,i]_hunalign output signal indicates that the current access is a misaligned access. This signal is 
asserted for misaligned data accesses. The timing of this signal is approximately the same as address 
timing. When p_[d,i]_hunalign is asserted, the p_[d,i]_hbstrb[3:0] byte strobe signals indicate the 
selected bytes involved in the current portion of the misaligned access, which may not include all bytes 
defined by the size and low-order address signals. Aligned transfers also assert the byte strobes, but in a 
manner corresponding to size and low order address bits.

6.3.5.2 Byte Strobes (p_d_hbstrb[3:0], p_i_hbstrb[3:0])

The p_[d,i]_hbstrb[3:0] byte strobe signals indicate the selected bytes involved in the current transfer. For 
a misaligned access, the current transfer may not include all bytes defined by the size and low-order 
address signals. For aligned transfers, the byte strobe signals correspond to the bytes defined by the size 
and low-order address signals. Table 6-9 shows the relationship of byte addresses to the byte strobe 
signals.

Table 6-9. p_hbstrb[3:0] to Byte Address Mappings

Memory Byte Address Wired to p_h{r,w}data Bits Corresponding Byte Strobe Signal

00 7:0 p_[d,i]_hbstrb[0]

01 15:8 p_[d,i]_hbstrb[1]

10 23:16 p_[d,i]_hbstrb[2]

11 31:24 p_[d,i]_hbstrb[3]
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Table 6-10 lists all of the data transfer permutations. Note that misaligned data requests which cross a 
32-bit boundary are broken up into two separate bus transactions, and the address value and the size 
encoding for the first transfer is not modified. The table is arranged in a big-endian fashion. e200 performs 
the proper byte routing internally .

Table 6-10. Byte Strobe Assertion for Transfers 

Program Size and Byte Offset A(1:0)
HSIZE
[1:0]

Data Bus Byte Strobes HUNALIGN

B0 B1 B2 B3

Byte @00 0 0 0 0 X — — — 0

Byte @01 0 1 0 0 — X — — 0

Byte @10 1 0 0 0 — — X — 0

Byte @11 1 1 0 0 — — — X 0

Half @00 0 0 0 1 X X — — 0

Half @01 0 1 1 0# — X X — 1

Half @10 1 0 0 1 — — X X 0

Half @11
(2 bus transfers)

1 1
0 0

0 1*
0 0

—
X

—
—

—-
—

X
—

1
0

Word @00 0 0 1 0 X X X X 0

Word @01
(2 bus transfers)

0 1
0 0

1 0*
0 0

—
X

X
—

X
—

X
—

1
0

Word @10
(2 bus transfers)

1 0
0 0

1 0*
0 1

—
X

—
X

X
—

X
—

1
0

Word @11
(2 bus transfers)

1 1
0 0

10*
1 0#

—
X

—
X

—
X

X
—

1
1

Note:
“X” indicates byte lanes involved in the transfer; Other lanes contain driven but unused data.
# These misaligned transfers drive size according to the size of the power of two aligned 
“container” in which the byte strobes are asserted.
* These misaligned cases drive request size according to the size specified by the load or store 
instruction.
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Table 6-11 shows the final layout in memory for data transferred from a 32-bit GPR containing the bytes 
‘E F G H’ to memory. Misaligned accesses which cross a word boundary are broken into a pair of accesses 
by the CPU.

Table 6-11. Big-Endian Memory Storage

Program Size and Byte Offset A(2:0) HSIZE (1:0)
Even Word—0 0dd Word—1

B0 B1 B2 B3 B0 B1 B2 B3

Byte @000 0 0 0 0 0 H — — — — — — —

Byte @001 0 0 1 0 0 — H — — — — — —

Byte @010 0 1 0 0 0 — — H — — — — —

Byte @011 0 1 1 0 0 — — — H — — — —

Byte @100 1 0 0 0 0 — — — — H — — —

Byte @101 1 0 1 0 0 — — — — — H — —

Byte @110 1 1 0 0 0 — — — — — — H —

Byte @111 1 1 1 0 0 — — — — — — — H

B. E. Half @000 0 0 0 0 1 G H — — — — — —

B. E. Half @001 0 0 1 1 0# — G H — — — — —

B. E. Half @010 0 1 0 0 1 — — G H — — — —

B. E. Half @011 0 1 1
1 0 0 

0 1
0 0 

— — — G H — — —

B. E. Half @100 1 0 0 0 1 — — — — G H — —

B. E. Half @101 1 0 1 1 0# — — — — — G H —

B. E. Half @110 1 1 0 0 1 — — — — — — G H

B.E. Half @111 1 1 1 0 1 — — — — — — — G

+ 0 0 0 (next word) 0 0 H — — — — — — —

B. E. Word @000 0 0 0 1 0 E F G H — — — —

B. E. Word @001 0 0 1
1 0 0 

1 0*

0 0 
— E F G H — — —

B. E. Word @010 0 1 0
1 0 0

1 0*

0 1
— — E F G H — —

B. E. Word @011 0 1 1
1 0 0 

1 0*

1 0#
— — — E F G H —

B. E. Word @100 1 0 0 1 0 — — — — E F G H

B. E. Word @101 1 0 1 1 0* — — — — — E F G

+ 0 0 0 (next word) 0 0 H — — — — — — —

B. E. Word @110
1 1 0 1 0* — — — — — — E F

+ 0 0 0 (next word) 0 1 G H — — — — — —
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6.3.6 Transfer Control Signals

The following paragraphs describe the transfer control signals.

6.3.6.1 Transfer Ready (p_d_hready, p_i_hready) 

The p_[d,i]_hready input signal indicates completion of a requested transfer operation. An external device 
asserts p_[d,i]_hready to terminate the transfer. The p_[d,i]_hresp[2:0] signals indicate status of the 
transfer.

6.3.6.2 Transfer Response (p_d_hresp[2:0], p_i_hresp[1:0]) 

The p_d_hresp[2:0] and p_i_hresp[1:0] signals indicate status of a terminating transfer on the respective 
interfaces. Table 6-12 shows the definitions of the p_d_hresp[2:0] and p_i_hresp[1:0] encodings.

 

B. E. Word @111
1 1 1 1 0* — — — — — — — E

+ 0 0 0 (next word) 1 0# F G H — — — — —

Notes:
Assumes a 32-bit GPR contains ‘E F G H’

# These misaligned transfers drive size according to the size of the power of two aligned “container” in which 
the byte strobes are asserted.

* These misaligned cases drive request size according to the size specified by the load or store instruction.

Table 6-12. p_d_hresp[2:0] Transfer Response Encoding

p_d_hresp[2:0] Response Type

000 OKAY—transfer terminated normally

001 ERROR—transfer terminated abnormally

010 Reserved (RETRY not supported in AHB-Lite protocol)

011 Reserved (SPLIT not supported in AHB-Lite protocol)

100 XFAIL—Exclusive store failed (stwcx. did not completed successfully)

101 Reserved

110 Reserved

111 Reserved

Table 6-11. Big-Endian Memory Storage (continued)

Program Size and Byte Offset A(2:0) HSIZE (1:0)
Even Word—0 0dd Word—1

B0 B1 B2 B3 B0 B1 B2 B3
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The ERROR and XFAIL responses are required to be two cycle responses. In this case, the ERROR or 
XFAIL responses must be signaled one cycle prior to assertion of p_[d,i]_hready, and must remain 
unchanged during the cycle p_[d,i]_hready is asserted.

The XFAIL response is signaled to the CPU.

6.3.7 Interrupt Signals

The following paragraphs describe the signals which control the interrupt functions. Interrupt request 
inputs p_extint_b and p_critint_b to the core are level sensitive, not edge-triggered, thus the interrupt 
controller module must keep the interrupt request as well as the p_voffset or p_avec_b inputs (as 
appropriate) asserted until the interrupt is serviced to guarantee that the CPU core recognizes the request. 
On the other hand, once a request is generated, there is no guarantee the CPU will not recognize the 
interrupt request even if the request is later removed. Interrupt requests must be held stable to avoid 
spurious responses. The interrupt inputs p_nmi_b and p_mcp_b are transition-sensitive and must be held 
asserted until acknowledged in order to be guaranteed to be recognized, although there is no guarantee the 
CPU will not recognize the interrupt request even if the request is later removed.

6.3.7.1 External Input Interrupt Request (p_extint_b)

This active-low signal provides the External Input interrupt request to the e200 core. p_extint_b is masked 
by the MSR[EE] bit. This signal is not internally synchronized by the e200 core, thus it must meet setup 
and hold time constraints relative to m_clk when the e200 core clock is running. This signal is level 
sensitive and must remain asserted to be guaranteed to be recognized.

6.3.7.2 Critical Input Interrupt Request (p_critint_b)

This active-low signal provides the Critical Input interrupt request to the e200 core. p_critint_b is masked 
by the MSR[CE] bit. This signal is not internally synchronized by the e200 core, thus it must meet setup 
and hold time constraints relative to m_clk when the e200 core clock is running. This signal is level 
sensitive and must remain asserted to be guaranteed to be recognized.

6.3.7.3 Non-Maskable Input Interrupt Request (p_nmi_b) on e200z0h

This active-low, transition sensitive signal provides a non-maskable interrupt request to the e200 core. This 
signal is not internally synchronized by the e200 core, thus it must meet setup and hold time constraints to 
m_clk when the e200 core clock is running. The p_nmi_b input is sampled on two consecutive m_clk 
periods to detect a transition from the negated to the asserted state. Initiation of exception processing for 

Table 6-13. p_i_hresp[1:0] Transfer Response Encoding

p_i_hresp[1:0] Response Type

00 OKAY—transfer terminated normally

01 ERROR—transfer terminated abnormally

10 Reserved (RETRY not supported in AHB-Lite protocol)

11 Reserved (SPLIT not supported in AHB-Lite protocol)
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the NMI is internally qualified with this transition, but must remain asserted low to be guaranteed to be 
recognized. Note that when the core is halted or stopped, without clocks, transitions on this signal are not 
immediately detected, but the p_ipend and p_wakeup signals are asserted to indicate to system logic that 
an interrupt is pending and so the clocks should be started, and the halt and stop inputs should be negated 
in order for the interrupt to be processed. Also, when the core is in the debug state, the internal m_clk is 
not running, so the p_nmi_b input does not guaranteed to be recognized until the core is released with a 
go+noexit or a go+exit OnCE command.

6.3.7.4 Interrupt Pending (p_ipend)

This active-high signal indicates that an asserted p_extint_b, p_critint_b, or p_nmi_b interrupt request 
input, or an enabled Timer facility interrupt (Watchdog, Fixed-Interval, or Decrementer) has been 
recognized internally by the core and is enabled by the appropriate bit in the MSR (p_nmi_b is never 
masked), and is asserted combinationally from the qualified interrupt request inputs. The p_ipend signal 
can be used to signal other bus masters or a bus arbiter that an interrupt condition is pending. External 
power management logic can use this output to control operation of the core and other logic or may use 
the p_wakeup signal similarly. Actual handling of the interrupt request may be delayed due to higher 
priority exceptions; assertion of p_ipend does not mean that exception processing for the interrupt has 
begun. The p_nmi_b input affects the p_ipend signal slightly differently; the p_ipend output asserts any 
time the p_nmi_b input is asserted.

6.3.7.5 Autovector (p_avec_b) 

This active-low signal is asserted with either the p_extint_b or p_critint_b interrupt request to request use 
of the internal IVOR4 or IVOR0 values for obtaining an exception vector offset. If this signal is negated 
when a p_extint_b or p_critint_b interrupt is requested, an external vector offset is taken from the 
p_voffset[0:9] input signals. This signal is level sensitive and must remain asserted to be guaranteed to be 
recognized. This signal must be driven to a valid state during each clock cycle that either p_extint_b or 
p_critint_b is asserted.

6.3.7.6 Interrupt Vector Offset (p_voffset[0:9])

These input signals provide a vector offset to be used when exception processing begins for an incoming 
interrupt request. These signals are sampled along with the p_extint_b and p_critint_b interrupt request 
inputs, and must be driven to a valid value when either of these signals is asserted unless the p_avec_b 
signal is also asserted. If p_avec_b is asserted, these inputs are not used. The p_voffset[0:9] signals 
correspond to bits 20:29 of the exception handler address (the low order two bits 30:31 are forced to 00). 
The p_voffset[0:9] signals are level sensitive and must remain asserted to be guaranteed to be recognized 
correctly. In addition, these signals must be asserted concurrently with the p_extint_b and p_critint_b 
inputs when used.

6.3.7.7 Interrupt Vector Acknowledge (p_iack)

The p_iack output signal provide an interrupt vector acknowledge indicator to allow external interrupt 
controllers to be informed when a critical input or external input interrupt is being processed. The p_iack 
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signal is asserted after the cycle in which the p_avec_b and p_voffset[0:9] signals are sampled in 
preparation for exception processing. See Table 6-13 and Figure 6-32 for timing diagrams of operation.

6.3.7.8 Machine Check (p_mcp_b)

This active-low signal provides the Machine Check interrupt request to the e200 core. p_mcp_b is masked 
by the HID0[EMCP] bit. This signal is not internally synchronized by the e200 core, thus it must meet 
setup and hold time constraints to m_clk when the e200 core clock is running. The p_mcp_b input is 
sampled on two consecutive m_clk periods to detect a transition from the negated to the asserted state. It 
is internally qualified with this transition, but must remain asserted to be guaranteed to be recognized.

The p_mcp_b signal is not sampled while the e200 core is in the halted or stopped power management 
states, but is sampled while the CPU is in the waiting state. See Section 6.3.11.3, “Processor Halted 
(p_halted),” and Section 6.3.11.5, “Processor Stopped (p_stopped).” Also, when the core is in the debug 
state (as reflected on the cpu_dbgack internal state signal), the internal m_clk is not running, so the 
p_mcp_b input is not recognized until the core is released with a go+noexit or a go+exit OnCE command.

6.3.8 Processor Reservation Signals

The following sub-sections describe processor reservation signals associated with the lwarx and stwcx.. 
instructions. 

6.3.8.1 CPU Reservation Status (p_rsrv)

The active-high p_rsrv output signal is used to indicate that a reservation has been established by the 
execution of a lwarx instruction. This signal is set following the successful completion of a lwarx. This 
signal remains set until the reservation has been cleared. (Refer to Section 3.4, “Memory Synchronization 
and Reservation Instructions”). This signal is provided as a status indicator for specialized system 
applications only.

6.3.8.2 CPU Reservation Clear (p_rsrv_clr)

The active-high p_rsrv_clr input signal is used to clear a reservation that has been previously established. 
External reservation management logic may use this signal to implement reservation management policies 
which are outside of the scope of the CPU. (Refer to Section 3.4, “Memory Synchronization and 
Reservation Instructions”). This signal may be asserted independently of any bus transfer. 

The p_rsrv_clr input signal is not intended for normal use in managing reservations. It is provided for 
specialized system applications. The normal bus protocol is used to manage reservations using external 
reservation logic in systems with multiple coherent bus masters, using the transfer type and transfer 
response signals. In single coherent master systems, no external logic is required, and the internal 
reservation flag is sufficient to support multi-tasking applications.

The p_d_xfail_b signal is provided to indicate success/failure of a stwcx. instruction as part of bus transfer 
termination using the XFAIL p_d_hresp[2:0] encoding. See Section 7.2.3.7, “Store Exclusive Failure 
(p_d_xfail_b),” for more detail on p_d_xfail_b.
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6.3.9 Miscellaneous Processor Signals

The following paragraph describes several miscellaneous processor signals. 

6.3.9.1 PID0 Outputs (p_pid0[0:7])

The active-high p_pid0[0:7] output signals are used to provide the current process ID in the Process ID 
Register 0 (PID0). These outputs correspond to the low order eight bits of PID0.

6.3.9.2 PID0 Update (p_pid0_updt)

The active-high p_pid0_updt signal is used to indicate that the Process ID Register 0 (PID0) is being 
updated by a mtspr instruction. This output asserts during the clock cycle the p_pid0[0:7] outputs are 
changing.

6.3.9.3 HID1 System Control (p_hid1_sysctl[0:7])

The active-high p_hid1_sysctl[0:7] output signals are used to provide a set of control output signals 
external to the CPU via values written to the HID1 special purpose register. These outputs change state 
following the rising edge of m_clk, and may need synchronization depending on actual use. See 
Section 2.3.10, “Hardware Implementation Dependent Register 1 (HID1).” 

6.3.10 Processor State Signals

The following sub-sections describe processor internal state signals. 

6.3.10.1 Processor Status (p_pstat[0:5]) 

These signals indicate the internal execution unit status. The timing is synchronous with the m_clk, so the 
indicated status may not apply to a current bus transfer. Table 6-14 shows p_pstat[0:5] encoding.

Table 6-14. Processor Status Encoding1

p_pstat[0:5] Internal Processor Status

0 0 0 0 0 x Execution Stalled

0 0 0 0 1 x Execute Exception

0 0 0 1 0 x Instruction Squashed

0 0 0 1 1 x Reserved

0 0 1 0 0 x Reserved 

0 0 1 0 1 x Reserved 

0 0 1 1 0 x Reserved 

0 0 1 1 1 x Processor in Waiting State

0 1 0 0 0 x Processor in Halted state

0 1 0 0 1 x Processor in Stopped state
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6.3.10.2 Processor Exception Enable MSR Values (p_EE, p_CE, p_DE, p_ME)

These active-high output signals reflect the state of the corresponding MSR[EE,CE,DE,ME] bits. They 
may be used by external system logic to determine the set of enabled exceptions. These signals change 
state on execution of a mtmsr, se_rfi, se_rfci, se_rfdi, wrtee, or wrteei instruction, or during exception 
processing where one or more bits may be cleared during the exception processing sequence.

0 1 0 1 0 x Processor in Debug mode2

0 1 0 1 1 x Processor in Checkstop state

0 1 1 0 0 x Reserved 

0 1 1 0 1 x Reserved 

0 1 1 1 0 x Reserved 

0 1 1 1 1 x Reserved 

1 0 0 0 0 s Complete Instruction3,4

1 0 0 0 1 0 Complete e_lmw, or e_stmw

1 0 0 1 0 1 Complete se_isync

1 0 0 1 1 0 Complete lwarx or stwcx.

1 0 1 0 0 0 Reserved 

1 0 1 0 1 0 Reserved 

1 0 1 1 0 0 Reserved 

1 0 1 1 1 0 Reserved 

1 1 0 0 0 0 Complete Branch Instruction e_bc, e_bcl, e_b, e_bl resolved as not taken

1 1 0 0 0 1 Complete Branch Instruction se_bc, se_bcl, se_b, se_bl resolved as not taken

1 1 0 0 1 0 Complete Branch Instruction e_bc, e_bcl, e_b, e_bl resolved as taken

1 1 0 0 1 1 Complete Branch Instruction se_bc, se_bcl, se_b, se_bl resolved as taken

1 1 0 1 1 1 Complete se_blr, se_blrl, se_bctr, se_bctrl (always taken)

1 1 1 0 0 0 Complete isel with condition false

1 1 1 0 1 0 Complete isel with condition true

1 1 1 1 0 x Reserved 

1 1 1 1 1 1 Complete se_rfi, se_rfci, or se_rfdi

1 All encodings which do not appear in the table are reserved
2 As reflected on the cpu_dbgack internal state signal
3 Except rfi, rfci, rfdi, lmw, stmw, lwarx, stwcx., isync, isel, se_rfi, se_rfci, se_rfdi, e_lmw, e_stmw, 

se_isel, and Change of Flow Instructions
4 s—instruction size, 0=32-bit, 1=16-bit

Table 6-14. Processor Status Encoding1 (continued)

p_pstat[0:5] Internal Processor Status
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6.3.10.3 Processor Machine Check (p_mcp_out)

The active-high p_mcp_out output signal is asserted by the processor when a machine check condition has 
caused a syndrome bit to be set in the Machine Check Syndrome register. Refer to Section 2.3.7, “Machine 
Check Syndrome Register (MCSR).”

6.3.10.4 Processor Checkstop (p_chkstop)

The active-high p_chkstop output signal is asserted by the processor when a checkstop condition has 
occurred and the CPU has entered the checkstop state. 

6.3.11 Power Management Control Signals

The following signals are provided for power management or other control functions by external control 
logic.

6.3.11.1 Processor Waiting (p_waiting)

The active-high p_waiting output signal is used to indicate that the processor has entered the Waiting state 
(Section 8.1.2, “Waiting State”). 

6.3.11.2 Processor Halt Request (p_halt)

The active-high p_halt input signal is used to request the processor to enter the Halted state (Section 8.1.3, 
“Halted State”). 

6.3.11.3 Processor Halted (p_halted)

The active-high p_halted output signal is used to indicate that the processor has entered the Halted state 
(Section 8.1.3, “Halted State”). 

6.3.11.4 Processor Stop Request (p_stop)

The active-high p_stop input signal is used to request the processor to enter the Stopped state 
(Section 8.1.4, “Stopped State”). 

6.3.11.5 Processor Stopped (p_stopped)

The active-high p_stopped output signal is used to indicate that the processor has entered the Stopped state 
(Section 8.1.4, “Stopped State”). 

6.3.11.6 Low-Power Mode Signals (p_doze, p_nap, p_sleep)

The active-high p_doze, p_nap, and p_sleep output signals are asserted by the processor to reflect the 
settings of the HID0[DOZE], HID0[NAP], and HID0[SLEEP] control bits when the MSR[WE] bit is set.

These outputs may assert for one or more clock cycles. External logic can detect the asserted edge or level 
of these signals to determine which low-power mode has been requested and then place the e200 core and 
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peripherals in a low-power consumption state. The p_wakeup signal can be monitored to determine when 
to end the low-power condition. 

The e200 core can be placed in a low-power state by forcing the m_clk input to a quiescent state, and 
brought out of low-power state by re-enabling m_clk. 

6.3.11.7 Wakeup (p_wakeup)

The active-high p_wakeup output signal should be used by external logic to remove the e200 core and 
system logic from a low-power state. It also is used to indicate to the system clock controller that the m_clk 
input should be re-enabled for debug purposes. This signal is asynchronous to the system clock and should 
be synchronized to the system clock domain to avoid hazards.

p_wakeup asserts whenever the following occurs: 

• A valid pending interrupt is detected by the core

• A request to enter debug mode is made by setting the DR bit in the OnCE control register (OCR) 
or via the assertion of the jd_de_b or p_ude input signals. 

• The processor is in a debug session and the jd_debug_b output is asserted

• A request to enable the m_clk input has been made by setting the WKUP bit in the OnCE control 
register

• The p_nmi_b input is asserted

p_wakeup (or other system state) should be monitored to determine when to release the processor (and 
system if applicable) from a low-power state.

6.3.12 Debug Event Signals

The following interface signals are provided to signal debug events to the e200 core.

6.3.12.1 Unconditional Debug Event (p_ude)

The active-high p_ude input signal is used to request an unconditional debug event. This event is described 
in detail in Section 8.2.12, “Unconditional Debug Event.” This signal is not internally synchronized by the 
e200 core, thus it must meet setup and hold time constraints relative to m_clk when the e200 core clock is 
running. This signal is level sensitive and must be held asserted until acknowledged by software, or, when 
external debug mode is enabled, by assertion of the jd_debug_b output to be guaranteed to be recognized. 
In addition, only a transition from the negated state to the asserted state of the p_ude signal causes an event 
to occur. The level on this signal is used however to cause assertion of the p_wakeup output.

6.3.12.2 External Debug Event 1 (p_devt1)

The active-high p_devt1 input signal is used to request an external debug event. This event is described in 
detail in Section 8.2.11, “External Debug Event.” This signal is not internally synchronized by the e200 
core, thus it must meet setup and hold time constraints relative to m_clk when the e200 core clock is 
running. If the e200 core clock is disabled, this signal is not recognized. In addition, only a transition from 
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the negated state to the asserted state of the p_devt1 signal causes an event to occur. It is intended to signal 
e200 related events that are generated while the CPU is active. 

6.3.12.3 External Debug Event 2 (p_devt2)

The active-high p_devt2 input signal is used to request an external debug event. This event is described in 
detail in Section 8.2.11, “External Debug Event.” This signal is not internally synchronized by the e200 
core, thus it must meet setup and hold time constraints relative to m_clk when the e200 core clock is 
running. If the e200 core clock is disabled, this signal is not recognized. In addition, only a transition from 
the negated state to the asserted state of the p_devt2 signal causes an event to occur. It is intended to signal 
e200 related events that are generated while the CPU is active.

6.3.13 Debug/Emulation (Nexus 1/OnCE) Support Signals

The following interface signals are provided to assist in implementing an On-Chip Emulation capability 
with a controller external to the e200 core.

6.3.13.1 OnCE Enable (jd_en_once)

The OnCE enable signal jd_en_once is used to enable the OnCE controller to allow certain instructions 
and operations to be executed. Assertion of this signal enables the full OnCE command set, as well as 
operation of control signals and OnCE Control register functions. When this signal is disabled, only the 
Bypass, ID and Enable_OnCE commands are executed by the Z5 OnCE unit, and all other commands 
default to a “Bypass” command. The OnCE Status register (OSR) is not visible when OnCE operation is 
disabled. In addition, OnCE Control register (OCR) functions are disabled, as is the operation of the 
jd_de_b input. Secure systems may choose to leave this signal negated until a security check has been 
performed. Other systems should tie this signal asserted to enable full OnCE operation. The 
j_en_once_regsel and j_key_in signals are provided to assist external logic performing security checks. 
Refer to Section 6.3.15.15, “Enable Once Register Select (j_en_once_regsel),” for a description of the 
j_en_once_regsel output signal, and to Section 6.3.15.20, “Key Data In (j_key_in),” for a description of 
the j_key_in input signal.

The jd_en_once input must only change state during the Test-Logic-Reset, Run-Test/Idle, or Update_DR 
TAP states. A new value takes effect after one additional j_tclk cycle of synchronization.

Table 6-15. e200 Debug/Emulation Support Signals

Signal Type Description

jd_en_once I Enable full OnCE operation

jd_debug_b O Debug Session indicator

jd_de_b I Debug request

jd_de_en O DE_b active high output enable

jd_mclk_on I CPU clock is active indicator
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6.3.13.2 Debug Session (jd_debug_b)

The jd_debug_b active-low output signal is asserted when the processor first enters into debug mode. It 
remains asserted for the duration of a “debug session”. 

NOTE
A debug session includes single-step operations (Go+NoExit OnCE 
commands). That is, jd_debug_b remains asserted during OnCE single-step 
executions.

This signal is provided to allow system resources to be aware that access is occurring for debug purposes, 
thus allowing certain resource side effects to be frozen or otherwise controlled. Examples might include 
FIFO state change control, control of side-effects of register or memory accesses, etc. Refer to 
Section 8.4.4.3, “e200 OnCE Debug Output (jd_debug_b),” for additional information on this signal.

6.3.13.3 Debug Request (jd_de_b)

This signal is the debug mode request input. This signal is not internally synchronized by the e200 core, 
thus it must meet setup and hold time constraints relative to j_tclk. To be recognized, it must be held 
asserted for a minimum of two j_tclk periods, and the jd_en_once input must be in the asserted state. 
jd_de_b is synchronized to m_clk in the debug module before being sent to the processor (two clocks). 

This signal is normally the input from the top-level DE_b open-drain bidirectional I/O cell. Refer to 
Section 8.4.4.2, “OnCE Debug Request/Event (jd_de_b, jd_de_en),” for additional information on this 
signal.

6.3.13.4 DE_b Active High Output Enable (jd_de_en)

This output signal is an active-high enable for the top-level DE_b open-drain bidirectional I/O cell. This 
signal is asserted for three j_tclk periods upon processor entry into debug mode. Refer to Section 8.4.4.2, 
“OnCE Debug Request/Event (jd_de_b, jd_de_en),” for additional information on this signal.

6.3.13.5 Processor Clock On (jd_mclk_on)

This active-high input signal is driven by system level clock control logic to indicate that the processor’s 
m_clk input is active. This signal is synchronized to j_tclk and provided as a status bit in the OnCE Status 
register.

6.3.13.6 Watchpoint Events (jd_watchpoint[0:5])

The jd_watchpoint[0:5] active-high output signals are used to indicate that a watchpoint has occurred. 
Each debug address compare function (IAC1-4, DAC1-2) is capable of triggering a watchpoint output. 
Refer to Section 8.5, “Watchpoint Support,” for the signal assignments of each watchpoint source.
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6.3.14 Development Support (Nexus2+) Signals

The following interface signals are provided to assist in implementing a real-time development tool 
capability with a controller external to the e200 core. These signals are optional and are described in an 
external Nexus2/3 specification.

6.3.15 JTAG Support Signals

Table 6-17 details the primary JTAG interface signals. These signals are usually connected directly to 
device pins (except for j_tdo, which needs tri-state and edge support logic). However, this may not be the 
case when JTAG TAP controllers are concatenated together. 

6.3.15.1 JTAG/OnCE Serial Input (j_tdi) 

Data and commands are provided to the OnCE controller through the j_tdi pin. Data is latched on the rising 
edge of the j_tclk serial clock. Data is shifted into the OnCE serial port least significant bit (LSB) first. 

6.3.15.2 JTAG/OnCE Serial Clock (j_tclk) 

The j_tclk pin supplies the serial clock to the OnCE control block. The serial clock provides pulses 
required to shift data and commands into and out of the OnCE serial port. (Data is clocked into the OnCE 

Table 6-16. e200 Development Support (Nexus2+) Signals

Signal Type Description

nex_mcko O Nexus Clock Output

nex_rdy_b O Nexus Ready Output

nex_evto_b O Nexus Event-Out Output

nex_evti_b I Nexus Event-In Input

nex_mdo[n:0] O Nexus Message Data Output

nex_mseo_b[1:0] O Nexus Message Start/End Output

Table 6-17. JTAG Primary Interface Signals

Signal Name Type Description

j_trst_b I JTAG test reset

j_tclk I JTAG test clock

j_tms I JTAG test mode select

j_tdi I JTAG test data input

j_tdo O Test data out to master controller or pad

j_tdo_en1

1 j_tdo_en is asserted when the TAP controller is in the shift_dr or shift_ir state.

O Enables TDO output buffer
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on the rising edge and is clocked out of the OnCE serial port on the rising edge.) The debug serial clock 
frequency must be no greater than 50% of the processor clock frequency.

6.3.15.3 JTAG/OnCE Serial Output (j_tdo)

Serial data is read from the OnCE block through the j_tdo pin. Data is always shifted out the OnCE serial 
port least significant bit (LSB) first. When data is clocked out of the OnCE serial port, j_tdo changes on 
the rising edge of j_tclk. The j_tdo output signal is always driven. 

An external system-level TDO pin may be tri-stateable and should be actively driven in the shift-IR and 
shift-DR controller states. The j_tdo_en signal is supplied to indicate when an external TDO pin should be 
enabled and is asserted during the shift-IR and shift-DR controller states. In addition, for IEEE Std 1149™ 
compatibility, the system level pin should change state on the falling edge of TCLK.

6.3.15.4 JTAG/OnCE Test Mode Select (j_tms)

The j_tms input is used to cycle through states in the OnCE Debug Controller. Toggling the j_tms pin while 
clocking with j_tclk controls transitions through the TAP state controller.

6.3.15.5 JTAG/OnCE Test Reset (j_trst_b)

The j_trst_b input is used to externally reset the OnCE controller by placing it in the Test-Logic-Reset 
state. 

Table 6-18 details additional signals which may be used to support external JTAG data registers using the 
e200 TAP controller.

Table 6-18. JTAG Signals Used to Support External Registers

Signal Name Type Description

j_tst_log_rst O Indicates the TAP controller is in the Test-Logic-Reset state

j_rti O JTAG controller run-test/idle state

j_capture_ir O Indicates the TAP controller is in the capture IR state

j_shift_ir O Indicates the TAP controller is in shift IR state

j_update_ir O Indicates the TAP controller is in update IR state

j_capture_dr O Indicates the TAP controller is in the capture DR state

j_shift_dr O Indicates the TAP controller is in shift DR state

j_update_gp_reg O Updates JTAG controller general-purpose data register

j_gp_regsel[0:11] O General-purpose external JTAG register select

j_en_once_regsel O External Enable OnCE register select

j_key_in I Serial data from external key logic

j_lsrl_regsel O External LSRL register select

j_serial_data I Serial data from external JTAG register(s)
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6.3.15.6 Test-Logic-Reset (j_tst_log_rst)

This signal indicates the TAP controller is in the Test-Logic-Reset state.

6.3.15.7 Run-Test/Idle (j_rti)

This signal indicates the TAP controller is in the Run-Test/Idle state.

6.3.15.8 Capture IR (j_capture_ir)

This signal indicates the TAP controller is in the Capture_IR state.

6.3.15.9 Shift IR (j_shift_ir)

This signal indicates the TAP controller is in the Shift_IR state.

6.3.15.10 Update IR (j_update_ir)

This signal indicates the TAP controller is in the Update_IR state.

6.3.15.11 Capture DR (j_capture_dr)

This signal indicates the TAP controller is in the Capture_DR state.

6.3.15.12 Shift DR (j_shift_dr)

This signal indicates the TAP controller is in the Shift_DR state.

6.3.15.13 Update DR (j_update_gp_reg)

This signal indicates the TAP controller is in the Update_DR state and that the R/W bit in the OnCE 
Command register is low (write command). The j_gp_regsel[0:11] signals should be monitored to see 
which register, if any, needs to be updated.

6.3.15.14 Register Select (j_gp_regsel)

The outputs shown in Table 6-19 are a decode of the REGSEL[0:6] field in the OnCE Command Register 
(OCMD). They are used to specify which external general purpose JTAG register to access via the e200 
TAP controller.

Table 6-19. JTAG General Purpose Register Select Decoding

Signal Name Type Description

j_gp_regsel[0] O REGSEL[0:6]=7’h70

j_gp_regsel[1] O REGSEL[0:6]=7’h71

j_gp_regsel[2] O REGSEL[0:6]=7’h72

j_gp_regsel[3] O REGSEL[0:6]=7’h73
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6.3.15.15 Enable Once Register Select (j_en_once_regsel)

The j_en_once_regsel output is asserted when a decode of the REGSEL[0:6] field in the OnCE Command 
Register (OCMD) indicates an external Enable_OnCE register is selected (0b1111110 encoding) for access 
via the e200 TAP controller. This control signal may be used by external security logic to assist in 
controlling the jd_enable_once input signal. The external Enable_OnCE register should be muxed onto 
the j_serial_data input (Refer to Section 6.3.15.19, “Serial Data (j_serial_data)”). During the Shift_DR 
state, j_serial_data is supplied to the j_tdo output.

6.3.15.16 External Nexus Register Select (j_nexus_regsel)

The j_nexus_regsel output is asserted when a decode of the REGSEL[0:6] field in the OnCE Command 
Register (OCMD) indicates an external Nexus register is selected (0b1111100 encoding) for access via the 
e200 TAP controller.

6.3.15.17 External Shared Nexus Control Register Select (j_sncr_regsel)

The j_sncr_regsel output is asserted when a decode of the REGSEL[0:6] field in the OnCE Command 
Register (OCMD) indicates an external Shared Nexus Control register is selected (0b1101111 encoding) 
for access via the e200 TAP controller.

6.3.15.18 External LSRL Register Select (j_lsrl_regsel)

The j_lsrl_regsel output is asserted when a decode of the REGSEL[0:6] field in the OnCE Command 
Register (OCMD) indicates an external LSRL register is selected (0b1111101 encoding) for access via the 
e200 TAP controller.

6.3.15.19 Serial Data (j_serial_data)

This input signal receives serial data from external JTAG registers. All external registers share this one 
serial output back to the core, therefore it must be muxed using the j_gp_regsel[0:11], j_lsrl_regsel, and 
j_en_once_regsel signals. The data is internally routed to j_tdo.

j_gp_regsel[4] O REGSEL[0:6]=7’h74

j_gp_regsel[5] O REGSEL[0:6]=7’h75

j_gp_regsel[6] O REGSEL[0:6]=7’h76

j_gp_regsel[7] O REGSEL[0:6]=7’h77

j_gp_regsel[8] O REGSEL[0:6]=7’h78

j_gp_regsel[9] O REGSEL[0:6]=7’h79

j_gp_regsel[10] O REGSEL[0:6]=7’h7A

j_gp_regsel[11] O REGSEL[0:6]=7’h7B

Table 6-19. JTAG General Purpose Register Select Decoding (continued)

Signal Name Type Description
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Figure 6-3 shows one example of how an external JTAG register set (2) could be designed using the inputs 
and outputs provided and by the JTAG primary inputs themselves. The main components are a clock 
generation unit, a JTAG shifter (load, shift, hold, clr), the registers (load, hold, clr), and an input mux to 
the shifter for the serial output back to the e200 core.The shifter and the registers may be as wide as the 
application warrants [0:x]. The length determines the number of states the TAP controller is held in 
Shift_DR (x+1).

Figure 6-3. Example External JTAG Register Design
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6.3.16 JTAG ID Signals

Table 6-20 shows the JTAG ID register unique to Freescale as specified by the IEEE 1149.1 JTAG 
Specification. Note that bit 31 is the MSB of this register.

The e200 core shifts out a “1” as the first bit on j_tdo if the Shift_DR state is entered directly from the 
test-logic-reset state. This is per the JTAG specification and informs any JTAG controller that an ID 
register exists on the part. The e200 JTAG ID register is accessed by writing the OCMR (OnCE Command 
Register) with the value 7’h02 in the REGSEL[0:6] field. 

The JTAG ID bit, manufacturer ID field, and design center number are fixed by the JTAG Consortium 
and/or Freescale. The version numbers and the two most significant bits (MSBs) of the sequence number 
are variable and brought out to external ports. The lower eight bits of the sequence number are variable 
and strapped internally to track variations in processor deliverables.

Table 6-21 shows the inputs to the JTAG ID register that are input ports on the e200 core. These bits are 
provided for a customer to track revisions of a device using the e200 core.

6.3.16.1 JTAG ID Sequence (j_id_sequence[0:1])

The j_id_sequence[0:1] inputs correspond to the two MSBs of the 10-bit sequence number in the JTAG 
ID register. These inputs are normally static. They are provided for the customer for further component 
variation identification.

6.3.16.2 JTAG ID Sequence (j_id_sequence[2:9])

The j_id_sequence[2:9] field is internally strapped to track variations in processor and module 
deliverables. Each e200 deliverable has a unique sequence number. Additionally, each revision of these 
modules can be identified by unique sequence numbers. 

Table 6-20. JTAG Register ID Fields

Bit Field Type Description Value

[31:28] Variable Version Number Variable

[27:22] Fixed Design Center Number 6’b011111

[21:12] Variable Sequence Number Variable

[11:1] Fixed Freescale Manufacturer ID 11’b00000001110

0 Fixed JTAG ID Register Identification Bit 1’b1

Table 6-21. JTAG ID Register Inputs

Signal Name Type Description

j_id_sequence[0:1] I JTAG ID register (2 MSBs of sequence field)

j_id_version[0:3] I JTAG ID register version field
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6.3.16.3 JTAG ID Version (j_id_version[0:3])

The j_id_version[0:3] inputs correspond to the 4-bit version number in the JTAG ID register. These inputs 
are normally static. They are provided to the customer for strapping in order to facilitate easy identification 
of component variants.

6.4 Timing Diagrams

6.4.1 Processor Instruction/Data Transfers

Transfer of data between the core and peripherals involves the address bus, data busses, and control and 
attribute signals. The address and data buses are parallel, non-multiplexed buses, supporting byte, 
halfword, three byte, and word transfers. All bus input and output signals are sampled and driven with 
respect to the rising edge of the m_clk signal. The core moves data on the bus by issuing control signals 
and using a handshake protocol to ensure correct data movement.

The memory interface operates in a pipelined fashion to allow additional access time for memory and 
peripherals. AHB transfers consist of an address phase which lasts only a single cycle, followed by the data 
phase which may last for one or more cycles depending on the state of the p_hready signal. 

Read transfers consist of a request cycle, where address and attributes are driven along with a transfer 
request, and one or more memory access cycles to perform accesses and return data to the CPU for 
alignment, sign or zero extension, and forwarding. 

Write transfers consist of a request cycle, where address and attributes are driven along with a transfer 
request, and one or more data drive cycles where write data is driven and external devices accept write data 
for the access.

Access requests are generated in an overlapped fashion in order to support sustained single cycle transfers. 
Up to two access requests may be in progress at any one cycle, one access outstanding and a second in the 
pending request phase. 

Access requests are assumed to be accepted as long as there are no accesses in progress, or if an access in 
progress is terminated during the same cycle a new request is active (p_hready asserted). Once an access 
has been accepted, the BIU is free to change the current request at any time, even if part of a burst transfer.

The local memory control logic is responsible for proper pipelining and latching of all interface signals to 
initiate memory accesses.

The system hardware can use the p_hresp[2:0] signals to signal that the current bus cycle has an error when 
a fault is detected, using the ERROR response encoding. ERROR assertion requires a two cycle response. 
In the first cycle of the response, the p_hresp[2:0] signals are driven to indicate ERROR and p_hready 
must be negated. During the following cycle, the ERROR response must continue to be driven, and 
p_hready must be asserted. When the core recognizes a bus error condition for an access at the end of the 
first cycle of the two cycle error response, a subsequent pending access request may be removed by the 
BIU driving the p_htrans[2:0] signals to the IDLE state in the second cycle of the two cycle error response. 
Not all pending requests are removed, however.
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When a bus cycle is terminated with a bus error, the core can enter storage error exception processing 
immediately following the bus cycle, or it can defer processing the exception. 

The instruction prefetch mechanism requests instruction words from the instruction memory unit before it 
is ready to execute them. If a bus error occurs on an instruction fetch, the core does not take the exception 
until it attempts to use the instruction. Should an intervening instruction cause a branch, or should a task 
switch occur, the storage error exception for the unused access does not occur. A bus error termination for 
any write access or read access that reference data specifically requested by the execution unit causes the 
core to begin exception processing.

6.4.1.1 Basic Read Transfer Cycles

During a read transfer, the core receives data from a memory or peripheral device. Figure 6-4 illustrates 
functional timing for basic read transfers. Clock-by-clock descriptions of activity in Figure 6-4 follow.

Clock 1 (C1):

The first read transfer starts in clock cycle 1. During C1, the core places valid values on the address bus 
and transfer attributes. The burst type (p_hburst[2:0]), protection control (p_hprot[5:0]), and transfer type 
(p_htrans[1:0]) attributes identify the specific access type. The transfer size attributes (p_hsize[1:0]) 

Figure 6-4. Basic Read Transfers
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indicates the size of the transfer. The byte strobes (p_hbstrb[3:0]) are driven to indicate active byte lanes. 
The write (p_hwrite) signal is driven low for a read cycle.

The core asserts transfer request (p_htrans= NONSEQ) during C1 to indicate that a transfer is being 
requested. Because the bus is currently idle, (0 transfers outstanding), the first read request to addrx is 
considered taken at the end of C1. The default slave drives an ready/OKAY response for the current idle 
cycle.

Clock 2 (C2): 

During C2, the addrx memory access takes place using the address and attribute values which were driven 
during C1 to enable reading of one or more bytes of memory. Read data from the slave device is provided 
on the p_hrdata inputs. The slave device responds by asserting p_hready to indicate the cycle is 
completing and drives an OKAY response.

Another read transfer request is made during C2 to addry (p_htrans = NONSEQ), and because the access 
to addrx is completing, it is considered taken at the end of C2. 

Clock 3 (C3): 

During C3, the addry memory access takes place using the address and attribute values which were driven 
during C2 to enable reading of one or more bytes of memory. Read data from the slave device for addry is 
provided on the p_hrdata inputs. The slave device responds by asserting p_hready to indicate the cycle is 
completing and drives an OKAY response.

Another read transfer request is made during C3 to addrz (p_htrans = NONSEQ), and because the access 
to addry is completing, it is considered taken at the end of C3.

Clock 4 (C4): 

During C4, the addrz memory access takes place using the address and attribute values which were driven 
during C3 to enable reading of one or more bytes of memory. Read data from the slave device for addrz is 
provided on the p_hrdata inputs. The slave device responds by asserting p_hready to indicate the cycle is 
completing and drives an OKAY response.

The CPU has no more outstanding requests, so p_htrans indicates IDLE. The address and attribute signals 
are thus undefined.

6.4.1.2 Read Transfer with Wait State

Figure 6-5 shows an example of wait state operation. Signal p_hready for the first request (addrx) is not 
asserted during C2, so a wait state is inserted until p_hready is recognized (during C3).

Meanwhile, a subsequent request has been generated by the CPU for addry which is not taken in C2, 
because the previous transaction is still outstanding. The address and transfer attributes remain driven in 
cycle C3 and are taken at the end of C3 because the previous access is completing. Data for addrx and a 
ready/OKAY response is driven back by the slave device. In cycle C4, a request for addrz is made. The 
request for access to addrz is taken at the end of C4, and during C5, the data and a ready/OKAY response 
is provided by the slave device. In cycle C5, no further accesses are requested.
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Figure 6-5. Read Transfer with Wait-state
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6.4.1.3 Basic Write Transfer Cycles

During a write transfer, the core provides write data to a memory or peripheral device. Figure 6-6 
illustrates functional timing for basic write transfers. Clock-by-clock descriptions of activity in Figure 6-6 
follow.

Clock 1 (C1):

The first write transfer starts in clock cycle 1. During C1, the core places valid values on the address bus 
and transfer attributes. The burst type (p_hburst[2:0]), protection control (p_hprot[5:0]), and transfer type 
(p_htrans[1:0]) attributes identify the specific access type. The transfer size attributes (p_hsize[1:0]) 
indicates the size of the transfer. The byte strobes (p_hbstrb[3:0]) are driven to indicate active byte lanes. 
The write (p_hwrite) signal is driven high for a write cycle.

The core asserts transfer request (p_htrans= NONSEQ) during C1 to indicate that a transfer is being 
requested. Because the bus is currently idle, (0 transfers outstanding), the first read request to addrx is 
considered taken at the end of C1. The default slave drives an ready/OKAY response for the current idle 
cycle.

Clock 2 (C2): 

During C2, the write data for the access is driven, and the addrx memory access takes place using the 
address and attribute values which were driven during C1 to enable writing of one or more bytes of 

Figure 6-6. Basic Write Transfers
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memory. The slave device responds by asserting p_hready to indicate the cycle is completing and drives 
an OKAY response.

Another write transfer request is made during C2 to addry (p_htrans = NONSEQ), and because the access 
to addrx is completing, it is considered taken at the end of C2.

Clock 3 (C3): 

During C3, write data for addry is driven, and the addry memory access takes place using the address and 
attribute values which were driven during C2 to enable writing of one or more bytes of memory. The slave 
device responds by asserting p_hready to indicate the cycle is completing and drives an OKAY response.

Another write transfer request is made during C3 to addrz (p_htrans = NONSEQ), and because the access 
to addry is completing, it is considered taken at the end of C3.

Clock 4 (C4): 

During C4, write data for addrz is driven, and the addrz memory access takes place using the address and 
attribute values which were driven during C3 to enable reading of one or more bytes of memory. The slave 
device responds by asserting p_hready to indicate the cycle is completing and drives an OKAY response.

The CPU has no more outstanding requests, so p_htrans indicates IDLE. The address and attribute signals 
are thus undefined.

6.4.1.4 Write Transfer with Wait States

Figure 6-7 shows an example of write wait state operation. Signal p_hready for the first request (addrx) is 
not asserted during C2, so a wait state is inserted until p_hready is recognized (during C3).

Meanwhile, a subsequent request has been generated by the CPU for addry which is not taken in C2, 
because the previous transaction is still outstanding. The address, transfer attributes, and write data remain 
driven in cycle C3 and are taken at the end of C3 because a ready/OKAY response is driven back by the 
slave device for the previous access. In cycle C4, a request for addrz is made. The request for access to 
addrz is taken at the end of C4, and during C5, a ready/OKAY response is provided by the slave device. In 
cycle C5, no further accesses are requested.
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Figure 6-7. Write Transfer with Wait-State
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6.4.1.5 Read and Write Transfers

Figure 6-8 shows a sequence of read and write cycles.
. 

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. 

The second read request (addry) is taken at the end of C2 because a ready/OKAY response is asserted 
during C2 for the first read access (addrx). During C3, a request is generated for a write to addry, which is 
taken at the end of C3 because the second access is terminating. 

Data for the addrz write cycle is driven in C4, the cycle after the access is taken, and a ready/OKAY 
response is signaled to complete the write cycle to addrz.

Figure 6-8. Single Cycle Read and Write Transfers
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Figure 6-9 shows another sequence of read and write cycles. This example shows an interleaved write 
access between two reads.

. 

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. 

The first write request (addry) is taken at the end of C2 because the first access is terminating (addrx).

Data for the addry write cycle is driven in C3, the cycle after the access is taken. Also during C3, a request 
is generated for a read to addrz, which is taken at the end of C3 because the write access is terminating. 

During C4, the addry write access is terminated, and no further access is requested

Figure 6-10 shows another sequence of read and write cycles. In this example, reads incur a single wait 
state.

Figure 6-9. Single Cycle Read and Write Transfers—2
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. 

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. 

The second read request (addry) is not taken at the end of cycle C2 because no ready response is signaled 
and only one access can be outstanding (addrx). It is taken at the end of C3 once the first read request has 
signaled a ready/OKAY response.

The first write request (addrz) is not taken during C4 because a ready response is not asserted during C4 
for the second read access (addry). During C5, the request for a write to addrz is taken because the second 
access is terminating. 

Data for the addrz write cycle is driven in C6, the cycle after the access is taken.

During C6, the addrz write access is terminated and the addrw write request is taken. 

During C7, data for the addrw write access is driven, and a ready/OKAY response is asserted to complete 
the write cycle to addrw.

Figure 6-10. Multi-Cycle Read and Write Transfers
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Figure 6-11 shows another sequence of read and write cycles. In this example, reads incur a single wait 
state.

. 

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. 

The first write request (addry) is not taken at the end of cycle C2 because no ready response is signaled 
and only one access can be outstanding (addrx). It is taken at the end of C3 once the first read request has 
signaled a ready/OKAY response. 

Data for the addry write cycle is driven in C4, the cycle after the access is taken.

The second read request (addrz) is taken during C4 because the addry write is terminating. 

A second write request (addrw) is not taken at the end of C5 because the second read access is not 
terminating, thus it continues to drive the address and attributes into cycle C6.

During C6, the addrz read access is terminated and the addrw write access is taken.

In cycle C7, data for the addrw write access is driven. During C7, a ready/OKAY response is asserted to 
complete the write cycle to addrw. No further accesses are requested, so p_htrans signals IDLE.

Figure 6-11. Multi-Cycle Read and Write Transfers—2
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6.4.1.6 Misaligned Accesses

Figure 6-12 illustrates functional timing for a misaligned read transfer. The read to addrx is misaligned 
across a 32-bit boundary.

The first portion of the misaligned read transfer starts in C1. During C1, the core places valid values on 
the address bus and transfer attributes. The p_hwrite signal is driven low for a read cycle. The transfer size 
attributes (p_hsize) indicate the size of the transfer. Even though the transfer is misaligned, the size value 
driven corresponds to the size of the entire misaligned data item. p_hunalign is driven high to indicate that 
the access is misaligned. The p_hbstrb outputs are asserted to indicate the active byte lanes for the read, 
which may not correspond to size and low-order address outputs. p_htrans is driven to NONSEQ. 

During C2, the addrx memory access takes place using the address and attribute values which were driven 
during C1 to enable reading of one or more bytes of memory. 

The second portion of the misaligned read transfer request is made during C2 to addrx+ (which is aligned 
to the next higher 32-bit boundary), and because the first portion of the misaligned access is completing, 
it is taken at the end of C2. The p_htrans signals indicate NONSEQ. The size value driven is the size of 
the remaining bytes of data in the misaligned read, rounded up (for the 3-byte case) to the next higher 
power-of-2. The p_hbstrb signals indicate the active byte lanes. For the second portion of a misaligned 

Figure 6-12. Misaligned Read Transfer
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transfer, the p_hunalign signal is driven high for the 3-byte case (low for all others). The next read access 
is requested in C3 and p_htrans indicates NONSEQ. p_hunalign is negated, because this access is aligned.

Figure 6-13 illustrates functional timing for a misaligned write transfer. The write to addrx is misaligned 
across a 32-bit boundary.

 

The first portion of the misaligned write transfer starts in C1. During C1, the core places valid values on 
the address bus and transfer attributes. The p_hwrite signal is driven high for a write cycle. The transfer 
size attribute (p_hsize) indicate the size of the transfer. Even though the transfer is misaligned, the size 
value driven corresponds to the size of the entire misaligned data item. p_hunalign is driven high to 
indicate that the access is misaligned. The p_hbstrb outputs are asserted to indicate the active byte lanes 
for the write, which may not correspond to size and low-order address outputs. p_htrans is driven to 
NONSEQ. 

During C2, data for addrx is driven, and the addrx memory access takes place using the address and 
attribute values which were driven during C1 to enable writing of one or more bytes of memory. 

The second portion of the misaligned write transfer request is made during C2 to addrx+ (which is aligned 
to the next higher 32-bit boundary), and because the first portion of the misaligned access is completing, 
it is taken at the end of C2. The p_htrans signals indicate NONSEQ. The size value driven is the size of 
the remaining bytes of data in the misaligned write, rounded up (for the 3-byte case) to the next higher 

Figure 6-13. Misaligned Write Transfer
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power-of-2. The p_hbstrb signals indicate the active byte lanes. For the second portion of a misaligned 
transfer, the p_hunalign signal is driven high for the 3-byte case (low for all others).

The next write access is requested in C3 and p_htrans indicates NONSEQ. p_hunalign is negated, because 
this access is aligned.

An example of a misaligned write cycle followed by an aligned read cycle is shown in Figure 6-14. It is 
similar to the previous example in Figure 6-13.

. 

Figure 6-14. Misaligned Write, Single Cycle Read Transfer
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6.4.1.7 Burst Accesses

Figure 6-15 illustrates functional timing for a burst read transfer.

The p_hburst signals indicate INCR for all burst transfers. The p_hunalign signal is negated. p_hsize 
indicates 32-bits, and all four p_hbstrb signals are asserted. The burst address is aligned to a 32-bit 
boundary and increments by words. Note that in this example four beats are shown, but in operation the 
burst may be of any length including only a single beat. 

NOTE
Bursts may be interrupted immediately at any time, and be followed by any 
type of cycle. No idle cycle is required.

Figure 6-15. Burst Read Transfer
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Figure 6-16 illustrates functional timing for a burst read with wait-state transfer.

The first cycle of the burst incurs a single wait-state.

Figure 6-16. Burst Read with Wait-State Transfer
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Figure 6-17 illustrates functional timing for a burst write transfer.

Figure 6-17. Burst Write Transfer
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Figure 6-16 illustrates functional timing for a burst write with wait-state transfer.

The first cycle of the burst incurs a single wait-state. Data for the second beat of the burst is valid the cycle 
after the second beat is taken.

Figure 6-18. Burst Write with Wait-State Transfer
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Figure 6-19 illustrates functional timing for a pair of burst read transfers.

Note that in this example the first burst is two beats long and is followed immediately by a second burst, 
which is unrelated to the first. 

NOTE
Bursts may be of any length (including a single beat) and may be followed 
immediately by any type of transfer. No idle cycles are required.

Figure 6-19. Burst Read Transfers
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Figure 6-20 illustrates functional timing for a burst read with wait-state transfer where the second beat to 
addr x+ is retracted and replaced with a new burst transfer.

The first cycle of the burst incurs a single wait-state, and the burst is replaced by another burst.

Figure 6-20. Burst Read with Wait-State Transfer, Retraction
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Figure 6-21 illustrates functional timing for a burst write transfer. The second burst is only one beat long. 

This same scenario can occur for read bursts as well.

6.4.1.8 Address Retraction

Address retraction is the process of replacing an existing request with a new request unrelated to the first 
request. Although the AMBA AHB protocol requires an access request to remain driven unchanged once 
presented on the bus, higher system performance may be obtained if this aspect of the protocol is modified 
to allow an access request to be changed prior to being taken. e200z1Zen Z0n2p and Zen Z0Hn2p always 
performs address retraction under conditions in which performance may be optimized. Figure 6-22 shows 
an example of address retraction during wait state operation. Signal p_hready for the first request (addrx) 
is not asserted during C2, so a wait state is inserted until p_hready is recognized (during C3).

Meanwhile, a subsequent request has been generated by the CPU for addry which is not taken in C2, 
because the previous transaction is still outstanding. The address and transfer attributes are retracted in 
cycle C3, and a new access request to addrz is requested and are taken at the end of C3 because the previous 
access is completing. Data for addrx and a ready/OKAY response is driven back by the slave device. In 
cycle C4, a request for addrw is made. The request for access to addrw is taken at the end of C4, and during 

Figure 6-21. Burst Write Transfers, Single Beat Burst
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C5, the data and a ready/OKAY response is provided by the slave device. In cycle C5, no further accesses 
are requested.

Figure 6-22. Read Transfer with Wait-State, Address Retraction
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Figure 6-23 illustrates functional timing for a burst read with wait-state transfer where the second beat to 
addr x+ is retracted and replaced with a new burst transfer.

The first cycle of the burst incurs a single wait-state, and the second beat of the burst driven in C2 burst is 
replaced by another burst in C3. Replacement by a single access is also possible.

Address retraction does not occur on a requested write cycle, only on read cycles, and may occur any time 
during a burst cycle as well.

6.4.1.9 Error Termination Operation

The p_hresp[2:0] inputs are used to signal an error termination for an access in progress. The ERROR 
encoding is used in conjunction with the assertion of p_hready to terminate a cycle with error. Error 
termination is a two-cycle termination; the first cycle consists of signaling the ERROR response on 
p_hresp[2:0] while holding p_hready negated, and during the second cycle, asserting p_hready while 
continuing to drive the ERROR response on p_hresp[2:0]. This two cycle termination allows the BIU to 
retract a pending access if it desires to do so. p_htrans may be driven to IDLE during the second cycle of 
the two-cycle error response, or may change to any other value, and a new access unrelated to the pending 
access may be requested. The cycle which may have been previously pending while waiting for a response 

Figure 6-23. Burst Read with Wait-State Transfer, Retraction
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which terminates with error may be changed. It is not required to remain unchanged when an error 
response is received.

Figure 6-24 shows an example of error termination. 
 

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. It is an instruction 
prefetch.

The second read request (addry) is not taken at the end of C2 because the first access is still outstanding 
(no p_hready assertion). An error response is signaled by the addressed slave for addrx by driving ERROR 
onto the p_hresp[2:0] inputs. This is the first cycle of the two cycle error response protocol.

p_hready is asserted during C3 for the first read access (addrx) while the ERROR encoding remains driven 
on p_hresp[2:0], terminating the access. The read data bus is undefined. 

In this example of error termination, the CPU continues to request an access to addry. It is taken at the end 
of C3. During C4, read data is supplied for the addry read, and the access is terminated normally during C4.

Also during C4, a request is generated for a read to addrz, which is taken at the end of C4 because the 
second access is terminating. 

Data for the addrz read cycle is provided in C5, the cycle after the access is taken. 

Figure 6-24. Read and Write Transfers, Instr. Read Error Termination
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During C5, a ready/OKAY response is signaled to complete the read cycle to addrz.

In this example of error termination, a subsequent access remained requested. This does not always occur 
when certain types of transfers are terminated with error. The following figures outline cases where an 
error termination for a given cycle causes a pending request to be aborted prior to initiation.

Figure 6-25 shows another example of error termination. 
 

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. It is a data read.

The second request (write to addry) is not taken at the end of C2 because the first access is still outstanding 
(no p_hready assertion). An error response is signaled by the addressed slave for addrx by driving ERROR 
onto the p_hresp[2:0] inputs. This is the first cycle of the two cycle error response protocol.

p_hready is asserted during C3 for the first read access (addrx) while the ERROR encoding remains driven 
on p_hresp[2:0], terminating the access. The read data bus is undefined. 

In this example of error termination, the CPU retracts the requested access to addry by driving the p_htrans 
signals to the IDLE state during the second cycle of the two-cycle error response.

In this example of error termination, a subsequent access was aborted.

Figure 6-25. Data Read Error Termination
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Figure 6-26 shows another example of error termination, this time on the initial portion of a misaligned 
write. 

The first portion of the misaligned write request is terminated with error. The second portion is aborted by 
the CPU during the second cycle of the two cycle error response.

6.4.2 Power Management

The following diagram shows the relationship of the wakeup control signal p_wakeup to the relevant input 
signals.

Figure 6-27. Wakeup Control Signal (p_wakeup)

Figure 6-26. Misaligned Write Error Termination
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6.4.3 Interrupt Interface

The following diagram shows the relationship of the interrupt input signals to the CPU clock. The 
p_avec_b, p_extint_b, p_critint_b and p_voffset[0:9] inputs as well as the p_nmi_b input must meet setup 
and hold timing relative to the rising edge of the m_clk. In addition, during each clock cycle in which either 
of the interrupt request inputs p_extint_b or p_critint_b are asserted, p_avec_b and p_voffset[0:9] are 
required to be in a valid state for the highest priority unmasked interrupt being requested.

Figure 6-28. Interrupt Interface Input Signals
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Figure 6-29 and Figure 6-30 shows the relationship of the interrupt pending signal to the interrupt request 
inputs. Note that p_ipend is asserted combinationally from the p_extint_b, and p_critint_b, and p_nmi_b 
inputs.

Figure 6-29. e200 Interrupt Pending Operation

Figure 6-30. e200z0h Interrupt Pending Operation
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Figure 6-31 shows the relationship of the interrupt acknowledge signal to the interrupt request inputs and 
exception vector fetching.

In this example, an external input interrupt is requested in cycle 1. The p_voffset[0:9] inputs are driven 
with the vector offset for ‘A’, and p_avec_b is negated, indicating vectoring is desired. For this example, 
the bus is idle at the time of assertion. The CPU may sample a requested interrupt as early as the cycle it 
is initially requested, and does so in this example. The interrupt request and the vector offset and 
autovector input are sampled at the end of cycle 1. In cycle 3, the interrupt is acknowledged by the 
assertion of the p_iack output, indicating that the values present on interrupt inputs at the beginning of 
cycle 2 have been internally latched and committed to for servicing. Note that the interrupt vector lines 
have changed to a value of ‘B’ during cycle 2, and the p_critint_b input has been asserted by the interrupt 
controller. The vector number / autovector signals must be consistent with the higher priority critical input 
request, thus must change at the same time the state of the interrupt request inputs change. Because the 
p_iack output asserts in cycle 3, it is indicating that the values present at the rise of cycle 2 (vector ‘A’) 
have been committed to. During cycle 3, the CPU begins instruction fetching of the handler for vector ‘A’. 

Figure 6-31. Interrupt Acknowledge Operation
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The new request for a subsequent critical interrupt ‘B’ was not received in time to be acted upon first. It is 
acknowledged after the fetch for the external input interrupt handler has been completed and has entered 
decode.

Note that the time between assertion of an interrupt request input and the acknowledgment of an interrupt 
may be multiple cycles, and the interrupt inputs may change during that interval. The CPU asserts the 
p_iack output to indicate the cycle at which an interrupt is committed to. In the following example, because 
the CPU was unable to acknowledge the external input interrupt during cycle 2 due to internal or external 
execution conditions, the critical input request was sampled. This case is shown in Figure 6-32.

Figure 6-32. Interrupt Acknowledge Operation—2
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6.4.4 Time Base Interface

The following figure shows the required relationships of the Time Base inputs. The electrical values 
associated with these timings may be found in the Zen Integration Guide.

6.4.5 JTAG Test Interface

The following figures show the relationships of the various JTAG related signals to the j_tclk input. The 
electrical values associated with these timings may be found in the Zen Integration Guide.

Figure 6-34. Test Clock Input Timing

Figure 6-35. j_trst_b Timing

Figure 6-33. Time Base Input Timing
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Figure 6-36. Test Access Port Timing
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Chapter 7  
Power Management 

7.1  Power Management
Power management is supported by e200 cores to minimize overall system power consumption. The e200 
core provides the ability to initiate power management from external sources as well as through software 
techniques. The power states on the e200 core are described below.

7.1.1  Active State
The Active state is the default state for the e200 core in which all of its internal units are operating at full 
processor clock speed. In this state, the e200 core still provides dynamic power management in which 
individual internal functional units may stop clocking automatically whenever they are idle. 

7.1.2  Waiting State
The e200 core enters the Waiting state as a result of executing a wait instruction. Following entry into the 
waiting state, instruction execution and bus activity is suspended. Most internal clocks are gated off in this 
state. The e200 core asserts p_waiting to indicate it is in the waiting state. Prior to entering the waiting 
state, all outstanding instructions and bus transactions are completed. The m_clk input should remain 
running while in the waiting state to allow for interrupt sampling, and to allow further transitions into the 
Halted or Stopped state if requested.

In the waiting state, the core is waiting for a valid unmasked pending interrupt request. Once a pending 
interrupt request is received, the core exits the waiting state and begin interrupt processing. The return 
program counter value points to the next instruction after the wait instruction. The interrupt can be an 
external input interrupt, various critical interrupts, a debug interrupt (based on ICMP), a non-maskable 
interrupt (on e200z0h), or a machine check interrupt (p_mcp_b assertion, etc.). Once the interrupt 
processing begins, the core does not return to the waiting state until another wait instruction is executed.

The waiting state can be temporarily exited and returned to if a request is made to enter hardware debug 
mode (various mechanisms), the Halted state, or the Stopped state. After exiting one of these states, the 
processor returns to the waiting state. While temporarily exited, the p_waiting output negates, and is 
re-asserted once the CPU returns to the waiting state.

7.1.3  Halted State
Instruction execution and bus activity is suspended in the Halted state. However, none of the internal 
clocks are gated off in this state. The e200 core asserts p_halted to indicate it is in the halted state. Prior to 
entering the halted state, all outstanding bus transactions are completed. The m_clk input should remain 
running while in the Halted state to allow further transitions into the Stopped state if requested.
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7.1.4  Stopped State 
The Stopped state is characterized as having all internal functional units of the e200 core stopped except 
the clock control state machine logic. The internal m_clk may be kept running to allow quick recovery to 
the full on state. Clocks are not running to functional units in this state. The Stopped state is reached after 
transitioning through the Halted state with the p_stop input asserted. The p_stopped output signal is 
asserted once the Powerdown state is reached.

While in the Stopped state, further power savings may be achieved by stopping the m_clk input. This is 
done externally by the system after the e200 core is safely in the Stopped state and has asserted the 
p_stopped output signal. To exit from the Stopped state, the system must first restart the m_clk input.

7.1.5  Power Management Pins
p_waiting—output pin asserted when the e200 core is in the Waiting state.

p_halt—input pin is asserted by system logic to request the core to go into the Halted state. Negating this 
pin causes the e200 core to transition back into the Active or Waiting state if p_stop is also negated.

p_halted—output pin asserted when the e200 core is in the Halted state.

p_stop—input pin is asserted by system logic to request that the e200 core go into the Powerdown state. 
Negating this pin causes the e200 core to transition back into the Halted state from the Stopped state.

p_stopped—output pin asserted when the e200 core is in the Stopped state.

p_doze, p_nap, and p_sleep output pins that reflects the state of HID0[DOZE]. HID0[NAP]., and 
HID0[SLEEP] respectively. These pins are qualified with MSR[WE] = 1. Interpretation of these signals is 
done by the system logic.

p_wakeup—output pin asserted when an interrupt is pending or other condition which requires the clock 
to be running.

7.1.6  Power Management Control Bits
The following bits are used by software to generate a request to enter a power-saving state and to choose 
the state to be entered:

• MSR[WE]—The WE bit is used to qualify assertion of the p_doze, p_nap, and p_sleep output
pins to the system logic. When MSR[WE] is negated, these pins are negated. When MSR[WE] is
set, these pins reflect the state of their respective control bits in the HID0 register.

• HID0[DOZE]—The interpretation of the doze mode bit is done by the external system logic. Doze
mode on the e200 core is intended to be the halted state with the clocks running.

• HID0[NAP]—The interpretation of the nap mode bit is done by the external system logic. Nap
mode on the e200 core may be used for a powerdown state with the Time Base enabled.

• HID0[SLEEP]—The interpretation of the sleep mode bit is done by the external system logic.
Sleep mode on the e200 core may be used for a powerdown state with the Time Base disabled.
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7.1.7  Software Considerations for Power Management Using Wait 
Instructions

Executing a wait instruction causes the e200 core to complete instruction fetch and execution activity and 
await an interrupt. The p_waiting output is asserted once the Waiting state is entered. External system 
hardware may interpret the state of this signal and activate the p_halt and/or p_stop inputs to cause the 
e200 core to enter a quiescent state in which clocks may be disabled for low power operation. 
Alternatively, system hardware may utilize some other clock control mechanism while the processor is in 
the Waiting state, and p_wakeup remains negated.

7.1.8  Software Considerations for Power Management Using Doze, Nap 
or Sleep

Setting MSR[WE] generates a request to enter a power saving state. The power saving state (doze, nap, or 
sleep) must be previously determined by setting the appropriate HID0 bit. Setting MSR[WE] has no direct 
effect on instruction execution, but it simply reflected on p_doze, p_nap, and p_sleep depending on the 
setting of HID0[DOZE], HID0[NAP], and HID0[SLEEP] respectively. Note that the e200 core is not 
affected by assertion of these pins directly. External system hardware may interpret the state of these 
signals and activate the p_halt and/or p_stop inputs to cause the e200 core to enter a quiescent state in 
which clocks may be disabled for low power operation.

To ensure a clean transition into and out of a power saving mode, the following program sequence is 
recommended: 

sync
mtmsr (WE)
isync
loop:br loop  (optionally use a wait instruction)

An interrupt is typically used to exit a power saving state. The p_wakeup output is used to indicate to the 
system logic that an interrupt (or a debug request) has become pending. System logic uses this output to 
re-enable the clocks and exit a low power state. The interrupt handler is responsible for determining how 
to exit the low power branching loop if one is used. Wait instructions are exited automatically. The 
vectored interrupt capability provided by the core may be useful in assisting the determination if an 
external hardware interrupt is used to perform the wake-up.

7.1.9  Debug Considerations for Power Management
When a debug request is presented to the e200 core while in either the Waiting, Halted or Stopped state, 
the p_wakeup signal is asserted, and when m_clk is provided to the CPU, it temporarily exits the Waiting, 
Halted or Stopped state and enters Debug mode regardless of the assertion of p_halt or p_stop. The 
p_waiting, p_halted or p_stopped outputs are negated for the duration of the time the CPU remains in a 
debug session (jd_debug_b asserted). When the debug session is exited, the CPU re-samples the p_halt 
and p_stop inputs and re-enters the Halted or Stopped state as appropriate. If the CPU was previously 
waiting, and no interrupt was received while in the debug session, it re-enters the Waiting state and 
re-asserts p_waiting.
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Chapter 8  
Debug Support
This chapter describes the debug features of the e200 core. 

8.1 Overview
Internal debug support in the e200 core allows for software and hardware debug by providing debug 
functions, such as instruction and data breakpoints and program trace modes. For software based 
debugging, debug facilities consisting of a set of software accessible debug registers and interrupt 
mechanisms are provided. These facilities are also available to a hardware based debugger which 
communicates using a modified IEEE 1149.1 Test Access Port (TAP) controller and pin interface. When 
hardware debug is enabled, the debug facilities are protected from software modification.

Software debug facilities are defined as part of Power Architecture Book E. e200 supports a subset of these 
defined facilities. In addition to the facilities defined in Power Architecture Book E, e200 provides 
additional flexibility and functionality in the form of linked instruction and data breakpoints, and 
sequential debug event detection. These features are also available to a hardware-based debugger.

The e200 core provides support for an external Nexus real-time debug module. Real-time debugging in a 
e200-based system is supported by a Nexus class 1 module.

8.1.1 Software Debug Facilities

e200 provides debug facilities to enable hardware and software debug functions, such as instruction and 
data breakpoints and program single stepping. The debug facilities consist of a set of debug control 
registers (DBCR0-2), a set of address compare registers (IAC1, IAC2, IAC3, IAC4, DAC1, and DAC2), 
a Debug Status Register (DBSR) for enabling and recording various kinds of debug events, and a special 
Debug interrupt type built into the interrupt mechanism (see Section 5.7.10, “Debug Interrupt 
(IVOR15)”). The debug facilities also provide a mechanism for software-controlled processor reset in a 
debug environment.

Software debug facilities are enabled by setting the internal debug mode bit in Debug Control register 0 
(DBCR0[IDM]). When internal debug mode is enabled, debug events can occur, and can be enabled to 
record exceptions in the Debug Status register (DBSR). If enabled by MSR[DE], these recorded 
exceptions cause Debug interrupts to occur. When DBCR0[IDM] is cleared, (and DBCR0[EDM] is 
cleared as well), no debug events occur, and no status flags are set in DBSR unless already set. In addition, 
when DBCR0[IDM] is cleared (or is overridden by DBCR0[EDM] being set) no Debug interrupts occur, 
regardless of the contents of DBSR. A software Debug interrupt handler may access all system resources 
and perform necessary functions appropriate for system debug.
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8.1.1.1 Power Architecture Book E Compatibility

The e200 core implements a subset of the Power Architecture Book E internal debug features. The 
following restrictions on functionality are present:

• Instruction address compares do not support compare on physical (real) addresses.

• Data address compares do not support compare on physical (real) addresses.

• Data value compares are not supported.

8.1.2 Additional Debug Facilities

In addition to the debug functionality defined in Power Architecture Book E, e200 provides capability to 
link instruction and data breakpoints, and also provides a sequential breakpoint control mechanism.

e200 also defines two new debug events (CIRPT, CRET) for debugging around critical interrupts.

In addition, e200 implements the Debug APU, which when enabled allows Debug Interrupts to utilize a 
dedicated set of save/restore registers (DSRR0, DSRR1) for saving state information when a Debug 
Interrupt occurs, and for restoring this state information at the end of a debug interrupt handler by means 
of the se_rfdi instruction.

8.1.3 Hardware Debug Facilities

The e200 core contains facilities that allow for external test and debugging. A modified IEEE 1149.1 
control interface is used to communicate with the core resources. This interface is implemented through a 
standard 1149.1 TAP (test access port) controller. 

By using public instructions, the external debugger can freeze or halt the e200 core, read and write internal 
state and debug facilities, single-step instructions, and resume normal execution.

Hardware Debug is enabled by setting the External Debug Mode enable bit in Debug Control register 0 
(DBCR0[EDM]). Setting DBCR0[EDM] overrides the Internal Debug Mode enable bit DBCR0[IDM]. 
When the Hardware Debug facility is enabled, software is blocked from modifying the debug facilities. In 
addition, because resources are “owned” by the Hardware debugger, inconsistent values may be present if 
software attempts to read debug-related resources.

When hardware debug is enabled by setting DBCR0[EDM]=1, the registers and resources described in 
Section 8.3, “Debug Registers,” are reserved for use by the external debugger. The same events described 
in Section 8.2, “Software Debug Events and Exceptions,” are also used for external debugging, but 
exceptions are not generated to running software. Debug events enabled in the respective DBCR[0–2] 
registers are recorded in the DBSR regardless of MSR[DE], and no debug interrupts are generated. Instead, 
the CPU enters debug mode when an enabled event causes a DBSR bit to become set. DBCR0[EDM] may 
only be written through the OnCE port.

Access to most debug resources (registers) requires that the core clock (m_clk) be running in order to 
perform write accesses from the external hardware debugger. 
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Figure 8-1 shows the e200 debug resources.

Figure 8-1. e200 Debug Resources

8.2 Software Debug Events and Exceptions
Software debug events and exceptions are available when internal debug mode is enabled 
(DBCR0[IDM]=1) and not overridden by external debug mode (DBCR0[EDM] must be cleared). When 
enabled, debug events cause debug exceptions to be recorded in the Debug Status Register. Specific event 
types are enabled by the Debug Control Registers (DBCR0–2). The Unconditional Debug Event (UDE) is 
an exception to this rule; it is always enabled. Once a Debug Status Register (DBSR) bit is set (other than 
MRR), if Debug interrupts are enabled by MSR[DE], a Debug interrupt is generated. The debug interrupt 
handler is responsible for ensuring that multiple repeated debug interrupts do not occur by clearing the 
DBSR as appropriate.
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Certain debug events are not allowed to occur when MSR[DE]=0 and DBCR0[EDM]=0. In such 
situations, no debug exception occurs and thus no DBSR bit is set. Other debug events may cause debug 
exceptions and set DBSR bits regardless of the state of MSR[DE]. A Debug interrupt is delayed until 
MSR[DE] is later set to ‘1’.

When a Debug Status Register bit is set while MSR[DE]=0 and DBCR0[EDM]=0, an Imprecise Debug 
Event flag (DBSR[IDE]) also is set to indicate that an exception bit in the Debug Status Register was set 
while Debug interrupts were disabled. Debug interrupt handler software can use this bit to determine 
whether the address recorded in Debug Save/Restore Register 0 is an address associated with the 
instruction causing the debug exception, or the address of the instruction which enabled a delayed Debug 
interrupt by setting the MSR[DE] bit. A mtmsr or mtdbcr0 which causes both MSR[DE] and 
DBCR0[IDM] to become set, enabling precise debug mode, may cause an Imprecise (Delayed) Debug 
exception to be generated due to an earlier recorded event in the Debug Status register.

There are eight types of debug events defined by Power Architecture Book E, as follows:

1. Instruction Address Compare debug events

2. Data Address Compare debug events

3. Trap debug events

4. Branch Taken debug events

5. Instruction Complete debug events

6. Interrupt Taken debug events

7. Return debug events

8. Unconditional debug events

 In addition, e200 defines additional debug events:

• The External debug events DEVT1 and DEVT2 which are described in Section 8.2.11, “External 
Debug Event.”

• The Critical Interrupt Taken debug event CIRPT which is described in Section 8.2.8, “Critical 
Interrupt Taken Debug Event.”

• The Critical Return debug event CRET which is described in Section 8.2.10, “Critical Return 
Debug Event.”

The e200 debug configuration supports most of these event types. Unsupported Power Architecture Book 
E defined functionality is as follows:

• Instruction Address Compare and Data Address Compare real address mode is not supported.

• Data Value Compare Mode is not supported.

A brief description of each of the event types follows. In these descriptions, DSRR0 and DSRR1 are used, 
assuming that the Debug APU is enabled. If it is disabled, use CSRR0 and CSRR1, respectively.

8.2.1 Instruction Address Compare Event

Instruction Address Compare debug events occur when enabled and execution is attempted of an 
instruction at an address that meets the criteria specified in the DBCR0, DBCR1, IAC1, IAC2, IAC3, and 
IAC4 Registers. Instruction Address compares may specify user/supervisor mode and instruction space 
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(MSR[IS]), along with an effective address, masked effective address, or range of effective addresses for 
comparison. This event can occur and be recorded in DBSR regardless of the setting of MSR[DE]. IAC 
events do not occur when an instruction would not have normally begun execution due to a higher priority 
exception at an instruction boundary.

IAC compares perform a 31-bit compare for VLE instructions. Each halfword fetched by the instruction 
fetch unit is marked with a set of bits indicating whether an Instruction Address Compare occurred on that 
halfword. Debug exceptions occur if enabled and a 16-bit instruction, or the first halfword of a 32-bit 
instruction, is tagged with an IAC hit. 

8.2.2 Data Address Compare Event

Data Address Compare debug events occur when enabled and execution of a load or store class instruction 
results in a data access that meets the criteria specified in the DBCR0, DBCR2, DAC1, and DAC2 
Registers. Data address compares may specify user/supervisor mode and data space (MSR[DS]), along 
with an effective address, masked effective address, or range of effective addresses for comparison. This 
event can occur and be recorded in DBSR regardless of the setting of MSR[DE]. Two address compare 
values (DAC1, DAC2) are provided. 

NOTE
In contrast to the Power Architecture Book E definition, Data Address 
Compare events on e200 do not prevent the load or store class instruction 
from completing. If a load or store class instruction completes successfully 
without a Data TLB or Data Storage interrupt, Data Address Compare 
exceptions are reported at the completion of the instruction. If the exception 
results in a precise Debug interrupt, the address value saved in DSRR0 (or 
CSRR0 if the Debug APU is disabled) is the address of the instruction 
following the load or store class instruction.

If a load or store class instruction does not complete successfully due to a 
Data Storage exception, and a Data Address Compare debug exception also 
occurs, the result is an imprecise Debug interrupt, the address value saved 
in DSRR0 (or CSRR0 if the Debug APU is disabled) is the address of the 
load or store class instruction, and the DBSR[IDE] bit is set. In addition to 
occurring when DBCR0[IDM]=1, this circumstance can also occur when 
DBCR0[EDM]=1.

NOTE
DAC events are not recorded or counted if a lmw or stmw instruction is 
interrupted prior to completion by a critical input or external input interrupt.

NOTE
DAC events are not signaled on the second portion of a misaligned load or 
store that is broken up into two separate accesses.
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8.2.3 Linked Instruction Address and Data Address Compare Event

Data Address Compare debug events may be ‘linked’ with an Instruction Address Compare event by 
setting the DAC1LNK and/or DAC2LNK control bits in DBCR2 to further refine when a Data Address 
Compare debug event is generated. DAC1 may be linked with IAC1, and DAC2 (when not used as a mask 
or range bounds register) may be linked with IAC3. When linked, a DAC1 (or DAC2) debug event occurs 
when the same instruction which generates the DAC1 (or DAC2) ‘hit’ also generates an IAC1 (or IAC3) 
‘hit’. When linked, the IAC1 (or IAC3) event is not recorded in the Debug Status register, regardless of 
whether a corresponding DAC1 (or DAC2) event occurs, or whether the IAC1 (or IAC3) event enable is 
set.

When enabled and execution of a load or store class instruction results in a data access with an address that 
meets the criteria specified in the DBCR0, DBCR2, DAC1, and DAC2 Registers, and the instruction also 
meets the criteria for generating an Instruction Address Compare event, a Linked Data Address Compare 
debug event occurs. This event can occur and be recorded in DBSR regardless of the setting of MSR[DE]. 
The normal DAC1 and DAC2 status bits in the DBSR are used for recording these events. The IAC1 and 
IAC3 status bits are not set if the corresponding Instruction Address Compare register is linked.

Linking is enabled using control bits in DBCR2. 

NOTE
Linked DAC events are not recorded if a load multiple word or store 
multiple word instruction is interrupted prior to completion by a critical 
input or external input interrupt. 

8.2.4 Trap Debug Event

A Trap debug event (TRAP) occurs if Trap debug events are enabled (DBCR0[TRAP]=1), a Trap 
instruction (tw) is executed, and the conditions specified by the instruction for the trap are met. This event 
can occur and be recorded in DBSR regardless of the setting of MSR[DE]. When a Trap debug event 
occurs, the DBSR[TRAP] bit is set to 1 to record the debug exception.

8.2.5 Branch Taken Debug Event

A Branch Taken debug event (BRT) occurs if Branch Taken debug events are enabled (DBCR0[BRT]=1) 
and execution is attempted of a branch instruction, which is taken (either an unconditional branch, or a 
conditional branch whose branch condition is true), and MSR[DE]=1 or DBCR0[EDM]=1. Branch Taken 
debug events are not recognized if MSR[DE]=0 and DBCR0[EDM]=0 at the time of execution of the 
branch instruction and thus DBSR[IDE] can not be set by a Branch Taken debug event. When a Branch 
Taken debug event is recognized, the DBSR[BRT] bit is set to 1 to record the debug exception, and the 
address of the branch instruction is recorded in DSRR0.

8.2.6 Instruction Complete Debug Event

An Instruction Complete debug event (ICMP) occurs if Instruction Complete debug events are enabled 
(DBCR0[ICMP]=1), execution of any instruction is completed, and MSR[DE]=1 or DBCR0[EDM]=1. If 
execution of an instruction is suppressed due to the instruction causing some other exception which is 
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enabled to generate an interrupt, then the attempted execution of that instruction does not cause an 
Instruction Complete debug event. The sc instruction does not fall into the category of an instruction whose 
execution is suppressed, because the instruction actually executes and then generates a System Call 
interrupt. In this case, the Instruction Complete debug exception is also set. When an Instruction Complete 
debug event is recognized, DBSR[ICMP] is set to 1 to record the debug exception and the address of the 
next instruction to be executed is recorded in DSRR0.

Instruction Complete debug events are not recognized if MSR[DE]=0 and DBCR0[EDM]=0 at the time 
of execution of the instruction, thus DBSR[IDE] is not generally set by an ICMP debug event.

NOTE
Instruction complete debug events are not generated by the execution of an 
instruction which sets MSR[DE] to ‘1’ while DBCR0[ICMP]=1, nor by the 
execution of an instruction which sets DBCR0[ICMP] to ‘1’ while 
MSR[DE]=1 or DBCR0[EDM]=1.

8.2.7 Interrupt Taken Debug Event

An Interrupt Taken debug event (IRPT) occurs if Interrupt Taken debug events are enabled 
(DBCR0[IRPT]=1) and a non-critical interrupt occurs. Only non-critical class interrupts cause an Interrupt 
Taken debug event. This event can occur and be recorded in DBSR regardless of the setting of MSR[DE]. 
When an Interrupt Taken debug event occurs, the DBSR[IRPT] bit is set to 1 to record the debug exception. 
The value saved in DSRR0 is the address of the non-critical interrupt handler.

8.2.8 Critical Interrupt Taken Debug Event

A Critical Interrupt Taken debug event (CIRPT) occurs if Critical Interrupt Taken debug events are enabled 
(DBCR0[CIRPT]=1) and a critical interrupt (other than a Debug interrupt when the Debug APU is 
disabled) occurs. Only critical class interrupts cause a Critical Interrupt Taken debug event. This event can 
occur and be recorded in DBSR regardless of the setting of MSR[DE]. When a Critical Interrupt Taken 
debug event occurs, the DBSR[CIRPT] bit is set to 1 to record the debug exception. The value saved in 
DSRR0 is the address of the critical interrupt handler. Note that this debug event should not normally be 
enabled unless the Debug APU is also enabled to avoid corruption of CSRR0/1.

8.2.9 Return Debug Event

A Return debug event (RET) occurs if Return debug events are enabled (DBCR0[RET]=1) and an attempt 
is made to execute an se_rfi instruction. This event can occur and be recorded in DBSR regardless of the 
setting of MSR[DE]. When a Return debug event occurs, the DBSR[RET] bit is set to 1 to record the debug 
exception.

If MSR[DE]=0 and DBCR0[EDM]=0 at the time of the execution of the se_rfi (such as before the MSR 
is updated by the se_rfi), then DBSR[IDE] is also set to 1 to record the imprecise debug event.

If MSR[DE]=1 at the time of the execution of the se_rfi, a Debug interrupt occurs provided there exists 
no higher priority exception which is enabled to cause an interrupt. Debug Save/Restore Register 0 is set 
to the address of the se_rfi instruction.
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8.2.10 Critical Return Debug Event

A Critical Return debug event (CRET) occurs if Critical Return debug events are enabled 
(DBCR0[CRET]=1) and an attempt is made to execute an se_rfci instruction. This event can occur and be 
recorded in DBSR regardless of the setting of MSR[DE]. When a Critical Return debug event occurs, the 
DBSR[CRET] bit is set to 1 to record the debug exception.

If MSR[DE]=0 and DBCR0[EDM]=0 at the time of the execution of the se_rfci (such as before the MSR 
is updated by the se_rfci), then DBSR[IDE] is also set to 1 to record the imprecise debug event.

If MSR[DE]=1 at the time of the execution of the se_rfci, a Debug interrupt occurs provided there exists 
no higher priority exception which is enabled to cause an interrupt. Debug Save/Restore Register 0 is set 
to the address of the se_rfci instruction. Note that this debug event should not normally be enabled unless 
the Debug APU is also enabled to avoid corruption of CSRR0/1.

8.2.11 External Debug Event

An External debug event (DEVT1, DEVT2) occurs if External debug events are enabled 
(DBCR0[DEVT1]=1 or DBCR0[DEVT2]=1), and the respective p_devt1 or p_devt2 input signal 
transitions to the asserted state. This event can occur and be recorded in DBSR regardless of the setting of 
MSR[DE]. When an External debug event occurs, DBSR[DEVT{1,2}] is set to ‘1’ to record the debug 
exception.

8.2.12 Unconditional Debug Event

An Unconditional debug event (UDE) occurs when the Unconditional Debug Event (p_ude) input 
transitions to the asserted state, and either DBCR0[IDM]=1 or DBCR0[EDM]=1. The Unconditional 
debug event is the only debug event which does not have a corresponding enable bit for the event in 
DBCR0. This event can occur and be recorded in DBSR regardless of the setting of MSR[DE]. When an 
Unconditional debug event occurs, the DBSR[UDE] bit is set to ‘1’ to record the debug exception.

8.3 Debug Registers
This section describes debug-related registers that are software accessible. These registers are intended for 
use by special debug tools and debug software, not by general application code.

Access to these registers by software is conditioned by the External Debug Mode control bit 
(DBCR0[EDM]) which can be set by the hardware debug port. If DBCR0[EDM] is set, software is 
prevented from modifying debug register values. Execution of a mtspr instruction targeting a debug 
register does not cause modifications to occur. In addition, because the external debugger hardware may 
be manipulating debug register values, the state of these registers is not guaranteed to be consistent if 
accessed (read) by software with a mfspr instruction, other than the DBCR0[EDM] bit itself.

8.3.1 Debug Address and Value Registers

Instruction Address Compare registers IAC1, IAC2, IAC3, and IAC4 are used to hold instruction 
addresses for address comparison purposes. In addition, IAC2 and IAC4 hold mask information for IAC1 
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and IAC3 respectively when Address Bit Match compare modes are selected. Note that when performing 
instruction address compares, the low order bit of the instruction address and the corresponding IAC 
register is ignored.

Data Address Compare registers DAC1 and DAC2 are used to hold data access addresses for address 
comparison purposes. In addition, DAC2 holds mask information for DAC1 when Address Bit Match 
compare mode is selected.

8.3.2 Debug Control and Status Registers

Debug Control Registers 0-2 (DBCR0, DBCR1, DBCR2) are used to enable debug events, reset the 
processor, and set the debug mode of the processor. The Debug Status register (DBSR) records debug 
exceptions while Internal or External Debug Mode is enabled.

e200 requires that a context synchronizing instruction follow a mtspr DBCR0-2 or DBSR to ensure that 
any alterations enabling/disabling debug events are effective. The context synchronizing instruction may 
or may not be affected by the alteration. Typically, an isync instruction is used to create a synchronization 
boundary beyond which it can be guaranteed that the newly written control values are in effect.

For watchpoint generation, configuration settings contained in DBCR1and DBCR2 are used, even though 
the corresponding event(s) may be disabled (via DBCR0) from setting DBSR flags.

8.3.2.1 Debug Control Register 0 (DBCR0)

Debug Control Register 0 is used to enable debug modes and controls which debug events are allowed to 
set DBSR flags. e200 adds some implementation specific bits to this register, as seen in Figure 8-2.
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Figure 8-2. DBCR0 Register
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Table 8-1 provides bit definitions for Debug Control Register 0.

Table 8-1. DBCR0 Bit Definitions

Bit(s) Name Description

0 EDM External Debug Mode. This bit is read-only by software.
0 External debug mode disabled. Internal debug events not mapped into external debug events.
1 External debug mode enabled. Events do not cause the CPU to vector to interrupt code. Software is 

not permitted to write to debug registers {DBCRx, DBSR, DBCNT, IAC1-4, DAC1-2}.

Programming Notes:
It is recommended that debug status bits in the Debug Status Register be cleared before disabling 
external debug mode to avoid any internal imprecise debug interrupts.
Software may use this bit to determine if external debug has control over the debug registers.
The hardware debugger must set the EDM bit to ‘1’ before other bits in this register (and other debug 
registers) may be altered. On the initial setting of this bit to ‘1’, all other bits are unchanged. This bit is 
only writable through the OnCE port.

1 IDM Internal Debug Mode 
0 Debug exceptions are disabled. Debug events do not affect DBSR unless EDM is set.
1 Debug exceptions are enabled. Enabled debug events update the DBSR. If MSR[DE]=1, the 

occurrence of a debug event, or the recording of an earlier debug event in the Debug Status Register 
when MSR[DE] was cleared, causes a Debug interrupt.

2:3 RST Reset Control
00 No function 
01 Reserved
10 p_resetout_b pin asserted by Debug Reset Control. Allows external device to initiate processor 

reset.
11 Reserved

4 ICMP Instruction Complete Debug Event Enable
0 ICMP debug events are disabled
1 ICMP debug events are enabled

5 BRT Branch Taken Debug Event Enable
0 BRT debug events are disabled
1 BRT debug events are enabled

6 IRPT Interrupt Taken Debug Event Enable
0 IRPT debug events are disabled
1 IRPT debug events are enabled

7 TRAP Trap Taken Debug Event Enable
0 TRAP debug events are disabled
1 TRAP debug events are enabled

8 IAC1 Instruction Address Compare 1 Debug Event Enable
0 IAC1 debug events are disabled
1 IAC1 debug events are enabled

9 IAC2 Instruction Address Compare 2 Debug Event Enable
0 IAC2 debug events are disabled
1 IAC2 debug events are enabled

10 IAC3 Instruction Address Compare 3 Debug Event Enable
0 IAC3 debug events are disabled
1 IAC3 debug events are enabled
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8.3.2.2 Debug Control Register 1 (DBCR1)

Debug Control Register 1 is used to configure Instruction Address Compare operation. The DBCR1 
register is shown in Figure 8-3.

11 IAC4 Instruction Address Compare 4 Debug Event Enable
0 IAC4 debug events are disabled
1 IAC4 debug events are enabled

12:13 DAC1 Data Address Compare 1 Debug Event Enable
00 DAC1 debug events are disabled
01 DAC1 debug events are enabled only for store-type data storage accesses
10 DAC1 debug events are enabled only for load-type data storage accesses
11 DAC1 debug events are enabled for load-type or store-type data storage accesses

14:15 DAC2 Data Address Compare 2 Debug Event Enable
00 DAC2 debug events are disabled
01 DAC2 debug events are enabled only for store-type data storage accesses
10 DAC2 debug events are enabled only for load-type data storage accesses
11 DAC2 debug events are enabled for load-type or store-type data storage accesses

16 RET Return Debug Event Enable
0 RET debug events are disabled
1 RET debug events are enabled

17:20 — Reserved

21 DEVT1 External Debug Event 1 Enable
0 DEVT1 debug events are disabled
1 DEVT1 debug events are enabled

22 DEVT2 External Debug Event 2 Enable
0 DEVT2 debug events are disabled
1 DEVT2 debug events are enabled

23:24 — Reserved

25 CIRPT Critical Interrupt Taken Debug Event Enable
0 CIRPT debug events are disabled
1 CIRPT debug events are enabled

26 CRET Critical Return Debug Event Enable
0 CRET debug events are disabled
1 CRET debug events are enabled

27:31 — Reserved
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Figure 8-3. DBCR1 Register

Table 8-1. DBCR0 Bit Definitions (continued)

Bit(s) Name Description



Debug Support

e200z0 Power Architecture Core Reference Manual, Rev. 0

8-12 Freescale Semiconductor
 

Table 8-2 provides bit definitions for Debug Control Register 1.

Table 8-2. DBCR1 Bit Definitions

Bit(s) Name Description

0:1 IAC1US Instruction Address Compare 1 User/Supervisor Mode
00 IAC1 debug events not affected by MSR[PR]
01 Reserved
10 IAC1 debug events can only occur if MSR[PR]=0 (Supervisor mode)
11 IAC1 debug events can only occur if MSR[PR]=1. (User mode)

2:3 IAC1ER Instruction Address Compare 1 Effective/Real Mode
00 IAC1 debug events are based on effective address
01 Unimplemented in e200 (Book E real address compare), no match can occur
10 IAC1 debug events are based on effective address and can only occur if MSR[IS]=0
11 IAC1 debug events are based on effective address and can only occur if MSR[IS]=1

4:5 IAC2US Instruction Address Compare 2 User/Supervisor Mode
00 IAC2 debug events not affected by MSR[PR]
01 Reserved
10 IAC2 debug events can only occur if MSR[PR]=0 (Supervisor mode)
11 IAC2 debug events can only occur if MSR[PR]=1. (User mode)

6:7 IAC2ER Instruction Address Compare 2 Effective/Real Mode
00 IAC2 debug events are based on effective address
01 Unimplemented in e200 (Book E real address compare), no match can occur
10 IAC2 debug events are based on effective address and can only occur if MSR[IS]=0
11 IAC2 debug events are based on effective address and can only occur if MSR[IS]=1

8:9 IAC12M

Instruction Address Compare 1/2 Mode
00 Exact address compare. IAC1 debug events can only occur if the address of the instruction fetch is 

equal to the value specified in IAC1. IAC2 debug events can only occur if the address of the 
instruction fetch is equal to the value specified in IAC2.

01 Address bit match. IAC1 debug events can occur only if the address of the instruction fetch, ANDed 
with the contents of IAC2 are equal to the contents of IAC1, also ANDed with the contents of IAC2. 
IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

10 Inclusive address range compare. IAC1 debug events can occur only if the address of the instruction 
fetch is greater than or equal to the value specified in IAC1 and less than the value specified in IAC2. 
IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

11 Exclusive address range compare. IAC1 debug events can occur only if the address of the 
instruction fetch is less than the value specified in IAC1 or is greater than or equal to the value 
specified in IAC2. IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

10:15 — Reserved

16:17 IAC3US

Instruction Address Compare 3 User/Supervisor Mode
00 IAC3 debug events not affected by MSR[PR]
01 Reserved
10 IAC3 debug events can only occur if MSR[PR]=0 (Supervisor mode)
11 IAC3 debug events can only occur if MSR[PR]=1 (User mode)

18:19 IAC3ER

Instruction Address Compare 3 Effective/Real Mode
00 IAC3 debug events are based on effective address
01 Unimplemented in e200 (Book E real address compare), no match can occur
10 IAC3 debug events are based on effective address and can only occur if MSR[IS]=0
11 IAC3 debug events are based on effective address and can only occur if MSR[IS]=1
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8.3.2.3 Debug Control Register 2 (DBCR2)

Debug Control Register 2 is used to configure Data Address Compare and Data Value Compare 
operation.The DBCR2 register is shown in Figure 8-4.

 

20:21 IAC4US

Instruction Address Compare 4 User/Supervisor Mode
00 IAC4 debug events not affected by MSR[PR]
01 Reserved
10 IAC4 debug events can only occur if MSR[PR]=0 (Supervisor mode).
11 IAC4 debug events can only occur if MSR[PR]=1. (User mode)

22:23 IAC4ER

Instruction Address Compare 4Effective/Real Mode
00 IAC4 debug events are based on effective address
01 Unimplemented in e200 (Book E real address compare), no match can occur
10 IAC4 debug events are based on effective address and can only occur if MSR[IS]=0
11 IAC4 debug events are based on effective address and can only occur if MSR[IS]=1

24:25 IAC34M

Instruction Address Compare 3/4 Mode
00 Exact address compare. IAC3 debug events can only occur if the address of the instruction fetch is 

equal to the value specified in IAC3. IAC4 debug events can only occur if the address of the 
instruction fetch is equal to the value specified in IAC4.

01 Address bit match. IAC3 debug events can occur only if the address of the instruction fetch, ANDed 
with the contents of IAC4 are equal to the contents of IAC3, also ANDed with the contents of IAC4. 
IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

10 Inclusive address range compare. IAC3 debug events can occur only if the address of the instruction 
fetch is greater than or equal to the value specified in IAC3 and less than the value specified in IAC4. 
IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

11 Exclusive address range compare. IAC3 debug events can occur only if the address of the 
instruction fetch is less than the value specified in IAC3 or is greater than or equal to the value 
specified in IAC4. IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

26:31 — Reserved 
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Figure 8-4. DBCR2 Register

Table 8-2. DBCR1 Bit Definitions (continued)

Bit(s) Name Description
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Table 8-3 provides bit definitions for Debug Control Register 2.

Table 8-3. DBCR2 Bit Definitions

Bit(s) Name Description

0:1 DAC1US

Data Address Compare 1 User/Supervisor Mode
00 DAC1 debug events not affected by MSR[PR]
01 Reserved
10 DAC1 debug events can only occur if MSR[PR]=0 (Supervisor mode)
11 DAC1 debug events can only occur if MSR[PR]=1. (User mode)

2:3 DAC1ER

Data Address Compare 1 Effective/Real Mode
00 DAC1 debug events are based on effective address
01 Unimplemented in e200 (Book E real address compare), no match can occur
10 DAC1 debug events are based on effective address and can only occur if MSR[DS]=0
11 DAC1 debug events are based on effective address and can only occur if MSR[DS]=1

4:5 DAC2US

Data Address Compare 2 User/Supervisor Mode.
00 DAC2 debug events not affected by MSR[PR]
01 Reserved
10 DAC2 debug events can only occur if MSR[PR]=0 (Supervisor mode)
11 DAC2 debug events can only occur if MSR[PR]=1. (User mode)

6:7 DAC2ER

Data Address Compare 2 Effective/Real Mode
00 DAC2 debug events are based on effective address
01 Unimplemented in e200 (Book E real address compare), no match can occur
10 DAC2 debug events are based on effective address and can only occur if MSR[DS]=0
11 DAC2 debug events are based on effective address and can only occur if MSR[DS]=1

8:9 DAC12M

Data Address Compare 1/2 Mode
00 Exact address compare. DAC1 debug events can only occur if the address of the data access is 

equal to the value specified in DAC1. DAC2 debug events can only occur if the address of the data 
access is equal to the value specified in DAC2.

01 Address bit match. DAC1 debug events can occur only if the address of the data access ANDed with 
the contents of DAC2, are equal to the contents of DAC1 also ANDed with the contents of DAC2. 
DAC2 debug events do not occur. DAC1US and DAC1ER settings are used.

10 Inclusive address range compare. DAC1 debug events can occur only if the address of the data 
access is greater than or equal to the value specified in DAC1 and less than the value specified in 
DAC2. DAC2 debug events do not occur. DAC1US and DAC1ER settings are used.

11 Exclusive address range compare. DAC1 debug events can occur only if the address of the data 
access is less than the value specified in DAC1 or is greater than or equal to the value specified in 
DAC2. DAC2 debug events do not occur. DAC1US and DAC1ER settings are used.

10 DAC1LNK

Data Address Compare 1 Linked
0 no affect
1 DAC1 debug events are linked to IAC1 debug events. IAC1 debug events do not affect DBSR
When linked to IAC1, DAC1 debug events are conditioned based on whether the instruction also 

generated an IAC1 debug event

11 DAC2LNK

Data Address Compare 2 Linked
0 no affect
1 DAC 2 debug events are linked to IAC3 debug events. IAC3 debug events do not affect DBSR
When linked to IAC3, DAC2 debug events are conditioned based on whether the instruction also 
generated an IAC3 debug event. DAC2 can only be linked if DAC12M specifies Exact Address Compare 
because DAC2 debug events are not generated in the other compare modes.

12:31 — Reserved for Data Value Compare control (not supported by e200)
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8.3.2.4 Debug Status Register (DBSR)

The Debug Status Register (DBSR) contains status on debug events and the most recent processor reset. 
The Debug Status Register is set via hardware, and read and cleared via software. Bits in the Debug Status 
Register can be cleared using mtspr DBSR,RS. Clearing is done by writing to the Debug Status Register 
with a 1 in any bit position that is to be cleared and 0 in all other bit positions. The write data to the Debug 
Status Register is not direct data, but a mask. A ‘1’ causes the bit to be cleared, and a ‘0’ has no effect. 
Debug Status bits are set by Debug events only while Internal Debug Mode is enabled or External Debug 
Mode is enabled. When debug interrupts are enabled (MSR[DE]=1, DBCR0[IDM]=1, and 
DBCR0[EDM]=0), a set bit in DBSR other than MRR or VLES causes a debug interrupt to be generated. 
The debug interrupt handler is responsible for clearing DBSR bits prior to returning to normal execution. 
The Power Architecture VLE APU adds the DBSR[VLES] status bit to indicate debug events occurring 
due to a Power Architecture VLE instruction. The DBSR register is shown in Figure 8-5.

Table 8-4 provides bit definitions for the Debug Status Register.

ID
E

U
D

E

M
R

R

IC
M

P

B
R

T

IR
P

T

T
R

A
P

IA
C

1

IA
C

2

IA
C

3

IA
C

4

D
A

C
1R

D
A

C
1W

 

D
A

C
2R

D
A

C
2W

R
E

T

0

D
E

V
T

1

D
E

V
T

2

0

C
IR

P
T

C
R

E
T

V
LE

S

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—304; Read/Write; Reset—0x1000_0000

Figure 8-5. DBSR Register

Table 8-4. DBSR Bit Definitions

Bit(s) Name Description

0 IDE Imprecise Debug Event
Set to 1 if MSR[DE]=0 and DBCR0[EDM]=0 and a debug event causes its respective Debug Status 
Register bit to be set to 1. It may also be set to ‘1’ if DBCR0[EDM]=1 and an imprecise debug event 
occurs due to a DAC event on a load or store which is terminated with error.

1 UDE Unconditional Debug Event
Set to 1 if an Unconditional debug event occurred.

2:3 MRR Most Recent Reset. 
00 No reset occurred because these bits were last cleared by software
01 A hard reset occurred because these bits were last cleared by software
10 Reserved
11 Reserved

4 ICMP Instruction Complete Debug Event 
Set to 1 if an Instruction Complete debug event occurred.

5 BRT Branch Taken Debug Event
Set to 1 if an Branch Taken debug event occurred.

6 IRPT Interrupt Taken Debug Event
Set to 1 if an Interrupt Taken debug event occurred.

7 TRAP Trap Taken Debug Event
Set to 1 if a Trap Taken debug event occurred.
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8.4 External Debug Support
External debug support is supplied through the e200 OnCE controller serial interface which allows access 
to internal core registers and other system state while in External Debug Mode (EDM). All debug 
resources including DBCR0-2, DBSR, IAC1-4, and DAC1-2 are accessible through the serial OnCE 
interface in external debug mode. Setting the DBCR0[EDM]bit to ‘1’ through the OnCE interface enables 
external debug mode and disables software updates to the debug registers. When DBCR0[EDM] is set, 
debug events enabled to set respective DBSR status bits also cause the CPU to enter Debug Mode as 

8 IAC1 Instruction Address Compare 1 Debug Event
Set to 1 if an IAC1 debug event occurred.

9 IAC2 Instruction Address Compare 2 Debug Event
Set to 1 if an IAC2 debug event occurred.

10 IAC3 Instruction Address Compare 3 Debug Event
Set to 1 if an IAC3 debug event occurred.

11 IAC4 Instruction Address Compare 4 Debug Event
Set to 1 if an IAC4 debug event occurred.

12 DAC1R Data Address Compare 1 Read Debug Event
Set to 1 if a read-type DAC1 debug event occurred while DBCR0[DAC1]=0b10 or DBCR0[DAC1]=0b11

13 DAC1W Data Address Compare 1 Write Debug Event
Set to 1 if a write-type DAC1 debug event occurred while DBCR0[DAC1]=0b01 or DBCR0[DAC1]=0b11

14 DAC2R Data Address Compare 2 Read Debug Event
Set to 1 if a read-type DAC2 debug event occurred while DBCR0[DAC2]=0b10 or DBCR0[DAC2]=0b11

15 DAC2W Data Address Compare 2 Write Debug Event
Set to 1 if a write-type DAC2 debug event occurred while DBCR0[DAC2]=0b01 or DBCR0[DAC2]=0b11

16 RET Return Debug Event
Set to 1 if a Return debug event occurred

17:20 — Reserved

21 DEVT1 External Debug Event 1 Debug Event
Set to 1 if a DEVT1 debug event occurred

22 DEVT2 External Debug Event 2 Debug Event
Set to 1 if a DEVT2 debug event occurred

23:24 — Reserved

25 CIRPT Critical Interrupt Taken Debug Event
Set to 1 if a Critical Interrupt Taken debug event occurred.

26 CRET Critical Return Debug Event
Set to 1 if a Critical Return debug event occurred

27 VLES VLE Status
Set to 1 if an ICMP, BRT, TRAP, RET, CRET, IAC, or DAC debug event occurred on a Power Architecture 
VLE Instruction. Undefined for IRPT, CIRPT, DEVT[1,2], and UDE events

28:31 — Reserved

Table 8-4. DBSR Bit Definitions (continued)

Bit(s) Name Description



Debug Support

e200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor 8-17
 

opposed to generating Debug Interrupts. In Debug Mode, the CPU is halted at a recoverable boundary, and 
an external Debug Control Module may control CPU operation through the On-Chip Emulation logic 
(OnCE). No Debug interrupts can occur while DBCR0[EDM] remains set. 

NOTE
On the initial setting of DBCR0[EDM] to ‘1’, other bits in DBCR0 remain 
unchanged. After DBCR0[EDM] has been set, all debug register resources 
may be subsequently controlled through the OnCE interface. The DBSR 
register should be cleared as part of the process of enabling external debug 
activity. The core should be placed into debug mode via the OCR[DR] 
control bit prior to writing EDM to ‘1’. This gives the debugger the 
opportunity to cleanly write to the DBCRx registers and the DBSR to clear 
out any residual state / control information which could cause unintended 
operation.

NOTE
It is intended for the core to remain in external debug mode 
(DBCR0[EDM]=1) in order to single step or perform other debug mode 
entry/ reentry via the OCR[DR], by performing go+noexit commands, or by 
assertion of the jd_de_b signal.

NOTE
DBCR0[EDM] operation is blocked if OnCE operation is disabled 
(jd_en_once negated) regardless of whether it is set or cleared. This means 
that if DBCR0[EDM] was previously set, and then jd_en_once is negated 
(this should not occur), entry into debug mode is blocked, all events are 
blocked, and watchpoints are blocked.

Due to clock domain design, the CPU clock (m_clk) must be active in order to perform writes to debug 
registers other than the OnCE Command register (OCMD), the OnCE Control register (OCR), or the 
DBCR0[EDM] bit. Register read data is synchronized back to the j_tclk clock domain. The OnCE Control 
register provides the capability of signaling the system level clock controller that the CPU clock should be 
activated if not already active.

Updates to the DBCRx and DBSR registers via the OnCE interface should be performed with the CPU in 
debug mode to guarantee proper operation. Due to the various points in the CPU pipeline where control is 
sampled and event handshaking is performed, it is possible that modifications to these registers while the 
CPU is running may result in early or late entry into debug mode, and may have incorrect status posted in 
the DBSR register.

8.4.1 OnCE Introduction

The e200 on-chip emulation circuitry (OnCE™/Nexus Class 1 interface) provides a means of interacting 
with the e200 core and integrated system so that a user may examine registers, memory, or on-chip 
peripherals facilitating hardware/software development. OnCE operation is controlled via an industry 
standard IEEE 1149.1 TAP controller. By using public instructions, the external hardware debugger can 
freeze or halt the CPU, read and write internal state, and resume normal execution. The core does not 
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contain IEEE 1149.1 standard boundary cells on its interface, as it is a building block for further 
integration. It does not support the JTAG related boundary scan instruction functionality, although JTAG 
public instructions may be decoded and signaled to external logic.

The OnCE logic provides for Nexus Class 1 static debug capability (utilizing the same set of resources 
available to software while in internal debug mode), and is present in all e200-based designs. The OnCE 
module also provides support for directly integrating a Nexus class 2 or class 3 Real-Time Debug unit with 
the e200 core for development of real-time systems where traditional static debug is insufficient. The 
partitioning between a OnCE module and a connected Nexus module to provide real-time debug allows 
for capability and cost trade-offs to be made.

The e200 core is designed to be a fully integrateable module. The OnCE TAP controller and associated 
enabling logic are designed to allow concatenation with an existing JTAG controller if present in the 
system. Thus, the e200 module can be easily integrated with existing JTAG designs or as a stand-alone 
controller. 

In order to enable full OnCE operation, the jd_enable_once input signal must be asserted. In some system 
integrations, this is automatic, because the input is tied asserted. Other integrations may require the 
execution of the Enable OnCE command via the TAP and appropriate entry of serial data. Exact 
requirements are documented by the integrated product specification. The jd_enable_once input signal 
should not change state during a debug session, or undefined activity may occur. 

The following figures show the TAP controller state model and the TAP registers implemented by the 
OnCE logic.

 

Figure 8-6. OnCE TAP Controller and Registers

The OnCE controller is implemented as a 16-state FSM, with a one-to-one correspondence to the states 
defined for the JTAG TAP controller.
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Access to e200 processor registers and the contents of memory locations are performed by enabling 
external debug mode (setting DBCR0[EDM] to ‘1’), placing the processor into debug mode, followed by 
scanning instructions and data into and out of the e200 CPU Scan Chain (CPUSCR); execution of scanned 
instructions by the e200 is used as the method to access required data. Memory locations may be read by 
scanning a load instruction into the e200 core, which references the desired memory location, executing 
the load instruction, and then scanning out the result of the load. Other resources are accessed in a similar 
manner. 

The initial entry by the CPU into the debug state (or mode) from normal, stopped, halted, or checkstop 
states (all indicated via the OnCE Status Register (OSR), Section 8.4.5.1, “e200 OnCE Status Register”) 
by assertion of one or more debug requests, begins a debug session. The jd_debug_b output signal 
indicates that a debug session is in progress, and the OSR indicates the CPU is in the debug state. 
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Instructions may the be single-stepped by scanning new values into the CPUSCR, and performing a OnCE 
go+noexit command (See Section 8.4.5.2, “e200 OnCE Command Register (OCMD)”). The CPU then 
temporarily exits the debug state (but not the debug session) to execute the instruction, and then returns to 
the debug state (again indicated via the OnCE Status Register (OSR)). The debug session remains in force 
until the final OnCE go+exit command is executed, at which time the CPU returns to the previous state it 
was in (unless a new debug request is pending). A scan into the CPUSCR is required prior to executing 
each go+exit or go+noexit OnCE command.

8.4.2 JTAG/OnCE Pins

The JTAG/OnCE pin interface is used to transfer OnCE instructions and data to the OnCE control block. 
Depending on the particular resource being accessed, the CPU may need to be placed in the Debug mode. 
For resources outside of the CPU block and contained in the OnCE block, the processor is not disturbed, 
and may continue execution. If a processor resource is required, an internal debug request (dbg_dbgrq) 
may be asserted to the CPU by the OnCE controller, and causes the CPU to finish the current instruction 
being executed, save the instruction pipeline information, enter Debug Mode, and wait for further 
commands. Asserting dbg_dbgrq causes the chip to exit the low power mode enabled by the setting of 
MSR[WE], as well as temporarily exiting the waiting, stopped, or halted power management states. 

Table 8-5 details the primary JTAG/OnCE interface signals.

A full description of JTAG pins is provided in Section 6.3.15, “JTAG Support Signals.”

8.4.3 OnCE Internal Interface Signals

The following paragraphs describe the e200 OnCE interface signals to other internal blocks associated 
with the e200 OnCE controller.

8.4.3.1 CPU Debug Request (dbg_dbgrq) 

The dbg_dbgrq signal is asserted by the e200 OnCE control logic to request the CPU to enter the debug 
state. It may be asserted for a number of different conditions, and causes the CPU to finish the current 

Table 8-5. JTAG/OnCE Primary Interface Signals

Signal Name Type Description

j_trst_b I JTAG test reset

j_tclk I JTAG test clock

j_tms I JTAG test mode select

j_tdi I JTAG test data input

j_tdo O Test data out to master controller or pad

j_tdo_en1

1 j_tdo_en is asserted when the TAP controller is in the shift_DR or shift_IR 
state.

O Enables TDO output buffer
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instruction being executed, save the instruction pipeline information, enter the debug mode, and wait for 
further commands.

8.4.3.2 CPU Debug Acknowledge (cpu_dbgack) 

The cpu_dbgack signal is asserted by the CPU upon entering the debug state. This signal is used as part of 
the handshake mechanism between the e200 OnCE control logic and the rest of the CPU. The CPU core 
may enter debug mode either through a software or hardware event. 

8.4.3.3 CPU Address, Attributes 

The CPU address and attribute information are used by a Nexus class 2-4 debug unit with information for 
real-time address trace information.

8.4.3.4 CPU Data

The CPU data bus(es) are used to supply a Nexus class 2-4 debug unit with information for real-time data 
trace capability.

8.4.4 OnCE Interface Signals

The following paragraphs describe additional e200 OnCE interface signals to other external blocks such 
as a Nexus Controller and external blocks which may need information pertaining to debug operation.

8.4.4.1 OnCE Enable (jd_en_once)

The OnCE enable signal jd_en_once is used to enable the OnCE controller to allow certain instructions 
and operations to be executed. Assertion of this signal enables the full OnCE command set, as well as 
operation of control signals and OnCE Control register functions. When this signal is disabled, only the 
Bypass, ID and Enable_OnCE commands are executed by the OnCE unit, and all other commands default 
to a “Bypass” command. The OnCE Status register (OSR) is not visible when OnCE operation is disabled. 
In addition, OnCE Control register (OCR) functions are disabled, as is the operation of the jd_de_b input. 
Secure systems may choose to leave the jd_en_once signal negated until a security check has been 
performed. Other systems should tie this signal asserted to enable full OnCE operation. The 
j_en_once_regsel output signal is provided to assist external logic performing security checks. Refer to 
Section 6.3.15.15, “Enable Once Register Select (j_en_once_regsel),” for a description of the 
j_en_once_regsel output signal.

The jd_en_once input must only change state during the Test-Logic-Reset, Run-Test/Idle, or Update_DR 
TAP states. A new value takes effect after one additional j_tclk cycle of synchronization. In addition, 
jd_enable_once input signal must not change state during a debug session, or undefined activity may 
occur. 

8.4.4.2 OnCE Debug Request/Event (jd_de_b, jd_de_en)

If implemented at the SoC level, a system level bidirectional open drain debug event pin DE_b (not part 
of the e200 interface) provides a fast means of entering the Debug Mode of operation from an external 



Debug Support

e200z0 Power Architecture Core Reference Manual, Rev. 0

8-22 Freescale Semiconductor
 

command controller (when input) as well as a fast means of acknowledging the entering of the Debug 
Mode of operation to an external command controller (when output). The assertion of this pin by a 
command controller causes the CPU core to finish the current instruction being executed, save the 
instruction pipeline information, enter Debug Mode, and wait for commands to be entered. If DE_b was 
used to enter the Debug Mode then DE_b must be negated after the OnCE controller responds with an 
acknowledge and before sending the first OnCE command. The assertion of this pin by the CPU Core 
acknowledges that it has entered the Debug Mode and is waiting for commands to be entered. 

To support operation of this system pin, the OnCE logic supplies the jd_de_en output and samples the 
jd_de_b input when OnCE is enabled (jd_en_once asserted). Assertion of jd_de_b causes the OnCE logic 
to place the CPU into Debug Mode. Once Debug Mode has been entered, the jd_de_en output is asserted 
for three j_tclk periods to signal an acknowledge. jd_de_en can be used to enable the open-drain pulldown 
of the system level DE_b pin.

For systems which do not implement a system level bidirectional open drain debug event pin DE_b, the 
jd_de_en and jd_de_b signals may still be used to handshake debug entry.

8.4.4.3 e200 OnCE Debug Output (jd_debug_b)

The e200 OnCE Debug output jd_debug_b is used to indicate to on-chip resources that a debug session is 
in progress. Peripherals and other units may use this signal to modify normal operation for the duration of 
a debug session, which may involve the CPU executing a sequence of instructions solely for the purpose 
of visibility/system control which are not part of the normal instruction stream the CPU would have 
executed had it not been placed in debug mode. This signal is asserted the first time the CPU enters the 
debug state, and remains asserted until the CPU is released by a write to the e200 OnCE Command 
Register with the GO and EX bits set, and a register specified as either “No Register Selected” or the 
CPUSCR. This signal remains asserted even though the CPU may enter and exit the debug state for each 
instruction executed under control of the e200 OnCE controller. See Section 8.4.5.2, “e200 OnCE 
Command Register (OCMD),” for more information on the function of the GO and EX bits. This signal is 
not normally used by the CPU.

8.4.4.4 e200 CPU Clock On Input (jd_mclk_on)

The e200 CPU Clock On input jd_mclk_on is used to indicate that the CPU’s m_clk input is active. This 
input signal is expected to be driven by system logic external to the e200 core, is synchronized to the j_tclk 
(scan clock) clock domain, and is presented as a status flag on the j_tdo output during the Shift_IR state. 
External firmware may use this signal to ensure proper scan sequences occur to access debug resources in 
the m_clk clock domain.

8.4.4.5 Watchpoint Events (jd_watchpt[0:5]) 

The jd_watchpt[0:5] signals may be asserted by the e200 OnCE control logic to signal that a watchpoint 
condition has occurred. Watchpoints do not cause the CPU to be affected. They are provided to allow 
external visibility only. Watchpoint events are conditioned by the settings in the DBCR0, DBCR1, and 
DBCR2 registers.
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8.4.5 e200 OnCE Controller and Serial Interface

The e200 OnCE Controller contains the e200 OnCE command register, the e200 OnCE decoder, and the 
status/control register. Figure 8-7 is a block diagram of the e200 OnCE controller. In operation, the e200 
OnCE Command register acts as the IR for the e200 TAP controller, and all other OnCE resources are 
treated as data registers (DR) by the TAP controller. The Command register is loaded by serially shifting 
in commands during the TAP controller Shift-IR state, and is loaded during the Update-IR state. The 
Command register selects a resource to be accessed as a data register (DR) during the TAP controller 
Capture-DR, Shift-DR and Update-DR states.

Figure 8-7. e200 OnCE Controller and Serial Interface

8.4.5.1 e200 OnCE Status Register

Status information regarding the state of the e200 CPU is latched into the OnCE Status register when the 
OnCE controller state machine enters the Capture-IR state. When OnCE operation is enabled, this 
information is provided on the j_tdo output in serial fashion when the Shift_IR state is entered following 
a Capture-IR. Information is shifted out least significant bit first.
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Figure 8-8. OnCE Status Register
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Table 8-6 provides bit definitions for the Once Status Register.

8.4.5.2 e200 OnCE Command Register (OCMD)

The OnCE Command Register (OCMD) is a 10-bit shift register that receives its serial data from the TDI 
pin and serves as the instruction register (IR). It holds the 10-bit commands to be used as input for the e200 
OnCE Decoder. The Command Register is shown in Figure 8-9. The OCMD is updated when the TAP 
controller enters the Update-IR state. It contains fields for controlling access to a resource, as well as 
controlling single-step operation and exit from OnCE mode. 

Although the OCMD is updated during the Update-IR TAP controller state, the corresponding resource is 
accessed in the DR scan sequence of the TAP controller, and as such, the Update-DR state must be 
transitioned through in order for an access to occur. In addition, the Update-DR state must also be 
transitioned through in order for the single-step and/or exit functionality to be performed, even though the 
command appears to have no data resource requirement associated with it.

Table 8-6. OnCE Status Register Bit Definitions

Bit(s) Name Description

0 MCLK MCLK
m_clk Status Bit 
0 Inactive state
1 Active state
This status bit reflects the logic level on the jd_mclk_on input signal after capture by j_tclk.

1 ERR ERROR 
This bit is used to indicate that an error condition occurred during attempted execution of the last 
single-stepped instruction (GO+NoExit with CPUSCR or No Register Selected in OCMD), and that 
the instruction may not have been properly executed. This could occur if an Interrupt (all classes 
including External, Critical, machine check, Storage, Alignment, Program, etc.) occurred while 
attempting to perform the instruction single step. In this case, the CPUSCR contains information 
related to the first instruction of the Interrupt handler, and no portion of the handler will have been 
executed.

2 CHKSTOP CHECKSTOP Mode
This bit reflects the logic level on the CPU p_chkstop output after capture by j_tclk.

3 RESET RESET Mode
This bit reflects the inverted logic level on the CPU p_reset_b input after capture by j_tclk.

4 HALT HALT Mode
This bit reflects the logic level on the CPU p_halted output after capture by j_tclk.

5 STOP STOP Mode
This bit reflects the logic level on the CPU p_stopped output after capture by j_tclk.

6 DEBUG Debug Mode
This bit is asserted once the CPU is in debug mode. It is negated once the CPU exits debug mode 
(even during a debug session)

7 WAIT Waiting Mode
This bit reflects the logic level on the CPU p_waiting output after capture by j_tclk.

8 — Reserved, set to 0 for 1149.1 compliance

9 — Reserved, set to 1 for 1149.1 compliance
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Table 8-7 provides bit definitions for the Once Command Register.

R/W GO EX RS[0:6]

0 1 2 3 4 5 6 7 8 9

Reset—10’b1000000010 on assertion of j_trst_b or m_por, or while in the Test_Logic_Reset state

Figure 8-9. OnCE Command Register

Table 8-7. OnCE Command Register Bit Definitions

Bit(s) Name Description

0 R/W Read/Write Command Bit 
The R/W bit specifies the direction of data transfer. The table below describes the options defined by the 
R/W bit.
0 Write the data associated with the command into the register specified by RS[0:6]
1 Read the data contained in the register specified by RS[0:6]
Note: The R/W bit generally ignored for read-only or write-only registers. In addition, it is ignored for all 
bypass operations. When performing writes, most registers are sampled in the Capture-DR state into a 
32-bit shift register, and subsequently shifted out on j_tdo during the first 32 clocks of Shift-DR.

1 GO Go
Go Command Bit 
0 Inactive (no action taken) 
1 Execute instruction in IR 
If the GO bit is set, the chip executes the instruction that resides in the IR register in the CPUSCR. To 
execute the instruction, the processor leaves the debug mode, executes the instruction, and if the EX bit is 
cleared, returns to the debug mode immediately after executing the instruction. The processor goes on to 
normal operation if the EX bit is set, and no other debug request source is asserted. The GO command is 
executed only if the operation is a read/write to CPUSCR or a read/write to “No Register Selected”. 
Otherwise the GO bit is ignored.The processor leaves the debug mode after the TAP controller Update-DR 
state is entered.
On a GO+NoExit operation, returning to debug mode is treated as a debug event, thus exceptions such as 
machine checks and interrupts may take priority and prevent execution of the intended instruction. Debug 
firmware should mask these exceptions as appropriate. The OSR[ERR] bit indicates such an occurrence.

2 EX Exit Command Bit 
0 Remain in debug mode 
1 Leave debug mode 
If the EX bit is set, the processor leaves the debug mode and resume normal operation until another debug 
request is generated. The Exit command is executed only if the Go command is issued, and the operation 
is a read/write to CPUSCR or a read/write to “No Register Selected”. Otherwise the EX bit is ignored. 
The processor leaves the debug mode after the TAP controller Update-DR state is entered. Note that if the 
DR bit in the OnCE control register is set or remains set, or if a bit in the DBSR is set and DBCR0[EDM]=1 
(external debug mode is enabled), or if another debug request source is asserted, then the processor may 
return to the debug mode without execution of an instruction, even though the EX bit was set.

3:9 RS Register Select
The Register Select bits define which register is source (destination) for the read (write) operation. Table 8-9 
indicates the e200 OnCE register addresses. Attempted writes to read-only registers are ignored.
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Table 8-8 indicates the e200 OnCE register addresses.

Table 8-8. e200 OnCE Register Addressing

RS[0:6] Register Selected

000 0000 Reserved

000 0001 Reserved

000 0010 JTAG ID (read-only)

000 0011–000 1111 Reserved

001 0000 CPU Scan Register (CPUSCR)

001 0001 No Register Selected (Bypass)

001 0010  OnCE Control Register (OCR)

001 0011  Reserved

001 0100–001 1111 Reserved

010 0000 Instruction Address Compare 1 (IAC1)

010 0001 Instruction Address Compare 2 (IAC2)

010 0010 Instruction Address Compare 3 (IAC3)

010 0011 Instruction Address Compare 4 (IAC4)

010 0100 Data Address Compare 1 (DAC1)

010 0101 Data Address Compare 2 (DAC2)

010 0110 Reserved (DVC1 future use)

010 0111 Reserved (DVC2 future use)

010 1000–010 1011 Reserved

010 1100 Reserved (DBCNT)

010 1101–010 1111 Reserved

011 0000 Debug Status Register (DBSR)

011 0001 Debug Control Register 0 (DBCR0)

011 0010 Debug Control Register 1 (DBCR1)

011 0011 Debug Control Register 2 (DBCR2)

011 0100–101 1111 Reserved (do not access)

110 0000–110 1110 Reserved (do not access)

110 1111 Shared Nexus Control Register Register Select

111 0000–111 1001 General Purpose register selects [0:9]

111 1010  (Reserved))

111 1011 (Reserved)

111 1100 Nexus2/3-Access

111 1101 Reserved
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The Once Decoder receives as input the 10-bit command from the OCMD, and status signals from the 
processor, and generates all the strobes required for reading and writing the selected OnCE registers.

Single stepping of instructions is performed by placing the CPU in debug mode, scanning in appropriate 
information into the CPUSCR, and setting the Go bit (with the EX bit cleared) with the RS field indicating 
either the CPUSCR or No Register Selected. After executing a single instruction, the CPU re-enters debug 
mode and await further commands. During single-stepping, exception conditions may occur if not 
properly masked by debug firmware (interrupts, machine checks, bus error conditions, etc.) and may 
prevent the desired instruction from being successfully executed. The OSR[ERR] bit is set to indicate this 
condition. In these cases, values in the CPUSCR correspond to the first instruction of the exception 
handler.

Additionally, the DBCR0[EDM] bit is forced to ‘1’ internally while single-stepping to prevent Debug 
events from generating Debug interrupts. Also, during a debug session, the DBSR is frozen from updates 
due to debug events regardless of DBCRO[EDM]. They may still be modified during a debug session via 
a single-stepped mtspr instruction if DBCRO[EDM] is programmed to a ‘0’, or via OnCE access if 
DBCR0[EDM] is set.

8.4.5.3 e200 OnCE Control Register (OCR)

The e200 OnCE Control Register is a 32-bit register used to force the e200 core into debug mode and to 
enable / disable sections of the e200 OnCE control logic. It also provides control over the MMU during a 
debug session. The control bits are read/write. These bits are only effective while OnCE is enabled 
(jd_en_once asserted). The OCR is shown in Figure 8-10.

111 1110 Enable_OnCE1

111 1111 Bypass

1 Causes assertion of the j_en_once_regsel output. Refer to Section 6.3.15.15, 
“Enable Once Register Select (j_en_once_regsel).”
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Figure 8-10. OnCE Control Register

Table 8-8. e200 OnCE Register Addressing (continued)

RS[0:6] Register Selected
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Table 8-9 provides bit definitions for the OnCE Control Register.

Table 8-9. OnCE Control Register Bit Definitions

Bit(s) Name Description

0:7 — Reserved

8 I_DMDIS1 Instruction Side Debug MMU Disable Control Bit (I_DMDIS) 
0 MMU not disabled for debug sessions
1 MMU disabled for debug sessions
This bit may be used to control whether the MMU is enabled normally, or whether the MMU is disabled 
during a debug session for Instruction Accesses. When enabled, the MMU functions normally. When 
disabled, for Instruction Accesses, no address translation is performed (1:1 address mapping), and 
the TLB VLE, I,M, and E bits are taken from the OCR bits I_VLE, I_DI, I_DM, and I_DE bits. The W 
and G bits are assumed ‘0’. The SX and UX access permission control bits are set to‘1’ to allow full 
access. When disabled, no TLB miss or TLB exceptions are generated for Instruction accesses. 
External access errors can still occur.

9:10 — Reserved

11 I_DVLE1 Instruction Side Debug TLB ‘VLE’ Attribute Bit (I_DVLE) 
This bit is used to provide the ‘VLE’ attribute bit to be used when the MMU is disabled during a debug 
session.

12 I_DI1 Instruction Side Debug TLB ‘I’ Attribute Bit (I_DI) 
This bit is used to provide the ‘I’ attribute bit to be used for Instruction accesses when the MMU is 
disabled for Instruction accesses during a debug session.

13 I_DM1 Instruction Side Debug TLB ‘M’ Attribute Bit (I_DM) 
This bit is used to provide the ‘M’ attribute bit to be used for Instruction accesses when the MMU is 
disabled for Instruction accesses during a debug session.

14 — Reserved

15 I_DE1 Instruction Side Debug TLB ‘E’ Attribute Bit (I_DE) 
This bit is used to provide the ‘E’ attribute bit to be used for Instruction accesses when the MMU is 
disabled for Instruction accesses during a debug session.

16 D_DMDIS1 Data Side Debug MMU Disable Control Bit (D_DMDIS) 
0 MMU not disabled for debug sessions
1 MMU disabled for debug sessions
This bit may be used to control whether the MMU is enabled normally, or whether the MMU is disabled 
during a debug session for Data Accesses. When enabled, the MMU functions normally. When 
disabled, for Data Accesses, no address translation is performed (1:1 address mapping), and the TLB 
WIMGE bits are taken from the OCR bits D_DW, D_DI, D_DM, D_DG, and D_DE bits. The SR, SW, 
UR, and UW access permission control bits are set to‘1’ to allow full access. When disabled, no TLB 
miss or TLB exceptions are generated for Data accesses. External access errors can still occur.

17:18 — Reserved

19 D_DW1 Data Side Debug TLB ‘W’ Attribute Bit (D_DW) 
This bit is used to provide the ‘W’ attribute bit to be used for Data accesses when the MMU is disabled 
for Data accesses during a debug session.

20 D_DI1 Data Side Debug TLB ‘I’ Attribute Bit (D_DI) 
This bit is used to provide the ‘I’ attribute bit to be used for Data accesses when the MMU is disabled 
for Data accesses during a debug session.

21 D_DM1 Data Side Debug TLB ‘M’ Attribute Bit (D_DM) 
This bit is used to provide the ‘M’ attribute bit to be used for Data accesses when the MMU is disabled 
for Data accesses during a debug session.
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8.4.6 Access to Debug Resources

Resources contained in the e200 OnCE Module which do not require the e200 processor core to be halted 
for access may be accessed while the e200 core is running, and does not interfere with processor execution. 
Accesses to other resources such as the CPUSCR require the e200 core to be placed in debug mode to 
avoid synchronization hazards. Debug firmware may ensure that it is safe to access these resources by 
determining the state of the e200 core prior to access. Note that a scan operation to update the CPUSCR 
is required prior to exiting debug mode if debug mode has been entered.

Some cases of write accesses other than accesses to the OnCE Command and Control registers, or the 
EDM bit of DBCR0 require the e200 m_clk to be running for proper operation. The OnCE control register 
provides a means of signaling this need to a system level clock control module.

In addition, because the CPU may cause multiple bits of certain registers to change state, reads of certain 
registers while the CPU is running (DBSR, etc.) may not have consistent bit settings unless read twice with 
the same value indicated. In order to guarantee that the contents are consistent, the CPU should be placed 
into debug mode, or multiple reads should be performed until consistent values have been obtained on 
consecutive reads.

Table 8-10 provides a list of access requirements for OnCE registers.

22 D_DG1 Data Side Debug TLB ‘G’ Attribute Bit (D_DG) 
This bit is used to provide the ‘G’ attribute bit to be used for Data accesses when the MMU is disabled 
for Data accesses during a debug session.

23 D_DE1 Data Side Debug TLB ‘E’ Attribute Bit (D_DE) 
This bit is used to provide the ‘E’ attribute bit to be used for Data accesses when the MMU is disabled 
for Data accesses during a debug session.

24:28 — Reserved

29 WKUP Wakeup Request Bit (WKUP) 
This control bit may be used to force the e200 p_wakeup output signal to be asserted. This control 
function may be used by debug firmware to request that the chip-level clock controller restore the 
m_clk input to normal operation regardless of whether the CPU is in a low power state to ensure that 
debug resources may be properly accessed by external hardware through scan sequences.

30 FDB Force Breakpoint Debug Mode Bit (FDB) 
This control bit is used to determine whether the processor is operating in breakpoint debug enable 
mode or not. The processor may be placed in breakpoint debug enable mode by setting this bit. In 
breakpoint debug enable mode, execution of the ‘bkpt’ pseudo- instruction causes the processor to 
enter debug mode, as if the jd_de_b input had been asserted. 
This bit is qualified with DBCR0[EDM], which must be set for FDB to take effect.

31 DR CPU Debug Request Control Bit
This control bit is used to unconditionally request the CPU to enter the Debug Mode. The CPU 
indicates that Debug Mode has been entered via the data scanned out in the shift-IR state.
0 No Debug Mode request
1 Unconditional Debug Mode request
When the DR bit is set the processor enters Debug mode at the next instruction boundary.

1 Unused by Zen Z0n2p and Zen Z0Hn2p

Table 8-9. OnCE Control Register Bit Definitions (continued)

Bit(s) Name Description
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Table 8-10. OnCE Register Access Requirements

Register Name

Access Requirements

Notes
Requires 

jd_en_once 
to be 

Asserted

Requires 
DBCR0

[EDM] = 1

Requires 
m_clk 
Active

for Write
Access

Requires 
CPU to be 

Halted
for Read 
Access

Requires 
CPU to be 

Halted
for Write 
Access

Enable_OnCE N N N N — —

Bypass N N N N N —

CPUSCR Y Y Y Y Y —

DAC1 Y Y Y N *1

1 Writes to these registers while the CPU is running may have unpredictable results due to the pipelined nature of 
operation, and the fact that updates are not synchronized to a particular clock, instruction, or bus cycle boundary, 
therefore it is strongly recommended to ensure the processor is first placed into debug mode before updates to these 
registers are performed.

—

DAC2 Y Y Y N *1 —

DBCR0 Y Y Y N *1 *DBCR0[EDM] access only 
requires jd_en_once asserted

DBCR1 Y Y Y N *1 —

DBCR2 Y Y Y N *1 —

DBSR Y Y Y N2 *1 —

IAC1 Y Y Y N *1 —

IAC2 Y Y Y N *1 —

IAC3 Y Y Y N *1 —

IAC4 Y Y Y N *1 —

JTAG ID N N — N — Read-only

OCR Y N N N N —

OSR Y N — N — Read-only, accessed by scanning 
out IR while jd_en_once is 
asserted

Cache Debug 
Access Control 
(CDACNTL)2

Y N Y Y Y CPU must be in debug mode with 
clocks running

Cache Debug 
Access Data 
(CDADATA)2

Y N Y Y Y CPU must be in debug mode with 
clocks running

Nexus2/3-Access Y N N N N —

External GPRs Y N N N N —

LSRL Select Y N ? ? ? System Test logic implementation 
determines LSRL functionality
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8.4.7 Methods of Entering Debug Mode

The OnCE Status Register indicates that the CPU has entered the debug mode via the DEBUG status bit. 
The following sections describe how e200 Debug Mode is entered assuming the OnCE circuitry has been 
enabled. e200 OnCE operation is enabled by the assertion of the jd_en_once input (see Section 8.4.4.1).

8.4.7.1 External Debug Request During RESET

Holding the jd_de_b signal asserted during the assertion of p_reset_b, and continuing to hold it asserted 
following the negation of p_reset_b causes the e200 core to enter Debug Mode. After receiving an 
acknowledge via the OnCE Status Register DEBUG bit, the external command controller should negate 
the jd_de_b signal before sending the first command. Note that in this case the e200 core does not execute 
an instruction before entering Debug Mode, although the first instruction to be executed may be fetched 
prior to entering Debug Mode. 

In this case, all values in the debug scan chain are undefined, and the external Debug Control Module is 
responsible for proper initialization of the chain before debug mode is exited. In particular, the exception 
processing associated with reset, may not be performed when the debug mode is exited, thus, the Debug 
controller must initialize the PC, MSR, and IR to the image that the processor would have obtained in 
performing reset exception processing, or must cause the appropriate reset to be re-asserted.

8.4.7.2 Debug Request During RESET 

Asserting a debug request by setting the DR bit in the OCR during the assertion of p_reset_b causes the 
chip to enter debug mode. In this case the chip may fetch the first instruction of the reset exception handler, 
but does not execute an instruction before entering debug mode. In this case, all values in the debug scan 
chain are undefined, and the external Debug Control Module is responsible for proper initialization of the 
chain before debug mode is exited. In particular, the exception processing associated with reset may not 
be performed when the debug mode is exited, thus, the Debug controller must initialize the PC, MSR, and 
IR to the image that the processor would have obtained in performing reset exception processing, or must 
cause the appropriate reset to be re-asserted.

8.4.7.3 Debug Request During Normal Activity

Asserting a debug request by setting the DR bit in the OCR during normal chip activity causes the chip to 
finish the execution of the current instruction and then enter the debug mode. Note that in this case the chip 
completes the execution of the current instruction and stops after the newly fetched instruction enters the 
CPU instruction register. This process is the same for any newly fetched instruction including instructions 
fetched by the interrupt processing, or those that are aborted by the interrupt processing. 

8.4.7.4 Debug Request During Waiting, Halted or Stopped State

Asserting a debug request by setting the DR bit in the OCR when the chip is in the Waiting state (p_waiting 
asserted), Halted state (p_halted asserted) or Stopped state (p_stopped asserted) causes the CPU to exit the 
state and enter the debug mode once the CPU clock m_clk has been restored. Note that in this case, the 

2 Not present on Zen Z0n2p or Zen Z0Hn2p
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CPU negates the p_waiting, p_halted and p_stopped outputs. Once the debug session has ended, the CPU 
returns to the state it was in prior to entering debug mode.

To signal the chip-level clock generator to re-enable m_clk, the p_wakeup output is asserted whenever the 
debug block is asserting a debug request to the CPU due to OCR[DR] being set, or jd_de_b assertion, and 
remains set from then until the debug session ends (jd_debug_b goes from asserted to negated). In 
addition, the status of the jd_mclk_on input (after synchronization to the j_tclk clock domain) may be 
sampled along with other status bits from the j_tdo output during the Shift_IR TAP controller state. This 
status may be used if necessary by external debug firmware to ensure proper scan sequences occur to 
registers in the m_clk clock domain.

8.4.7.5 Software Request During Normal Activity

Upon executing a “bkpt” pseudo-instruction (for e200, defined to be an all 0’s instruction opcode) when 
the OCR register’s (FDB) bit is set (debug mode enable control bit is true), and DBCR0[EDM]=1, the CPU 
enters the debug mode after the instruction following the “bkpt” pseudo-instruction has entered the 
instruction register.

8.4.8 CPU Status and Control Scan Chain Register (CPUSCR)

A number of on-chip registers store the CPU pipeline status and are configured in a single scan chain for 
access by the e200 OnCE controller. The CPUSCR register contains these processor resources, which are 
used to restore the pipeline and resume normal chip activity upon return from the debug mode, as well as 
a mechanism for the emulator software to access processor and memory contents. Figure 8-11 shows the 
block diagram of the pipeline information registers contained in the CPUSCR. Once debug mode has been 
entered, it is required to scan in and update this register prior to exiting debug mode.
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Figure 8-11. CPU Scan Chain Register (CPUSCR)

8.4.8.1 Instruction Register (IR)

The Instruction Register (IR) provides a mechanism for controlling the debug session by serving as a 
means for forcing in selected instructions, and then causing them to be executed in a controlled manner by 
the debug control block. The opcode of the next instruction to be executed when entering debug mode is 
contained in this register when the scan-out of this chain begins. This value should be saved for later 
restoration if continuation of the normal instruction stream is desired.

On scan-in, in preparation for exiting debug mode, this register is filled with an instruction opcode selected 
by debug control software. By selecting appropriate instructions and controlling the execution of those 
instructions, the results of execution may be used to examine or change memory locations and processor 
registers. The debug control module external to the processor core controls execution by providing a 
single-step capability. Once the debug session is complete and normal processing is to be resumed, this 
register may be loaded with the value originally scanned out.
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8.4.8.2 Control State Register (CTL)

The Control State Register (CTL) is a 32-bit register that stores the value of certain internal CPU state 
variables before the debug mode is entered. This register is affected by the operations performed during 
the debug session and should normally be restored by the external command controller when returning to 
normal mode. In addition to saved internal state variables, two of the bits are used by emulation firmware 
to control the debug process. In certain circumstances, emulation firmware must modify the content of this 
register as well as the PC and IR values in the CPUSCR before exiting debug mode. These cases are 
described below. Figure 8-12.

WAITING—WAITING State Status

This bit indicates whether the CPU was in the waiting state prior to entering debug mode. If set, the CPU 
was in the waiting state. Upon exiting a debug session, the value of this bit in the restored CPUSCR 
determines whether the CPU re-enters the waiting state on a go+exit.

0—CPU was not in the waiting state when debug mode was entered

1—CPU was in the waiting state when debug mode was entered

PCOFST—PC Offset Field

This field indicates whether the value in the PC portion of the CPUSCR must be adjusted prior to exiting 
debug mode. Due to the pipelined nature of the CPU, the PC value must be backed-up by emulation 
software in certain circumstances. The PCOFST field specifies the value to be subtracted from the original 
value of the PC. This adjusted PC value should be restored into the PC portion of the CPUSCR just prior 
to exiting debug mode with a go+exit. In the event the PCOFST is non-zero, the IR should be loaded with 
a nop instruction instead of the original IR value, other wise the original value of IR should be restored. 
(But see PCINV which overrides this field)

0000—No correction required.

0001—Subtract 0x04 from PC.

0010—Subtract 0x08 from PC.

0011—Subtract 0x0C from PC.

0100—Subtract 0x10 from PC.

0101—Subtract 0x14 from PC.

All other encodings are reserved

* — Internal State Bits

These control bits represent internal processor state and should be restored to their original 
value after a debug session is completed, i.e when a e200 OnCE command is issued with the 
GO and EX bits set and not ignored. When performing instruction execution during a debug 
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session (see Section 8.4.4.3, “e200 OnCE Debug Output (jd_debug_b)”) which is not part 
of the normal program execution flow, these bits should be set to a 0.

PCINV—PC and IR Invalid Status Bit

This status bit indicates that the values in the IR and PC portions of the CPUSCR are 
invalid. Exiting debug mode with the saved values in the PC and IR have unpredictable 
results. Debug firmware should initialize the PC and IR values in the CPUSCR with desired 
values prior to exiting debug mode if this bit was set when debug mode was initially 
entered.

0 = No error condition exists.
1 = Error condition exists. PC and IR are corrupted.

FFRA— Feed Forward RA Operand Bit

This control bit causes the content of the WBBRlow to be used as the RA (RS for logical and 
shift operations or RX for VLE se_ instructions) operand value of the first instruction to be 
executed following an update of the CPUSCR. This allows the debug firmware to update 
processor registers — initialize the WBBRlow with the desired value, set the FFRA bit, and 
execute a ori Rx,Rx,0 instruction to the desired register.

0 = No action.
1 = Content of WBBRlow used as RA (RS for logical and shift operations) operand value

IRStat0—IR Status Bit 0

This control bit indicates a TEA status for the IR. 

0 = No TEA occurred on the fetch of this instruction.
1 = TEA occurred on the fetch of this instruction.

IRStat1—IR Status Bit 1

This control bit indicates a TLB Miss status for the IR. (Note: this bit is reserved.)

0 = No TLB Miss occurred on the fetch of this instruction.
1 = TLB Miss occurred on the fetch of this instruction.

IRStat2—IR Status Bit 2

This control bit indicates an Instruction Address Compare 1 event status for the IR. 

0 = No Instruction Address Compare 1 event occurred on the fetch of this instruction.
1 = An Instruction Address Compare 1 event occurred on the fetch of this instruction.

IRStat3—IR Status Bit 3

This control bit indicates an Instruction Address Compare 2 event status for the IR. 

0 = No Instruction Address Compare 2 event occurred on the fetch of this instruction.
1 = An Instruction Address Compare 2 event occurred on the fetch of this instruction.

IRStat4—IR Status Bit 4

This control bit indicates an Instruction Address Compare 3 event status for the IR. 
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0 = No Instruction Address Compare 3 event occurred on the fetch of this instruction.
1 = An Instruction Address Compare 3 event occurred on the fetch of this instruction.

IRStat5—IR Status Bit 5

This control bit indicates an Instruction Address Compare 4 event status for the IR. 

0 = No Instruction Address Compare 4 event occurred on the fetch of this instruction.
1 = An Instruction Address Compare 4 event occurred on the fetch of this instruction.

IRStat6—IR Status Bit 6

This control bit indicates a Parity Error status for the IR. (Note: this bit is reserved.)

0 = No Parity Error occurred on the fetch of this instruction.
1 = Parity Error occurred on the fetch of this instruction.

IRStat7—IR Status Bit 7

This control bit indicates a Precise External Termination Error status for the IR.

0 = 0 = No Precise External Termination Error occurred on the fetch of this instruction.
1 = Precise External Termination Error occurred on the fetch of this instruction.

IRStat8—IR Status Bit 8

This control bit indicates the Power Architecture VLE status for the IR. (Note: this bit is 
always set on Zen Z0n2p and Zen Z0Hn2p.)

0 = IR contains a Book E instruction.
1 = IR contains a Power Architecture VLE instruction, aligned in the Most Significant 

Portion of IR if 16-bit.

IRStat9—IR Status Bit 9

This control bit indicates the Power Architecture VLE Byte-ordering Error status for the IR, 
or a Book E misaligned instruction fetch, depending on the state of IRStat8. (Note: this bit 
is reserved on Zen Z0n2p and Zen Z0Hn2p.)

0 = IR contains an instruction without a byte-ordering error and no Misaligned 
Instruction Fetch Exception has occurred (no MIF).

1 = If IRStat8 = ‘0’, A Book E Misaligned Instruction Fetch Exception has occurred 
while filling the IR.
If IRStat8 = ‘1’, IR contains an instruction with a byte-ordering error due to 
mismatched VLE page attributes, or due to E indicating little-endian for a VLE page.

Emulation firmware should modify the content of the CTL, PC, and IR values in the CPUSCR during 
execution of debug related instructions as well as just prior to exiting debug with a go+exit command. 
During the debug session, the CTL register should be written with the FFRA bit set as appropriate, and all 
other bit set to ‘0’, and the IR set to the value of the desired instruction to be executed. IRStat8 is used to 
determine the type of instruction present in the IR.

Just prior to exiting debug mode with a go+exit, the PCINV status bit which was originally present when 
debug mode was first entered should be tested, and if set, the PC and IR initialized for performing whatever 
recovery sequence is appropriate for a faulted exception vector fetch. If the PCINV bit is cleared, then the 
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PCOFST bits should be examined to determine whether the PC value must be adjusted. Due to the 
pipelined nature of the CPU, the PC value must be backed-up by emulation software in certain 
circumstances. The PCOFST field specifies the value to be subtracted from the original value of the PC. 
This adjusted PC value should be restored in to the PC portion of the CPUSCR just prior to exiting debug 
mode with a go+exit. In the event the PCOFST is non-zero, the IR should be loaded with a nop instruction 
(such as ori r0,r0,0) instead of the original IR value, otherwise the original value of IR should be restored. 
Note that when a correction is made to the PC value, it generally points to the last completed instruction, 
although that instruction is not re-executed. The nop instruction is executed instead, and instruction fetch 
and execution resumes at location PC+4. IRStat8 is used to determine the type of instruction present in the 
IR, thus should be cleared in this case.

For the CTL register, the internal state bits should be restored to their original value. The IRStatus bits 
should be set to ‘0’s if the PC was adjusted. If no PC adjustment was performed, emulation firmware 
should determine whether IRStat2-5 should be set to ‘0’ to avoid re-entry into debug mode for an 
instruction breakpoint request. Upon exiting debug mode with go+exit, if one of these bits is set, debug 
mode is re-entered prior to any further instruction execution.

8.4.8.3 Program Counter Register (PC)

The PC is a 32-bit register that stores the value of the program counter which was present when the chip 
entered the debug mode. It is affected by the operations performed during the debug mode and must be 
restored by the external command controller when the CPU returns to normal mode. PC normally points 
to the instruction contained in the IR portion of CPUSCR. If debug firmware wishes to redirect program 
flow to an arbitrary location, the PC and IR should be initialized to correspond to the first instruction to be 
executed upon resumption of normal processing. Alternatively, the IR may be set to a nop and the PC set 
to point to the location prior to the location at which it is desired to redirect flow to. On exiting debug 
mode, the nop is executed, and instruction fetch and execution resumes at PC+4.

8.4.8.4 Write-Back Bus Register (WBBRlow, WBBRhigh)

WBBR is used as a means of passing operand information between the CPU and the external command 
controller. Whenever the external command controller needs to read the contents of a register or memory 
location, it forces the chip to execute an instruction that brings that information to WBBR. WBBRlow holds 
the 32-bit result of most instructions including load data returned for a load or load with update instruction. 
WBBRhigh holds the updated effective address calculated by a load with update instruction. It is undefined 
for other instructions.

As an example, to read the lower 32 bits of processor register r1, an e_ori r1,r1,0 instruction is executed, 
and the result value of the instruction is latched into WBBRlow. The contents of WBBRlow can then be 
delivered serially to the external command controller. To update a processor resource, this register is 
initialized with a data value to be written, and an e_ori instruction is executed which uses this value as a 
substitute data value. The Control State register FFRA bit forces the value of the WBBRlow to be 
substituted for the normal RS source value of the e_ori instruction, thus allowing updates to processor 
registers to be performed (refer to Section 8.4.8.2, “Control State Register (CTL),” for more detail on the 
CTL[FFRA] bit). 
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WBBRlow and WBBRhigh are generally undefined on instructions which do not writeback a result, and due 
to control issues are not defined on lmw or branch instructions as well.

8.4.8.5 Machine State Register (MSR)

The MSR is a 32-bit register used to read/write the Machine State Register. Whenever the external 
command controller needs to save or modify the contents of the Machine State Register, this register is 
used.This register is affected by the operations performed during the debug mode and must be restored by 
the external command controller when returning to normal mode.

8.4.9 Reserved Registers (Reserved)

The Reserved Registers are used to control various test control logic. These registers are not intended for 
customer use. To preclude device and/or system damage, these registers should not be accessed.

8.5 Watchpoint Support
e200 supports the generation and signalling of watchpoints when operating in internal debug mode 
(DBCR0[IDM]=1) or in external debug mode (DBCR0[EDM]=1). Watchpoints are indicated with a 
dedicated set of interface signals. The jd_watchpoint[0:5] output signals are used to indicate that a 
watchpoint has occurred. 

Each debug address compare function (IAC1-4, DAC1-2) is capable of triggering a watchpoint output. The 
DBCRx control fields are used to configure watchpoints, regardless of whether events are enabled in 
DBCR0. Watchpoints may occur whenever an associated event would have been posted in the Debug 
Status Register if enabled. No explicit enable bits are provided for watchpoints; they are always enabled 
by definition (except during a debug session). If not desired, the base address values for these events may 
be programmed to an unused system address. MSR[DE] has no effect on watchpoint generation.

External logic may monitor the assertion of these signals for debugging purposes. Watchpoints are 
signaled in the clock cycle following the occurrence of the actual event. The Nexus2+ module also 
monitors assertion of these signals for various development control purposes.

Table 8-11. Watchpoint Output Signal Assignments

Signal Name Type Description

jd_watchpt[0] IAC1 Instruction Address Compare 1 watchpoint
Asserted whenever an IAC1 compare occurs regardless of being enabled to set DBSR status

jd_watchpt[1] IAC2 Instruction Address Compare 2 watchpoint
Asserted whenever an IAC2 compare occurs regardless of being enabled to set DBSR status

jd_watchpt[2] IAC3 Instruction Address Compare 3 watchpoint
Asserted whenever an IAC3 compare occurs regardless of being enabled to set DBSR status

jd_watchpt[3] IAC4 Instruction Address Compare 4 watchpoint
Asserted whenever an IAC4 compare occurs regardless of being enabled to set DBSR status
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8.6 Basic Steps for Enabling, Using, and Exiting External Debug 
Mode

The following steps show one possible scenario for a debugger wishing to use the external debug facilities. 
This simplified flow is intended to illustrate basic operations, but does not cover all potential methods in 
depth.

Enabling External Debug Mode and initializing Debug registers

• The debugger should ensure that the jd_en_once control signal is asserted in order to enable OnCE 
operation

• Select the OCR and write a value to it in which OCR[DR], OCR[WKUP], are set to ‘1’. The tap 
controller must step through the proper states as outlined earlier. This step places the CPU in a 
debug state in which it is halted and awaiting single-step commands or a release to normal mode

• Scan out the value of the OSR to determine that the CPU clock is running and the CPU has entered 
the Debug state. This can be done in conjunction with a Read of the CPUSCR. The OSR is shifted 
out during the Shift_IR state. The CPUSCR is shifted out during the Shift_DR state. The debugger 
should save the scanned-out value of CPUSCR for later restoration.

• Select the DBCR0 register and update it with the DBCR0[EDM] bit set

• Clear the DBSR status bits

• Write appropriate values to the DBCRx, IAC, DAC registers. Note that the initial write to DBCR0 
only affects the EDM bit, so the remaining portion of the register must now be initialized, keeping 
the EDM bit set

At this point the system is ready to commence debug operations. Depending on the desired operation, 
different steps must occur.

• Optionally, set the OCR[I_DMDIS] and/or OCR[I_DMDIS] control bits to ensure that no TLB 
misses occur while performing the debug operations

• Optionally, ensure that the values entered into the MSR portion of the CPUSCR during the 
following steps cause interrupt to be disabled (clearing MSR[EE] and MSR[CE). This ensures that 
external interrupt sources do not cause single-step errors.

jd_watchpt[4] DAC11 Data Address Compare 1 watchpoint
Asserted whenever a DAC1 compare occurs regardless of being enabled to set DBSR status

jd_watchpt[5] DAC21 Data Address Compare 2 watchpoint
Asserted whenever a DAC2 compare occurs regardless of being enabled to set DBSR status

1 If the corresponding event is completely disabled in DBCR0, either load-type or store-type data accesses are allowed to 
generate watchpoints, otherwise watchpoints are generated only for the enabled conditions.

Table 8-11. Watchpoint Output Signal Assignments (continued)

Signal Name Type Description
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To single-step the CPU:

• debugger scans in either a new or a previously saved value of the CPUSCR (with appropriate 
modification of the PC and IR as described in Section 8.4.8.2, “Control State Register (CTL)”), 
with a Go+Noexit OnCE Command value.

• The debugger scans out the OSR with ‘no-register selected’, Go cleared, and determines that the 
PCU has re-entered the Debug state and that no ERR condition occurred

To return the CPU to normal operation (without disabling external debug mode)

• The OCR[DMDIS], OCR[DR], control bits should be cleared, leaving the OCR[WKUP] bit set

• The debugger restores the CPUSCR with a previously saved value of the CPUSCR (with 
appropriate modification of the PC and IR as described in Section 8.4.8.2, “Control State Register 
(CTL)”), with a Go+Exit OnCE Command value.

• The OCR[WKUP] bit may then be cleared

To exit External Debug Mode

• The debugger should place the CPU in the debug state via the OCR[DR] with OCR[WKUP] 
asserted, scanning out and saving the CPUSCR

• The debugger should write the DBCRx registers as needed, likely clearing every enable except the 
DBCR0[EDM] bit

• The debugger should write the DBSR to a cleared state

• The debugger should re-write the DBCR0 with all bits including EDM cleared

• The debugger should clear the OCR[DR] bit

• The debugger restores the CPUSCR with the previously saved value of the CPUSCR (with 
appropriate modification of the PC and IR as described in Section 8.4.8.2, “Control State Register 
(CTL)”), with a Go+Exit OnCE Command value.

• The OCR[WKUP] bit may then be cleared

NOTE
These steps are meant by way of examples, and are not meant to be an exact 
template for debugger operation.

 



e200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor 9-1
 

Chapter 9  
Nexus 2+ Module
The e200z0 and e200z0h Nexus 2+ module provides real-time development capabilities for Zen 
processors in compliance with the IEEE-ISTO Nexus 5001-2003. This module provides development 
support capabilities without requiring the use of address and data pins for internal visibility.

A portion of the pin interface (the JTAG port) is also shared with the OnCE/Nexus 1 unit. IEEE-ISTO 
5001-2003 defines an extensible auxiliary port which is used in conjunction with the JTAG port in Zen 
processors. 

The Nexus modules are coupled to the core and monitor a variety of signals including addresses, data, 
control signals, status signals, etc. In some SoC designs, there may be a single shared Nexus module with 
the capability of selectively monitoring more than one CPU. Control over this selection of the source if 
information is provided by a SoC-level Shared Nexus Control Module, which is accessed through JTAG 
via the Nexus1 Shared Nexus Control register. Specifics of this module are provided in a separate 
document. The CPU provides an interface signal to communicate selection of this register.

9.1 Introduction

9.1.1 General Description

This chapter defines the auxiliary pin functions, transfer protocols and standard development features of a 
Class 2 device in compliance with the IEEE-ISTO Nexus 5001-2003. The development features supported 
are Program Trace, Data Trace, Watchpoint Messaging, Ownership Trace, and Read/Write Access via the 
JTAG interface. The Nexus 2+ module also supports two Class 4 features: Watchpoint Triggering and 
Processor Overrun Control.

9.1.2 Terms and Definitions

Table 9-1 contains a set of terms and definitions associated with the Nexus 2+ module. 

Table 9-1. Terms and Definitions

Term Description

IEEE-ISTO 5001
Consortium and standard for real-time embedded system design. World wide 
Web documentation at http://www.ieee-isto.org/Nexus5001

Auxiliary Port
Refers to Nexus auxiliary port. Used as auxiliary port to the IEEE 1149.1 JTAG 
interface.

Branch Trace Messaging 
(BTM)

Visibility of addresses for taken branches and exceptions, and the number of 
sequential instructions executed between each taken branch.
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9.1.3 Feature List

The Nexus 2+ module is compatible with Class 2 of IEEE-ISTO 5001-2003, with additional Class 3 and 
Class 4 features available. The following features are implemented:

• Program Trace via Branch Trace Messaging (BTM). Branch trace messaging displays program 
flow discontinuities (direct and indirect branches, exceptions, etc.), allowing the development tool 
to interpolate what transpires between the discontinuities. Thus static code may be traced.

• Ownership Trace via Ownership Trace Messaging (OTM). OTM facilitates ownership trace by 
providing visibility of which process ID or operating system task is activated. An Ownership Trace 
Message is transmitted when a new process/task is activated, allowing the development tool to 
trace ownership flow.

• Run-time access to embedded processor memory map via the JTAG port. This allows for enhanced 
download/upload capabilities.

• Watchpoint Messaging via the auxiliary pins

• Watchpoint Trigger enable of Program and/or Data Trace Messaging

• Auxiliary interface for higher data input/output

— Configurable (min/max) Message Data Out pins (nex_mdo[n:0]) 

— One (1) or two (2) Message Start/End Out pins (nex_mseo_b[1:0]) 

JTAG Compliant Device complying to IEEE 1149.1 JTAG standard

JTAG IR and DR Sequence

JTAG Instruction Register (IR) scan to load an opcode value for selecting a 
development register. The JTAG IR corresponds to the OnCE command 
register (OCMD). The selected development register is then accessed via a 
JTAG Data Register (DR) scan.

Nexus1 
The Zen (OnCE) debug module. This module integrated with each Zen 
processor provides all static (core halted) debug functionality. This module is 
compliant with Class1 of IEEE-ISTO 5001.

Ownership Trace 
Message (OTM)

Visibility of process/function that is currently executing.

Public Messages
Messages on the auxiliary pins for accomplishing common visibility and 
controllability requirements

SOC
“System-on-a-Chip”. SOC signifies all of the modules on a single die. This 
generally includes one or more processors with associated peripherals, 
interfaces and memory modules.

Standard
The phrase “according to the standard” is used to indicate according to 
IEEE-ISTO 5001.

Transfer Code (TCODE)
Message header that identifies the number and/or size of packets to be 
transferred, and how to interpret each of the packets.

Watchpoint
A Data or Instruction Breakpoint which does not cause the processor to halt. 
Instead, a pin is used to signal that the condition occurred. A Watchpoint 
Message is also generated.

Table 9-1. Terms and Definitions (continued)

Term Description
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— One (1) Read/Write Ready pin (nex_rdy_b) pin

— One (1) Watchpoint Event pin (nex_evto_b) 

— One (1) Event In pin (nex_evti_b) 

— One (1) MCKO (Message Clock Out) pin

• Registers for Program Trace, Ownership Trace and Watchpoint Trigger.

• All features controllable and configurable via the JTAG port

NOTE
For multi-Nexus implementations, the configuration of the Message Data 
Out pins is controlled by the Port Control Register (@ the SoC level). For 
single Nexus implementations, this configuration is controlled by 
Development Control Register 1 (DC1) within the e200 Nexus 2+ module. 

In either implementation, Full Port Mode (FPM—maximum number of 
MDO pins) or Reduced Port Mode (RPM—minimum number of MDO 
pins) are supported. This setting should not be changed while the system is 
running.

NOTE
The configuration of the Message Start/End Out pins (1 or 2) is determined 
at the SOC integration level. This option is hard-wired based on SOC 
bandwidth requirements.
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9.1.4 Functional Block Diagram

Figure 9-1. Nexus 2+ Functional Block Diagram

9.2 Enabling Nexus 2+ Operation
The Nexus module is enabled by loading a single instruction (NEXUS2-ACCESS) into the JTAG 
Instruction Register (IR) (OnCE OCMD register). For the e200 Nexus 2+ module, the OCMD value is 
0b0001111100. Once enabled, the module is ready to accept control input via the JTAG/OnCE pins.

Enabling the Nexus 2+ module automatically enables the generation of Debug Status Messages.
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The Nexus module is disabled when the JTAG state machine reaches the Test-Logic-Reset state. This state 
can be reached by the assertion of the j_trst_b pin or by cycling through the state machine using the j_tms 
pin. The Nexus module also is disabled if a Power-on-Reset (POR) event occurs. If the Nexus 2+ module 
is disabled, no trace output is provided, and the module disables (drives inactive) auxiliary port output pins 
(nex_mdo[n:0], nex_mseo[1:0], nex_mcko). Nexus registers are not available for reads or writes.

NOTE
Please refer to the “Nexus 2+ Integration Guide” for details on IEEE-ISTO 
5001 compatibility w.r.t. output pins and multiple Nexus module 
configurations.

9.3 TCODEs Supported
The Nexus 2+ pins allow for flexible transfer operations via Public Messages. A TCODE defines the 
transfer format, the number and/or size of the packets to be transferred, and the purpose of each packet. 
IEEE-ISTO 5001-2003 defines a set of public messages. The Nexus 2+ block supports the public TCODEs 
seen in Table 9-2. Each message contains multiple packets transmitted in the order shown in the table.

Table 9-2. Public TCODEs Supported

Message Name

Minimum 
Packet 

Size 
(bits)

Maximum 
Packet 

Size (bits)

Packet 
Type Packet Description

Debug Status

6 6 fixed TCODE number = 0

4 4 fixed source processor identifier (multiple Nexus configuration)

8 8 fixed Debug Status Register (DS[31:24])

Ownership Trace 
Message

6 6 fixed TCODE number = 2

4 4 fixed source processor identifier (multiple Nexus configuration)

32 32 fixed Task/Process ID tag

Program Trace—
Direct Branch 

Message

6 6 fixed TCODE number = 3

4 4 fixed source processor identifier (multiple Nexus configuration)

1 8 variable # sequential instructions executed since last taken branch

Program Trace—
Indirect Branch 

Message

6 6 fixed TCODE number = 4

4 4 fixed source processor identifier (multiple Nexus configuration)

1 8 variable # sequential instructions executed since last taken branch

1 32 variable unique part of target address for taken branches/exceptions

Error Message

6 6 fixed TCODE number = 8

4 4 fixed source processor identifier (multiple Nexus configuration)

5 5 fixed error code



Nexus 2+ Module

e200z0 Power Architecture Core Reference Manual, Rev. 0

9-6 Freescale Semiconductor
 

Program Trace—
Direct Branch 

Message w/ Sync

6 6 fixed TCODE number = 11

4 4 fixed source processor identifier (multiple Nexus configuration)

1 8 variable # sequential instructions executed since last taken branch

1 32 variable full target address (leading zeros truncated)

Program Trace—
Indirect Branch 

Message w/ Sync

6 6 fixed TCODE number = 12

4 4 fixed source processor identifier (multiple Nexus configuration)

1 8 variable # sequential instructions executed since last taken branch

1 32 variable full target address (leading zeros truncated)

Watchpoint 
Message

6 6 fixed TCODE number = 15

4 4 fixed source processor identifier (multiple Nexus configuration)

8 8 fixed # indicating watchpoint source(s)

Resource Full 
Message

6 6 fixed TCODE number = 27

4 4 fixed source processor identifier (multiple Nexus configuration)

4 4 fixed
resource code (Refer to Table 9-4)—indicates which resource is 
the cause of this message

1 32 variable branch / predicate instruction history (see Section)

Program 
Trace—Indirect 
Branch History 

Message

6 6 fixed TCODE number = 28 (see Note below)

4 4 fixed source processor identifier (multiple Nexus configuration)

1 8 variable # sequential instructions executed since last taken branch

1 32 variable unique part of target address for taken branches/exceptions

1 32 variable
branch / predicate instruction history (see Section 9.8.1, “Branch 
Trace Messaging (BTM)”)

Program 
Trace—Indirect 
Branch History 

Message w/ Sync

6 6 fixed TCODE number = 29 (see Note below)

4 4 fixed source processor identifier (multiple Nexus configuration)

1 8 variable # sequential instructions executed since last taken branch

1 32 variable full target address (leading zero (0) truncated)

1 32 variable
branch / predicate instruction history (see Section 9.8.1, “Branch 
Trace Messaging (BTM)”)

Program 
Trace—Program 

Correlation 
Message

6 6 fixed TCODE number = 33

4 4 fixed source processor identifier (multiple Nexus configuration)

4 4 fixed event correlated w/ program flow (Refer to Table 9-5)

1 8 variable # sequential instructions executed since last taken branch

1 32 variable
branch / predicate instruction history (see Section 9.8.1, “Branch 
Trace Messaging (BTM)”)

Table 9-2. Public TCODEs Supported (continued)

Message Name

Minimum 
Packet 

Size 
(bits)

Maximum 
Packet 

Size (bits)

Packet 
Type

Packet Description
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Table 9-3 shows the error code encodings used when reporting an error via the Nexus 2+ Error Message.

Table 9-4 shows the encodings used for resource codes for certain messages.

Table 9-5 shows the event code encodings used for certain messages.

Table 9-3. Error Code Encoding (TCODE = 8)

Error Code Description

00000 Ownership Trace overrun

00001 Program Trace overrun

00010 Reserved for Data Trace overrun (not in Nexus 2+)

00011 Read/write access error

00101 Invalid access opcode (Nexus Register unimplemented)

00110 Watchpoint overrun

00111 Program Trace and Ownership Trace overrun

01000 (Program Trace or Ownership Trace) and Watchpoint overrun

01001–10111 Reserved

11000 BTM lost due to collision w/ higher priority messages

11001–11111 Reserved

Table 9-4. RCODE values (TCODE = 27)

Resource Code Description

0000 Program Trace Instruction counter reached 255 and was reset.

0001
Program Trace, Branch / Predicate Instruction History. This type of packet is 
terminated by a stop bit set to 1 after the last history bit.

Table 9-5. Event Code Encoding (TCODE = 33)

Event Code Description

0000 Entry into Debug Mode

0001 Entry into Low Power Mode (CPU only)

0010-0011 Reserved for future functionality

0100 Disabling Program Trace

0101–1111 Reserved for future functionality



Nexus 2+ Module

e200z0 Power Architecture Core Reference Manual, Rev. 0

9-8 Freescale Semiconductor
 

Table 9-6 shows the data trace size encodings used for certain messages.

NOTE
Program Trace can be implemented using either Branch History/Predicate 
Instruction Messages, or traditional Direct/Indirect Branch Messages. The 
user can select between the two types of Program Trace. The advantages for 
each are discussed in Section 9.8.1, “Branch Trace Messaging (BTM)”. If 
the Branch History method is selected, the shaded TCODES above are not 
messaged out.

9.4  Nexus 2+ Programmer’s Model
This section describes the Nexus 2+ programmers model. Nexus 2+ registers are accessed using the 
JTAG/OnCE port in compliance with IEEE 1149.1. See Section 9.5, “Nexus 2+ Register Access via 
JTAG/OnCE,” for details on Nexus 2+ register access.

NOTE
Nexus 2+ registers and output signals are numbered using bit 0 as the least 
significant bit. This bit ordering is consistent with the ordering defined by 
IEEE-ISTO 5001.

Table 9-6. Data Trace Size Encodings (TCODE = 5,6,13,14)

DTM Size Encoding Transfer Size

000 Byte

001 Halfword (2 bytes)

010 Word (4 bytes)

011 Reserved

100 String (3 bytes)

101–111 Reserved
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details the register map for the Nexus 2+ module.

9.4.1 Client Select Control (CSC)

The CSC Register determines which Nexus client is under development. This register is present at the 
top-level SOC Nexus 2+ controller to select one of multiple on-chip Nexus 2+ units. 

Table 9-7. Nexus 2+ Register Map

Nexus Register
Nexus 
Access 
Opcode 

Read/
Write

Read 
Address

Write 
Address

Client Select Control (CSC)1

1 The CSC and PCR registers are shown in this table as part of the Nexus programmer’s model. They are only 
present at the top level SoC Nexus controller in a multi-Nexus implementation, not in the Nexus 2+ module. 
The SoC’s CSC Register is readable through Nexus, but the PCR is shown for reference only here.

2 The “PCR_INDEX” is a parameter determined by the SoC. 

0x1 R 0x02 —

Port Configuration Register (PCR)1 PCR_INDEX2 R/W — —

Development Control1 (DC1) 0x2 R/W 0x04 0x05

Development Control2 (DC2) 0x3 R/W 0x06 0x07

Development Status (DS) 0x4 R 0x08 —

Read/Write Access Control/Status (RWCS) 0x7 R/W 0x0E 0x0F

Read/Write Access Address (RWA) 0x9 R/W 0x12 0x13

Read/Write Access Data (RWD) 0xA R/W 0x14 0x15

Watchpoint Trigger (WT) 0xB R/W 0x16 0x17

Reserved 0xC -> 0x3F — 0x1A->0x7E 0x19->7F

Reserved CS

7 6 5 4 3 2 1 0

Nexus Reg#—0x1; 
Read-only; Reset—0x0

Figure 9-2. Client Select Control Register

Table 9-8. Client Select Control Register Fields

CSC[7:4] RES—Reserved for future Nexus Clients (read as 0)

CSC[3:0] 
CSC—Client Select Control
0xX = Nexus client (SoC level)
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9.4.2 Port Configuration Register (PCR)

The Port Configuration Register (PCR) controls the basic port functions for all Nexus modules in a 
multi-Nexus environment. This includes clock control and auxiliary port width. All bits in this register are 
writable only once after system reset.

Figure 9-3. Port Configuration Register

NOTE
The CSC and PCR Registers exist in a separate module at the SoC level in 
a multi-Nexus environment. If the e200 Nexus 2+ module is the only Nexus 
module, these registers are not implemented and the e200 Nexus 2+ defined 
Development Control Register 1 (DC1) is used to control Nexus port 
functionality.

9.4.3 Development Control Register 1, 2 (DC1, DC2)

The Development Control Registers are used to control the basic development features of the Nexus 2+ 
module. Development Control Register 1 is shown in Figure 9-4 and its fields are described in Table 9-10.
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IV
 

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg#—PCR_INDEX; Read/Write; Reset—0x0

Table 9-9. Port Configuration Register Fields

PCR[31] OPC

OPC—Output Port Mode Control
0 Reduced Port Mode configuration (min# nex_mdo[n:0] pins defined by 

SOC)
1 Full Port Mode configuration (max# nex_mdo[n:0] pins defined by SOC)

PCR[30] — Reserved for future functionality

PCR[29] MCK_EN
MCK_EN—MCKO Clock Enable
0 nex_mcko is disabled
1 nex_mcko is enabled

PCR[28:26] MCK_DIV

MCK_DIV—MCKO Clock Divide Ratio (see note below)
000 nex_mcko is 1x processor clock freq.
001 nex_mcko is 1/2x processor clock freq.
010 Reserved (default to 1/2x processor clock freq.)
011 nex_mcko is 1/4x processor clock freq.
100–110 Reserved (default to 1/2x processor clock freq.)
111 nex_mcko is 1/8x processor clock freq.

PCR[25:0] — Reserved for future functionality
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg#—0x2; Read/Write; Reset—0x0

Figure 9-4. Development Control Register 1

Table 9-10. Development Control Register 1 Fields

DC1[31] OPC
OPC—Output Port Mode Control
0 Reduced Port Mode configuration (min# nex_mdo[n:0] pins defined by SOC)
1 Full Port Mode configuration (max# nex_mdo[n:0] pins defined by SOC)

DC1[30:29] MCK_DIV

MCK_DIV—MCKO Clock Divide Ratio (see note below)
00 nex_mcko is 1x processor clock freq.
01 nex_mcko is 1/2x processor clock freq.
10 nex_mcko is 1/4x processor clock freq.
11 nex_mcko is 1/8x processor clock freq.

DC1[28:27] EOC

EOC—EVTO Control
00 nex_evto_b upon occurrence of Watchpoints (configured in DC2)
01 nex_evto_b upon entry into Debug Mode
10 nex_evto_b upon Timestamping Event
11 Reserved

DC1[26] — Reserved for future functionality

DC[25] PTM
PTM—Program Trace Method
0 Program Trace uses traditional Branch Messages
1 Program Trace uses Branch History Messages

DC1[24] WEN
WEN—Watchpoint Trace Enable
0 Watchpoint Messaging disabled
1 Watchpoint Messaging enabled

DC1[23:8] — Reserved for future functionality

DC1[7:5] OVC

OVC—Overrun Control
000 Generate overrun messages
001–010 Reserved
011 Delay processor for BTM  / OTM overruns
1XX Reserved

DC1[4:3] EIC

EIC—EVTI Control
00 nex_evti_b is used for synchronization (Program Trace/ Data Trace)
01 nex_evti_b is used for Debug request
1X Reserved

DC1[2:0] TM

TM—Trace Mode
000 No Trace
1XX Program Trace enabled
X1X  Reserved
XX1 Ownership Trace enabled
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NOTE
The Output Port Mode Control bit (OPC) and MCKO Clock Divide Ratio 
bits (MCK_DIV) MUST ONLY be modified during system reset or debug 
mode to insure correct output port and output clock functionality. It is also 
recommended that all other bits of the DC1 also only be modified in one of 
these two modes. 

Development Control Register 2 is shown in Figure 9-5 and its fields are described in Table 9-11.

NOTE
The EOC bits in DC1 must be programmed to trigger EVTO on Watchpoint 
occurrence for the EWC bits to have any effect.

9.4.4 Development Status Register (DS)

The Development Status Register is used to report system debug status. When Debug Mode is entered or 
exited, or an SOC or Zen defined Low Power Mode is entered (see Note below), a Debug Status Message 
is transmitted with DS[31:24]. The external tool can read this register at any time.

EWC 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg#—0x3; Read/Write; Reset—0x0

Figure 9-5. Development Control Register 2

Table 9-11. Development Control Register 2 Fields

DC2[31:24] EWC

EWC—EVTO Watchpoint Configuration
00000000 No Watchpoints trigger nex_evto_b
1XXXXXXX Watchpoint #0 (IAC1 from Nexus1) triggers nex_evto_b
X1XXXXXX Watchpoint #1 (IAC2 from Nexus1) triggers nex_evto_b
XX1XXXXX Watchpoint #2 (IAC3 from Nexus1) triggers nex_evto_b
XXX1XXXX Watchpoint #3 (IAC4 from Nexus1) triggers nex_evto_b
XXXX1XXX Watchpoint #4 (DAC1 from Nexus1) triggers nex_evto_b
XXXXX1XX Watchpoint #5 (DAC2 from Nexus1) triggers nex_evto_b

DC2[23:0] — Reserved for future functionality

D
B

G

LP
S

LP
C

 

C
H

K

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg#—0x4; Read-only; Reset—0x0

Figure 9-6. Development Status Register
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9.4.5 Read/Write Access Control/Status (RWCS)

The Read Write Access Control/Status Register provides control for Read/Write Access. Read/Write 
access provides DMA-like access to memory-mapped resources on the AHB bus either while the processor 
is halted, or during runtime. The RWCS Register also provides Read/Write Access Status information per 
Table 9-14.

Table 9-12. Development Status Register Fields

DS[31] DBG
DBG—Zen CPU Debug Mode Status
0 CPU not in Debug mode
1 CPU in Debug mode (jd_debug_b signal asserted)

DS[30:28] LPS

LPS—Zen System Low Power Mode Status
000 Normal (Run) mode 
XX1 DOZE mode (p_doze signal asserted)
X1X NAP mode (p_nap signal asserted)
1XX SLEEP mode (p_sleep signal asserted)

DS[27:26] LPC

LPC—Zen CPU Low Power Mode Status
00 Normal (Run) mode
01 CPU in Halted state (p_halted signal asserted)
10 CPU in Stopped state (p_stopped signal asserted)
11  CPU in Waiting state (p_waiting signal asserted)

DS[25] CHK
CHK—Zen CPU Checkstop Status
0 CPU not in Checkstop state 
1 CPU in Checkstop state (p_chkstop signal asserted)

DS[24:0] — Reserved for future functionality (read as 0)

A
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W S
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R 0
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E
R

R

D
V

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg#—0x7; Read/Write1; Reset—0x0

1 ERR and DV are read-only

Figure 9-7. Read/Write Access Control/Status Register

Table 9-13. Read/Write Access Control/Status Register Fields

RWCS[31] AC
AC—Access Control
0 End access
1 Start access

RWCS[30]
RW

RW—Read/Write Select
0 Read access
1 Write access
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9.4.6 Read/Write Access Data (RWD)

The Read/Write Access Data Register (RWD) provides the data to/from AHB bus memory-mapped 
locations when initiating a read or a write access.

Read/Write accesses to the AHB bus require that the debug firmware properly retrieve/place the data in 

RWCS[29:27] SZ

SZ—Word Size
000 8-bit (byte)
001 16-bit (half-word)
010 32-bit (word)
011 Reserved
100–111 Reserved (default to word)

RWCS[26:24] MAP
MAP—MAP Select
000 Primary memory map
001–111 Reserved

RWCS[23:22] PR

PR—Read/Write Access Priority
00 Lowest access priority
01 Reserved (default to lowest priority)
10 Reserved (default to lowest priority)
11 Highest access priority

RWCS[21:16] — RES—Reserved for future functionality

RWCS[15:2] CNT
CNT—Access Control Count
hhhh Number of accesses of word size SZ

RWCS[1] ERR1 ERR—Read/Write Access Error (see Table 9-14)

RWCS[0] DV 1 DV—Read/Write Access Data Valid (see Table 9-14)

1 ERR and DV are read-only

Table 9-14. Read/Write Access Status Bit Encoding

Read Action Write Action ERR DV 

Read Access has not completed Write Access completed without error 0 0

Read Access error has occurred Write Access error has occurred 1 0

Read Access completed without error Write Access has not completed 0 1

Not Allowed Not allowed 1 1

Read/Write Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg#—0xA; Read/Write; Reset—0x0

Figure 9-8. Read/Write Access Data Register

Table 9-13. Read/Write Access Control/Status Register Fields (continued)
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the RWD. Table 9-15 shows the proper placement of data into the RWD. 

Table 9-16 shows the mapping of RWD bytes to byte lanes of the AHB system bus read and write data 
buses. 

Table 9-15. RWD data placement for Transfers 

Transfer Size
and byte offset

RWA(2:0) RWCS[SZ] RWD

31:24 23:16 15:8 7:0

Byte x x x 0 0 0 — — — X

Half x x 0 0 0 1 — — X X

Word x 0 0 0 1 0 X X X X

Note:
“X” indicates byte lanes with valid data
“-” indicates byte lanes that contain unused data.

Table 9-16. RWD byte lane data placement 

Transfer Size
and byte offset

RWA(2:0) RWD

31:24 23:16 15:8 7:0

Byte @000 0 0 0 — — — AHB[7:0]

Byte @001 0 0 1 — — — AHB[15:8]

Byte @010 0 1 0 — — — AHB[23:16]

Byte @011 0 1 1 — — — AHB[31:24]

Half @000 0 0 0 — — AHB[15:8] AHB[7:0]

Half @010 0 1 0 — — AHB[31:24] AHB[23:16]

Word @000 0 0 0 AHB[31:24] AHB[23:16] AHB[15:8] AHB[7:0]

Note:
“-” indicates byte lanes that contain unused data.
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9.4.7 Read/Write Access Address (RWA)

The Read/Write Access Address Register provides the AHB system bus address to be accessed when 
initiating a read or a write access. 

9.4.8 Watchpoint Trigger Register (WT)

The Watchpoint Trigger Register allows the watchpoints defined within the Zen Nexus1 logic to trigger 
actions. These watchpoints can control Program and/or Data Trace enable and disable. The WT bits can 
be used to produce an address related “window” for triggering Trace Messages.

Table 9-17 details the Watchpoint Trigger register fields.

Read/Write Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg#—0x9; Read/Write; Reset—0x0

Figure 9-9. Read/Write Access Address Register

PTS PTE 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg#—0xB; Read/Write; Reset—0x0

Figure 9-10. Watchpoint Trigger Register

Table 9-17. Watchpoint Trigger Register Fields

WT[31:29] PTS

PTS—Program Trace Start Control
000 Trigger disabled
001 Use Watchpoint #0 (IAC1 from Nexus1)
010 Use Watchpoint #1 (IAC2 from Nexus1)
011 Use Watchpoint #2 (IAC3 from Nexus1)
100 Use Watchpoint #3 (IAC4 from Nexus1)
101 Use Watchpoint #4 (DAC1 from Nexus1)
110 Use Watchpoint #5 (DAC2 from Nexus1)
111 Reserved

WT[28:26] PTE

PTE—Program Trace End Control
000 Trigger disabled
001 Use Watchpoint #0 (IAC1 from Nexus1)
010 Use Watchpoint #1 (IAC2 from Nexus1)
011 Use Watchpoint #2 (IAC3 from Nexus1)
100 Use Watchpoint #3 (IAC4 from Nexus1)
101 Use Watchpoint #4 (DAC1 from Nexus1)
110 Use Watchpoint #5 (DAC2 from Nexus1)
111 Reserved

WT[25:0] — RES—Reserved for future functionality (read as 0)
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NOTE
The WT bits ONLY control ProgramTrace if the TM bits within the 
Development Control Register 1 (DC1) have not already been set to enable 
Program Trace.

If the TM bits are set to disable Program Trace, then a value of 0 for PTS 
causes Instruction  Trace to remain disabled regardless of the setting of PTE. 
Also, once triggered, (with the TM bits set to disable Program Trace) 
writing a value of 0 to PTS causes Instruction  Trace to be disabled.

9.5 Nexus 2+ Register Access via JTAG/OnCE
Access to Nexus 2+ register resources is enabled by loading a single instruction (“NEXUS2-ACCESS”) 
into the JTAG Instruction Register (IR) (OnCE OCMD register). For the Nexus 2+ block, the OCMD value 
is 0b0001111100.

Once the “NEXUS2-ACCESS” instruction has been loaded, the JTAG/OnCE port allows tool/target 
communications with all Nexus 2+ registers according to the register map in Table 9-7.

Reading/writing of a Nexus 2+ register then requires two (2) passes through the Data-Scan (DR) path of 
the JTAG state machine (see Section 9.15, “IEEE 1149.1 (JTAG) RD/WR Sequences”).

1. The first pass through the DR selects the Nexus 2+ register to be accessed by providing an index 
(see Table 9-7), and the direction (read/write). This is achieved by loading an 8-bit value into the 
JTAG Data Register (DR). This register has the following format:

2. The second pass through the DR then shifts the data in or out of the JTAG port, LSB first.

a) During a read access, data is latched from the selected Nexus register when the JTAG state 
machine passes through the “Capture-DR” state.

b) During a write access, data is latched into the selected Nexus register when the JTAG state 
machine passes through the “Update-DR” state.

9.6 Debug Status Messages
Debug Status Messages report low power mode and debug status. Debug Status Messages are enabled 
when Nexus 2+ is enabled. Entering/exiting Debug Mode as well as entering a Low Power Mode triggers 
a Debug Status Message, indicating the value of the most significant byte in the Development Status 
register. Debug status information is sent out in the following format:

Nexus Register Index: Selected from values in Table 9-7

Read/Write (R/W):
0 = Read
1 = Write

R/WNexus Register Index

(1 bit) (7bits)

RESET Value: 0x00
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Figure 9-11. Debug Status Message Format

9.7 Ownership Trace
This section details the ownership trace features of the Nexus 2+ module.

9.7.1 Overview 

Ownership trace provides a macroscopic view, such as task flow reconstruction, when debugging software 
written in a high level (or object-oriented) language. It offers the highest level of abstraction for tracking 
operating system software execution. This is especially useful when the developer is not interested in 
debugging at lower levels. 

9.7.2 Ownership Trace Messaging (OTM)

Ownership trace information is messaged via the auxiliary port using an Ownership Trace Message 
(OTM). Zen processors contain a Power Architecture BookE defined “Process ID” register within the 
CPU. It is updated by the operating system software to provide task/process ID information. The contents 
of this register are replicated on the pins of the processor and connected to Nexus. The Process ID register 
value can be accessed using the mfspr/mtspr instructions. Please refer to the Programmer’s Model section 
of the appropriate “Zen Implementation Definition” document for more details on the Process ID register.

NOTE
The CPU includes a Process ID register (PID0), thus the Nexus UBA 
functionality is not implemented. 

There is one condition that causes an Ownership Trace Message, as follows:

1. When new information is updated in the Process ID register by the Zen processor, the data is 
latched within Nexus, and is messaged out via the auxiliary port, allowing development tools to 
trace ownership flow. 

Ownership trace information is messaged out in the following format
:

Figure 9-12. Ownership Trace Message Format 

TCODE (000000)DS[31:24]

(8 bits) (6 bits)

Src. Proc.

(4 bits) 

Fixed length = 18 bits

TCODE (000010)Task / Process ID Tag

(6 bits) (32 bits)

Src. Proc.

(4 bits) 

Fixed length = 42 bits
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9.7.3 OTM Error Messages 

An Error Message occurs when a new message cannot be queued due to the message queue being full. The 
FIFO discards incoming messages until it has completely emptied the queue. Once emptied, an Error 
Message is queued. The error encoding indicates which type(s) of messages attempted to be queued while 
the FIFO was being emptied. 

If only an OTM Message attempts to enter the queue while it is being emptied, the Error Message 
incorporates the OTM only error encoding (00000). If both OTM and either BTM or DTM messages 
attempt to enter the queue, the Error Message incorporates the OTM and (Program or Data) Trace error 
encoding (00111). If a Watchpoint also attempts to be queued while the FIFO is being emptied, then the 
Error Message incorporates error encoding (01000).

NOTE
The OVC bits within the DC1 Register can be set to delay the CPU in order 
to alleviate (but not eliminate) potential overrun situations.

Error information is messaged out in the following format (see Table 9-3).

Figure 9-13. Error Message Format

9.7.4 OTM Flow 

Ownership Trace Messages are generated when the operating system writes to the Zen Process ID register. 

The following flow describes the OTM process. 

1. The Process ID register is a system control register. It is internal to the Zen processor and can be 
accessed by using PPC instructions. The contents of this register are replicated on the pins of the 
processor and connected to Nexus.

2. Writes to the Zen internal Process ID register pulse a write signal to Nexus. The data value written 
into the Process ID register is latched and formed into the Ownership Trace Message that is 
queued to be transmitted. 

3. Process ID register reads do not cause Ownership Trace Messages to be transmitted by the Nexus 
2+ module. 

9.8  Program Trace 
This section details the program trace mechanism supported by Nexus 2+ for the e200 processor. Program 
trace is implemented via Branch Trace Messaging (BTM) as per the IEEE-ISTO 5001-2003 definition. 
Branch Trace Messaging for Zen processors is accomplished by snooping the Zen virtual address bus 
(between the CPU and MMU), attribute signals, and CPU Status (p_pstat[0:5]).

TCODE (001000)Error Code (00000 / 00111 / 01000)

(6 bits) (5 bits)

Src. Proc.

(4 bits) 

Fixed length = 15 bits
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9.8.1 Branch Trace Messaging (BTM)

Traditional Branch Trace Messaging facilitates program trace by providing the following types of 
information:

• Messaging for taken direct branches includes how many sequential instructions were executed 
since the last taken branch or exception, including the taken direct branch. Branch instructions are 
included in the count of sequential instructions.

• Messaging for taken indirect branches and exceptions includes how many sequential instructions 
were executed since the last taken branch or exception and the unique portion of the branch target 
address or exception vector address. Branch instructions are included in the count of sequential 
instructions. For taken indirect branches which trigger generation of a message, the branch is also 
included in the count.

Branch History Messaging facilitates program trace by providing the following information.

• Messaging for taken indirect branches and exceptions includes a) how many sequential instructions 
(I-CNT) were executed since the last predicate instruction, taken/not taken direct branch, 
taken/not-taken indirect branch, or exception, b) the unique portion of the branch target address or 
exception vector address, and c) a branch/predicate instruction history field. Each bit in the history 
field represents a direct branch or predicated instruction where a value of one (1) indicates taken, 
and a value of zero (0) indicates not taken. Not-taken indirect branches generate a history bit with 
a value of zero (0). Instructions that generate history bits are not included in instruction counts. For 
taken indirect branches which trigger generation of this message type, the branch is included in the 
count, but not in the history field

9.8.1.1 Zen Indirect Branch Message Instructions

Table 9-18 shows the types of instructions and events which cause Indirect Branch Messages or Branch 
History Messages to be encoded.

Table 9-18. Indirect Branch Message Sources

Source of Indirect Branch Message Instructions / Detail

Taken branch relative to a register value se_bctr, se_bctrl, se_blr, se_blrl

System Call/Trap exceptions taken sc, se_sc, tw

Return from interrupts / exceptions  se_rfi, se_rfci, se_rfdi

Exit from reset with Program Trace Enabled Indirect branch with Sync, target address is initial instruction, count=1
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9.8.1.2 Zen Direct Branch Message Instructions

Table 9-19 shows the types of instructions that cause Direct Branch Messages or toggle a bit in the 
instruction history buffer to be messaged out in a Resource Full Message or Branch History Message.

9.8.1.3 BTM using Branch History Messages

Traditional BTM Messaging can accurately track the number of sequential instructions between branches, 
but cannot accurately indicate which instructions were conditionally executed, and which were not.

Branch History Messaging solves this problem by providing a predicated instruction history field in each 
Indirect Branch Message. Each bit in the history represents a predicated instruction or direct branch, or a 
not-taken indirect branch. A value of one (1) indicates the conditional instruction was executed or the 
direct branch was taken. A value of zero (0) indicates the conditional instruction was not executed or the 
branch was not taken. 

Branch History Messages solve predicated instruction tracking and save bandwidth because only indirect 
branches cause messages to be queued.

9.8.1.4 BTM using Traditional Program Trace Messages

Based on the PTM bit in the DC1 Register (DC1[25]), Program Tracing can utilize either Branch History 
Messages (DC1[25]=1’b1) or traditional Direct/Indirect Branch Messages (DC1[25]=1’b0).

Branch History saves bandwidth and keep consistency between methods of Program Trace, yet may lose 
temporal order between BTM messages and other types of messages. Because direct branches are not 
messaged, but are instead included in the history field of the Indirect Branch History Message, other types 
of messages may enter the FIFO between Branch History Messages. The development tool cannot 
determine the ordering of “events” that occurred with respect to direct branches simply by the order in 
which messages are sent out. 

Traditional BTM messages maintain their temporal ordering because each event that can cause a message 
to be queued enters the FIFO in the order it occurred and is messaged out maintaining that order.

9.8.2 BTM Message Formats

The Nexus 2+ block supports three types of traditional BTM Messages—Direct, Indirect, and 
Synchronization Messages. It supports two types of branch history BTM Messages—Indirect Branch 
History, and Indirect Branch History with Synchronization Messages. Program Correlation, Resource 
Full, and Error Messages are also supported.

Table 9-19. Direct Branch Message Sources

Source of Direct Branch Message Instructions

Taken direct branch instructions
Instruction Synchronize

 se_b. se_bc, se_bl, e_b, e_bc, e_bl, e_bcl, se_isync
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9.8.2.1 Indirect Branch Messages (History)

Indirect branches include all taken branches whose destination is determined at run time, interrupts, and 
exceptions. If DC1[25] is set, indirect branch information is messaged out in the following format:

Figure 9-14. Indirect Branch Message (History) Format 

9.8.2.2 Indirect Branch Messages (Traditional)

If DC1[25] is cleared, indirect branch information is messaged out in the following format:

Figure 9-15. Indirect Branch Message Format

9.8.2.3 Direct Branch Messages (Traditional)

Direct branches (conditional or unconditional) are all taken branches whose destination is fixed in the 
instruction opcode. Direct branch information is messaged out in the following format

:

Figure 9-16. Direct Branch Message Format

NOTE
When DC1[25] is set, Direct Branch Messages are not transmitted. Instead, each 
direct branch, not-taken indirect branch, or predicated instruction is recorded in the 
history buffer.

9.8.2.4 Resource Full Messages

The Resource Full Message is used in conjunction with Branch Trace and Branch History Messages. The 
Resource Full Message is generated when either the internal branch/predicate history buffer is full, or if 
the BTM Instruction sequence counter (I-CNT) overflows. If synchronization is needed at the time this 

TCODE (011100)Sequence Count

(6 bits) (1-8 bits)

Relative Address

(1-32 bits)

Src. Proc.

(4 bits) 

Max length = 82 bits; Min length = 13 bits

(1-32 bits)

Branch History

TCODE (000100)Sequence Count

(6 bits) (1-8 bits)

Relative Address

(1-32 bits)

Src. Proc.

(4 bits) 

Max length = 50 bits; Min length = 12 bits

TCODE (000011)Sequence Count

(6 bits) (1-8 bits)

Src. Proc.

(4 bits) 

Max length = 18 bits; Min length = 11bits
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message is generated, the synchronization is delayed until the next Branch Trace Message that is not a 
Resource Full Message.

For history buffer overflow, the Resource Full Message transmits a Resource Code (RCODE) of 0b0001 
and the current contents of the history buffer, including the stop bit, are transmitted in the Resource Data 
(RDATA) field. This history information can be concatenated by the development tool with the 
branch/predicate history information from subsequent messages to obtain the complete branch/predicate 
history between indirect changes of flow.

For instruction counter overflow, the Resource Full Message transmits an RCODE of 0b0000 and a value 
of 0xFF is transmitted in the RDATA field, indicating that 255 sequential instructions have been executed 
since the last change of flow or, if program trace is in history mode, since the last instruction that recorded 
history information.

.

Figure 9-17. Resource Full Message Format

Table 9-20 shows the RCODE encodings and RDATA information used for Resource Full messages.

9.8.2.5 Program Correlation Messages

Program Correlation Messages (PCMs) are used to correlate events to the program flow that may not be 
associated with the instruction stream. The following events result in a PCM when program trace is 
enabled:

• When the CPU enters debug mode, a PCM is generated. The instruction count and history 
information provided by the PCM can be used to determine the last sequence of instructions 
executed prior to debug mode entry.

• When the CPU enters a low power mode in which instructions are no longer executed, a PCM is 
generated. The instruction count and history information provided by the PCM can be used to 
determine the last sequence of instructions executed prior to low power mode entry.

• Whenever program trace is disabled by any means, a PCM is generated. The instruction count and 
history information provided by the PCM can be used to determine the last sequence of instructions 
executed prior to disabling program trace. 

Table 9-20. RCODE Encoding 

RCODE Description RDATA field

0000
Program Trace Instruction counter 
reached 255 and was reset.

0xFF

0001
Program Trace, Branch / Predicate 
Instruction History full. 

Branch HIstory.
This type of packet is terminated by a stop 
bit set to 1 after the last history bit.

TCODE (011011)RCODE 

(6 bits) (4 bits)

Src. Proc.

(4 bits) 

Max length = 46 bits; Min length = 15 bits

(1-32 bits)

RDATA
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Refer to Table 9-5 for the event codes that are supported in this implementation. Program Correlation is 
messaged out in the following format:

Figure 9-18. Program Correlation Message Format

9.8.2.6 BTM Overflow Error Messages

An Error Message occurs when a new message cannot be queued due to the message queue being full. The 
FIFO discards incoming messages until it has completely emptied the queue. Once emptied, an Error 
Message is queued. The error encoding indicates which type(s) of messages attempted to be queued while 
the FIFO was being emptied. 

If only a Program Trace Message attempts to enter the queue while it is being emptied, the Error Message 
incorporates the Program Trace only error encoding (00001). If both OTM and Program Trace Messages 
attempt to enter the queue, the Error Message incorporates the OTM and Program Trace error encoding 
(00111). If a Watchpoint also attempts to be queued while the FIFO is being emptied, then the Error 
Message incorporates error encoding (01000).

NOTE
The OVC bits within the DC1 Register can be set to delay the CPU in order 
to alleviate (but not eliminate) potential overrun situations.

 Error information is messaged out in the following format:

Figure 9-19. Error Message Format

9.8.2.7 Program Trace Synchronization Messages

A Program Trace Direct/Indirect Branch with Sync Message is messaged via the auxiliary port (provided 
Program Trace is enabled) for the following conditions (see Table 9-21):

• Exit from reset with program trace already enabled

• Initial Program Trace Message upon the first direct/indirect branch after exit from system reset or 
whenever program trace is enabled.

• Upon direct/indirect branch after returning from a CPU Low Power state.

• Upon direct/indirect branch after returning from Debug Mode.

• Upon direct/indirect branch after occurrence of queue overrun (can be caused by any trace 
message), provided Program Trace is enabled.

TCODE (100001)ECODE

(6 bits) (4 bits)

Sequence Count

(1-8 bits)

Src. Proc.

(4 bits) 

Max length = 54 bits; Min length = 16 bits

(1-32 bits)

Branch History

TCODE (001000)Error Code (00001 / 00111 / 01000)

(6 bits) (5 bits)

Src. Proc.

(4 bits) 

Fixed length = 15 bits
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• Upon direct/indirect branch after the periodic program trace counter has expired indicating 255 
without-sync Program Trace Messages have occurred since the last with-sync message occurred.

• Upon direct/indirect branch after assertion of the Event In (nex_evti_b) pin if the EIC bits within 
the DC1 Register have enabled this feature.

• Upon direct/indirect branch after the sequential instruction counter has expired indicating 255 
instructions have occurred since the last change of flow.

• Upon direct/indirect branch after a BTM Message was lost due to an attempted access to a secure 
memory location (for SOCs with security).

• Upon direct/indirect branch after a BTM Message was lost due to a collision entering the FIFO 
between the BTM Message and both a Watchpoint Message and an Ownership Trace Message.

• Upon the first direct/indirect branch message after an execution mode switch into or out of a 
sequence of VLE instructions.

The format for Program Trace Direct/Indirect Branch with Sync Messages is as follows:

Figure 9-20. Direct/Indirect Branch w/ Sync. Message Format

The formats for Program Trace Direct/Indirect Branch with Sync. Messages and Indirect Branch History 
with Sync. Messages are as follows

:

Figure 9-21. Indirect Branch History w/ Sync. Message Format

Exception conditions that result in Program Trace Synchronization are summarized in Table 9-21.

Table 9-21. Program Trace Exception Summary

Exception Condition Exception Handling

System Reset Negation
At the negation of JTAG reset (j_trst_b), queue pointers, counters, state machines, and registers 
within the Nexus 2+ module are reset. Upon exiting system reset, if Program Trace is already 
enabled), a Program Trace Message is sent as an Indirect Branch w/ Sync. Message.

Program Trace Enabled
The first Program Trace Message (after Program Trace has been enabled) is a synchronization 
message.

Exit from Low Power/Debug
Upon exit from a Low Power mode or Debug mode the next direct/indirect branch is converted to 
a Direct/Indirect Branch with Sync. Message.

TCODE (001011 or 001100)

(6 bits) (1-8 bits)

Full Target Address

(1-32 bits) (4 bits) 

Max length = 50 bits; Min length = 12 bits

 

 Source 
Proc.

Sequence Count

TCODE (011101)Sequence 

(6 bits) (1-8 bits)

Full Target Address

(1-32 bits)
Source 

(4 bits) 

Max length = 82 bits; Min length = 13 bits

(1-32 bits)

Branch History Count
Proc.



Nexus 2+ Module

e200z0 Power Architecture Core Reference Manual, Rev. 0

9-26 Freescale Semiconductor
 

9.8.3 BTM Operation

9.8.3.1 Enabling Program Trace

Branch Trace Messaging can be enabled in one of two ways:

• Setting the TM field of the DC1 Register to enable Program Trace (DC1[2]).

• Using the PTS field of the WT Register to enable Program Trace on Watchpoint hits (Zen 
watchpoints are configured within the CPU).

9.8.3.2 Relative Addressing

The relative address feature is compliant with the IEEE-ISTO 5001-2003 recommendations, and is 
designed to reduce the number of bits transmitted for addresses of Indirect Branch Messages.

The address transmitted is relative to the target address of the instruction which triggered the previous 
Indirect Branch (or Sync) Message. It is generated by XORing the new address with the previous address, 

Queue Overrun

An Error Message occurs when a new message cannot be queued due to the message queue 
being full. The FIFO discards messages until it has completely emptied the queue. Once emptied, 
an Error Message is queued. The error encoding indicates which type(s) of messages attempted 
to be queued while the FIFO was being emptied. The next BTM message in the queue is a 
Direct/Indirect Branch w/ Sync. Message.

Periodic Program Trace 
Sync.

A forced synchronization occurs periodically after 255 non-sync Program Trace Messages have 
been queued. A Direct/Indirect Branch w/ Sync. Message is queued. The periodic program trace 
message counter then resets.

Event In
If the Nexus module is enabled, a nex_evti_b assertion initiates a Direct/Indirect Branch w/ Sync. 
Message upon the next direct/indirect branch (if Program Trace is enabled and the EIC bits of the 
DC1 Register have enabled this feature).

Sequential Instruction Count 
Overflow

After the sequential instruction counter reaches its maximum count (up to 255 sequential 
instructions may be executed), a forced synchronization occurs. The sequential counter then 
resets. A Program Trace Direct/Indirect Branch w/ Sync.Message is queued upon execution of 
the next branch. A Resource Full Message is Queued on the overflow event.
If a branch instruction is the 255th instruction to occur, and causes a Program Trace message to 
be queued, then no Resource Full Message is queued, and the w/Sync message is queued for 
the next Program Trace Direct/Indirect Branch Message.

Attempted Access to Secure 
Memory

For SOCs that implement security, any attempted branch to secure memory locations temporarily 
disables Program Trace and cause the corresponding BTM to be lost. The following direct/indirect 
branch queues a Direct/Indirect Branch w/ Sync. Message. The count value within this message 
is inaccurate because the re-enable of Program Trace is not necessarily aligned on an instruction 
boundary.

Collision Priority

All Messages have the following priority: WPM -> OTM -> BTM. A BTM Message which attempts 
to enter the queue at the same time as a Watchpoint Message and Ownership Trace Message is 
lost. An Error Message is sent indicating the BTM was lost. The following direct/indirect branch 
queues a Direct/Indirect Branch w/ Sync. Message. The count value within this message reflects 
the number of sequential instructions executed after the last successful BTM Message was 
generated. This count includes the branch that did not generate a message due to the collision.

Table 9-21. Program Trace Exception Summary (continued)

Exception Condition Exception Handling
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and then using only the results up to the most significant ‘1’ in the result. To recreate this address, an XOR 
of the (most-significant 0-padded) message address with the previously decoded address gives the current 
address.

Previous Address (A1) =0x0003FC01, New Address (A2) = 0x0003F365

Figure 9-22. Relative Address Generation and Re-creation

9.8.3.3 Execution Mode Indication

In order for a development tool to properly interpret instruction count and history information, it must be 
aware of the execution mode context of that information. VLE instructions are interpreted differently from 
non-VLE instructions.

Program trace messages provide the execution mode status in the least significant bit of the reconstructed 
address field. A value of ‘0’ indicates that preceding instruction count and history information should be 
interpreted in a non-VLE context. A value of ‘1’ indicates that the preceding instruction count and history 
information should be interpreted in a VLE context. Note that when a branch results in an execution mode 
switch, the program trace message resulting from that branch indicates the previous execution state. The 
new state is not signaled until the next program trace message.

In some cases, a Program Correlation Message is generated to indicate execution mode status. Refer to 
Section 9.8.2.5, “Program Correlation Messages,” for more information on these cases.

9.8.3.4 Branch/Predicate Instruction History (HIST)

If DC[25] is set, BTM messaging uses the Branch History format. The branch history (HIST) packet in 
these messages provides a history of branch execution used for reconstructing the program flow. This 
packet is implemented as a left-shifting shift register. The register is always pre-loaded with a value of one 

 

Message Generation:

A1 = 0000 0000 0000 0011 1111 1100 0000 0001
A2 = 0000 0000 0000 0011 1111 0011 0110 0101

A1 ⊕ A2 = 0000 0000 0000 0000 0000 1111 0110 0100

Address Message (M1) = 1111 0110 0100

Address Re-creation:
A1 ⊕ M1 = A2
A1 = 0000 0000 0000 0011 1111 1100 0000 0001 
M1 = 0000 0000 0000 0000 0000 1111 0110 0100

A2 = 0000 0000 0000 0011 1111 0011 0110 0101
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(1). This bit acts as a stop bit so that the development tools can determine which bit is the end of the history 
information. The pre-loaded bit itself is not part of the history, but is transmitted with the packet.

A value of one (1) is shifted into the history buffer on a taken direct branch (conditional or unconditional) 
and on any instruction whose predicate condition evaluated as true. A value of zero (0) is shifted into the 
history buffer on any instruction whose predicate condition evaluated as false as well as on branches not 
taken. This includes indirect as well as direct branches not taken. 

9.8.3.5 Sequential Instruction Count (I-CNT)

The I-CNT packet is present in all BTM Messages. For traditional Branch Messages, I-CNT represents the 
number of sequential instructions including non-taken branches since the last Direct/Indirect Branch 
Messages. Branch instructions which trigger message generation are included in the I-CNT.

For Branch History Messages, I-CNT represents the number of instructions executed since the last 
taken/non-taken direct branch, predicate instruction, last taken/not-taken indirect branch, or exception. 
Branch instructions which trigger message generation are included in the I-CNT. Instructions which 
generate history bits are not included in the I-CNT.

The sequential instruction counter overflows after its value reaches 255 and is reset to 0. In addition, the 
next BTM Message (corresponding to the 256th or later instruction) is converted to a synchronization type 
message.

9.8.3.6 Program Trace Queueing

Nexus 2+ implements a programmable depth queue (32 minimum entry recommended) for queuing all 
messages. Messages that enter the queue are transmitted via the auxiliary pins in the order in which they 
are queued.

NOTE
If multiple trace messages need to be queued at the same time, Watchpoint 
Messages have the highest priority (WPM -> OTM -> BTM -> DTM). Up 
to two messages may be simultaneously queued.

9.8.4 Program Trace Timing Diagrams (2 MDO/1 MSEO configuration)

Figure 9-23. Program Trace—Indirect Branch Message (Traditional)

00 01 00 00 00 00 00 00 10 01 01 10 10

TCODE = 4
source processor = 0000
# of sequential instructions = 128
relative address = 8'ha5

00

MCKO

MSEO_B

MDO[1:0]
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Figure 9-24. Program Trace—Indirect Branch Message (History)

Figure 9-25. Program Trace—Direct Branch (Traditional) and Error Messages

Figure 9-26. Program Trace—Indirect Branch w/ Sync. Message

00 11 01 00 00 00 01 01 10 10 01 01 10

TCODE = 28
source processor = 0000
# of sequential instructions = 0
relative address = 8'ha5
branch history = 8'b10100101 (w/ stop)

10 00

MCKO

MSEO_B

MDO[1:0]

Direct Branch Error

11 00 00 00 00 11 00 00 10 00 00 00 01

DBM:
TCODE = 3
source processor = 0000
# of sequential instructions = 3

Error:
TCODE = 8
source processor = 0000
error code = 1 (queue overrun—BTM only)

00 00

MCKO

MSEO_B

MDO[1:0]

00 11 00 00 00 11 10 11 00 11 10 10 11

TCODE = 12
source processor = 0000
# of sequential instructions = 3
full target address = 32'hdeadface

11 01 11 10 10 10 11 01 11 00

MCKO

MSEO_B

MDO[1:0]
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9.9  Watchpoint Support
This section details the Watchpoint features of the Nexus 2+ module.

9.9.1 Overview

The Nexus 2+ module provides Watchpoint Messaging via the auxiliary pins, as defined by IEEE-ISTO 
5001-2003.

Nexus 2+ is not compliant with Class4 Breakpoint/Watchpoint requirements defined in the standard. The 
Breakpoint/Watchpoint Control Register is not implemented. 

9.9.2 Watchpoint Messaging

Enabling Watchpoint Messaging is done by setting the Watchpoint Enable bit in the DC1 Register. Setting 
the individual Watchpoint sources is supported through the Zen Nexus1 module. The Zen Nexus1 module 
is capable of setting multiple address and/or data watchpoints. Please refer to the Debug chapter for details 
on Watchpoint initialization.

When these watchpoints occur, a watchpoint event signal from the Nexus1 module causes a message to be 
sent to the queue to be messaged out. This message includes the watchpoint number indicating which 
watchpoint caused the message.

The occurrence of any of the e200 defined watchpoints can be programmed to assert the Event Out 
(nex_evto_b) pin for one (1) period of the output clock (nex_mcko) (see Table 9-24 for details on 
nex_evto_b).

Watchpoint information is messaged out in the following format.

Figure 9-27. Watchpoint Message Format.

Table 9-22. Watchpoint Source Encoding

Watchpoint Source (8 Bits) Watchpoint Description

00000001 Zen Watchpoint #0 (IAC1 from Nexus1)

00000010 Zen Watchpoint #1 (IAC2 from Nexus1)

00000100 Zen Watchpoint #2 (IAC3 from Nexus1)

00001000 Zen Watchpoint #3 (IAC4 from Nexus1)

00010000 Zen Watchpoint #4 (DAC1 from Nexus1)

00100000 Zen Watchpoint #5 (DAC2 from Nexus1)

Src. Proc.

(4 bits) 

TCODE (001111)

(6 bits) 

Watchpoint Source

(8 bits)

Fixed length = 18 bits
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9.9.3 Watchpoint Error Message 

An Error Message occurs when a new message cannot be queued due to the message queue being full. The 
FIFO discards messages until it has completely emptied the queue. Once emptied, an Error Message is 
queued. The error encoding indicates which type(s) of messages attempted to be queued while the FIFO 
was being emptied. 

If only a Watchpoint Message attempts to enter the queue while it is being emptied, the Error Message 
incorporates the Watchpoint only error encoding (00110). If an OTM and/or Program Trace and/or Data 
Trace Message also attempts to enter the queue while it is being emptied, the Error Message incorporates 
error encoding (01000).

NOTE
The OVC bits within the DC1 Register can be set to delay the CPU in order 
to alleviate (but not eliminate) potential overrun situations.

Error information is messaged out in the following format (see Table 9-3).
 

Figure 9-28. Error Message Format 

9.9.4 Watchpoint Timing Diagram (2 MDO/1 MSEO Configuration)

Figure 9-29. Watchpoint Message and Watchpoint Error Message

Error Code (00110 / 01000) 

(5 bits)
 Src. Proc.

(4 bits) 

TCODE (001000)

(6 bits) 

Fixed length = 15 bits

Watchpoint Error

11 11 00 00 10 00 00 00 10 00 00 10 01

WPM:
TCODE = 15
source processor = 00
watchpoint # = 2

Error:
TCODE = 8
source processor = 00
error code = 6 (queue overrun—WPM only)

00

p_mcko

p_mseo_b

p_mdo[1:0]
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9.10 Nexus 2+ Read/Write Access to Memory-Mapped Resources
The Read/Write access feature allows access to memory-mapped resources via the JTAG/OnCE port. The 
Read/Write mechanism supports single as well as block reads and writes to Zen bus resources.

The Nexus 2+ module is capable of accessing resources on the Zen system bus (AHB), with multiple 
configurable priority levels. Memory-mapped registers and other non-cached memory can be accessed via 
the standard memory map settings. 

All accesses are setup and initiated by the Read/Write Access Control/Status Register (RWCS), as well as 
the Read/Write Access Address (RWA) and Read/Write Access Data Registers (RWD).

Using the Read/Write Access Registers (RWCS/RWA/RWD), memory mapped Zen AHB resources can 
be accessed through Nexus 2+. The following subsections describe the steps which are required to access 
memory-mapped resources.

NOTE
Read/Write Access can only access memory mapped resources when 
system reset is de-asserted and clocks are running.

Misaligned accesses are NOT supported in the e200 Nexus 2+ module.

9.10.1 Single Write Access
1. Initialize the Read/Write Access Address Register (RWA) through the access method outlined in 

Section 9.5, “Nexus 2+ Register Access via JTAG/OnCE,” using the Nexus Register Index of 0x9 
(see Table 9-7). Configure as follows:

— Write Address -> 32h’xxxxxxxx (write address)

2. Initialize the Read/Write Access Control/Status Register (RWCS) through the access method 
outlined in Section 9.5, “Nexus 2+ Register Access via JTAG/OnCE,” using the Nexus Register 
Index of 0x7 (see Table 9-7). Configure the bits as follows:

— Access Control (AC) -> 1b’1 (to indicate start access)

— Map Select (MAP) -> 3b’000 (primary memory map)

— Access Priority (PR) -> 2b’00 (lowest priority)

— Read/Write (RW) -> 1b’1 (write access)

— Word Size (SZ) -> 3b’0xx (32-bit, 16-bit, 8-bit)

— Access Count (CNT) -> 14h’0000 or 14h’0001(single access)

NOTE
Access Count (CNT) of 14’h0000 or 14’h0001 performs a single access.

3. Initialize the Read/Write Access Data Register (RWD) through the access method outlined in 
Section 9.5, “Nexus 2+ Register Access via JTAG/OnCE,” using the Nexus Register Index of 0xA 
(see Table 9-7). Configure as follows:

— Write Data -> 32h’xxxxxxxx (write data)
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4. The Nexus block then arbitrates for the AHB bus and transfer the data value from the data buffer 
RWD Register to the memory mapped address in the Read/Write Access Address Register 
(RWA). When the access has completed without error (ERR=1’b0), Nexus asserts the nex_rdy_b 
pin (see Table 9-24 for detail on nex_rdy_b) and clears the DV bit in the RWCS Register. This 
indicates that the device is ready for the next access. 

NOTE
Only the nex_rdy_b pin as well as the DV and ERR bits within the RWCS 
provide Read/Write Access status to the external development tool.

9.10.2 Block Write Access
1. For a block write access, follow Steps 1, 2, and 3 outlined in Section 9.10.1, “Single Write 

Access,” to initialize the registers, but using a value greater than one (14’h0001) for the CNT field 
in the RWCS Register.

2. The Nexus block then arbitrates for the AHB system bus and transfer the first data value from the 
RWD Register to the memory mapped address in the Read/Write Access Address Register 
(RWA). When the transfer has completed without error (ERR=1’b0), the address from the RWA 
Register is incremented to the next word size (specified in the SZ field) and the number from the 
CNT field is decremented. Nexus then asserts the nex_rdy_b pin. This indicates that the device is 
ready for the next access.

3. Repeat Step 3 in Section 9.10.1, “Single Write Access,” until the internal CNT value is zero (0). 
When this occurs, the DV bit within the RWCS is cleared to indicate the end of the block write 
access.

NOTE
The actual RWA value as well as the CNT field within the RWCS are not 
changed when executing a block write access. The original values can be 
read by the external development tool at any time.

9.10.3 Single Read Access

1. Initialize the Read/Write Access Address Register (RWA) through the access method outlined in 
Section 9.5, “Nexus 2+ Register Access via JTAG/OnCE,” using the Nexus Register Index of 0x9 
(see Table 9-7). Configure as follows:

— Read Address -> 32h’xxxxxxxx (read address)

2. Initialize the Read/Write Access Control/Status Register (RWCS) through the access method 
outlined in Section 9.5, “Nexus 2+ Register Access via JTAG/OnCE,” using the Nexus Register 
Index of 0x7 (see Table 9-7). Configure the bits as follows:

— Access Control (AC) -> 1b’1 (to indicate start access)

— Map Select (MAP) -> 3b’000 (primary memory map)

— Access Priority (PR) -> 2b’00 (lowest priority)

— Read/Write (RW) -> 1b’0 (read access)

— Word Size (SZ) -> 3b’0xx (32-bit, 16-bit, 8-bit)
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— Access Count (CNT) -> 14h’0000 or 14h’0001(single access)

NOTE
Access Count (CNT) of 14’h0000 or 14’h0001 performs a single access. 

3. The Nexus block then arbitrates for the AHB system bus and the read data is transferred from the 
AHB to the RWD Register. When the transfer is completed without error (ERR=1’b0), Nexus 
asserts the nex_rdy_b pin (see Table 9-24 for detail on nex_rdy_b) and sets the DV bit in the 
RWCS Register. This indicates that the device is ready for the next access.

4. The data can then be read from the Read/Write Access Data Register (RWD) through the access 
method outlined in Section 9.5, “Nexus 2+ Register Access via JTAG/OnCE,” using the Nexus 
Register Index of 0xA (see Table 9-7).

NOTE
Only the nex_rdy_b pin as well as the DV and ERR bits within the RWCS 
provide Read/Write Access status to the external development tool.

9.10.4 Block Read Access
1. For a block read access, follow Steps 1 and 2 outlined in Section 9.10.3, “Single Read Access.” to 

initialize the registers, but using a value greater than one (14’h0001) for the CNT field in the 
RWCS Register.

2. The Nexus block then arbitrates for the AHB system bus and the read data is transferred from the 
AHB to the RWD Register. When the transfer has completed without error (ERR=1’b0), the 
address from the RWA Register is incremented to the next word size (specified in the SZ field) 
and the number from the CNT field is decremented. Nexus then asserts the nex_rdy_b pin. This 
indicates that the device is ready for the next access.

3. The data can then be read from the Read/Write Access Data Register (RWD) through the access 
method outlined in Section 9.5, “Nexus 2+ Register Access via JTAG/OnCE,” using the Nexus 
Register Index of 0xA (see Table 9-7).

4. Repeat Steps 3 and 4 in Section 9.10.3, “Single Read Access,” until the CNT value is zero (0). 
When this occurs, the DV bit within the RWCS is set to indicat the end of the block read access.

NOTE
The data values must be shifted out 32-bits at a time LSB first.

NOTE
The actual RWA value as well as the CNT field within the RWCS are not 
changed when executing a block read access. The original values can be 
read by the external development tool at any time.
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9.10.5 Error Handling

The Nexus 2+ module handles various error conditions as follows:

9.10.5.1 Bus Read/Write Error

All address and data errors that occur on read/write accesses to the Zen AHB system bus return a transfer 
error encoding on the p_hresp[1:0] signals. If this occurs:

1. The access is terminated without re-trying (AC bit is cleared)

2. The ERR bit in the RWCS Register is set

3. The Error Message is sent (TCODE = 8) indicating Read/Write Error

9.10.5.2 Access Termination

The following cases are defined for sequences of the Read/Write protocol that differ from those described 
in the above sections.

1. If the AC bit in the RWCS Register is set to start Read/Write accesses and invalid values are 
loaded into the RWD and/or RWA, then an AHB access error may occur. This is handled as 
described above.

2. If a block access is in progress (all cycles not completed), and the RWCS Register is written, then 
the original block access is terminated at the boundary of the nearest completed access. 

a) If the RWCS is written with the AC bit set, the next Read/Write access begins and the RWD 
can be written to/read from.

b) If the RWCS is written with the AC bit cleared, the Read/Write access is terminated at the 
nearest completed access. This method can be used to break (early terminate) block accesses.

9.10.6 Read/Write Access Error Message

The Read/Write Access Error Message is sent out when an AHB system bus access error (read or write) 
has occurred.

Error information is messaged out in the following format:

Figure 9-30. Error Message Format

9.11 Nexus 2+ Pin Interface
This section details information regarding the Nexus 2+ pins and pin protocol. 

The Nexus 2+ pin interface provides the function of transmitting messages from the messages queues to 
the external tools. It is also responsible for handshaking with the message queues.

TCODE (001000)Error Code (00011)

(6 bits) (5 bits)

Src. Proc.

(4 bits) 

Fixed length = 15 bits
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9.11.1 Pins Implemented

The Nexus 2+ module implements one (1) nex_evti_b and one (1) nex_mseo_b or two (2) 
nex_mseo_b[1:0]. It also implements a configurable number of nex_mdo[n:0] pins, (1) nex_rdy_b pin, (1) 
nex_evto_b pin, and one (1) clock output pin (nex_mcko). The output pins are synchronized to the Nexus 
2+ output clock (nex_mcko). 

All Nexus 2+ input functionality is controlled through the JTAG/OnCE port in compliance with 
IEEE 1149.1 (see Section 9.5, “Nexus 2+ Register Access via JTAG/OnCE,” for details). The JTAG pins 
are incorporated as I/O to the Zen processor, and are further described in Section 8.4.2, “JTAG/OnCE 
Pins.”

Table 9-23. JTAG Pins for Nexus 2+

JTAG Pins Input/Output Description of JTAG Pins (included in Zen Nexus 1)

j_tdo
O

The Test Data Output (j_tdo) pin is the serial output for test instructions and data. j_tdo is 
three-stateable and is actively driven in the “Shift-IR” and “Shift-DR” controller states. j_tdo 
changes on the falling edge of j_tclk. 

j_tdi
I

The Test Data Input (j_tdi) pin receives serial test instruction and data. TDI is sampled on the 
rising edge of j_tclk.

j_tms
I

The Test Mode Select (j_tms) input pin is used to sequence the OnCE controller state machine. 
j_tms is sampled on the rising edge of j_tclk.

j_tclk
I

The Test Clock (j_tclk) input pin is used to synchronize the test logic, and control register access 
through the JTAG/OnCE port.

j_trst_b I The Test Reset (j_trst_b) input pin is used to asynchronously initialize the JTAG/OnCE controller.
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The auxiliary pins are used to send and receive messages and are described in Table 9-24.

The Nexus auxiliary port arbitration pins are used when the Nexus 2+ module is implemented in a 
multi-Nexus SoC which shares a single auxiliary output port. The arbitration is controlled by an SoC level 
Nexus Port Control module (NPC). Refer to Section 9.13, “Auxiliary Port Arbitration,” for detail on 
Nexus port arbitration.

Table 9-24. Nexus 2+ Auxiliary Pins

Auxiliary Pins Input/Output Description of Auxiliary Pins

nex_mcko
O

Message Clock Out (nex_mcko) is a free running output clock to development tools for 
timing of nex_mdo[n:0] and nex_mseo_b[1:0] pin functions. nex_mcko is programmable 
through the DC1 Register.

nex_mdo[n:0]
O

Message Data Out (nex_mdo[n:0]) are output pins used for OTM, BTM, and DTM. 
External latching of nex_mdo[n:0] shall occur on the rising edge of the Nexus2+ clock 
(nex_mcko).

nex_mseo_b[1:0]

O

Message Start/End Out (nex_mseo_b[1:0]) are output pins which indicate when a 
message on the nex_mdo[n:0] pins has started, when a variable length packet has 
ended, and when the message has ended. External latching of nex_mseo_b[1:0] shall 
occur on the rising edge of the Nexus2+ clock (nex_mcko). One or two pin MSEO 
functionality is determined at integration time per SOC implementation

nex_rdy_b

O

Ready (nex_rdy_b) is an output pin used to indicate to the external tool that the Nexus 
block is ready for the next Read/Write Access. If Nexus2+ is enabled, this signal is 
asserted upon successful (without error) completion of an AHB system bus transfer 
(Nexus read or write) and is held asserted until the JTAG/OnCE state machine reaches 
the “Capture_DR” state. Upon exit from system reset or if Nexus2+ is disabled, 
nex_rdy_b remains de-asserted

nex_evto_b

O

Event Out (nex_evto_b) is an output which, when asserted, indicates one of two events 
has occurred based on the EOC bits in the DC1 Register. nex_evto_b is held asserted 
for one (1) cycle of nex_mcko:

1. One (or more) watchpoints has occurred (from Nexus1) and EOC = 2’b00

2. Debug mode was entered (jd_debug_b asserted from Nexus1) and EOC = 
2’b01 

nex_evti_b

I

Event In (nex_evti_b) is an input which, when asserted, initiates one of two events based 
on the EIC bits in the DC1 Register (if the Nexus2+ module is enabled at reset):

1. Program Trace and Data Trace synchronization messages (provided Program 
Trace and Data Trace are enabled and EIC = 2’b00).

2. Debug request to Zen Nexus1 module (provided EIC = 2’b01 and this feature 
is implemented).
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9.11.2 Pin Protocol

The protocol for the Zen processor transmitting messages via the auxiliary pins is accomplished with the 
MSEO pin function outlined in Table 9-26. Both single and dual pin cases are shown.

nex_mseo_b[1:0] is used to signal the end of variable-length packets, and not fixed length packets. 
nex_mseo_b[1:0] is sampled on the rising edge of the Nexus 2+ clock (nex_mcko).

Table 9-25. Nexus Port Arbitration Signals

Nexus Port 
Arbitration Pins

Input/Output Description of Arbitration Pins

nex_aux_req[1:0]

O

Nexus Auxiliary Request (nex_aux_req[1:0]) output signals indicate to an SoC level 
Nexus arbiter a request for access to the shared Nexus auxiliary port in a multi-Nexus 
implementation. The priority encodings are determined by how many messages are 
currently in the message queues (see Table 9-23).

nex_aux_busy
O

Nexus Auxiliary Busy (nex_aux_busy) is an output signal to an SoC level Nexus arbiter 
indicating that the Nexus 2+ module is currently transmitting its message after being 
granted the Nexus auxiliary port.

npc_aux_grant
I

Nexus Auxiliary Grant (npc_aux_grant) is an input from the SoC level Nexus Port 
Controller (NPC) that the auxiliary port has been granted to the Nexus 2+ module to 
transmit its message.

ext_multi_nex_sel
I

Multi-Nexus Select (ext_multi_nex_sel) is a static signal indicating that the Nexus 2+ 
module is implemented within a multi-Nexus environment. If set, port control and 
arbitration is controlled by the SoC level arbitration module (NPC).

Table 9-26. MSEO Pin(s) Protocol

nex_mseo_b Function Single nex_mseo_b data (serial) Dual nex_mseo_b[1:0] data

Start of message 1-1-0 11-00

End of message 0-1-1-(more 1’s) 00 (or 01)-11-(more 1’s)

End of variable length packet 0-1-0 00-01

Message transmission 0’s 00’s

Idle (no message) 1’s 11’s
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Figure 9-31 illustrates the state diagram for single pin MSEO transfers.

Figure 9-31. Single Pin MSEO Transfers

Note that the “End Message” state does not contain valid data on the nex_mdo[n:0] pins. Also, It is not 
possible to have two consecutive “End Packet” messages. This implies the minimum packet size for a 
variable length packet is 2x the number of nex_mdo[n:0] pins. This ensures that a false end of message 
state is not entered by emitting two consecutive ‘1’s on the nex_mseo_b pin before the actual end of 
message.
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Figure 9-32 illustrates the state diagram for dual pin MSEO transfers.

Figure 9-32. Dual Pin MSEO Transfers 

The dual pin MSEO option is more robust that the single pin option. Termination of the current message 
may immediately be followed by the start of the next message on the consecutive clocks. An extra clock 
to end the message is not necessary as with the one MSEO pin option. The dual pin option also allows for 
consecutive “End Packet” states. This can be an advantage when small, variable sized packets are 
transferred. 

NOTE
The “End Message” state may also indicate the end of a variable-length 
packet as well as the end of the message when using the dual pin option.
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9.12 Rules for Output Messages
Zen based Class 3 compliant embedded processors must provide messages via the auxiliary port in a 
consistent manner as described below:

• A variable-sized packet within a message must end on a port boundary.

• A variable-sized packet may start within a port boundary only when following a fixed length 
packet. (If two variable-sized packets end and start on the same clock, it is impossible to know 
which bit is from the last packet and which bit is from the next packet.)

• Whenever a variable-length packet is sized such that it does not end on a port boundary, it is 
necessary to extend and zero fill the remaining bits after the highest-order bit so that it can end on 
a port boundary.

For example, if the nex_mdo[n:0] port is 2 bits wide, and the unique portion of an indirect address TCODE 
is 5 bits, then the remaining 1 bit of nex_mdo[n:0] must be packed with a 0.

9.13 Auxiliary Port Arbitration
In a multi-Nexus environment, the Nexus 2+ module must arbitrate for the shared Nexus port at the SoC 
level.The request scheme is implemented as a 2-bit request with various levels of priority. The priority 
levels are defined in Table 9-27 below. The Nexus 2+ module receives a 1-bit grant signal (npc_aux_grant) 
from the SoC level arbiter. When a grant is received, the Nexus 2+ module begins transmitting its message 
following the protocol outlined in Section 9.11.2. The Nexus 2+ module maintains control of the port by 
asserting the nex_aux_busy signal, until the MSEO state machine reaches the “End Message” state.

9.14 Examples
The following are examples of Program Trace and Data Trace Messages. 

Table 9-28 illustrates an example Indirect Branch Message with 2 MDO / 1MSEO configuration. 
Table 9-29 illustrates the same example with an 8 MDO / 2 MSEO configuration.

Note that T0 and S0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• Ix = Number of instructions (variable) 

• Ax = Unique portion of the address (variable)

Table 9-27. MDO Request Encodings

Request Level
MDO Request Encoding 

(nex_aux_req[1:0])
Condition of Queue

No Request 00 No message to send

Low Priority 01 Message queue less than 1/2 full

— 10 Reserved

High Priority 11 Message queue 1/2 full or more
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Note that during clock 12, the nex_mdo[n:0] pins are ignored in the single MSEO case.

Table 9-30 and Table 9-31 illustrate examples of Direct Branch Messages: one with 2 MDO / 1 MSEO, 
and one with 8 MDO / 2 MSEO.

Note that T0 and I0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• Ix = Number of Instructions (variable)

Table 9-28. Indirect Branch Message Example (2 MDO/1 MSEO)

Clock nex_mdo[1:0] nex_mseo_b State

0 X X 1 Idle (or end of last message)

1 T1 T0 0 Start Message

2 T3 T2 0 Normal Transfer

3 T5 T4 0 Normal Transfer

4 S1 S0 0 Normal Transfer

5 S3 S2 0 Normal Transfer

6 I1 I0 0 Normal Transfer

7 I3 I2 0 Normal Transfer

8 I5 I4 1 End Packet

9 A1 A0 0 Normal Transfer

10 A3 A2 0 Normal Transfer

11 A5 A4 0 Normal Transfer

12 A7 A6 1 End Packet

13 0 0 1 End Message

14 T1 T0 0 Start Message

Table 9-29. Indirect Branch Message Example (8 MDO/2 MSEO)

Clock nex_mdo[7:0] nex_mseo_b[1:0] State

0 X X X X X X X X 1 1 Idle (or end of last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 I5 I4 I3 I2 I1 I0 S3 S2 0 1 End Packet

3 A7 A6 A5 A4 A3 A2 A1 A0 1 1 End Packet/End Message

4 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message
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Table 9-32 illustrates an example Data Write Message with 8 MDO / 1 MSEO configuration, and 
Table 9-33 illustrates the same DWM with 8 MDO / 2 MSEO configuration

Note that T0, A0, D0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• Zx = Data size (fixed)

• Ax = Unique portion of the address (variable)

• Dx = Write data (variable—8, 16 or 32-bit)

Table 9-30. Direct Branch Message Example (2 MDO/1 MSEO)

Clock nex_mdo[1:0] nex_mseo_b State

0 X X 1 Idle (or end of last message)

1 T1 T0 0 Start Message

2 T3 T2 0 Normal Transfer

3 T5 T4 0 Normal Transfer

4 S1 S0 0 Normal Transfer

5 S3 S2 0 Normal Transfer

6 I1 I0 1 End Packet

7 0 0 1 End Message

Table 9-31. Direct Branch Message Example (8 MDO/2 MSEO)

Clock nex_mdo[7:0] nex_mseo_b[1:0] State

0 X X X X X X X X 1 1 Idle (or end of last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 0 0 0 0 I1 I0 S3 S2 1 1 End Packet/End Message

3 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

Table 9-32. Data Write Message Example (8 MDO/1 MSEO)

Clock nex_mdo[7:0] nex_mseo_b State

0 X X X X X X X X 1 Idle (or end of last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 Start Message

2 A2 A1 A0 Z2 Z1 Z0 S3 S2 1 End Packet

3 D7 D6 D5 D4 D3 D2 D1 D0 0 Normal Transfer

4 0 0 0 0 0 0 0 0 1 End Packet

5 0 0 0 0 0 0 0 0 1 End Message
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9.15 IEEE 1149.1 (JTAG) RD/WR Sequences
This section contains example JTAG/OnCE sequences used to access resources.

9.15.1 JTAG Sequence for Accessing Internal Nexus Registers

Table 9-33. Data Write Message Example (8 MDO/2 MSEO)

Clock nex_mdo[7:0] nex_mseo_b[1:0] State

0 X X X X X X X X 1 1 Idle (or end of last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 A2 A1 A0 Z2 Z1 Z0 S3 S2 0 1 End Packet

3 D7 D6 D5 D4 D3 D2 D1 D0 1 1 End Packet/ End Message

Table 9-34. Accessing Internal Nexus 2+ Registers via JTAG/OnCE

Step # TMS Pin Description

1 1 IDLE -> SELECT-DR_SCAN

2 0 SELECT-DR_SCAN -> CAPTURE-DR (Nexus Command Register value loaded in shifter)

3 0 CAPTURE-DR -> SHIFT-DR

4 0 (7) TCK clocks issued to shift in direction (rd/wr) bit and first 6 bits of Nexus reg. addr.

5 1 SHIFT-DR -> EXIT1-DR (7th bit of Nexus reg. shifted in)

6 1 EXIT1-DR -> UPDATE-DR (Nexus shifter is transferred to Nexus Command Register)

7 1 UPDATE-DR -> SELECT-DR_SCAN

8 0 SELECT-DR_SCAN -> CAPTURE-DR (Register value is transferred to Nexus shifter)

9 0 CAPTURE-DR -> SHIFT-DR

10 0 (31) TCK clocks issued to transfer register value to TDO pin while shifting in TDI value

11 1 SHIFT-DR -> EXIT1-DR (MSB of value is shifted in/out of shifter)

12 1 EXIT1-DR -> UPDATE -DR (if access is write, shifter is transferred to register)

13 0 UPDATE-DR -> RUN-TEST/IDLE (transfer complete—Nexus controller to Reg. Select state)
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9.15.2 JTAG Sequence for Read Access of Memory-Mapped Resources

9.15.3 JTAG Sequence for Write Access of Memory-Mapped Resources

Table 9-35. Accessing Memory-Mapped Resources (Reads)

Step # TCLK Clocks Description

1 13 Nexus Command = write to Read/Write Access Address Register (RWA)

2 37 Write RWA (initialize starting read address—data input on TDI)

3 13 Nexus Command = write to Read/Write Control/Status Register (RWCS)

4 37 Write RWCS (initialize read access mode and CNT value—data input on TDI)

5 — Wait for falling edge of nex_rdy_b pin

6 13 Nexus Command = read Read/Write Access Data Register (RWD)

7 37 Read RWD (data output on TDO)

8 — If CNT > 0, go back to Step #5

Table 9-36. Accessing Memory-Mapped Resources (Writes)

Step # TCLK Clocks Description

1 13 Nexus Command = write to Read/Write Access Control/Status Register (RWCS)

2 37 Write RWCS (initialize write access mode and CNT value—data input on TDI)

3 13 Nexus Command = write to Read/Write Address Register (RWA)

4 37 Write RWA (initialize starting write address—data input on TDI)

5 13 Nexus Command = read Read/Write Access Data Register (RWD)

6 37 Write RWD (data output on TDO)

7 — Wait for falling edge of nex_rdy_b pin

8 — If CNT > 0, go back to Step #5
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Appendix A
Register Summary

Figure A-1. e200 User Mode Registers
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Figure A-2. e200z0h Supervisor Mode Registers

SPR General

Exception Handling/Control Registers
Save and Restore

Machine State
MSR

PVR

Processor Control Registers

SUPERVISOR Mode Programmer’s Model

SPRG0

SPRG1

SPR 272

SPR 273

SRR0

SRR1

CSRR0

CSRR1

DSRR0

DSRR1

SPR 26

SPR 27

SPR 58

SPR 59

SPR 574

SPR 575

Processor ID

PIR SPR 286

Interrupt Vector Prefix

IVPR SPR 63

Debug Registers2 - 

Debug Control

DBCR0

DBCR1

DBCR2

SPR 308

SPR 309

SPR 310

Instruction Address
Compare

IAC1

IAC2

IAC3

IAC4

SPR 312

SPR 313

SPR 314

SPR 315

Data Address Compare

DAC1

DAC2

SPR 316

SPR 317

1 - These e200-specific registers may not be 
supported by other PowerPC processors

2 - Optional registers defined by the 
PowerPC Book-E architecture

Processor Version

Hardware Implementation
Dependent1

HID0

HID1

SPR 1008

SPR 1009

SPR 9

General-Purpose
Registers 

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 1

XER

XER

General Registers

SPR 287

Debug Status

DBSR SPR 304

System Version1

SVR SPR 1023

ESR SPR 62

Exception Syndrome 

Data Exception Address

DEAR SPR 61

Machine Check 
Syndrome Register

MCSR SPR 572

Memory Management Registers

Process ID

PID0 SPR 48

Configuration (Read-only

MMUCFG SPR 1015

Cache Registers

SPR 515

Cache Configuration 
(Read-only)

L1CFG0

BTB Control1

SPR 1013BUCSR

BTB Register



Register Summary

e200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor 3
 

Figure A-3. e200z0 Supervisor Mode Registers
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Figure A-21. CPU Scan Chain Register (CPUSCR)
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Glossary 
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this reference 
manual. 

A Architecture. A detailed specification of requirements for a processor or computer 
system. It does not specify details of how the processor or computer system must 
be implemented; instead it provides a template for a family of compatible 
implementations.

Atomic access. A bus access that attempts to be part of a read-write operation to the same 
address uninterrupted by any other access to that address (the term refers to the 
fact that the transactions are indivisible). The Power Architecture technology 
implements atomic accesses through the lwarx/stwcx. instruction pair.

Autobaud. The process of determining a serial data rate by timing the width of a single bit.

B Beat. A single state on the bus interface that may extend across multiple bus cycles. A 
transaction can be composed of multiple address or data beats.

Big-Endian. A byte-ordering method in memory where the address n of a word 
corresponds to the most significant byte. In an addressed memory word, the bytes 
are ordered (left to right) 0, 1, 2, 3, with 0 being the most significant byte. See 
Little-Endian.

Boundedly undefined. A characteristic of certain operation results that are not rigidly 
prescribed by the Power Architecture technology. Boundedly-undefined results 
for a given operation may vary among implementations and between execution 
attempts in the same implementation. 

Although the architecture does not prescribe the exact behavior for when results 
are allowed to be boundedly undefined, the results of executing instructions in 
contexts where results are allowed to be boundedly undefined are constrained to 
ones that could have been achieved by executing an arbitrary sequence of defined 
instructions, in valid form, starting in the state the machine was in before 
attempting to execute the given instruction.

Breakpoint. A programmable event that forces the core to take a breakpoint exception.

Burst. A multiple-beat data transfer whose total size is typically equal to a cache block.

Bus clock. Clock that causes the bus state transitions.
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Bus master. The owner of the address or data bus; the device that initiates or requests the 
transaction.

C Cache. High-speed memory containing recently accessed data or instructions (subset of 
main memory).

Cache block. A small region of contiguous memory that is copied from memory into a 
cache. The size of a cache block may vary among processors; the maximum block 
size is one page. In Power Architecture processors, cache coherency is maintained 
on a cache-block basis. Note that the term ‘cache block’ is often used 
interchangeably with ‘cache line.’

Cache coherency. An attribute wherein an accurate and common view of memory is 
provided to all devices that share the same memory system. Caches are coherent 
if a processor performing a read from its cache is supplied with data corresponding 
to the most recent value written to memory or to another processor’s cache.

Cache flush. An operation that removes from a cache any data from a specified address 
range. This operation ensures that any modified data within the specified address 
range is written back to main memory. This operation is generated typically by a 
Data Cache Block Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which the cache is bypassed and the load 
or store is performed to or from main memory. 

Cast out. A cache block that must be written to memory when a cache miss causes a cache 
block to be replaced.

Changed bit. One of two page history bits found in each page table entry (PTE). The 
processor sets the changed bit if any store is performed into the page. See also 
Page access history bits and Referenced bit. 

Clean. An operation that causes a cache block to be written to memory, if modified, and 
then left in a valid, unmodified state in the cache.

Clear. To cause a bit or bit field to register a value of zero. See also Set.

Completer. In PCI-X, a completer is the device addressed by a transaction (other than a 
split completion transaction). If a target terminates a transaction with a split 
response, the completer becomes the initiator of the subsequent split completion.

Context synchronization. An operation that ensures that all instructions in execution 
complete past the point where they can produce an exception, that all instructions 
in execution complete in the context in which they began execution, and that all 
subsequent instructions are fetched and executed in the new context. Context 
synchronization may result from executing specific instructions (such as isync or 
rfi) or when certain events occur (such as an exception). 
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Copy-back operation. A cache operation in which a cache line is copied back to memory 
to enforce cache coherency. Copy-back operations consist of snoop push-out 
operations and cache cast-out operations.

D Direct-mapped cache. A cache in which each main memory address can appear in only 
one location within the cache; operates more quickly when the memory request is 
a cache hit. 

Double data rate. Memory that allows data transfers at the start and end of a clock cycle. 
thereby doubling the data rate.

E Effective address (EA). The 32-bit address specified for a load, store, or an instruction 
fetch. This address is then submitted to the MMU for translation to either a 
physical memory or an I/O address.

Exclusive state. MEI state (E) in which only one caching device contains data that is also 
in system memory.

F Fetch. Retrieving instructions from either the cache or main memory and placing them 
into the instruction queue. 

Flush. An operation that causes a cache block to be invalidated and the data, if modified, 
to be written to memory.

Frame-check sequence (FCS). Specifies the standard 32-bit cyclic redundancy check 
(CRC) obtained using the standard CCITT-CRC polynomial on all fields except 
the preamble, SFD, and CRC.

G General-purpose register (GPR). Any of the 32 registers in the general-purpose register 
file. These registers provide the source operands and destination results for all 
integer data manipulation instructions. Integer load instructions move data from 
memory to GPRs and store instructions move data from GPRs to memory.

Gigabit media-independent interface (GMII) sublayer. Sublayer that provides a 
standard interface between the MAC layer and the physical layer for 1000-Mbps 
operation. It isolates the MAC layer and the physical layer, enabling the MAC 
layer to be used with various implementations of the physical layer.

Guarded. The guarded attribute pertains to out-of-order execution. When a page is 
designated as guarded, instructions and data cannot be accessed out-of-order.

H Harvard architecture. An architectural model featuring separate caches and other 
memory management resources for instructions and data.
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I Illegal instructions. A class of instructions that are not implemented for a particular 
processor. These include instructions not defined by the architecture. In addition, 
for 32-bit implementations, instructions that are defined only for 64-bit 
implementations are considered to be illegal instructions. For 64-bit 
implementations, instructions that are defined only for 32-bit implementations are 
considered to be illegal instructions.

Implementation. A particular processor that conforms to the architecture, but may differ 
from other architecture-compliant implementations (for example, in design, 
feature set, and implementation of optional features).

Imprecise exception. A type of synchronous exception that is allowed not to adhere to the 
precise exception model (see Precise exception). The Power Architecture 
technology allows only floating-point exceptions to be handled imprecisely.

Inbound ATMU windows. Mappings that perform address translation from the external 
address space to the local address space, attach attributes and transaction types to 
the transaction, and map the transaction to its target interface. 

In-order. An aspect of an operation that adheres to a sequential model. An operation is 
said to be performed in-order if, at the time that it is performed, it is known to be 
required by the sequential execution model.

Integer unit. An execution unit in the core responsible for executing integer instructions.

Instruction latency. The total number of clock cycles necessary to execute an instruction 
and make ready the results of that instruction.

K Kill. An operation that causes a cache block to be invalidated without writing any modified 
data to memory.

L L2 cache. Level-2 cache. See Secondary cache.

Latency. The number of clock cycles necessary to execute an instruction and make ready 
the results of that execution for a subsequent instruction.

Least significant bit (lsb). The bit of least value in an address, register, field, data element, 
or instruction encoding. 

Least significant byte (LSB). The byte of least value in an address, register, data element, 
or instruction encoding.

Little-Endian. A byte-ordering method in memory where the address n of a word 
corresponds to the least significant byte. In an addressed memory word, the bytes 
are ordered (left to right) 3, 2, 1, 0, with 3 being the most significant byte. See 
Big-Endian.
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Local access window. Mapping used to translate a region of memory to a particular target 
interface, such as the DDR SDRAM controller or the PCI controller. The local 
memory map is defined by a set of eight local access windows. The size of each 
window can be configured from 4 Kbytes to 2 Gbytes.

M Media access control (MAC) sublayer. Sublayer that provides a logical connection 
between the MAC and its peer station. Its primary responsibility is to initialize, 
control, and manage the connection with the peer station.

Medium-dependent interface (MDI) sublayer. Sublayer that defines different connector 
types for different physical media and PMD devices.

Media-independent interface (MII) sublayer. Sublayer that provides a standard 
interface between the MAC layer and the physical layer for 10/100-Mbps 
operations. It isolates the MAC layer and the physical layer, enabling the MAC 
layer to be used with various implementations of the physical layer.

Memory access ordering. The specific order in which the processor performs load and 
store memory accesses and the order in which those accesses complete.

Memory coherency. An aspect of caching in which it is ensured that an accurate view of 
memory is provided to all devices that share system memory.

Memory consistency. Refers to agreement of levels of memory with respect to a single 
processor and system memory (for example, on-chip cache, secondary cache, and 
system memory).

Memory management unit (MMU). The functional unit that is capable of translating an 
effective (logical) address to a physical address, providing protection 
mechanisms, and defining caching methods.

Memory-mapped accesses. Accesses whose addresses use the page or block address 
translation mechanisms provided by the MMU and that occur externally with the 
bus protocol defined for memory.

Modified/exclusive/invalid (MEI). Cache coherency protocol used to manage caches on 
different devices that share a memory system. Note that the Power Architecture 
technology does not specify the implementation of an MEI protocol to ensure 
cache coherency. 

Modified state. MEI state (M) in which one, and only one, caching device has the valid 
data for that address. The data at this address in external memory is not valid.

Most significant bit (msb). The highest-order bit in an address, registers, data element, or 
instruction encoding. 

Most significant byte (MSB). The highest-order byte in an address, registers, data 
element, or instruction encoding.
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N NaN. An abbreviation for not a number; a symbolic entity encoded in floating-point 
format. There are two types of NaNs—signaling NaNs and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect registers or generate 
bus activity. 

O OCeaN (on-chip network). Non-blocking crossbar switch fabric. Enables full duplex port 
connections at 128 Gb/s concurrent throughput and independent per port 
transaction queuing and flow control. Permits high bandwidth, high performance, 
as well as the execution of multiple data transactions. 

Outbound ATMU windows. Mappings that perform address translations from local 
32-bit address space to the address spaces of RapidIO or PCI/PCI-X RapidIO, 
which may be much larger than the local space. Outbound ATMU windows also 
map attributes such as transaction type or priority level.

P Packet. A unit of binary data that can be routed through a network. Sometimes packet is 
used to refer to the frame plus the preamble and start frame delimiter (SFD). 

Page. A region in memory. The OEA defines a page as a 4-Kbyte area of memory aligned 
on a 4-Kbyte boundary. 

Page access history bits. The changed and referenced bits in the PTE keep track of the 
access history within the page. The referenced bit is set by the MMU whenever 
the page is accessed for a read or write operation. The changed bit is set when the 
page is stored into. See Changed bit and Referenced bit. 

Page fault. A page fault is a condition that occurs when the processor attempts to access 
a memory location that does not reside within a page not currently resident in 
physical memory. A page fault exception condition occurs when a matching, valid 
page table entry (PTE[V] = 1) cannot be located.

Page table. A table in memory is comprised of page table entries, or PTEs. It is further 
organized into eight PTEs per PTEG (page table entry group). The number of 
PTEGs in the page table depends on the size of the page table (as specified in the 
SDR1 register). 

Page table entry (PTE). Data structures containing information used to translate effective 
address to physical address on a 4-Kbyte page basis. A PTE consists of 8 bytes of 
information in a 32-bit processor and 16 bytes of information in a 64-bit processor. 

Physical coding sublayer (PCS). Sublayer responsible for encoding and decoding data 
stream to and from the MAC sublayer. Medium (1000BASEX) 8B/10B coding is 
used for fiber. Medium (1000BASET) 8B1Q coding is used for unshielded twisted 
pair (UTP).



e200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor Glossary-7
 

Physical medium attachment (PMA) sublayer. Sublayer responsible for serializing code 
groups into a bit stream suitable for serial bit-oriented physical devices (SerDes) 
and vice versa. Synchronization is also performed for proper data decoding in this 
sublayer. The PMA sits between the PCS and the PMD sublayers. For fiber 
medium (1000BASEX) the interface on the PMD side of the PMA is a one-bit 
1250-MHz signal, while on the PMA PCS side, the interface is a ten-bit interface 
(TBI) at 125 MHz. The TBI is an alternative to the GMII interface. If the TBI is 
used, the gigabit Ethernet controller must be capable of performing the PCS 
function. For UTP medium, the PMD interface side of the PMA consists of four 
pair of 62.5-MHz PAM5 encoded signals, while the PCS side provides the 
1250-Mbps input to an 8B1Q4 PCS. 

Physical medium dependent (PMD) sublayer. Sublayer responsible for signal 
transmission. The typical PMD functionality includes amplifier, modulation, and 
wave shaping. Different PMD devices may support different media.

Physical memory. The actual memory that can be accessed through the system’s memory 
bus.

Pipelining. A technique that breaks operations, such as instruction processing or bus 
transactions, into smaller distinct stages or tenures (respectively) so that a 
subsequent operation can begin before the previous one has completed. 

Precise exceptions. A category of exception for which the pipeline can be stopped so 
instructions that preceded the faulting instruction can complete and subsequent 
instructions can be flushed and redispatched after exception handling has 
completed. See Imprecise exceptions.

Primary opcode. The most-significant 6 bits (bits 0–5) of the instruction encoding that 
identifies the type of instruction.

Program order. The order of instructions in an executing program. More specifically, this 
term is used to refer to the original order in which program instructions are fetched 
into the instruction queue from the cache.

Protection boundary. A boundary between protection domains.

Protection domain. A protection domain is a segment, a virtual page, a BAT area, or a 
range of unmapped effective addresses. It is defined only when the appropriate 
relocate bit in the MSR (IR or DR) is 1.

Q Quad word. A group of 16 contiguous locations starting at an address divisible by 16.

Quiesce. To come to rest. The processor is said to quiesce when an exception is taken or a 
sync instruction is executed. The instruction stream is stopped at the decode stage 
and executing instructions are allowed to complete to create a controlled context 
for instructions that may be affected by out-of-order, parallel execution. See 
Context synchronization.
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R rA. The rA instruction field is used to specify a GPR to be used as a source or destination.

rB. The rB instruction field is used to specify a GPR to be used as a source.

rD. The rD instruction field is used to specify a GPR to be used as a destination.

rS. The rS instruction field is used to specify a GPR to be used as a source.

RapidIO. High-performance, packet-switched, interconnect architecture that provides 
reliability, increased bandwidth, and faster bus speeds in an intra-system 
interconnect. Designed to be compatible with integrated communications 
processors, host processors, and networking digital signal processors, 

Reconciliation sublayer. Sublayer that maps the terminology and commands used in the 
MAC layer into electrical formats appropriate for the physical layer entities.

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set, updates the 
condition register (CR) to reflect the result of the operation.

Reduced instruction set computing (RISC). An architecture characterized by 
fixed-length instructions with nonoverlapping functionality and by a separate set 
of load and store instructions that perform memory accesses. 

Referenced bit. One of two page history bits found in each page table entry. The 
processor sets the referenced bit whenever the page is accessed for a read or write. 
See also Page access history bits.

Requester. In PCI-X, a requester is an initiator that first introduces a transaction into the 
PCI-X domain. If a transaction is terminated with a split response, the requester 
becomes the target of the subsequent split completion.

Reservation. The processor establishes a reservation on a cache block of memory space 
when it executes an lwarx instruction to read a memory semaphore into a GPR.

Reservation station. A buffer between the dispatch and execute stages that allows 
instructions to be dispatched even though the results of instructions on which the 
dispatched instruction may depend are not available. 

S Secondary cache. A cache memory that is typically larger and has a longer access time 
than the primary cache. A secondary cache may be shared by multiple devices. 
Also referred to as L2, or level-2, cache. 

Sequence. In PCI-X, a sequence is one or more transactions associated with carrying out 
a single logical transfer by a requester. Each transaction in the same sequence 
carries the same unique sequence ID.

Set (v). To write a nonzero value to a bit or bit field; the opposite of clear. The term ‘set’ 
may also be used to generally describe the updating of a bit or bit field. 
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Set (n). A subdivision of a cache. Cacheable data can be stored in a given location in one 
of the sets, typically corresponding to its lower-order address bits. Because several 
memory locations can map to the same location, cached data is typically placed in 
the set whose cache block corresponding to that address was used least recently. 
See Set associative. 

Set associative. Aspect of cache organization in which the cache space is divided into 
sections, called sets. The cache controller associates a particular main memory 
address with the contents of a particular set, or region, within the cache.

Slave. The device addressed by a master device. The slave is identified in the address 
tenure and is responsible for supplying or latching the requested data for the 
master during the data tenure.

Snooping. Monitoring addresses driven by a bus master to detect the need for coherency 
actions.

Snoop push. Response to a snooped transaction that hits a modified cache block. The 
cache block is written to memory and made available to the snooping device.

Stall. An occurrence when an instruction cannot proceed to the next stage.

Sticky bit. A bit that when set must be cleared explicitly.

Superscalar machine. A machine that can issue multiple instructions concurrently from 
a conventional linear instruction stream.

Supervisor mode. The privileged operation state of a processor. In supervisor mode, 
software, typically the operating system, can access all control registers and can 
access the supervisor memory space, among other privileged operations. 

Synchronization. A process to ensure that operations occur strictly in order. See Context 
synchronization. 

Synchronous exception. An exception that is generated by the execution of a particular 
instruction or instruction sequence. There are two types of synchronous 
exceptions, precise and imprecise.

System memory. The physical memory available to a processor. 

T Tenure. The period of bus mastership. There can be separate address bus tenures and data 
bus tenures.

Throughput. The measure of the number of instructions that are processed per clock 
cycle.

Time-division multiplex (TDM). A single serial channel used by several channels taking 
turns.
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Transaction. A complete exchange between two bus devices. A transaction is typically 
comprised of an address tenure and one or more data tenures, which may overlap 
or occur separately from the address tenure. A transaction may be minimally 
comprised of an address tenure only. 

Transfer termination. Signal that refers to both signals that acknowledge the transfer of 
individual beats (of both single-beat transfer and individual beats of a burst 
transfer) and to signals that mark the end of the tenure.

Translation lookaside buffer (TLB). A cache that holds recently-used page table entries.

U User mode. The operating state of a processor used typically by application software. In 
user mode, software can access only certain control registers and can access only 
user memory space. No privileged operations can be performed. Also referred to 
as problem state.

V Virtual address. An intermediate address used in the translation of an effective address to 
a physical address.

Virtual memory. The address space created using the memory management facilities of 
the processor. Program access to virtual memory is possible only when it coincides 
with physical memory.

W Way. A location in the cache that holds a cache block, its tags, and status bits.

Word. A 32-bit data element.

Write-back. A cache memory update policy in which processor write cycles are directly 
written only to the cache. External memory is updated only indirectly, for 
example, when a modified cache block is cast out to make room for newer data. 

Write-through. A cache memory update policy in which all processor write cycles are 
written to both the cache and memory. 
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