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Chapter 1
e200z0 and e200z0h Overview

1.1 Overview of the e200z0 and e200z0h Cores

The €200 processor family is a set of CPU cores that implement low-cost versions of the Power
Architecture™ Book E architecture. €200 processors are designed for deeply embedded control
applications, which require low cost solutions rather than maximum performance.

The €200z0 and €200z0h processors integrate an integer execution unit, branch control unit, instruction
fetch and load/store units, and a multi-ported register file capable of sustaining three read and two write
operations per clock. Most integer instructions execute in asingle clock cycle. Branch target prefetching

is performed by the branch unit to allow single-cycle branches in some cases.

The €200z0 and €200z0h cores are single-issue, 32-bit Power Architecture Book EV LE-only designs with
32-hit general purposeregisters (GPRs). All arithmeticinstructionsthat executein the core operate on data

in the genera purpose registers (GPRS).

Instead of the base Power Architecture Book E instruction set support, the €200z0 and €200z0h cores only
implement the VLE (variable-length encoding) APU, providing improved code density. The VLE APU is

further documented in the PowerPC™ VLE APU Definition, Version 1.01, a separate document.

In the remainder of this document, the e200z0 and e200z0h core are also referred to as the “ €200z0 core”
or “e200 core” when referring to the whole €200 family. The term ‘e200z0h’ is used where differences

exist between the e200z0 and €200z0h.

111 Features

The following isalist of some of the key features of the €200z0 and €200z0h cores:
» 32-bit Power Architecture Book EVLE-only programmer’s model
» Singleissue, 32-bit CPU
* Implementsthe VLE APU for reduced code footprint
* In-order execution and retirement
» Precise exception handling
» Branch processing unit
— Dedicated branch address cal cul ation adder
— Branch acceleration using Branch Target Buffer (€200z0h only)

»  Supports independent instruction and data accesses to different memory subsystems, such as
SRAM and Flash memory viaindependent Instruction and Data bus interface units (BIUS)

(e200z0h only).
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€200z0 and e200z0h Overview

» Supportsinstruction and data access via a unified 32-bit Instruction/Data BIU (e200z0 only).
» Load/store unit

— 1 cycleload latency

— Fully pipelined

— Big-endian support only

— Misaligned access support

— Zero load-to-use pipeline bubbles for aligned transfers
*  Power management

— Low power design

— Power saving modes. doze, nap, sleep, and wait

— Dynamic power management of execution units
o Testability

— Synthesizeable, full MuxD scan design

— ABIST/MBIST for optional memory arrays

1.1.2 Microarchitecture Summary

The 200 processor utilizesafour stage pipeline for instruction execution. The Instruction Fetch (stage 1),
Instruction Decode/Register file Read/Effective Address Calculation (stage 2), Execute/Memory Access
(stage 3), and Register Writeback (stage 4) stages operate in an overlapped fashion, allowing single clock
instruction execution for most instructions.

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), aLogic Unit (LU), a 32-bit Barrel
shifter (Shifter), a Mask-Insertion Unit (M1U), a Condition Register manipulation Unit (CRU), a
Count-Leading-Zeros unit (CLZ), an 8x32 Hardware Multiplier array, result feed-forward hardware, and
ahardware divider.

Arithmetic and logical operations are executed in a single cycle with the exception of the divide and
multiply instructions. A Count-L eading-Zeros unit operatesin asingle clock cycle.

The Instruction Unit containsa PC incrementer and adedicated Branch Address adder to minimize delays
during change of flow operations. Sequential prefetching is performed to ensure a supply of instructions
into the execution pipeline. Branch target prefetching from the BTB is performed to accelerate certain
taken branchesin the e200z30h. Prefetched instructions are placed into an instruction buffer with 2 entries
in €200z0 and 4 entries in €200z0h, each capable of holding a single 32-bit instruction or a pair of 16-bit
instructions.

Conditional branches which are not taken execute in a single clock. Branches with successful target
prefetching have an effective execution time of 1 clock on €200z0h. All other taken branches have an
execution time of two clocks.

Memory load and store operations are provided for byte, halfword, and word (32-bit) data with automatic
zero or sign extension of byte and halfword load data as well as optional byte reversal of data. These
instructions can be pipelined to alow effective single cycle throughput. Load and store multiple word
instructions allow low overhead context save and restore operations. The load/store unit contains a

€200z0 Power Architecture Core Reference Manual, Rev. 0
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€200z0 and e200z0h Overview

dedicated effective address adder to allow effective address generation to be optimized. Also, aload-to-use
dependency does not incur any pipeline bubbles for most cases.

The Condition Register unit supportsthe condition register (CR) and condition register operations defined
by the PowerPC™ architecture. The condition register consists of eight 4-bit fields that reflect the results
of certain operations, such as move, integer and floating-point compare, arithmetic, and logical
instructions, and provide a mechanism for testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support is provided to
allow multipleinterrupt sources to have unique interrupt handlers invoked with no software overhead.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Instruction Unit Features

The features of the €200 Instruction unit are:

» 32-hit instruction fetch path supports fetching of one 32-bit instruction per clock, or up to two

16-bit VLE instructions per clock.

Figure 1-2. e200z0 Block Diagram

€200z0 Power Architecture Core Reference Manual, Rev. 0

CONTROL
B B

DATA

Freescale Semiconductor

1-5



|
y

'
A

€200z0 and e200z0h Overview

» Instruction buffer with 2 entries in €200z0 and 4 entries in €200z0h, each holding a single 32-bit
instruction, or apair of 16-bit instructions

* Dedicated PC incrementer supporting instruction prefetches

» Branch unit with dedicated branch address adder supporting single cycle of execution of certain
branches, two cyclesfor al others

1.1.2.2 Integer Unit Features

The €200 integer unit supports single cycle execution of most integer instructions:
» 32-bit AU for arithmetic and comparison operations
» 32-bit LU for logical operations
» 32-hit priority encoder for count leading zero’s function
» 32-bit single cycle barrel shifter for shifts and rotates
e 32-bit mask unit for data masking and insertion
» Divider logic for signed and unsigned divide in 5 to 34 clocks with minimized execution timing
*  8x32 hardware multiplier array supports 1 to 4 cycle 32x32->32 multiply (early out)

1.1.2.3 Load/Store Unit Features

The €200 load/store unit supports load, store, and the load multiple/ store multiple instructions:
» 32-bit effective address adder for data memory address calculations
* Pipelined operation supports throughput of one load or store operation per cycle
» 32-bit interface to memory dedicated memory interface on €200z0h)

1.1.2.4 €200z0h System Bus Features

The features of the €200z30h System Bus interface are as follows:

* Independent Instruction and Data Buses

» AMBA AHB Lite Rev 2.0 Specification with support for ARM v6 AMBA Extensions
— Exclusive Access Monitor
— Byte Lane Strobes
— Cache Allocate Support

» 32-bit address bus plus attributes and control on each bus

» 32-hit read data bus for Instruction Interface

» Separate uni-directional 32-bit read data bus and 32-bit write data busfor Data I nterface

» Overlapped, in-order accesses

1.1.2.5 €200z0 System Bus Features

The features of the €200z0 System Bus interface are as follows:
» Unified Instruction/Data Bus

€200z0 Power Architecture Core Reference Manual, Rev. 0
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AMBA AHB2.v6 protocol

32-bit address bus plus attributes and control

Separate uni-directional 32-bit read data bus and 32-bit write data bus
Overlapped, in-order accesses

1.1.2.6 Nexus 2+ Features

The module is compatible with Class 2 of the IEEE-ISTO Std 5001™-2003, with additional Class 3 and
Class 4 features available. The following features are implemented:

Program Trace via Branch Trace Messaging (BTM). Branch trace messaging displays program
flow discontinuities (direct and indirect branches, exceptions, etc.), allowing the devel opment tool
to interpolate what transpires between the discontinuities. Thus, static code may be traced.

Ownership Trace via Ownership Trace Messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process|D or operating system task is activated. An Ownership Trace
Message is transmitted when a new process/task is activated, allowing the development tool to
trace ownership flow.

Run-time access to the processor memory map viathe JTAG port. This allows for enhanced
download/upload capabilities.

Watchpoint Messaging via the auxiliary interface

Watchpoint Trigger enable of Program Trace Messaging

Auxiliary interface for higher data input/output

— Configurable (min/max) Message Data Out pins (nex_mdo[n:0])
— One (1) or two (2) Message Start/End Out pins (nex_mseo_b[1:0])
— One (1) Read/Write Ready pin (nex_rdy_b) pin

— One (1) Watchpoint Event pin (nex_evto_b)

— One (1) Event In pin (nex_evti_b)

— One (1) MCKO (Message Clock Out) pin

Registers for Program Trace, Ownership Trace and Watchpoint Trigger control.
All features controllable and configurable viathe JTAG port

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Chapter 2
Register Model

This section describes the registersimplemented in the €200z0 and €200z0h cores. It includes an overview
of registers defined by the PowerPC Book E architecture, highlighting differencesin how these registers
are implemented in the €200 core, and provides a detailed description of €200-specific registers. Full
descriptions of the architecture-defined register set are provided in Power Architecture Book E
Specification.

The Power Architecture Book E defines register-to-register operations for all computational instructions.
Source data for these instructions are accessed from the on-chip registers or are provided asimmediate
values embedded in the opcode. The three-register instruction format allows specification of atarget
register distinct from the two source registers, thus preserving the original datafor use by other
instructions. Data s transferred between memory and registers with explicit load and store instructions
only.

Figure 2-1, Figure 2-2, and Figure 2-3 show the €200 register set including the registers which are
accessible while in supervisor mode, and the registers which are accessible in user mode. The number to
the right of the special-purpose registers (SPRs) is the decimal number used in the instruction syntax to
access theregister (for example, the integer exception register (XER) is SPR 1).

NOTE
€200z0 and €200z0h are a 32-bit implementation of the Power Architecture
Book E specification. In this document, register bits are sometimes
numbered from bit O (most significant bit) to 31 (least significant bit), rather
than the Book E numbering scheme of 32:63, thus register bit numbers for
some registersin Book E are 32 higher.

Where appropriate, the Book E defined bit numbers are shown in
parentheses.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Figure 2-3. €200 User Mode Program Model

General purpose registers (GPRs) are accessed through instruction operands. Access to other registers can
be explicit (by using instructions for that purpose such as Move to Special Purpose Register (mtspr) and
Move from Special Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

2.1 Power Architecture Book E Registers

€200 supports a subset of the registers defined by Power Architecture™ Book E Specification. Notable
exceptions are the Floating Point registers FPRO—FPR31 and FPSCR. €200z0 and e200z0h cores do not
support the Book E floating-point architecture. The e200-supported Power Architecture Book E registers
are described as follows (e200-specific registers are described in the Section 2.2, “e200-Specific Special
Purpose Registers’).
» User-level registers—The user-level registers can be accessed by all software with either user or
supervisor privileges. They include the following:

— General-purpose registers (GPRs). The thirty-two 32-bit GPRs (GPRO-GPR31) serve as data
source or destination registersfor integer instructions and provide data for generating
addresses.

— Condition register (CR). The 32-bit CR consists of eight 4-hit fields, CRO—CR?7, that reflect
results of certain arithmetic operations and provide amechanism for testing and branching. See
“Condition Register (CR),” in Chapter 3, “Branch and Condition Register Operations, Power
Architecture Book E Specification.

Theremaining user-level registersare SPRs. Note that the Power Architecture Book E providesthe

mtspr and mfspr instructions for accessing SPRs.

— Integer exception register (XER). The XER indicates overflow and carries for integer
operations. See “XER Register (XER),” in Chapter 4, “Integer Operations’ of Power
Architecture Book E Specification for more information.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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— Link register (LR). The LR provides the branch target address for the Branch to Link Register
(se_blr, se_birl) instructions, and is used to hold the address of the instruction that follows a
branch and link instruction, typically used for linking to subroutines. See“Link Register (LR)”,
in Chapter 3, “Branch and Condition Register Operations’ of Power Architecture Book E
Specification.

— Count register (CTR). The CTR holds aloop count that can be decremented during execution
of appropriately coded branch instructions. The CTR also provides the branch target address
for theBranchto Count Register (se_bctr, se_bctrl) instructions. See“Count Register (CTR)”,
in Chapter 3, “Branch and Condition Register Operations’ of Power Architecture Book E
Specification.

» Supervisor-level registers—In addition to the registers accessible in user mode, Supervisor-level
software has access to additional control and status registers used for configuration, exception
handling, and other operating system functions. The Power Architecture Book E defines the
following supervisor-level registers:

— Processor Control registers

— Machine State Register (MSR). The M SR defines the state of the processor. The MSR can
be modified by the Move to Machine State Register (mtmsr), System Call (se_sc), and
Return from Exception (se_rfi, se_rfci, se_rfdi) instructions. It can be read by the Move
from Machine State Register (mfmsr) instruction. When an interrupt occurs, the contents of
the M SR are saved to one of the machine state save/restore registers (SRR1, CSRR1,
DSRR1).

— Processor version register (PVR). Thisregister is aread-only register that identifies the
version (model) and revision level of the processor.

— Processor Identification Register (PIR). This read-only register is provided to distinguish
the processor from other processors in the system.

— Storage Control register

— Process|D Register (PID, also referred to as PIDO). Thisregister isprovided to indicate the
current process or task identifier. It is used by the optional MMU as an extension to the
effective address, and by the optional external Nexus2/3 modules for Ownership Trace
message generation. Although the Power Architecture Book E allowsfor multiple PIDs, the
€200z0 and €200z0h implement only one.

— Interrupt Registers
— DataException Address Register (DEAR). After most Data Storage I nterrupts (DSI), or on

an Alignment Interrupt, the DEAR is set to the effective address (EA) generated by the
faulting instruction.

— SPRGO-SPRGL1. The SPRGO-SPRGL1 registers are provided for operating system or
interrupt handler use.

— Exception Syndrome Register (ESR). The ESR register providesasyndrometo differentiate
between the different kinds of exceptions which can generate the same interrupt.

— Interrupt Vector Prefix Register (IVPR). Thisregister together with hardwired offsetswhich
replace the 1V ORO-15 registers provide the address of the interrupt handler for different
classes of interrupts.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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2.2

The PowerPC Book E architecture allows implementation-specific special purpose registers. Those
incorporated in the e200 core are as follows:

— Save/Restore Register 0 (SRR0). The SRRO register is used to save machine state on a
non-critical interrupt, and contains the address of the instruction at which execution resumes
when an se_rfi instruction is executed at the end of a non-critical class interrupt handler
routine.

— Ciritical Save/Restoreregister 0 (CSRRO0). The CSRRO register isused to save machine state
onacritical interrupt, and containsthe address of theinstruction at which execution resumes
when an se_rfci instruction isexecuted at the end of acritical classinterrupt handler routine.

— Save/Restoreregister 1 (SRR1). The SRR1 register is used to save machine state from the
MSR on non-critical interrupts, and to restore machine state when se_rfi executes.

— Critical Save/Restoreregister 1 (CSRR1). The CSRR1register isused to save machine state
from the MSR on critical interrupts, and to restore machine state when se_rfci executes.

— Debug facility registers

— Debug Control Registers (DBCR0-DBCR2). These registers provide control for enabling
and configuring debug events.

— Debug Status Register (DBSR). Thisregister contains debug event status.

— Instruction Address Compare registers (IAC1-1AC4). These registers contain addresses
and/or masks which are used to specify Instruction Address Compare debug events.

— Data address compare registers (DAC1-2). These registers contain addresses and/or masks
which are used to specify Data Address Compare debug events.

— €200 does not implement the Data Value Compare registers (DVC1 and DV C2).

e200-Specific Special Purpose Registers

User-level registers—The user-level registers can be accessed by all software with either user or
supervisor privileges. They include the following:

— The L1 Cache Configuration register (L 1CFGO0). This read-only register allows software to
guery the configuration of the L1 Cache. For the €200z0 and €200z0h, this register returns all
zeros indicating no cache is present.

Supervisor-level registers—The following supervisor-level registers are defined in €200 in
addition to the Power Architecture Book E registers described above:

— Configuration Registers

— Hardware implementation-dependent register O (HIDO). Thisregister controls various
processor and system functions.

— Hardware implementation-dependent register 1 (HID1). Thisregister controls various
processor and system functions.

— Exception Handling and Control Registers

— Machine Check Syndrome register (MCSR). This register provides a syndrometo
differentiate between the different kinds of conditionswhich can generate a Machine Check.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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— Debug Save/Restoreregister 0 (DSRRO0). When enabled, the DSRRO register isused to save
the address of the instruction at which execution continueswhen se_rfdi executesat theend

of a debug interrupt handler routine.

— Debug Save/Restoreregister 1 (DSRR1). When enabled, the DSRR1 register isused to save
machine status on debug interrupts and to restore machine status when se_rfdi executes.

— Branch Unit Control and Status Register (BUCSR) controls operation of the BTB in e200z0
and e200z0h.

— L1 Cache Configuration Register (L1CFGO) isaread-only register that allows software to
guery the configuration of the L1 Cache. For the €200z0 and e200z0h this register returns all

ZEros.

— MMU Configuration Register (MMUCFG) isaread-only register that allows software to query
the configuration of the MMU. For e200z0 and €200z0h, this register returns the value

0x0000_0003 indicating no MMU is present.

— System version register (SVR). Thisregister isaread-only register that identifies the version
(model) and revision level of the SoC which includes an €200 Power Architecture processor.

Note that it is not guaranteed that the implementation of €200 core-specific registersis consistent among
Power Architecture processors, although other processors may implement similar or identical registers. All
€200 SPR definitions are compliant with the Freescale EI'S specification definitions as documented in the
EREF: A Programmer’s Reference Manual for Freescale Book E Processors.

2.3 Special Purpose Register Descriptions

2.3.1

Machine State Register (MSR)

The Machine State Register defines the state of the processor. Chapter 5, “Interrupts and Exceptions,”
describes how the M SR is affected when Interrupts occur. The €200 MSR is shown in Figure 2-4.

©
w| 2
| ® wi w w ool ws w| 0 %) —
€200z0h 0 8§ 0 ;OOLUD_U_EEODH_JO‘QDO |l 0
<
°
w| 2 W o
| ® [I] w| clao| W wi g (0)]
e200z0 0 88 0 ;ool.un_u.§EooEO‘£D 0
<
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Read/Write; Reset—0x0

Figure 2-4. Machine State Register (MSR)
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The MSR hits are defined in Table 2-1.

Table 2-1. MSR Field Descriptions

Bit(s) Name Description
0:4 — Reserved'
(32:36)
5 UCLE? |User Cache Lock Enable
(37) 0 Execution of the cache locking instructions in user mode (MSR[PR]=1) disabled; DSI exception taken
instead, and ILK or DLK set in ESR.
1 Execution of the cache lock instructions in user mode enabled.
6 Allocated | Allocated? - Allocated for SPE
(38) Not supported on €200z0 or e200z0h
7:12 — Reserved'
(39:44)
13 WE Wait State (Power management) enable
(45) 0 Power management is disabled.
1 Power management is enabled. The processor can enter a power-saving mode when additional
conditions are present. The mode chosen is determined by the DOZE, NAP, and SLEEP bits in the
HIDO register, described in Section 2.3.9, “Hardware Implementation Dependent Register 0 (HIDO0).”
14 CE Critical Interrupt Enable
(46) 0 Critical Input interrupts are disabled.
1 Critical Input interrupts are enabled.
15 — Reserved'
(47)
16 EE External Interrupt Enable
(48) 0 External Input interrupts are disabled.
1 External Input interrupts are enabled.
17 PR Problem State
(49) 0 The processor is in supervisor mode, can execute any instruction, and can access any resource (for
example, GPRs, SPRs, MSR, etc.).
1 The processor is in user mode, cannot execute any privileged instruction, and cannot access any
privileged resource.
18 Fp4 Floating-Point Available
(50) 0 Floating point unit is unavailable. The processor cannot execute floating-point instructions, including
floating-point loads, stores, and moves. (A FP Unavailable interrupt is generated on attempted
execution of floating point instructions).
1 Floating Point unit is available. The processor can execute floating-point instructions.
19 ME Machine Check Enable
(51) 0 Machine Check interrupts are disabled.
1 Machine Check interrupts are enabled.
20 FEO Floating-point exception mode 0 (not used by e200)
(52)
21 — Reserved'
(53)
22 DE Debug Interrupt Enable
(54) 0 Debug interrupts are disabled.

1 Debug interrupts are enabled.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Table 2-1. MSR Field Descriptions (continued)

Bit(s) Name Description
23 FE1 Floating-point exception mode 1 (not used by e200)
(55)
24 — Reserved'
(56)
25 — Reserved'
(57)
26 IS Instruction Address Space
(58) 0 The processor directs all instruction fetches to address space 0.
1 The processor directs all instruction fetches to address space 1.
27 DS Data Address Space
(59) 0 The processor directs all data storage accesses to address space 0.
1 The processor directs all data storage accesses to address space 1.
28:29 — Reserved'
(60:61)
30 RI Recoverable Interrupt
(62) 0 Machine Check interrupt is not recoverable.
1 Machine Check interrupt may be recoverable.
This bit is cleared when a Machine check interrupt is taken, or when a critical class interrupt using
CSRRO0/1 is taken. It is not set by hardware, and does not affect processor operation. It is provided as
a software assist.
30:31 — Reserved
(62:63)

' This bit is not implemented, is read as zero, and writes are ignored.

2 This bit is implemented but ignored because no cache is implemented
3 This bits is should be written with zero for future compatibility.

4 This bit is implemented but ignored

2.3.2

Processor ID Register (PIR)

The processor ID for the processor core is contained in the Processor ID Register (PIR), shown in
Figure 2-5. The contents of the PIR register areareflection of hardwareinput signalsto the €200 core. This
register isread-only.

0 ID

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—286; Read-only

Figure 2-5. Processor ID Register (PIR)

The PIR fields are defined in Table 2-2.
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Table 2-2. PIR Field Descriptions

Bits | Name Description
0:23 — These bits always reads 0.
24:31 ID These bits are a reflection of the values provided on the p_cpuid[0:7] input signals.

2.3.3 Processor Version Register (PVR)

The Processor Version Register (PVR), shown in Figure 2-6, contains the processor version number for
the processor core.

1lololololo Type Version MBG Reserved Major Rev MBG ID

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—287; Read-only

Figure 2-6. Processor Version Register (PVR)

The PVR bit fields are shown in Table 2-3.
Table 2-3. PVR Field Descriptions

Bits Name Description

0-5 Reserved | Reserved

6-11 Type A 6-bit number that, together with the version number, uniquely identifies a particular processor version.

12-15 Version | A 4-bit number that, together with the version number, uniquely identifies a particular processor version.

16-23 | Reserved |Reserved

24-27 | Major Rev | A 4-bit number that, together with the ID number, distinguishes between various releases of a particular
version (that is, an engineering change level). The value of the revision portion of the PVR is
implementation-specific. The processor revision level is changed for each revision of the device.

28-31 MBG ID |A 4-bit number that, together with the major revision number, distinguishes between various releases of
a particular version (that is, an engineering change level). The value of the revision portion of the PVR is
implementation-specific. The processor revision level is changed for each revision of the device.

234 System Version Register (SVR)

The System Version Register (SVR), shown in Figure 2-7, contains system version information for an
€200-based SoC.

System Version

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—1023; Read-only

Figure 2-7. System Version Register (SVR)
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Thisregister is used to specify a particular implementation of an €200-based system. Thisregister is
read-only. The SVR bit fields are shown in Table 2-4.

Table 2-4. SVR Field Descriptions

Bits Name Description
0-31 | Version |SVR number is SoC specific.
2.3.5 Integer Exception Register (XER)

The XER bit assignments are shown in Figure 2-8.

IS
Ol =2 < 9]
@| 0| O 0 2
[ia)
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—1; Read/Write; Reset—0x0

Figure 2-8. Integer Exception Register (XER)

The XER fields are defined in Table 2-5.

Table 2-5. XER Field Descriptions

Bits Name Description
0 SO Summary Overflow (per Book E)
(32)
1 ov Overflow (per Book E)
(33)
2 CA Carry (per Book E)
(34)
3:24 — Reserved'
(35:56)
25:31 Bytecnt2 Preserved for Iswi, Iswx, stswi, stswx string instructions
(57:63)

! These bits are not implemented, is read as zero, and writes are ignored.
2 These bits are implemented to support emulation of the string instructions.
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2.3.6

Exception Syndrome Register

The Exception Syndrome Register (ESR) provides asyndrometo differentiate between exceptionsthat can
generate the same interrupt type. €200 adds some implementation-specific bits to this register, as seen in

Figure 2-9.
R o =4 o o PN XXD_OoLIJ o = w|w
0 R A R 7 RN ol R ==l ho"'g o 15K
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—62; Read/Write; Reset—0x0

Figure 2-9. Exception Syndrome Register (ESR)

The ESR fields are defined in Table 2-6.
Table 2-6. ESR Field Descriptions

Bit(s) Name Description Associated Interrupt Type
0:3 — Allocated —
(32:35)
4 PIL lllegal Instruction exception Program
(36)
5 PPR Privileged Instruction exception Program
(37)
6 PTR Trap exception Program
(38)
7 FpP? Floating-point operation Alignment
(39) Data Storage
Data TLB
Program
8 ST Store operation Alignment
(40) Data Storage
Data TLB
9 — Reserved' —
(41)
10 DLK? Data Cache Locking Data Storage
(42)
11 ILK? Instruction Cache Locking Data Storage
(43)
12 AP Auxiliary Processor operation Alignment
(44) (Currently unused in €200) Data Storage
Data TLB
Program
13 PUO Unimplemented Operation exception Program
(45)
€200z0 Power Architecture Core Reference Manual, Rev. 0
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Table 2-6. ESR Field Descriptions (continued)

Bit(s) Name Description Associated Interrupt Type
14 BO Byte Ordering exception Data Storage
(46) Mismatched Instruction Storage exception Instruction Storage
15 PIE Program Imprecise exception Currently unused in €200
(47) (Reserved)
16:23 — Reserved' —
(48:55)
24 EFP Embedded Floating-point APU Operation Allocated, not set by hardware
(56)
25 — Allocated’ —
(57)
26 VLEMI VLE Mode Instruction Data Storage
(58) Instruction Storage
Alignment
Program
System Call
27:29 — Allocated’ —
(59:61)
30 MIF2 Misaligned Instruction Fetch Instruction Storage
(62) Instruction TLB
31 XTE External Termination Error (Precise) Data Storage
(63) Instruction Storage

! These bits are not implemented and should be written with zero for future compatibility.
2 Unused on 200z0h and e200z0.

2.3.6.1

The ESR[VLEMI] bit is provided to indicate that an interrupt was caused by a Power Architecture VLE
instruction. This syndrome bit is set on an exception associated with execution or attempted execution of
aPower Architecture VLE instruction. This bit is updated for the interrupt types indicated in Table 2-6.

Power Architecture VLE Mode Instruction Syndrome

2.3.6.2

The ESR[MIF] bit is provided to indicate that an Instruction Storage Interrupt was caused by an attempt
to fetch an instruction from aBook E page which was not aligned on aword boundary. The fetch may have
been caused by execution of a Branch classinstruction from aVLE page to anon-VLE page, a Branch to
LR instruction with LR[62]=1, a Branch to CTR instruction with CTR[62]=1, execution of an se rfi
instruction with SRR0[62]=1, execution of an se_rfci instruction with CSRRO[62]=1, or execution of an
se rfdi instruction with DSRRO[62] =1, where the destination address corresponds to an instruction page
which is not marked as a Power Architecture VLE page.

The ESR[MIF] bit isalso used to indicate that an Instruction TLB Interrupt was caused by a TLB miss on
the second half of amisaligned 32-bit Power Architecture VLE Instruction. For this case, SRRO points to
thefirst half of theinstruction, which resides on the previous page from the miss at page offset OXFFE. The

Misaligned Instruction Fetch Syndrome

€200z0 Power Architecture Core Reference Manual, Rev. 0
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ITLB handler may need to realize that the miss corresponds to the next page, although MMU MAS2
contents correctly reflects the page corresponding to the miss.

NOTE

Thishit isallocated, but is not set by €200z0 and €200z0h because no Book
E pages exist and no MMU isimplemented on these cores.

2.3.6.3 Precise External Termination Error Syndrome

The ESR[XTE] bit isprovided to indicate that a precise external termination error DSI or 1S interrupt was
caused by an instruction. This syndrome bit is set on an external termination error exception that is
reported in a precise manner viaa DSl or |ISI as opposed to a machine check.

2.3.7 Machine Check Syndrome Register (MCSR)

When the core complex takes a machine check interrupt, it updates the Machine Check Syndrome register
(MCSR) to differentiate between machine check conditions. The MCSR is shown in Figure 2-10.

€200z0h

CPERR
o
NMI
o

MCP
o
CP_PERR

o

e€200z0

CPERR
EXCP_ERR | EXCP_ERR

BUS_IRERR | BUS_IRERR

MCP
o
CP_PERR

BUS_DRERR|BUS_DRERR
BUS_WRERR|BUS_WRERR

o
-
N
w
IN
(4]
[2)

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
SPR—572; Read/Write; Reset—0x0

N
~
N
o]

29 30 31

Figure 2-10. Machine Check Syndrome Register (MCSR)

Table 2-7 describes MCSR fields. The MCSR indicates the source of a machine check condition is
recoverable. When a syndrome bit in the MCSR is set, the core complex asserts p_mcp_out for system
information.

Table 2-7. Machine Check Syndrome Register (MCSR)

Bit Name Description
0 MCP Machine check input pin

(32)
1 — Reserved, should be cleared.

(33)
2 CP_PERR! Cache push parity error

(34)

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Table 2-7. Machine Check Syndrome Register (MCSR) (continued)

Bit Name Description
3 CPERR' Cache parity error
(35)
4 EXCP_ERR Bus Error on first instruction fetch for an exception handler
(36)
5:26 — Reserved. Should be cleared.
(37:58)
€200z0h: — Reserved, should be cleared.
5:10
(37:42)
e200z0:
5:26
(37:58)
11 NMI Non-maskable interrupt input pin
(43)
12:26 — Reserved, should be cleared.
(44:58)
27 BUS_IRERR Read bus error on Instruction fetch
(59)
28 BUS_DRERR Read bus error on data load
(60)
29 BUS_WRERR Write bus error on buffered store
(61)
30:31 — Reserved, should be cleared.
(62:63)

1 Unused on e200z0 and e200z0h
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2.3.8 Debug Registers
The Debug facility registers are described in Chapter 8, “Debug Support.”

2.3.9 Hardware Implementation Dependent Register 0 (HIDO)

TheHIDO register isan €200 implementati on dependent register used for various configuration and control
functions.The HIDO register is shown in Figure 2-11.

X wiw
w| w =
o Q | w o = Qlwml ol ol 2| &
o 0 T NZH o |ZEo|lmPcggSo 0
= a ol 3| 3 Ol = m| T | 4| 2| ol
w o o 1) Hl | O] O] Q| ol <
%)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—1008; Read/Write; Reset—0x0

Figure 2-11. Hardware Implementation Dependent Register 0 (HIDO)
The HIDO fields are defined in Table 2-8.

Table 2-8. Hardware Implementation Dependent Register 0

Bits Name Description

0 EMCP Enable machine check pin (p_mcp_b)

0 p_mcp_b pin is disabled.

1 p_mcp_b pin is enabled. If MSR[ME] = 0, asserting p_mcp_b causes checkstop. If MSR[ME] =
1, asserting p_mcp_b causes a machine check interrupt.

The primary purpose of this bit is to mask out further machine check exceptions caused by assertion

of p_mcp_b.
1:5 — Reserved'
6:7 BPRED? Branch Prediction (Acceleration) Control

00 - Branch acceleration is enabled.

01 - Branch acceleration is disabled for backward branches.

10 - Branch acceleration is disabled for forward branches.

11 - Branch acceleration is disabled for both branch directions.

This field controls instruction buffer lookahead for branch acceleration. Note that for branches with
"AA’ =1, the MSB of the displacement field is still used to indicate forward/backward, even though
the branch is absolute. This field is used in conjunction with the BUCSR.

8 DOZE Configure for Doze power management mode

0 Doze mode is disabled

1 Doze mode is enabled

Doze mode is invoked by setting MSR[WE] while this bit is set.

9 NAP Configure for Nap power management mode

0 Nap mode is disabled

1 Nap mode is enabled

Nap mode is invoked by setting MSR[WE] while this bit is set.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Table 2-8. Hardware Implementation Dependent Register 0 (continued)

Bits Name Description

10 SLEEP Configure for Sleep power management mode
0 Sleep mode is disabled
1 Sleep mode is enabled
Sleep mode is invoked by setting MSR[WE] while this bit is set.
Only one of DOZE, NAP, or SLEEP should be set for proper operation.

11:13 — Reserved'

14 ICR Interrupt Inputs Clear Reservation
0 External Input, Critical Input, and Non-Maskable Interrupts do not affect reservation status
1 External Input, Critical Input, and Non-Maskable Interrupts clear an outstanding reservation

15 NHR Not hardware reset
0 Indicates to a reset exception handler that a reset occurred if software had previously set this bit
1 Indicates to a reset exception handler that no reset occurred if software had previously set this bit
Provided for software use - set anytime by software, cleared by reset.

16 — Reserved'

17 TBEN? TimeBase Enable
0 TimeBase is disabled
1 TimeBase is enabled

18 Reserved® |Reserved

19 DCLREE Debug Interrupt Clears MSR[EE]
0 MSRIEE] unaffected by Debug Interrupt
1 MSRIEE] cleared by Debug Interrupt
This bit controls whether Debug interrupts force External Input interrupts to be disabled, or whether
they remain unaffected.

20 DCLRCE Debug Interrupt Clears MSR[CE]
0 MSR[CE] unaffected by Debug Interrupt
1 MSR[CE] cleared by Debug Interrupt
This bit controls whether Debug interrupts force Critical interrupts to be disabled, or whether they
remain unaffected.

21 CICLRDE Critical Interrupt Clears MSR[DE]

0 MSR[DE] unaffected by Critical class interrupt

1 MSR[DE] cleared by Critical class interrupt

This bit controls whether certain Critical interrupts (Critical Input, Watchdog Timer) force Debug
interrupts to be disabled, or whether they remain unaffected. Machine Check interrupts have a
separate control bit.

Note that if Critical Interrupt Debug events are enabled (DBCRO[CIRPT] set (which should only be
done when the Debug APU is enabled), and MSR[DE] is set at the time of a Critical interrupt, a
debug event is generated after the Critical Interrupt Handler has been fetched, and the Debug
handler is executed first. In this case, DSRRO[DE] is cleared, such that after returning from the
debug handler, the Critical interrupt handler is not run with MSR[DE] enabled.

€200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor



Register Model

Table 2-8. Hardware Implementation Dependent Register 0 (continued)

Bits Name Description

22 MCCLRDE Machine Check Interrupt Clears MSR[DE]
0 MSR[DE] unaffected by Machine Check interrupt
1 MSR[DE] cleared by Machine Check interrupt
This bit controls whether Machine Check interrupts force Debug interrupts to be disabled, or whether
they remain unaffected.
Note that if Critical Interrupt Debug events are enabled (DBCRO[CIRPT] set (which should only be
done when the Debug APU is enabled), and MSR[DE] is set at the time of a Machine Check
interrupt, a debug event is generated after the Machine Check interrupt handler has been fetched,
and the Debug handler is executed first. In this case, DSRRO[DE] is cleared, such that after
returning from the Debug handler, the Machine Check handler is not run with MSR[DE] enabled.

23 DAPUEN Debug APU enable
0 Debug APU disabled
1 Debug APU enabled
This bit controls whether the Debug APU is enabled. When enabled, Debug interrupts use the
DSRRO/DSRR1 registers for saving state, and the se_rfdi instruction is available for returning from
a debug interrupt.
When disabled, Debug Interrupts use the critical interrupt resources CSRRO/CSRR1 for saving
state, the se_rfci instruction is used for returning from a debug interrupt, and the se_rfdi instruction
is treated as an illegal instruction.
When disabled, the settings of the DCLREE, DCLRCE, CICLRDE, and MCCLRDE bits are ignored
and are assumed to be ‘1’s
Read and write access to DSRRO/DSRR1 via the mfspr and mtspr instructions is not affected by
this bit.

24:31 — Reserved'

! These bits are not implemented and should be written with zero for future compatibility.
2 Unused on e200z0 and €200z0h

2.3.10 Hardware Implementation Dependent Register 1 (HID1)

The HID1 register isused for bus configuration and system control. HID1 is shown in Figure 2-12.

=
)
0 8 = 0
g <
@)
0 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
SPR—1009; Read/Write; Reset—0x0
Figure 2-12. Hardware Implementation Dependent Register 1 (HID1)
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The HID1 fields are defined in Table 2-9.

Table 2-9. Hardware Implementation Dependent Register 1

Bits Name Description

0:15 — Reserved'

16:23 | SYSCTL |System Control
These bits are reflected on the outputs of the p_hid1_sysctl[0:7] output signals for use in controlling the
system. They may need external synchronization.

24 ATS Atomic status (read-only)
Indicates state of the reservation bitin the load/store unit. See Section 3.4, “Memory Synchronization and
Reservation Instructions,” for more detail.

25:31 — Reserved'

! These bits are not implemented and should be written with zero for future compatibility.

2.3.11  Branch Unit Control and Status Register (BUCSR)

The BUCSR register is used for general control and status of the branch target buffer (BTB). BUCSR is
shown in Figure 2-13.

o
BBFI
o
BPEN

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—1013; Read/Write; Reset—0x0
Figure 2-13. Branch Unit Control and Status Register (BUCSR)

The BUCSR fields are defined in Table 2-10.
Table 2-10. Branch Unit Control and Status Register

Bits Name Description
0:21 —  |Reserved’
[32:53]
22 BBFI |Branch target buffer flash invalidate.
[54] When written to a ‘1’, BBFI flash clears the valid bit of all entries in the branch buffer; clearing occurs
regardless of the value of the enable bit (BPEN). Note: BBFI is always read as 0.
25:30 —  |Reserved’
[65:62]
31 BPEN | Branch target buffer enable.
[63] 0 Branch target buffer prediction disabled

1 Branch target buffer prediction enabled (enables BTB to predict branches)
When the BPEN bit is cleared, no hits are generated from the BTB, and no new entries are allocated.
Entries are not automatically invalidated when BPEN is cleared, the BBFI bit controls entry invalidation.

! These bits are not implemented and should be written with zero for future compatibility.
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2.3.12 L1 Cache Configuration Register (L1CFGO0)

The L1CFGO register provides configuration information for an L 1 cache supplied with this version of the
€200 CPU core. For €200z0 and €200z0h reads of this register return a value of all zeros.

2.3.13 MMU Configuration Register (MMUCFG)

The MMUCEFG register provides configuration information for the MMU supplied with thisversion of the
€200 CPU core. For €200z0 and €200z0h, because no MMU is present, reads of thisregister return avalue
of 0x0000_0003, indicating MMU architecture version 3, and a null MMU.

24 SPR Register Access

SPRsare accessed with themfspr and mtspr instructions. Thefollowing sections outline additional access
requirements.

2.4.1 Invalid SPR References

System behavior when aninvalid SPRisreferenced depends on the apparent privilegelevel of theregister.
The register privilege level is determined by bit 5 in the SPR address. If the invalid SPR is accessible in
user mode, then anillegal exception isgenerated. If theinvalid SPR isaccessible only in supervisor mode
and the CPU coreisin supervisor mode (M SR[PR] = 0), then anillegal exception is generated. If the
invalid SPR address is accessible only in supervisor mode and the core is not in supervisor mode
(MSR[PR] = 1), then a privilege exception is generated.

Table 2-11. System Response to Invalid SPR Reference

SPR Address Bit 5 Mode MSR[PR] Response
0 — — lllegal exception
1 supervisor 0 lllegal exception
1 user 1 Privilege exception

Referencesto the SPRsassociated with an optional unit (Cache, MMU, EFPU) when the unit isnot present
aretreated as references to an invalid SPR unless otherwise defined.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Synchronization Requirements for SPRs
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With the exception of the following registers, there are no synchronization requirements for accessing

SPRs beyond those stated in Power Architecture Book E. Software requirements for synchronization

before/after accessing these registers are shown in Table 2-12. The notation CSl in the table refersto a
Context Synchronizing instruction which include se_sc, isync, se rfi, se_rfci, and se_rfdi.

Table 2-12. Additional Synchronization Requirements for SPRs

Context Altering Event or Instruction R;g;.l;::d Re:f;:;ed Notes
mfspr
DBSR Debug Status Register msync none
HIDO Hardware implementation dependent reg O none none
HID1 Hardware implementation dependent reg 1 msync none
mtspr
BUCSR Branch Unit Control and Status Register none CSl
DBCRO Debug Control Register 0 none (O]
DBCR1 Debug Control Register 1 none (O]
DBCR2 Debug Control Register 2 none (O]
DBSR Debug Status Register msync none
HIDO Hardware implementation dependent reg 0 CSlI CSlI
HID1 Hardware implementation dependent reg 1 none (O3]
PID PIDO register none (O]
Note:

1. Not required if counter is not currently enabled

24.3 Special Purpose Register Summary

Power Architecture Book E and implementation-specific SPRsfor the e200 core arelisted in thefollowing
table. All registers are 32-bitsin size. Register bits are numbered from bit O to bit 31 (most-significant to
least-significant). An SPR register may be read or written with the mfspr and mtspr instructions. In the
instruction syntax, compilers should recognize the mnemonic name given in the table below.

Table 2-13. Special Purpose Registers

Mnemonic Name Nf:rser Access | Privileged S:i(c):?f-ic
BUCSR Branch Unit Control and Status Register 1013 R/W Yes Yes
CSRRO Critical Save/Restore Register 0 58 R/W Yes No
CSRR1 Critical Save/Restore Register 1 59 R/W Yes No

CTR Count Register 9 R/W No No

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Table 2-13. Special Purpose Registers (continued)

Mnemonic Name Nf:rser Access | Privileged S:i(c):(i)f-ic
DACH1 Data Address Compare 1 316 R/W Yes No
DAC2 Data Address Compare 2 317 R/W Yes No

DBCRO Debug Control Register 0 308 R/W Yes No
DBCR1 Debug Control Register 1 309 R/W Yes No
DBCR2 Debug Control Register 2 310 R/W Yes No
DBSR Debug Status Register 304 Read/Clear’ Yes No
DEAR Data Exception Address Register 61 R/W Yes No
DSRRO Debug save/restore register 0 574 R/W Yes Yes
DSRR1 Debug save/restore register 1 575 R/W Yes Yes
ESR Exception Syndrome Register 62 R/W Yes No
HIDO Hardware implementation dependent reg O 1008 R/W Yes Yes
HID1 Hardware implementation dependent reg 1 1009 R/W Yes Yes
IAC1 Instruction Address Compare 1 312 R/W Yes No
IAC2 Instruction Address Compare 2 313 R/W Yes No
IAC3 Instruction Address Compare 3 314 R/W Yes No
IAC4 Instruction Address Compare 4 315 R/W Yes No
IVPR Interrupt Vector Prefix Register 63 R/W Yes No
LR Link Register 8 R/W No No
L1CFGO L1 cache config register 0 515 Read-only No Yes
MCSR Machine Check Syndrome Register 572 R/W Yes Yes

MMUCFG | MMU configuration register 1015 Read-only Yes Yes

PIDO Process ID Register 48 R/W Yes No

PIR Processor ID Register 286 Read-only Yes No
PVR Processor Version Register 287 Read-only Yes No
SPRGO SPR General 0 272 R/W Yes No
SPRG1 SPR General 1 273 R/W Yes No
SRRO Save/Restore Register 0 26 R/W Yes No
SRR1 Save/Restore Register 1 27 R/W Yes No
SVR System Version Register 1023 Read-only Yes Yes
XER Integer Exception Register 1 R/W No No

Notes:

' The Debug Status Register can be read using mfspr RT,DBSR. The Debug Status Register cannot be directly
written to. Instead, bits in the Debug Status Register corresponding to 1 bits in GPR(RS) can be cleared using
mtspr DBSR,RS.
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Reset Settings
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Table 2-14 shows the state of the Power Architecture Book E architected registers and other optional

resources immediately following a system reset.

Table 2-14. Reset Settings for €200 Resources

Resource

System Reset Setting

Program Counter

p_rstbase[0:29] Il 2’b00

GPRs Unaffected’
CR Unaffected’
BUCSR 0x0000_0000
CSRRO Unaffected’
CSRR1 Unaffected’
CTR Unaffected’
DAC1 0x0000_0000
DAC2 0x0000_0000
DBCRO 0x0000_0000
DBCR1 0x0000_0000
DBCR2 0x0000_0000
DBSR 0x1000_0000
DEAR Unaffected’
DSRRO Unaffected’
DSRR1 Unaffected’
ESR 0x0000_0000
HIDO 0x0000_0000
HID1 0x0000_0000
IAC1 0x0000_0000
IAC2 0x0000_0000
IAC3 0x0000_0000
IAC4 0x0000_0000
IVPR Unaffected’
LR Unaffected’
L1CFGO? —
MCSR 0x0000_0000
MMUCFG2 —

MSR 0x0000_0000
PIDO 0x0000_0000

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Table 2-14. Reset Settings for €200 Resources (continued)
Resource System Reset Setting

PIR? —

PVR2 —

SPRGO Unaffected"

SPRGH Unaffected"

SRRO Unaffected

SRR1 Unaffected

SVR? —

XER 0x0000_0000

1

Undefined on m_por assertion, unchanged on p_reset_b assertion

2 Read-only register

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Chapter 3
Instruction Model

This chapter providesadditional information about the Power Architecture Book E asit relatesspecifically
to €200.

The €200z0 and €200z0h cores are a 32-bit implementation of the Power Architecture Book E as defined
in Power Architecture Book E Specification v 2.0. This architecture specification includes a recognition
that different processor implementations may require clarifications, extensions or deviations from the
architectural descriptions. e200z0 and €200z0h are unique in that they support only the VLE instruction
set encodings. The VLE APU is described in PowerPC VLE, version 1.01.

3.1 Unsupported Instructions and Instruction Forms

The €200 core does not support the instructions listed in Table 3-1. An unimplemented instruction
exception is generated if the processor attempts to execute one of these instructions.

Table 3-1. List of Unsupported Instructions

Type/Name Mnemonics

String Instructions Iswi, Iswx, stswi, stswx

Device control register and Move from APID | mfapidi, mfdcrx, mtdcrx

3.2 Optionally Supported Instructions and Instruction Forms

€200 cores optionally supports the instructions listed in Table 3-2 if acache and/or TLB is present. An
instruction exception may be generated if the processor attempts to execute one of these instructions and
therelated functional block is not present, or the specific instruction may be treated as a no-op.

Table 3-2. List of Optionally Supported Instructions

Type/Name Mnemonics Unit
Cache Management Instructions’ dcba, dcbf, dcbi, dcbt, dcbtst, dcbst, dcbz, Data Cache/ Unified Cache
icbi, icbt Instruction Cache/Unified Cache
Cache Locking Instructions?® dcbtls, dcbtstls, dcblc, Data Cache/ Unified Cache
icbtls, icblc Instruction Cache/Unified Cache
TLB Management Instructions® tibivax, tibre, tibsx, tibsync, tibwe TLB
DCR Management3 mfdcr, mtder DCR

' These instructions are not supported and are treated as no-ops, with the exception of debz which results in an
Alignment Interrupt, and dcbi, which is treated as a privileged no-op.

2 These instructions are not supported and are treated as no-ops.
3 These instructions are not supported and are treated as unimplemented.
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3.3 Memory Access Alignment Support

The €200 core provides hardware support for unaligned memory accesses; however, thereisaperformance
degradation for accesses that cross a 32-bit (4-byte) boundary. For these cases, the throughput of the
load/store unit is degraded to 1 misaligned load every 2 cycles. Stores that are misaligned across a 32-bit
(4-byte) boundary can be trandated at arate of 2 cycles per store. Frequent use of unaligned memory
accesses result in an impact on performance.

NOTE
Accesses that cross a 32-bit boundary may be restarted.

3.4 Memory Synchronization and Reservation Instructions

The msync instruction provides asynchronization function and amemory barrier function. Thisinstruction
waits for al preceding instructions and data memory accesses to complete before the msync instruction
completes. Subsequent instructions in the instruction stream are not initiated until after the msync
instruction ensures these functions have been performed.

Onthee200 core, thembar instruction behavesidentically to themsyncinstruction. The mbar instruction
MO field isignored by the €200 core.

The €200 core implements the Iwarx and stwex. instructions as described in Book E. If the EA isnot a
multiple of 4 for either instruction, an alignment interrupt is invoked.

As alowed by Power Architecture Book E, the €200 core does not require that for a stwex. instruction to
succeed, the EA of the stwex. instruction must be to the same reservation granule asthe EA of apreceding
lwar x instruction. Reservation granularity isimplementation-dependent. The €200 core does not define a
reservation granule explicitly; reservation granularity is defined by external logic. When no external logic
is provided, the €200 core performs no address comparison checking, thus the effective implementation
granularity is*“null”.

The €200 coreimplements an internal reservation statusflag (HID1[ATS]) representing reservation status.
Thisflag is set when alwarx instruction is executed and completes without error, and remains set until it
is cleared by one of the following mechanisms:

» Execution of a stwcex. instruction is completed without error, or

* Thee200 core p_rsrv_clr input signal is asserted, or

* Thereservationisinvalidated when an external input, critical input (on €200z0), or non-maskable
interrupt (on e200z0h) is signaled and the HIDO[ICR] bit is set.

When the e200 core decodes a stwcx. instruction, it checks the value of the local reservation flag
(HID1[ATS]). If the status indicates that no reservation is active, then the stwex. instruction is treated as
anop. No exceptions are taken, and no access is performed, thus no data breakpoint occurs, regardless of
matching the data breakpoint attributes.

The €200 core provides the input signal p_hresp[2:0], which is sampled at termination of a stwcx. store
transfer to allow an external agent or mechanism to indicate that the stwex. instruction hasfailed to update
memory, even though areservation existed for the store at the time it wasissued. Thisisnot considered an

€200z0 Power Architecture Core Reference Manual, Rev. 0
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error, and causes the condition codesfor the stwcx. instruction to be written asif areservation did not exist
for the stwcex. instruction. In addition, any outstanding reservation is cleared.

Thep_rsrv_clr input signal is not intended for normal use in managing reservations. It is provided for
specialized system applications. The normal bus protocol is used to manage reservations using external
reservation logic in systems with multiple coherent bus masters, using the transfer type and transfer
response signals. In single coherent master systems, no external logic is required, and the internal
reservation flag is sufficient to support multi-tasking applications.

3.5 Branch Prediction

In the €200z0h, theinstruction fetching mechanism usesa branch target buffer to detect branch instructions
early. This branch instruction lookahead scheme allows branch targets to be fetched early, thereby hiding
some taken branch bubbles.

3.6 Interruption of Instructions by Interrupt Requests

In general, the €200 core samples pending non-maskabl e interrupts, external input, and critical input
interrupt requests at instruction boundaries. However, in order to reduce interrupt latency, long running
instructions may beinterrupted prior to completion. Instructionsin this classinclude divides (divw[uo][.]),
load multiple word and store multiple word. When interrupted prior to completion, the value saved in
SRRO/CSRRO isthe address of the interrupted instruction. Theinstruction isrestarted from the beginning
after returning from the interrupt handler.

3.7 New e200 Instructions

The €200 core implements the Freescale EIS isel APU as described below which extends the Power
Architecture Book E instruction set. The €200 wait instruction implements await for interrupt function
and is described below. The €200 se _rfdi instruction returns from a Debug interrupt and is also described
below.

3.7.1 ISEL APU

The ISEL APU definestheisal instruction which provides ameansto select one of two registers and place
the result in a destination register under the control of a predicate value supplied by a bit in the condition
register. Thisinstruction can be used to eliminate branches in software and in many cases improve
performance. Thisinstruction can aso increase program execution time determinism by eliminating the
need to predict the target and direction of the branches replaced by the integer select function. The
instruction form and definition is as follows.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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isel isel

Integer Select

isel RT, RA, RB, crb

31 RT RA RB crb 01111 0

0 5 6 10 11 15 16 20 21 25 26 30 31

if RA=0 then a «%%0else a « GPR(RA)
¢ = CRerp

if ¢ then GPR(RT) « a

else GPR(RT) < GPR(RB)

For isdl, if the bit of the CR specified by (crb) is set, the contents of RA|0 are copied into RT. If the bit of
the CR specified by (crb) is clear, the contents of RB are copied into RT.

Other registers altered:
* None

3.7.2  Debug APU

€200 implements the EIS Debug APU, as documented in the EREF: A Programmer’s Reference Manual
for Freescale Book E Processors, to support the capability to handle the Debug interrupt as an additional
interrupt level. To support thisinterrupt level, anew “return from debug interrupt” (se_rfdi) instructionis
defined as part of the Debug APU, along with anew pair of save/restore registers, DSRRO, and DSRR1.

When the Debug APU is enabled (HIDO[DAPUEN] = 1), the se_rfdi instruction provides a means to
return from a debug interrupt. See Section 2.3.9, “Hardware |mplementation Dependent Register O
(HIDO),” for more information about enabling the Debug APU.

The instruction forms and definition are as follows.

se_rfdi se_rfdi
Return From Debug Interrupt
se rfdi
ojojojojojojojojojojojojojt1joj1t1]o
0 15
MSR «-DSRR1
PC «DSRRO35.45 || 0bO

€200z0 Power Architecture Core Reference Manual, Rev. 0
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The se_rfdi instruction is used to return from a Debug interrupt, or as a means of simultaneously
establishing a new context and synchronizing on that new context.

The contents of Debug Save/Restore Register 1 are place into the Machine State Register. If the new
Machine State Register value does not enabl e any pending exceptions, then the next instruction isfetched,
under control of the new Machine State Register value from the address DSRRO3,.6,|| ObO. If the new
Machine State Register value enables one or more pending exceptions, the interrupt associated with the
highest priority pending exception is generated; in this case the value placed into Save/Restore Register O
or Critical Save/Restore Register 0 by the interrupt processing mechanism isthe address of the instruction
that would have been executed next had the interrupt not occurred (such as the address in Debug
Save/Restore Register O at the time of the execution of the se_rfdi).

Execution of thisinstruction is privileged and context synchronizing.

Specia Registers Altered:
* MSR

When the Debug APU isdisabled (HIDO[DAPUEN]=0), thisinstruction istreated asanillegal instruction.

3.7.3 WAIT APU

The wait instruction allows software to cease all synchronous activity, waiting for an asynchronous
interrupt to occur. The instruction can be used to cease processor activity in both user and supervisor
modes. Asynchronous interrupts which cause the waiting state to be exited if enabled are critical input,
external input, machine check pin (p_mcp_b). Nonmaskable interrupts (p_nmi_b) also cause the waiting
state to be exited.

walit wait
Wait for Interrupt
wait
0 5 6 10 11 15 16 20 21 31
o 1 1 1 1 1 1/ o o o o 1t 1 1 1 1 0 [/

The wait instruction provides an ordering function for the effects of all instructions executed by the
processor executing the wait instruction and stops synchronous processor activity. Executing await
instruction ensures that al instructions have completed before the wait instruction completes, causes
processor instruction fetching to cease, and ensures that no subsequent instructions are initiated until an
asynchronous interrupt or a debug interrupt occurs.

Oncethewait instruction has completed, the program counter pointsto the next sequential instruction. The
saved value in xXSRRO when the processor re-initiates activity points to the instruction following the wait
instruction.

Execution of await instruction places the CPU in the “waiting” state and isindicated by assertion of the
p_waiting output signal. The signal is negated after leaving the “waiting” state.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Software must ensure that interrupts responsible for exiting the waiting state are enabled before executing
await instruction.

3.8 Unimplemented SPRs and Read-Only SPRs

€200 fully decodes the SPR field of the mfspr and mtspr instructions. If the SPR specified is undefined
and not privileged, an illegal instruction exception is generated. If the SPR specified is undefined and
privileged and the CPU isin user mode (MSR[PR=1]), a privileged instruction exception is generated. |
the SPR specified is undefined and privileged and the coreisin supervisor mode (MSR[PR=0]), anillegal
instruction exception is generated.

For the mtspr instruction, if the SPR specified is read-only and not privileged, anillegal instruction
exception is generated. If the SPR specified is read-only and privileged and the coreis in user mode
(MSR[PR=1]), aprivileged instruction exception is generated. If the SPR specified is read-only and
privileged and the core is in supervisor mode (M SR[PR=0]), an illegal instruction exception is generated.

For e200z0 and €200z0h, the following SPRs are not implemented and attempted access viaamtspr or
mfspr instruction resultsin an unimplemented instruction exception, unless the register is privileged and
the access attempt is made in user mode, in which case a privileged instruction exception occurs.

Table 3-3. List of Unimplemented SPRs

Type Name
Tlmebase DEC, DECAR, TCR, TSR, TBU, TBL
Software-Use Special Purpose Registers USPRGO, SPRG2-7
Interrupt Vector Offset Registers IVORO-15"

' These SPRs are hardwired to specific values, and are readable, but a mtspr results in
an unimplemented or privileged exception.

3.9 Invalid Forms of Instructions

3.9.1 Load and Store with Update Instructions

Power Architecture Book E definesthe case when aload with update i nstruction specifiesthe sameregister
inthe RT and RA field of theinstruction asan invalid format. For thisinvalid case, the €200 core performs
the instruction and update the register with the load data. In addition, if RA=0 for any load or store with
update instruction, the €200 core updates RA (GPRO).

3.9.2 Load Multiple Word (e_Imw) Instruction

Power Architecture Book E defines asinvalid any form of the e Imw instruction in which RA isin the
range of registers to be loaded, including the case in which RA=0. On €200, invalid forms of the e_Imw
instruction is executed as follows:

* Casel: RAisintherange of RT, RAI=0. In this case, address generation for individual loads to
register targetsin is done using the architectural value of RA which existed when beginning
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execution of thise_Imw instruction. RA is overwritten with a value fetched from memory asif it
had not been the base register. Note that if the instruction isinterrupted and restarted, the base
address may be different if RA has been overwritten.

* Case2: RA=0and RT=0. In this case, address generation for all loads to register targets RT=0 to
RT=31 is done substituting the value of O for the RA operand.

3.9.3 Instructions with Reserved Fields Non-Zero

Power Architecture Book E defines certain bit fieldsin various instructions as reserved and specifies that
these fields be set to zero. Per the Book E recommendation, €200 ignores the value of the reserved field
(bit 31) in X-form integer load and store instructions. For al other instructions, e200 generates an illegal
instruction exception if areserved field is non-zero.

3.10 Optionally Supported APU Instructions

€200 cores optionally support several APUs. If a core does not implement a particular APU, it may treat
theseinstructionsasillegal, or may treat them as unimplemented. e200z0 and €200z0h treat the Embedded
Floating-Point APU instructions (efs,, brinc) as unimplemented instructions because other cores of the
€200 family implement this APU. All other non-supported APUs are treated asillegal instructions.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Chapter 4
Instruction Pipeline and Execution Timing

This section describes the €200 instruction pipeline and instruction timing information. The coreis
partitioned into the following subsystems:

* Instruction unit

» Control unit

* Integer unit

» Load/store unit

» Coreinterface

4.1 Overview of Operation

A block diagram of the e200 cores are shown in Figure 4-2 and Figure 4-1. The instruction fetch unit
prefetchesinstructions from memory into theinstruction buffers. The decode unit decodes each instruction
and generates information needed by the branch unit and the execution units.

Theinstruction fetch unit attempts to supply a constant stream of instructions to the execution pipeline. In
the e200z0h it does so by decoding and detecting branches early in the instruction buffer, making branch
predictions, and prefetching their branch targets into the instruction buffer. By prefetching the branch
targets early, some or all of the branch pipeline bubbles can be hidden from the execution pipeline.

The instruction issue unit attempts to issue a single instruction each cycle to one of the execution units.
Source operandsfor each of theinstructions are provided from the GPRs or from the operand feed-forward
muxes. Data or resource hazards may create stall conditions which cause instruction issue to be stalled for
one or more cycles until the hazard is eliminated.

The execution units write the result of a finished instruction onto the proper result bus and into the
destination registers. The writeback logic retires an instruction when the instruction has finished
execution. Up to two results can be simultaneously written.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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411 Control Unit

The control unit coordinates the instruction fetch unit, branch unit, instruction decode unit, instruction
issue unit, completion unit and exception handling logic.

4.1.2 Instruction Unit

The instruction unit controls the flow of instructions to the instruction buffers and decode unit. A set of
instruction prefetch buffers allow the instruction unit to fetch instructions ahead of actual execution, and
serve to decouple memory and the execution pipeline.

4.1.3 Branch Unit

In the e200z0h the branch unit contains asingle entry Branch Target Buffer (BTB) to accel erate execution
of branch instructions.

Conditional branches which are not taken execute in a single clock on €200. Branches with successful
target prefetching have an effective execution time of one clock in the e200z0h. All other taken branches
have an execution time of two clocks on €200.

4.1.4 Instruction Decode Unit

The decode unit includestheinstruction buffers. A singleinstruction can be decoded each cycle. Themajor
functions of the decode logic are:

»  Opcode decoding to determine the instruction class and resource requirements for each instruction
being decoded.

» Source and destination register dependency checking.
» Execution unit assignment.
» Determine any decode serializations, and inhibit subsequent instruction decoding.

The decode unit operates in a single processor clock cycle.

415 Exception Handling

The exception handling unit includeslogic to handle exceptions, interrupts, and traps.

4.2 Execution Units

The core data execution units consist of the integer unit, and the load/store unit. Included in the execution
units section are the 32 genera purpose registers (GPRs). Instructions with data dependencies begin
execution when all such dependencies are resolved.

4.2.1 Integer Execution Unit

The integer execution unit is used to process arithmetic and logical instructions. Adds, subtracts,
compares, count leading zeros, shifts and rotates execute in asingle cycle.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Multiply instructions have a data-dependent latency and throughput rate of 14 cycles.

Divide instructions have a latency of 5-34 cycles depending on the operand data. While the divideis
running, the rest of the pipeline isunavailable for additional instructions (blocking divide).

4.2.2 Load/Store Unit

Theload/store unit executes instructions that move data between the GPRs and the memory subsystem. A
load followed by a dependent instruction does not incur any pipeline stall, except when the dependent
instruction is a load/store instruction, and the latter instruction is using the previous load data for its
effective address (EA) calculation, in which case a1 cycle “register-busy” pipeline stall is incurred.

Loads, when free of the above effective address cal culation dependency, execute with a maximum
throughput of one per cycle and one cycle latency. Store data can be fed-forward from an immediately
preceding load with no stall.

4.3 Instruction Pipeline

The four stage processor pipeline consists of stages for instruction fetch (IFETCH), instruction decode
(DECODE), execution (EXECUTE), and result writeback (WB). For memory operations, the effective
address generation occurs in the decode stage, while the memory access occurs in the execute stage.

The processor also contains an instruction prefetch buffer to allow buffering of instructions prior to the
decode stage. Instructions proceed from this buffer to the instruction decode stage by entering the
instruction decode register IR.

Table 4-1. Pipeline Stages

Stage Description
IFETCH Instruction Fetch From Memory
DECODE/EA Instruction Decode / Register Read/ Operand
Forwarding / EA Calculation
EXECUTE/MEM Instruction Execution / Memory Access
wB Write Back to Registers

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Simple Instruction

IFetch 11 12

Decode 11 12

Execute 11 12
Writeback 11 12

Load / Store Instruction

IFetch L1 L2

Decode/ EA Calc/ Drive address L1 L2

Memory Access/ Drive data back L1 L2
Writeback L1 L2

Figure 4-3. Pipeline Diagram

4.3.1 Description of Pipeline Stages

The I Fetch pipeline stage retrieve instructions from the memory system and determine where the next
instruction fetch is performed. Up to two 16-bit instructions are sent from memory to the instruction
buffers every cycle.

The Decode pipeline stage decodes instructions and performs dependency checking. Simple integer
instructions complete execution in the Execute stage of the pipeline.

Execution of load/store instructionsis pipelined. The effective address calculations for |oad/store
instructions are performed in the decode stage. This effective address is driven out to the data memory in
the same stage. The actual memory access occurs in the execute stage.

L oad-to-use dependencies do not incur pipeline bubbles except when the dependent instructionis aload
or store instruction, and the latter instruction is dependent on its previous load datafor EA calculation. If
an ALU instruction is dependent on aload instruction, the dataisfed directly into the ALU for execution.
No pipeline bubbleisincurred in this case.

Multiply instructions require 1 to 4 clocks to execute.
All condition-setting instructions compl ete in the Execute stage of the pipeline.

Result feed-forward hardware forwards the result of one instruction into the source operand(s) of a
following instruction so that the execution of data-dependent instructions do not wait until the completion
of the result writeback.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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4.3.2 Instruction Buffers

€200 contains a set of instruction buffers which supply instructions into the Instruction Register (IR) for
decoding.

In normal sequential execution, instructions are loaded into the IR from Slot O, and whenever aslot is
empty, a 32-bit prefetch isinitiated which fills the earliest empty sot beginning with Slot O.

If the instruction buffer empties, instruction issue stalls, and the buffer isrefilled. Thefirst returned
instruction is forwarded directly to the IR.

@ @
O o
r 3 \ o
= o m
< — o »
CcCr—® og—®0 :
P o | .
DATA 0:31 / m —
Figure 4-4. €200 Instruction Buffers
[0} [0} [0} [0}
I I I I
o) Or”or”o
s s r 3 \ o
w N e o m
< — o »
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m >
DATA 0:31

Figure 4-5. €200 Instruction Buffers

4.3.2.1 Branch Prediction in e200z0h

In €200z0h the HIDO[BPRED)] field is used to control whether prediction will be made for forward or
backward branches (or both).

To resolve branch instructions and improve the accuracy of branch predictions, €200 implements a
dynamic branch prediction mechanism using a 1-entry branch target buffer (BTB), afully associative
address cache of branch target addresses. The BTB on €200 is purposefully small to reduce cost and power.
It is expected to accelerate the execution of loops.

Anentry is allocated in the BTB whenever abranch resolves as taken and the BTB is enabled. Branches
that have not been allocated are aways predicted as not taken. Entriesin the BTB are allocated on taken
branches using a FIFO replacement agorithm.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Each BTB entry holds a 2-bit branch history counter, whose value is incremented or decremented on a
BTB hit, depending on whether the branch was taken. The counter can assume four different values:
strongly taken, weakly taken, weakly not taken, and strongly not taken.

A branch will be predicted as taken on a hit in the BTB with a counter value of strongly or weakly taken.
In this case the target address contained in the BTB is used to redirect the instruction fetch stream to the
target of the branch prior to the branch reaching theinstruction decode stage. In the case of amispredicted
branch, the instruction fetch stream returns to the sequential instruction stream after the branch has been
resolved.

When a branch is predicted taken and the branch is later resolved (in the branch decode stage), the value
of the counter isupdated. A branch whose counter indicates weakly taken isresolved as taken, the counter
increments so that the prediction becomes strongly taken. If the branch resol ves asnot taken, the prediction
changes to weakly not-taken. The counter saturates in the strongly taken states when the prediction is
correct.

€200 does not implement the static branch prediction that is defined by the PowerPC architecture. The BO
prediction bit in branch encodingsisignored.

Dynamic branch prediction is enabled by setting BUCSR[BPEN]. Clearing BUCSR[BPEN] disables
dynamic branch prediction, in which case €200 predicts every branch as not taken. Additional control is
available in the HIDO[BPRED] field to control whether forward or backward branches (or both) are
candidates for entry into the BTB, and thus for branch prediction. Once abranch isin the BTB,
HIDO[BPRED)] has no further effect on that branch entry.

The BTB uses virtual addresses for performing tag comparisons. On allocation of aBTB entry, the
effective address of ataken branch, along with the current Instruction Space (asindicated by MSR[IS)]) is
loaded into the entry and the counter valueis set to weakly taken. The current PID valueis not maintained
as part of the tag information.

€200 does support automatic flushing of the BTB when the current PID value is updated by amtcr PIDO
instruction. Software is otherwise responsible for maintaining coherency in the BTB when achangein
effectivetoreal (virtual to physical) address mapping is changed. Thisis supported by the BUCSR[BBFI]
control bit.

TAG DATA

branch addr[0:30]| IS | [target address[0:30] counter | entry 0

IS = Instruction Space

Figure 4-6. €200 Branch Target Buffer
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4.3.3 Single-Cycle Instruction Pipeline Operation

Sequences of single-cycle execution instructionsfollow theflow in Figure 4-7. Instructions areissued and
completed in program order. Most arithmetic and logical instructions fall into this category.

Time Slot |
| | | | | | |
| | | | | | |
1st Inst. IFETCH |DECODE |EXECUTE |FFwd/WB
2nd Inst. IFETCH |DECODE |EXECUTE |FFwd/WB
3rd Inst. IFETCH | DECODE |EXECUTE |FFwd/WB

Figure 4-7. Basic Pipeline Flow, Single Cycle Instructions

4.3.4 Basic Load and Store Instruction Pipeline Operation

The effective address (EA) calculations for load and store instructions are performed in the decode stage.
The memory access occurs in the execution stage.

If aload instruction isfollowed by an dependent ALU instruction, theload datais driven from the memory
inthe MEM stage and feed-forwarded into the dependent ALU instruction in the following cycle. Asa
result, theis no load-to-use pipeline bubble. Figure 4-7 shows the instruction flow for aload instruction
followed by a dependent add instruction.

Time Slot -

I1stLDinst| IFETCH |DEC/EA MEM MEM
Feedforward

2nd ADD inst. IFETCH |DECODE |EXECUTE MEM

4]

Figure 4-8. A Load Followed By A Dependent Add Instruction
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Back-to-back load/store instructions are executed in a pipelined fashion, provided that their effective
address calculations are not dependent on their previousload instructions. Figure 4-9 shows the basic pipe
lineflow for two back-to-back load instructions. In this case, the 2nd |oad does not depend on its previous
load datafor its EA calculation. Notice that the memory access of thefirst load instruction overlapsintime
with the EA calculation of the second load instruction.

Time Slot -
| | | | | | |
| [ [ [ [ [ |
1stLDinst| IFETCH |DEC/EA MEM WwB
2nd LD ingt. IFETCH |DEC/EA | MEM WB

Figure 4-9. Back-to-back Load Instructions

When aload isfollowed by aload or a store instruction that depends on the first load datafor EA
calculation, apipeline stall isincurred. Figure 4-10 shows the instruction flow for aload instruction
followed by a dependent store instruction through EA calculation. The second store instruction, in this
case, is dependent on thefirst load instruction for its EA calculation.

Time Slot -

lstLDingt| |[FETCH |DECODE |EXECUTE WB
Feedforward

2nd STORE inst. IFETCH | DECODE | EA Calc MEM WB

Figure 4-10. A Load Followed By A Dependent Store Instruction

A store instruction that depends on its previous load for its store data does not stall the pipeline.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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4.3.5 Change-of-Flow Instruction Pipeline Operation

A branch instruction takes either one or two cycles to execute. Simple change of flow instructionsrequire
2 cyclestorefill the pipeline with the target instruction for taken branches and branch and link instructions

with no prediction.

Time Slot |

BR Inst. IFETCH Slot0 DECODE |EXEC

Target Inst. IFETCH | DECODE | EXEC WB

Figure 4-11. Basic Pipeline Flow, Branch Instructions

For branch type instructions in e200z0h, in some situations this 2 cycle timing may be reduced by
performing the target fetch speculatively while the branch instruction is still being fetched into the
instruction buffer. The branch target address is obtained from the BTB. The resulting branch timing
reducesto asingle clock when the target fetch isinitiated early enough and the branch is taken.

Time Slot -

BR Inst. IFETCH | SlotO DECODE |EXEC

BTB hit TFETCH Slot0 DECODE |EXEC

Target Ingt.
(speculative fetch)

Figure 4-12. Basic Pipeline Flow, Branch Speculation
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4.3.6 Basic Multi-Cycle Instruction Pipeline Operation

The multiply, divide, and load and store multiple instructions require multiple cyclesin the execute stage.

Time Slot -

LMW/STMW/DIV Inst. IFETCH | DECODE | EXECO EXECn | wB

Figure 4-13. Basic Pipeline Flow, Multi-cycle Instructions

Instructions must complete and write back results in order. A single cycle instruction which follows a
multi-cycle instruction must wait for completion of the multi-cycle instruction prior to its writeback in
order to meet the in-order requirement. Result feed-forward paths are provided so that execution may
continue prior to result writeback.

4.3.7 Additional Examples of Instruction Pipeline Operation for Load and
Store

Figure 4-14 shows an example of pipelining two non-data dependent load or store instructions with a
following data dependent single cycle instruction. While the first load or store begins accessing memory
inthe MEM stage, the next load or store can be calculating a new effective address in the DEC/EA stage.
The add in this example does not stall even though there is a data dependency on its preceding load
instruction.

Time Slot >
| | | | | | |
1st LD/ST (no wait) | IFETCH |DEC/EA| MEM | wB |
2nd LDJST (no wait) | iFeTcH [DEC/EA] MEM [ we |
ADD [iFeTcn | pec [executd we

Figure 4-14. Pipelined Load/Store Instructions

€200z0 Power Architecture Core Reference Manual, Rev. 0
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For memory accessinstructions, wait-states may occur. This causesafollowing memory accessinstruction
to stall because the following memory access may not be initiated as shown in Figure 4-15. Here, the first
[d/st instruction incurs a wait-state on the bus interface, causing succeeding instructions to stall.

Time Slot |
| | | | | | | |
1 LD/ST (withwait) | |FETCH | DEC/EA | MEM |sallwaiy| ws |
2nd L DIST (no wait) | ireTen [pEC/EA| sal | mMEm | we |
ADD | iFeTcH | sal | pec  |Execute| ws

Figure 4-15. Pipelined Load/Store Instructions with Wait-state

4.3.8 Move to/from SPR Instruction Pipeline Operation

Most mtspr and mfspr instructions are treated like single cycle instructions in the pipeline, and do not
cause stalls. Exceptions are for the MSR, and the Debug SPRs that do cause stalls. The following figures
show examples of mtspr and mfspr instruction timing.

Figure 4-16 appliesto the Debug SPRs. These instructions do not begin execution until all previous
instructions have finished their execute stage. If the previousinstruction of mfspr or mtspr isamulticycle
instruction, the mfspr and mtspr instructions do not begin execution until its previous instruction moves
into the WB stage as shown in Figure 4-16. In addition, execution of subsequent instructionsis stalled until
the mfspr and mtspr instructions complete.

Time Slot -
| | | | | | | | | |
| [ | | | | | | | |
Prev Insgtr. (multicycle) FETCH DEC | EXE1l cee EXEn | WB
mtspr, mfspr FETCH DEC Stall s EXE WB

Next Instruction

FETCH Stall ce DEC | Stall EXE | WB

Figure 4-16. mtspr, mfspr Instruction Execution—(1)

€200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor 4-13



Instruction Pipeline and Execution Timing

Figure 4-17 appliesto the mtmsr instruction and the wr tee and wrteel instructions. Execution of
subsequent instructions is stalled until these instructions writeback.

Time Slot -

Prev I nstr. FETCH DEC | EXE | WB

FETCH DEC | EXE | WB

mtmsr, wrtee, wrteei

Next Instruction

FETCH DEC | Stall EXE | WB

Figure 4-17. mtmsr, wrtee, wrteei Instruction Execution

4.4 Control Hazards
Several internal control hazards exist in €200 which can cause certain instruction sequences to incur one
or more stall cycles. These include the following:

* mfspr instruction preceded by amtspr instruction—issue stalls until the mtspr completes

4.5 Instruction Serialization

The types of serialization required by the core are as follows:
» Completion serialization
» Dispatch (Decode/lssue) serialization
» Refetch serialization

4.5.1 Completion Serialization

A completion serialized instruction is held for execution until all prior instructions have completed. The
instruction then executes after it is next to complete in program order. Results from these instructions are
not available for or forwarded to subsequent instructions until the instruction completes. Instructions
which are completion serialized are:

* Instructions that access or modify system control or status registers. for example, mcr xr, mtmsr,
wrtee, wrteei, mtspr, mfspr (except to CTR/LR),

» Instructions defined by the architecture as context or execution synchronizing: se_isync, msync,
se rfi, se rfci, se_rfdi, se_sc.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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4.5.2 Dispatch Serialization

Some instructions are dispatch-serialized by the core. Aninstruction that is dispatch-serialized prevents
the next instruction from decoding until al instructions up to and including the dispatch-serialized
instruction completes. Instructions which are dispatch serialized are se_isync, mbar, msync, se rfi,

se rfci, se rfdi, se_sc.

4.5.3 Refetch Serialization

Refetch serialized instructions inhibit dispatching of subsequent instructions and force a pipeline refill to
refetch subsequent instructions after completion. These include:

» The context synchronizing instruction isync.

* These rfi, se rfci, se_rfdi, and se_sc instructions.

4.6 Interrupt Recognition and Exception Processing

Figure 4-18 shows timing for interrupt recognition and exception processing overhead. This example
shows best-case response timing when an interrupt is received and processed during execution of a
sequence of single-cycle instructions.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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*

oldpc_->srr0

*

oldmsr_->srrl

* - internal operations

Figure 4-18. Interrupt Recognition and Handler Instruction Execution

€200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor

4-16



Instruction Pipeline and Execution Timing

Figure 4-19 shows timing for interrupt recognition and exception processing overhead. This example
shows best-case response timing when an interrupt is received and processed during execution of aload
or storeinstruction. Thefetch for the handler is delayed until completion of the load or store, regardless of
the number of wait-states.

WB

Time Slot -
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 |
| | | | | | | | | | |
| | | | | |
K K | | | |
L oad/Store DEC/EA Mem | wait wait WB : | : :
Instructions | | | : | |
| | | | | |
|
FETCH DEC | Abort | -- - ! : | |
|
I : : :
DEC/ ! ' '
FETCH Abort Stall Stall Stall : : :
| | | |
A final sample point : : :
. [ | |
|
p_extint_b : ' : |
| |
| | | |
I | | |
p_iack / LA : | :
| I I
| | |
T T
| |

1st I nstruction of handler

ec_excp_detected” J

update esr”

|
|
FETCH DEC | EXE
|
|
|
|
|
|
|
|
|

update_msr”

oldpc_->srr0”

oldmsr_->srr1”

* - internal operations

Figure 4-19. Interrupt Recognition and Handler Instruction Execution—
Load/Store in Progress
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Figure 4-20 shows timing for interrupt recognition and exception processing overhead. This example
shows best-case response timing when an interrupt is received and processed during execution of a
multicycle interruptible instruction.

Time Slot -
Lty 34 s e 8 9 10
I | | | | | |
Multi-cycle FETCH DEC EXE | Abort -- -
Interruptible |
Instruction
Next I nstruction FETCH DEC | Abort | -- -
-
—\ final sample point
|
p_extint_b |
|
|
p_iack /—E_\

EXE | WB

|
I
FETCH DEC

1st Instruction of handler

ec_excp_detected” /

update esr”

i [ S

update_msr”

oldpc_->srr0"

oldmsr_->srr1”

_> 1

* - internal operations

Figure 4-20. Interrupt Recognition and Handler Instruction Execution—
Multi-Cycle Instruction Abort
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Instruction Timings

Instruction Pipeline and Execution Timing

Instruction timing in number of processor clock cycles for various instruction classesis shown in
Table 4-2. Pipelined instructions are shown with cycles of total latency and throughput cycles. Divide and
multiply instructions are not pipelined and block other instructions from executing during execution.

L oad/store multiple instruction cycles are represented as afixed number of cycles plus a variable number
of cycleswhere ‘n’ isthe number of words accessed by the instruction. In addition, cycle times marked
with an ‘&’ require variable number of additional cycles due to serialization.

Table 4-2. Instruction Class Cycle Counts

Class of Instructions Latency Throughput Special Notes

integer: add, sub, shift, rotate, logical, 1 1 —

cntlzw class instructions

integer: compare 1 1 —

Branch 21 2/1 Branches take either 2 or 1 cycles to execute.
(Taken/Not Taken)

multiply 1-4 1-4 data dependent timing

divide 5-34 5-34 data dependent timing

CR logical 1 1 —

loads (non-multiple) 1 1 —

load multiple 1+n 1+n Actual timing depends on n and address alignment.
(n = number of registers transferred)

stores (non-multiple) 1 1 —

store multiple 1+n 1+n Actual timing depends on n and address alignment.
(n = number of registers transferred)

mtmsr, wrtee, wrteei 2& 2 —

mcrf 1 1 —

mfspr, mtspr 2& 2& applies to Debug SPRs, optional unit SPRS

mfspr, mfmsr 1 1 applies to internal, non Debug SPRs

mfcr, mter 1 1 —

se_rfi, se_rfci, se_rfdi 3 — —

se_sc 3 — —

tw 3 — Trap taken timing

€200z0 Power Architecture Core Reference Manual, Rev. 0
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4.8 Operand Placement on Performance

The placement (location and alignment) of operands in memory affects relative performance of memory
accesses, and in some cases, affects it significantly. Table 4-3 indicates the effects for the €200 core.

In Table 4-3, optimal means that one effective address (EA) calculation occurs during the memory
operation. Good meansthat multiple EA calcul ationsoccur during the memory operation which may cause
additional bus activities with multiple bus transfers. Poor means that an alignment interrupt is generated

by the storage operation.
Table 4-3. Performance Effects of Storage Operand Placement
Operand
Size Byte Performance
Align

4 Byte 4 optimal
<4 good

2 Byte 2 optimal
<2 good

1 Byte 1 optimal

Imw, stmw 4 good
<4 poor

string N/A —

Notes:

Optimal: One EA calculation occurs.

Good: Multiple EA calculations occur which may
cause additional bus activities with multiple bus

transfers.
Poor: Alignment Interrupt occurs.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Chapter 5
Interrupts and Exceptions

The Power Architecture Book E document defines the mechanisms by which the €200 core implements
interrupts and exceptions. The document uses the terminology ‘interrupt’ as the action in which the
processor savesits old context and begins execution at a pre-determined interrupt handler address.
‘Exceptions’ are referred to as events which, when enabled, cause the processor to take an interrupt. This
section uses the same terminology.

The Power Architecture exception mechanism allowsthe processor to change to supervisor state asaresult
of unusual conditions arising in the execution of instructions, and from external signals, bus errors, or
variousinternal conditions. When interrupts occur, information about the state of the processor is saved to
machine state save/restore registers (SRRO/SRR1, CSRRO/CSRR1, or DSRRO/DSRR1) and the processor
begins execution at an address (interrupt vector) determined by the Interrupt Vector Prefix register (IVPR),
and one of the hardwired Interrupt Vector Offset values. Processing of instructions within the interrupt
handler begins in supervisor mode.

Multiple exception conditions can map to asingleinterrupt vector, and may be distinguished by examining
registers associated with the interrupt. The Exception Syndrome register (ESR) is updated with
information specific to the exception type when an interrupt occurs.

To prevent loss of state information, interrupt handlers must save the information stored in the machine
state save/restore registers, soon after the interrupt has been taken. Three sets of these registers are
implemented; SRRO and SRR1 for non-critical interrupts, CSRRO and CSRRL1 for critical interrupts, and
DSRRO and DSRR1 for debug interrupts (when the Debug APU is enabled). Hardware supports nesting
of critical interruptswithin non-critical interrupts, and debug i nterruptswithin both critical and non-critical
interrupts. It isup to the interrupt handler to save necessary state information if interrupts of a given class
are re-enabled within the handler.

The following terms are used to describe the stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an exception is
identified by the processor. Thisis aso referred to as an exception event.
Taken Aninterrupt is said to be taken when control of instruction execution is passed to

the interrupt handler; that is, the context is saved and the instruction at the
appropriate vector offset isfetched and the interrupt handler routine begins.

Handling Interrupt handling is performed by the software linked to the appropriate vector
offset. Interrupt handling is begun in supervisor mode.

Returning from an interrupt is performed by executing an se_rfi, se_rfci, or se_rfdi instruction to restore
state information from the respective machine state save/restore register pair.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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5.1

€200 Interrupts

As specified by the Power Architecture Book E specification, interrupts can be either precise or imprecise,
synchronous or asynchronous, and critical or non-critical. Asynchronous exceptions are caused by events
external to the processor’s instruction execution; synchronous exceptions are directly caused by
instructions or an event somehow synchronous to the program flow, such as a context switch. A precise
interrupt architecturally guarantees that no instruction beyond the instruction causing the exception has
(visibly) executed. Critical interrupts are provided with a separate save/restore register pair
(CSRRO/CSRR1) to allow certain critical exceptionsto be handled within anon-critical interrupt handler.

The types of interrupts handled are shown in Table 5-1.

Table 5-1. Interrupt Classifications

Interrupt Types Synchronous/Asynchronous | Precise/lmprecise | Critical/Non-Critical/Debug
System Reset Asynchronous, non-maskable Imprecise —
Machine Check — — Critical
Critical Input Interrupt Asynchronous, maskable Imprecise Critical
External Input Interrupt Asynchronous, maskable Imprecise Non-critical
Instruction-based Debug Interrupts Synchronous Precise Critical / Debug
Debug Interrupt (UDE) Asynchronous Imprecise Critical / Debug
Debug Imprecise Interrupt
Data Storage / Alignment Interrupts | Synchronous Precise Non-critical
Instruction Storage Interrupts

These classifications are discussed in greater detail in Section 5.7, “Interrupt Definitions.” Interrupts
implemented in €200 and the exception conditions that cause them are listed in Table 5-2.

Table 5-2. Exceptions and Conditions

Interrupt Type

Corresponding Interrupt
Vector Offset

Causing Conditions

System reset

none, vector to
[p_rstbase[0:29]] Il 2’b00

Reset by assertion of p_reset b
Debug Reset Control

Critical Input IVOR 0’ p_critint_bis asserted and MSR[CE]=1
Machine check | IVOR 1 p_mcp_b is asserted and MSR[ME] =1
1. Bus error (XTE) with MSR[EE]=0 and current MSR[ME]=1
Non-maskable interrupt (p_nmi_b recognized asserted) regardless of MSR[ME]

Data Storage |IVOR 2 Access control. (unused on Zen Z0n2p and Zen ZOHN2p)

Precise external termination error (p_tea_b assertion and precise recognition)
and MSR[EE]=1

Instruction IVOR 3 Access control. (unused on Zen Z0n2p and Zen ZOHN2p)

Storage Precise external termination error (p_tea_b assertion and precise recognition)
and MSR[EE]=1. See Section 6.2, “Internal Interface Signals,” for a definition of
internal signals.

External Input |IVOR 4! p_extint_b is asserted and MSR[EE]=1.
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Table 5-2.

Interrupts and Exceptions

Exceptions and Conditions (continued)

Corresponding Interrupt

Interrupt Type Vector Offset Causing Conditions

Alignment IVOR 5 Imw, stmw not word aligned.
lwarx or stwex. not word aligned.

Program IVOR 6 lllegal, Privileged, Trap, Unimplemented Operation.

Floating-point |IVOR 7 Unused

unavailable

System call IVOR 8 Execution of the System Call (se_sc) instruction

AP unavailable | IVOR 9 Unused

Decrementer |IVOR 10 Unused

Fixed Interval |IVOR 11 Unused

Timer

Watchdog IVOR 12 Unused

Timer

Data TLB Error | IVOR 13 Unused

InstructionTLB | IVOR 14 Unused

Error

Debug IVOR 15 Trap, Instruction Address Compare, Data Address Compare, Instruction
Complete, Branch Taken, Return from Interrupt, Interrupt Taken, External Debug
Event, Unconditional Debug Event

Reserved IVOR 16-31 —

! Autovectored External and Critical Input interrupts use this IVOR. Vectored interrupts supply an interrupt vector offset directly.

5.2 Exception Syndrome Register

The Exception Syndrome Register (ESR) provides asyndrome to differentiate between exceptionsthat can
generate the same interrupt type. €200 adds some implementation specific bits to this register, as seen in

Figure 5-1.
gl elal -l al ¥ ¢l ol o w = w| w
= - = i} =
0 S A R 7 R I e = =l e 0 lOS' 0 S| K
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Figure 5-

SPR—62; Read/Write; Reset—0x0

1. Exception Syndrome Register (ESR)
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Interrupts and Exceptions

The ESR bits are defined in Table 5-3.

Table 5-3. ESR Bit Settings

Bit(s) Name Description Associated Interrupt Type
0:3 — Allocated’ —
(32:35)
4 PIL lllegal Instruction exception Program
(36)
5 PPR Privileged Instruction exception Program
(37)
6 PTR Trap exception Program
(38)
7 FpP? Floating-point operation —
(39)
8 ST Store operation Alignment
(40) Data Storage
9 — Reserved® —
(41)
10 DLK* | Data Cache Locking Data Storage
(42)
11 ILK3 Instruction Cache Locking Data Storage
(43)
12 AP Auxiliary Processor operation Alignment (not on €200)
(44) (Not used by e200) Data Storage (not on e200)
Data TLB (not on e200)
Program (not on e200)
13 PUO Unimplemented Operation exception Program
(45)
14 BO Byte Ordering exception —
(46) Mismatched Instruction Storage exception
15 PIE Program Imprecise exception Currently unused by €200
(47) (Reserved)
16:23 — Reserved® —
(48:55)
24 — Reserved Allocated, is not set by
(56) hardware
25 — Allocated’ —
(57)
26 VLEMI | VLE Mode Instruction Data Storage
(58) Instruction Storage
Alignment
Program
System Call
27:29 — Allocated’ —
(59:61)
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Table 5-3. ESR Bit Settings (continued)

Interrupts and Exceptions

Bit(s) Name Description Associated Interrupt Type
30 MIF Misaligned Instruction Fetch Instruction Storage

(62) Instruction TLB
31 XTE External Termination Error (Precise) Data Storage

(63) Instruction Storage

! These bits are not implemented and should be written with zero for future compatibility.

2 Unused

3 These bits are not implemented, and should be written with zero for future compatibility.

4 Unused

5.3 Machine State Register
The Machine State Register defines the state of the processor. The €200 MSR is shown in Figure 5-2.

e}
w (0]
| ® Wi w wlecloa|lw S wl ) —
e200z0h 0 8§ 0 ;oomn_u.EEODEO @Al o |0
<
©
w2 L w| < w (4]
| ® w o AT
€200z0 0 ol 8 0 = 6|0 mElEs|molaw o 2F 0
<
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Read/ Write; Reset —0x0
Figure 5-2. Machine State Register (MSR)
The MSR bits are defined in Table 5-4.
Table 5-4. MSR Bit Settings
Bit(s) Name Description
0:4 — Reserved'
(32:36)
5 UCLE2? |User Cache Lock Enable
(37) 0 Execution of the cache locking instructions in user mode (MSR[PR]=1) disabled; DSI
exception taken instead, and ILK or DLK set in ESR.
1 Execution of the cache lock instructions in user mode enabled.
6 — Reserved'
(38)
7:12 — Reserved'
(39:44)
€200z0 Power Architecture Core Reference Manual, Rev. 0
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Table 5-4. MSR Bit Settings (continued)

Bit(s) Name Description
13 WE Wait State (Power management) enable. This bit is defined as optional in the Power
(45) Architecture Book E architecture.

0 Power management is disabled.

1 Power management is enabled. The processor can enter a power-saving mode when
additional conditions are present. The mode chosen is determined by the DOZE, NAP, and
SLEEP bits in the HIDO register, described in Section 2.3.9, “Hardware Implementation
Dependent Register 0 (HIDO).”

14 CE Critical Interrupt Enable
(46) 0 Critical Input interrupts are disabled.
1 Critical Input interrupts are enabled.
15 — Preserved'
(47)
16 EE External Interrupt Enable
(48) 0 External Input interrupts are disabled.
1 External Input interrupts are enabled.
17 PR Problem State
(49) 0 The processor is in supervisor mode, can execute any instruction, and can access any

resource (for example, GPRs, SPRs, MSR, etc.).
1 The processor is in user mode, cannot execute any privileged instruction, and cannot
access any privileged resource.

19 ME Machine Check Enable

(51) 0 Machine Check interrupts are disabled. Checkstop mode is entered when the p_mcp_b
input is recognized asserted or an ISI exception occurs on a fetch of the first instruction of
an exception handler.

1 Machine Check interrupts are enabled.

20 FEO Floating-point exception mode 0 (not used by €200)

(52)

21 — Reserved'

(63)

22 DE Debug Interrupt Enable

(54) 0 Debug interrupts are disabled.
1 Debug interrupts are enabled.

23 FE1 Floating-point exception mode 1 (not used by €200)

(55)

24 — Reserved'

(56)

25 — Preserved'

(67)

26 IS Instruction Address Space

(58) 0 The processor directs all instruction fetches to address space 0.
1 The processor directs all instruction fetches to address space 1.

27 DS Data Address Space

(59) 0 The processor directs all data storage accesses to address space 0.

1 The processor directs all data storage accesses to address space 1.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Table 5-4. MSR Bit Settings (continued)

Bit(s) Name Description
28:29 — Reserved'
(60:61)
Recoverable Interrupt
0 Machine Check interrupt is not recoverable.
30 1 Machine Check interrupt may be recoverable.

62) RI This bit is cleared when a Machine check or critical class interrupt which uses CSRR0/1 is
taken (see Table 5-1). It is not set by hardware, and does not affect processor operation. It is
provided as a software assist to determine if machine check interrupts may possibly be
recoverable.

30:31 — Preserved'
(62:63)

1

These bits are not implemented, are read as zero, and writes are ignored.

2 This bit is implemented, but ignored

5.4 Machine Check Syndrome Register (MCSR)

When the core complex takes a machine check interrupt, it updates the Machine Check Syndrome register
(MCSR) to differentiate between machine check conditions. The MCSR is shown in Figure 5-3.
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SPR—572; Read/Write; Reset—0x0

Figure 5-3. Machine Check Syndrome Register (MCSR)

Table 5-5 describes MCSR fields. The MCSR indicates the source of a machine check condition is
recoverable. When a syndrome bit in the MCSR is set, the core complex asserts p_mcp_out for system

information.
Table 5-5. Machine Check Syndrome Register (MCSR)
Bit Name Description Recoverable
0 MCP Machine check input pin Maybe
(32)
1 — Reserved, should be cleared. —
(33)
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Table 5-5. Machine Check Syndrome Register (MCSR) (continued)

Bit Name Description Recoverable
2 CP_PERR! Cache push parity error Unlikely
(34)
3 CPERR' Cache parity error Precise
(35)
4 EXCP_ERR Bus Error on first instruction Precise
(36) fetch for an exception handler
e€200z0: — Reserved, should be cleared. —
5:26
(37:
(58))
€200z0h:
5:10(37:
42)
11 NMI Non-maskable interrupt input | Maybe
(43) pin
12:26 — Reserved, should be cleared. —
(44:58)
27 BUS_IRERR Read bus error on Instruction | Unlikely
(59) fetch
28 BUS_DRERR Read bus error on data load | Unlikely
(60)
29 BUS_WRERR Write bus error on data store | Unlikely
(61)
30:31 — Reserved, should be cleared. —
(62:63)

' This bit is implemented, but is never set by hardware.

5.5 Interrupt Vector Prefix Register (IVPR)

The Interrupt Vector Prefix Register is used during interrupt processing for determining the starting
address of a software handler used to handle an interrupt. The hardwired Interrupt Vector Offset value for
aparticular interrupt typeis concatenated with the value held in the Interrupt Vector Prefix register (IVPR)
to form an instruction address from which execution isto begin. Notethat for Zen Z0On2p and Zen ZOHN2p
the VPR has been extended from 16 to 20 bits, allowing the vector table to reside on any 4-Kbyte
boundary. The format of 1VPR isshownin Figure 5-4.

Vector Base

0

5 6 7 8

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
SPR—63; Read/Write

Figure 5-4. €200 Interrupt Vector Prefix Register (IVPR)
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The IVPR fields are defined in Table 5-6.
Table 5-6. IVPR Register Fields

Bit(s) Name Description

0:19 Vec Base | Vector Base
(32:51) This field is used to define the base location of the vector table, aligned to a 4Kbyte boundary. This field
provides the high-order 20 bits of the location of all interrupt handlers. The IVORxx value appropriate for
the type of exception being processed are concatenated with the IVPR Vector Base to form the address
of the handler in memory.

20:31 — Reserved!
(52:63)

' These bits are not implemented, are read as zero, and writes are ignored.

5.6 Interrupt Vector Offset Values (IVORxx)

Interrupt Vector Offset Registers are not implemented in Zen Z0n2p and Zen ZOHN2p. Instead, hardwired
values are used for interrupt offsets to the VPR contents during interrupt processing for determining the
starting address of a software handler used to handle an interrupt. The associated hardwired value of the
Interrupt Vector Offset selected for aparticular interrupt type is concatenated with the value held in the
Interrupt Vector Prefix register (1VPR) to form an instruction address from which execution is to begin as
shown in Figure 5-5.

IVPRg.19 Vector Offset

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Figure 5-5. €200 Interrupt Vector Addresses

The hardwired Vector Offsets arelisted in Table 5-7.
Table 5-7. Hardwired Vector Offset Values

Interrupt Type Corresponding Interrupt Vector Offset Register 12-Bit Hex Offset
Critical Input IVOR 0’ 0x000
Machine check IVOR 1 0x010
Data Storage IVOR 2 0x020
Instruction Storage IVOR 3 0x030
External Input IVOR 4’ 0x040
Alignment IVOR 5 0x050
Program IVOR 6 0x060
Floating-point unavailable IVOR 7 Unused
System call IVOR 8 0x080
AP unavailable IVOR 9 Unused
Decrementer IVOR 10 Unused
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Table 5-7. Hardwired Vector Offset Values (continued)

Interrupt Type Corresponding Interrupt Vector Offset Register 12-Bit Hex Offset
Fixed Interval Timer IVOR 11 Unused
Watchdog Timer IVOR 12 Unused
Data TLB Error IVOR 13 Unused
Instruction TLB Error IVOR 14 Unused
Debug IVOR 15 0x0F0

1 Autovectored External and Critical Input interrupts use this IVOR. Vectored interrupts supply an interrupt
vector offset directly.

5.7 Interrupt Definitions

5.7.1 Critical Input Interrupt (IVORO)

A Critical Input exception is signalled to the processor by the assertion of the critical interrupt pin
(p_critint_b). When €200 detects the exception, if the exception is enabled by M SR[CE], €200 takes the
Critical Input interrupt. The p_critint_b input isalevel-sensitive signal expected to remain asserted until
€200 acknowledgestheinterrupt. If p_critint_b is negated early, recognition of the interrupt request is not
guaranteed. After €200 begins execution of the critical interrupt handler, the system can safely negate
p_critint_b.

A Critical Input interrupt may be delayed by other higher priority exceptions or if MSR[CE] is cleared
when the exception occurs.

Table 5-8 lists register settings when a Critical Input interrupt is taken.
Table 5-8. Critical Input Interrupt—Register Settings

Register Setting Description

CSRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

CSRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0 FP 0 FE1 0
WE 0 ME — IS 0
CE o0 FEO 0 DS 0
EE 0 DE —/0! Rl 02
PR 0

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPRg.1g Il 12’000 (autovectored)
IVPRg.19 Il p_voffset{0:9] Il 2’b00 (non-autovectored)
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' DE is cleared when the Debug APU is disabled. Clearing of DE is optionally supported by control in HIDO when the
Debug APU is enabled.

2 Rliscleared by all critical class interrupts using CSRR0/1 and the machine check interrupt. These interrupt handlers
should set Rl to ‘1’ early in the handler after CSRR0/1 have been saved to allow for improved recoverability.

When the Debug APU is enabled, the MSR[DE] bit is not automatically cleared by a Critical Input
interrupt, but can be configured to be cleared viathe HIDO register (HIDO[CICLRDE]). Refer to
Section 2.3.9, “Hardware Implementation Dependent Register 0 (HIDO).”

IVOROisthe vector offset used by autovectored Critical Input interruptsto determinethe interrupt handler
location. €200 also provides the capability to directly vector Critical Input interrupts to multiple handlers
by alowingaCiritical Input interrupt request to be accompanied by avector offset. The p_voffset[0:9] input
signals are appended with 2" b00 and used in place of the IVORO value to form the interrupt vector when
aCritical Input interrupt request is not autovectored (p_avec b negated when p_critint_b asserted).

5.7.2 Machine Check Interrupt (IVOR1)

€200 implements the Machine Check exception as defined in Power Architecture Book E except for
automatic clearing of the MSR[DE] bit (see later paragraph). €200 initiates a Machine Check interrupt if
MSR[ME]=1 and any of the machine check sources listed in Table 5-2 is detected. As defined in Power
Architecture Book E, the interrupt is not taken if MSR[ME] is cleared, in which case the processor
generates an internal checkstop condition and enters the checkstop state. When a processor isin the
checkstop state, instruction processing is suspended and generally cannot continue without restarting the
processor. Note that other conditions may lead to the checkstop condition; the disabled machine check
exception isonly one of these.

€200 implements the Machine Check Syndrome register (M CSR) to record the source(s) of machine
checks.

The MSR[DE] bit isnot automatically cleared by a Machine Check exception, but can be configured to be
cleared or left unchanged viathe HIDO register (HIDO[MCCLRDE]). Refer to Section 2.3.9, “Hardware
Implementation Dependent Register 0 (HIDO).”

5.7.2.1 Machine Check Interrupt Enabled (MSR[ME]=1)

Machine Check interrupts are enabled when MSR[ME]=1. When a Machine Check interrupt is taken,
registers are updated as shown in Table 5-9.

Table 5-9. Machine Check Interrupt—Register Settings

Register Setting Description

CSRRO On a best-effort basis €200 sets this to the address of some instruction that was executing or about to
be executing when the machine check condition occurred.

CSRR1 Set to the contents of the MSR at the time of the interrupt

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Table 5-9. Machine Check Interrupt—Register Settings (continued)

Register Setting Description

MSR UCLE O FP O FE1 O
WE O ME O IS 0
CE 0 FEO O DS 0
EE 0 DE o/—' Rl 02
PR 0

ESR Unchanged

MCSR Updated to reflect the source(s) of a machine check

DEAR Unchanged

Vector IVPRg.1g Il 122h010

' DE is cleared when the Debug APU is disabled. Clearing of DE is optionally supported by control in HIDO when the
Debug APU is enabled.

2 Rliscleared by all critical class interrupts using CSRR0/1 and the machine check interrupt. These interrupt handlers
should set Rl to ‘1’ early in the handler after CSRR0/1 have been saved to allow for improved recoverability.

The Machine Check input pin p_mcp_b can be masked by HIDO[EMCP].

In general, most Machine Check exceptions are unrecoverable in the sense that execution cannot resume
in the context that existed before the interrupt; however, system software can use the machine check
interrupt handler to try to identify and recover from the machine check condition.

The Machine Check Syndrome register is provided to identify the source(s) of a machine check and may
be used to identify recoverable events.

The interrupt handler should set MSR[ME] as soon as possible to avoid entering the checkstop state if
another machine check condition were to occur.

5.7.2.2 Checkstop State

A checkstop condition can occur for severa reasons. The exception related conditions are:
*  MSR[ME]=0 and a machine check occurs (other than a non-maskable interrupt on €200z0h).
» Firstingtruction in aninterrupt handler can not be executed due to a bus error termination, and
MSR[ME]=0.
» Buserror termination for a buffered store and MSR[ME]=0.
» Precise external termination error and M SR[EE]=0 and MSR[ME]=0

When a processor is in the checkstop state, instruction processing is suspended and generally cannot
resume without the processor being reset. To indicate that a checkstop condition exists, the p_chkstop
output pin is asserted whenever the CPU isin the checkstop state.

When a debug request is presented to the €200 core while in the checkstop state, the p_wakeup signa is
asserted, and when m_clkis provided to the CPU, it temporarily exitsthe checkstop state and enters Debug
mode. The p_chkstop output is negated for the duration of the time the CPU remainsin a debug session
(p_debug_b asserted). When the debug session is exited, the CPU re-enters the checkstop state. Note that
the external system logic may bein an undefined state following a checkstop condition, such as having an
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outstanding bus transaction, or other inconsistency, thus no guarantee can be made in general about
activities performed in debug mode while a checkstop is still outstanding. Debug logic does have the
capability of generating assertion of the p_resetout_b signal viathe DBCRO register though.

5.7.2.3 Non-Maskable Interrupts (NMI) in €200z0h

€200 implements a non-maskabl e interrupt in addition to the machine check sources defined by Power
Architecture Book E. The non-maskableinterrupt is signaled viathe p_nmi_b input. Non-maskable
interrupt are not gated by M SR[ME], and a non-maskable interrupt occurring with MSR[ME]=0 does not
result in a checkstop condition. €200 provides the MSR[RI] bit to indicate whether these non-maskable
interrupts are potentially recoverable. Because a non-maskable interrupt overwrites the CSRR0/1
registers, if theseregistersare currently holding essential state becauseacritical classinterrupt handler has
not yet been ableto save this state away safely, and a non-maskable interrupt occurs, no recovery fromthe
earlier critical classinterrupt is possible. The machine check handler may use the value of CSRR1[RI] to
determine if this has occurred. If CSRR1[RI] is cleared, then no recovery is possible, because MSR[RI]
was 0 at the time of the non-maskable interrupt, indicating that the CSRRO/1 registers had not yet been
saved. Critical class and machine check interrupt handlers should save the state of CSRR0/1 and then set
MSR[RI] to ‘1’ assoon asispractical to ensure the best chance of recovery from anon-maskabl e interrupt.

5.7.3 Data Storage Interrupt (IVOR2)

A Data Storage interrupt (DSI) may occur if no higher priority exception exists and one of the following
exception conditions exists:
» External Termination Error (precise) and MSR[EE]=1
Precise external termination errors occur when aload or store is terminated by assertion of p_tea b
(ERROR termination response). See Section 6.2, “Internal Interface Signals,” for adefinition of internal
signals.
Table 5-10 lists register settings when a DS is taken.
Table 5-10. Data Storage Interrupt—Register Settings

Register Setting Description

SRRO Set to the effective address of the excepting load/store instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE O FP 0 FE1 O
WE O ME — IS 0
CE — FEO O DS O
EE O DE — RI —
PR 0

ESR Access: [ST], [VLEMI]. All other bits cleared.
External Termination Error (Precise): [ST], [VLEMI], XTE. All other bits cleared.

MCSR Unchanged

DEAR For Access exceptions, set to the effective address of a byte within the page whose access caused the violation.

Vector IVPRg. 19 Il 12’020
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5.7.4 Instruction Storage Interrupt (IVOR3)

An Instruction Storage interrupt (ISl) occurs when no higher priority exception exists and a precise
external termination error occurswhen an instruction fetch isterminated by assertion of p_tea_b (ERROR
termination response) and M SR[EE]=1. See Section 6.2, “Internal Interface Signals,” for a definition of
internal signals.

Table 5-11 lists register settings when an 1Sl is taken.

Table 5-11. Instruction Storage Interrupt—Register Settings

Register Setting Description

SRRO Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLEO FP 0 FE1 O
WE O ME — IS 0
CE — FEO O DS 0
EE 0 DE — Rl  —
PR 0

ESR XTE, VLEMI. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPRg:19 Il 12°h030

5.7.5 External Input Interrupt (IVOR4)

An External Input exception is signalled to the processor by the assertion of the external interrupt pin
(p_extint_b). Thep_extint_b input is alevel-sensitive signal expected to remain asserted until e200
acknowledges the external interrupt. If p_extint_b is negated early, recognition of the interrupt request is
not guaranteed. When €200 detects the exception, if the exception is enabled by M SR[EE], €200 takesthe
Externa Input interrupt.

An External Input interrupt may be delayed by other higher priority exceptionsor if MSR[EE] is cleared
when the exception occurs.

Table 5-12 lists register settings when an External Input interrupt is taken.

Table 5-12. External Input Interrupt—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLEO FP 0 FE1 O
WE 0 ME — IS 0
CE — FEO O DS 0
EE 0 DE — Rl  —
PR 0
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Table 5-12. External Input Interrupt—Register Settings (continued)

ESR Unchanged
MCSR Unchanged
DEAR Unchanged
Vector IVPRg:19 Il 12’040 (autovectored)
IVPRy.19 Il p_voffset{0:9] Il 2’b00 (non-autovectored)

IVORA4 isthe vector offset value used by autovectored External Input interrupts to determine the interrupt
handler location. €200 also provides the capability to directly vector External Input interrupts to multiple
handlers by allowing a External Input interrupt request to be accompanied by a vector offset. The
p_voffset[0:9] input signals are appended with 2'b00 and used in place of the IVOR4 value when an
Externa Input interrupt request is not autovectored (p_avec_b negated when p_extint_b asserted).

5.7.6 Alignment Interrupt (IVORS5)

€200 implements the Alignment Interrupt as defined by Power Architecture Book E. An Alignment
exception is generated when any of the following occurs:

* Theoperand of e Imw or e_stmw not word aligned

» The operand of lwarx or stwcx. not word aligned

Execution of adcbz instruction is attemptedTable 5-13 lists register settings when an alignment interrupt
is taken.

Table 5-13. Alignment Interrupt—Register Settings

Register Setting Description

SRRO Set to the effective address of the excepting load/store instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLEO FP 0 FE1 O
WE O ME — IS 0
CE — FEO O DS 0
EE 0 DE — R  —
PR 0

ESR [ST], VLEMIL. All other bits cleared.

MCSR Unchanged

DEAR Set to the effective address of a byte of the load or store whose access caused the violation.

Vector IVPRg.1g Il 12’050

5.7.7 Program Interrupt (IVOR6)

€200 implements the Program Interrupt as defined by Power Architecture Book E. A program interrupt
occurs when no higher priority exception exists and one or more of the following exception conditions

defined in Power Architecture Book E occur:
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» lllegal Instruction exception

» Privileged Instruction exception

» Trap exception

*  Unimplemented Operation exception
€200 invokes an Illegal Instruction program exception on attempted execution of the following
instructions:

* Instruction from the illegal instruction class

* mtspr and mfspr instructions with an undefined SPR specified

* mtdcr and mfdcr instructions with an undefined DCR specified
€200 invokes a Privileged Instruction program exception on attempted execution of the following
instructions when M SR[PR]=1 (user mode):

* A privileged instruction

* mtspr and mfspr instructions which specify a SPRN value with SPRNs=1 (even if the SPRIis

undefined).

€200 invokes an Trap exception on execution of tw instructionsif the trap conditions are met and the
exception is not also enabled as a Debug interrupt.

All other defined or allocated instructions that are not implemented by €200 cause aillegal instruction
program exception.

Table 5-14 lists register settings when a Program interrupt is taken.

Table 5-14. Program Interrupt—Register Settings

Register Setting Description

SRRO Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLEO FP 0 FE1 O
WE O ME — IS 0
CE — FEO O DS 0
EE O DE — Rl  —
PR 0

ESR lllegal: PIL, VLEMI. All other bits cleared.
Privileged: PPR, VLEMI. All other bits cleared.
Trap: PTR, VLEMI. All other bits cleared.
Unimplemented: PUO, VLEMI. All other bits cleared.

MCSR Unchanged

DEAR

Unchanged

Vector

IVPRg.1 Il 12°h060

€200z0 Power Architecture Core Reference Manual, Rev. 0

5-16

Freescale Semiconductor



Interrupts and Exceptions

5.7.8 System Call Interrupt (IVORS8)

A System Call interrupt occurs when a System Call (se_sc) instruction is executed and no higher priority
exception exists.

Exception extensions implemented in €200 for Power Architecture VLE include modification of the
System Call Interrupt definition to include updating the ESR.

Table 5-15 lists register settings when a System Call interrupt is taken.

Table 5-15. System Call Interrupt—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction following the se¢ instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLEO FP 0 FE1 O
WE O ME — IS 0
CE — FEO O DS 0
EE 0 DE — Rl  —
PR 0

ESR VLEMI All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPRg.19 Il 12’080

5.7.9 Auxiliary Processor Unavailable Interrupt (IVOR9)

An Auxiliary Processor Unavailable exception is defined by Power Architecture Book E to occur when an
attempt is made to execute an APU instruction which is implemented but configured as unavailable, and
no higher priority exception condition exists.

€200 does not utilize thisinterrupt.

5.7.10 Debug Interrupt (IVOR15)

€200 implements the Debug Interrupt as defined in Power Architecture Book E with the following
changes:

*  When the Debug APU is enabled, Debug is no longer a critical interrupt, but uses DSRRO and
DSRR1 for saving machine state on context switch

* A Return from debug interrupt instruction (se_rfdi) isimplemented to support the new machine

state registers

» A Critical Interrupt Taken debug event is defined to allow critical interrupts to generate a debug
event

» A Critical Return debug event is defined to allow debug events to be generated for se_rfci
instructions

€200z0 Power Architecture Core Reference Manual, Rev. 0
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There are multiple sources that can signal a Debug exception. A Debug interrupt occurs when no higher
priority exception exists, a Debug exception existsin the Debug Status Register, and Debug interrupts are
enabled (both DBCRO[IDM]=1 (internal debug mode) and MSR[DE]=1). Enabling debug events and
other debug modes are discussed further in Chapter 8, “Debug Support.” With the Debug APU enabled,
(See Section 2.3.9, “Hardware Implementation Dependent Register 0 (HIDO0)”) the Debug interrupt hasits
own set of machine state save/restore registers (DSRRO, DSRR1) to allow debugging of both critical and
non-critical interrupt handlers. In addition, the capability is provided to alow interrupts to be handled
while in a debug software handler. External and Critical interrupts are not automatically disabled when a
Debug interrupt occurs but can be configured to be cleared viathe HIDO register (HIDO[DCL REE,
DCLRCE]). Refer to Section 2.3.9, “Hardware | mplementation Dependent Register 0 (HID0).” When the
Debug APU is disabled, Debug interrupts use the CSRR0 and CSRR1 registers to save machine state.

AnInstruction Address Compare (1 AC) debug exception occurswhen thereisan instruction address match
as defined by the debug control registersand Instruction Address Compare events are enabled. This could
either be adirect instruction address match or a selected set of instruction addresses. | AC has the highest
interrupt priority of all instruction-based interrupts, even if the instruction itself may have encountered an
Instruction Storage exception.

A Branch Taken (BRT) debug exception is signalled when abranch instruction is considered taken by the
branch unit and branch taken events are enabled. The Debug interrupt is taken when no higher priority
exception is pending.

A Data Address Compare (DAC) exception is signalled when there is a data access address match as
defined by the debug control registers and Data Address Compare events are enabled. This could either be
adirect dataaddress match or a sel ected set of dataaddresses. The Debug interrupt istaken when no higher
priority exception is pending.

€200 does not implement the Data Value Compare debug mode, specified in Power Architecture Book E.

The €200 implementation provides |AC linked with DAC exceptions. Thisresultsin a DAC exception
only if one or more IAC conditions are also met. See Chapter 8, “Debug Support,” for more details.

A Trap (TRAP) debug exception occurs when a program trap exception is generated while trap events are
enabled. If MSR[DE] is set, the Debug exception has higher priority than the Program exception in this
case, and istaken instead of a Trap type Program Interrupt. The Debug interrupt is taken when no higher
priority exceptionispending. If MSR[DE] iscleared when atrap debug exception occurs, a Trap exception
type Program interrupt occurs instead.

A Return (RET) debug exception occurs when executing an se_rfi instruction and return debug events are
enabled. Return debug exceptions are not generated for se_rfci or se_rfdi instructions. If MSR[DE]=1 at
the time of the execution of the se rfi, a Debug interrupt occurs provided there exists no higher priority
exception which isenabled to cause an interrupt. CSRRO (Debug APU disabled) or DSRRO (Debug APU
enabled) is set to the address of the se_rfi instruction. If MSR[DE]=0 at the time of the execution of the
se rfi, aDebug interrupt does not occur immediately, but the event isrecorded by setting the DBSR[RET]
and DBSR[IDE] status bits.

A Critical Return (CRET) debug exception occurs when executing anse_rfci instruction and critical return
debug events are enabled. Critical return debug exceptions are only generated for se_rfci instructions. If
MSR[DE]=1 at the time of the execution of the se_rfci, aDebug interrupt occurs provided there exists no
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higher priority exception which isenabled to cause aninterrupt. CSRRO (Debug APU disabled) or DSRRO
(Debug APU enabled) is set to the address of the se_rfci instruction. If MSR[DE]=0 at the time of the
execution of the se_rfci, aDebug interrupt does not occur immediately, but the event isrecorded by setting
the DBSR[CRET] and DBSR[IDE] status bits. Note that critical return debug events should not normally
be enabled unless the Debug APU is enabled to avoid corruption of CSRRO/1.

An Instruction Complete (ICMP) debug exception is signalled following execution and completion of an
instruction while this event is enabled.

A mtmsr or mtdbcr O which causes both MSR[DE] and DBCRO[IDM] to end up set, enabling precise
debug mode, may cause an Imprecise (Delayed) Debug exception to be generated due to an earlier
recorded event in the Debug Status register.

An Interrupt Taken (IRPT) debug exception occurswhen anon-critical interrupt context switch is detected.
This exception isimprecise and unordered with respect to the program flow. Note that an IRPT Debug
interrupt only occurs when detecting a non-critical interrupt on €200. The value saved in CSRRO/DSRRO
is the address of the non-critical interrupt handler.

A Critical Interrupt Taken (CIRPT) debug exception occurs when a critical interrupt context switch is
detected. This exception isimprecise and unordered with respect to the program flow. Note that a CIRPT
Debug interrupt only occurs when detecting a critical interrupt on e200. The value saved in
CSRRO/DSRRO is the address of the critical interrupt handler. Note that Critical Interrupt Taken debug
events should not normally be enabled unlessthe Debug APU is enabled to avoid corruption of CSRRO/1.

An Unconditional Debug Event (UDE) exception occurs when the Unconditional Debug Event pin
(p_ude) transitions to the asserted state.

External Debug exceptions occur when enabled and one of the External Debug Event pins (p_devtl,
p_devt2) transitions to the asserted state.

The Debug Status Register (DBSR) provides a syndrome to differentiate between debug exceptions that
can generate the same interrupt. For more details see Chapter 8, “ Debug Support.”

Table 5-16 lists register settings when a Debug interrupt is taken.

Table 5-16. Debug Interrupt—Register Settings

Register Setting Description

CSRRo0/ Set to the effective address of the excepting instruction for IAC, BRT, RET, CRET, and TRAP.

DSRRo' Set to the effective address of the next instruction to be executed following the excepting instruction for DAC and
ICMP.

For a UDE, IRPT, CIRPT, DCNT, or DEVT type exception, set to the effective address of the instruction that the
processor would have attempted to execute next if no exception conditions were present.

CSRR1/ Set to the contents of the MSR at the time of the interrupt

DSRR1

MSR UCLE 0 FP 0 FE1 0
WE 0 ME — IS 0
CE —/0? FEO 0 DS 0
EE —/0? DE 0 RI —/023
PR 0
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Table 5-16. Debug Interrupt—Register Settings (continued)

DBSR* Unconditional Debug Event: UDE
Instr. Complete Debug Event: ICMP
Branch Taken Debug Event: BRT
Interrupt Taken Debug Event: IRPT
Critical Interrupt Taken Debug Event: | CIRPT
Trap Instruction Debug Event: TRAP
Instruction Address Compare: {IAC1, IAC2, IAC3, IAC4}
Data Address Compare: {DAC1R, DAC1W, DAC2R, DAC2W}
Return Debug Event: RET
Critical Return Debug Event: CRET
External Debug Event: {DEVT1, DEVT2}
and optionally, an
Imprecise Debug Event flag {IDE}
ESR Unchanged
MCSR Unchanged
DEAR Unchanged
Vector IVPRg.1g Il 12’h0FO0

Assumes that the Debug interrupt is precise

2 Conditional based on control bits in HIDO. If HIDO[DAPUEN] = 1, Rl is unaffected because DSRRO0/1 are used, otherwise it is
cleared because CSRRO0/1 are updated.

Rl is cleared by all critical class interrupts using CSRR0/1 and the machine check interrupt. These interrupt handlers should
set Rl to ‘1’ early in the handler after CSRR0/1 have been saved to allow for improved recoverability.

4 Note that multiple DBSR bits may be set

5.7.11

€200 implements the System Reset interrupt as defined in Power Architecture Book E. The System Reset
exception is a non-maskable, asynchronous exception signalled to the processor through the assertion of
system-defined signals.

System Reset Interrupt

A System reset may be initiated by either asserting the p_reset_b input signal, during power-on reset by
asserting m_por, by Watchdog Timer Reset Control, or by Debug Reset Control. The m_por signal must
be asserted during power up and must remain asserted for a period that allows internal logic to be reset.

The p_reset_b signal must also remain asserted for aperiod that allows internal logic to be reset. This
period is specified in the hardware specifications. If m_por or p_reset_b are asserted for less than the
required interval, the results are not predictable.

When areset request occurs, the processor branches to the system reset exception vector (value on
p_rstbase[0:29] concatenated with 2’ b00) without attempting to reach arecoverable state. If reset occurs
during normal operation, all operations cease and the machine state islost. €200 internal state after areset
isdefined in Section 2.4.4, “Reset Settings.”

For reset initiated by Debug Reset Control, €200 implements DBSR[MRR] to aid software in determining
the cause. Debug Reset Control provides the capability to assert the p_resetout_b signal. External logic
may factor thissignal into the p_reset_b input signal to cause a €200 reset to occur.

€200z0 Power Architecture Core Reference Manual, Rev. 0

5-20 Freescale Semiconductor



Interrupts and Exceptions

Table 5-17 shows the DBSR register bits associated with reset status.
Table 5-17. DBSR Most Recent Reset

Bit(s) | Name Function
2:3 MRR |00 No reset occurred because these bits were last cleared by software
(34:35) 01 A reset occurred because these bits were last cleared by software

10 Reserved
11 Reserved

Table 5-18 lists register settings when a System Reset interrupt is taken.

Table 5-18. System Reset Interrupt—Register Settings

Register Setting Description

CSRRO Undefined.

CSRR1 Undefined.

MSR UCLE O FP 0 FE1 0
WE O ME O IS 0
CE 0 FEO O DS 0
EE O DE 0 RI 0
PR O

ESR Cleared

DEAR Undefined

Vector [p_rstbase[0:29]] | 2’b00

5.8 Exception Recognition and Priorities

The following list of exception categories describes how €200 handles exceptions up to the point of
signaling the appropriate interrupt to occur. Also, instruction completion is defined as updating all
architectural registers associated with that instruction as necessary, and then removing theinstruction from
the pipeline.
» Interrupts caused by asynchronous events (exceptions). These exceptions are further distinguished
by whether they are maskable and recoverable.
— Asynchronous, non-maskable, non-recoverable:
System reset by assertion of p_reset_b

Has highest priority and is taken immediately regardless of other pending exceptions or
recoverability. (Includes Debug Reset Control)

— Asynchronous, non-maskable, possibly non-recoverable:
Non-maskable interrupt by assertion of p_nmi_b

Has priority over any other pending exception except system reset conditions.
Recoverability is dependent on whether CSRRO0/1 are holding essential state info and are
overwritten when the NMI occurs.

— Asynchronous, maskable, possibly non-recoverable:

€200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor 5-21



|
y

'
A

Interrupts and Exceptions

Machine check interrupt

Has priority over any other pending exception except system reset conditions.
Recoverability is dependent on the source of the exception. Typically unrecoverable.

— Asynchronous, maskable, recoverable:
Externa Input, Critical Input, Unconditional Debug, and External Debug Event interrupts

Before handling this type of exception, the processor needs to reach a recoverable state. A
maskabl e recoverable exception remains pending until taken or cancelled by software.

Synchronous, non instruction-based interrupts. The only exception isthis category is the Interrupt
Taken debug exception, recognized by an interrupt taken event. It is not considered
instruction-based but is synchronous with respect to the program flow.
— Synchronous, maskable, recoverable:

Interrupt Taken debug event.

The machineisin arecoverable state due to the state of the machine at the context switch
triggering this event.

Instruction-based interrupts. These interrupts are further organized by the point in instruction
processing in which they generate an exception.

— Instruction Fetch:
Instruction Storage and Instruction Address Compare debug exceptions.

Once these types of exceptions are detected, the excepting instruction is tagged. When the
excepting instruction is next to begin execution and arecoverable state has been reached,
the interrupt is taken. If an event prior to the excepting instruction causes a redirection of
execution, the instruction fetch exception is discarded (but may be encountered again).

— Instruction Dispatch/Execution:
Program, System Call, Data Storage, Alignment, Debug (Trap, Branch Taken, Ret) interrupts.

These types of exceptions are determined during decode or execution of an instruction. The
exception remains pending until all instructions before the exception causing instructionin
program order complete. The interrupt is then taken without completing the
exception-causing instruction. If completing previousinstructions causes an exception, that
exception takes priority over the pending instruction dispatch/execution exception, whichis
discarded (but may be encountered again when instruction processing resumes).

— Post-Instruction Execution
Debug (Data Address Compare, Instruction Complete) interrupt.

These Debug exceptionsare generated foll owing execution and compl etion of aninstruction
whilethe event is enabled. If executing the instruction produces conditionsfor another type
of exception with higher priority, that exception is taken and the post-instruction exception
isdiscarded for the instruction (but may be encountered again when instruction processing
resumes)
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Exception Priorities

Exceptions are prioritized as described in Table 5-19. Some exceptions may be masked or imprecise,
which affect their priority. Non-maskable exceptions such as reset and machine check may occur at any
time and are not delayed even if aninterrupt isbeing serviced, thus state information for any interrupt may
belost. Reset and most machine checks are non-recoverable.

Table 5-19. e200 Exception Priorities

Priority Exception Cause IVOR
Asynchronous Exceptions
0 System reset Assertion of p_reset_b or Debug Reset Control none
Machine check Assertion of p_mcp_b, exception on fetch of first instruction of an interrupt
1 handler, bus error on buffered store, Bus error (XTE) with MSR[EE]=0 and current 1
MSR[ME]=13, assertion of p_nmi_b
2 — — —
Debug:
1. UDE 1. Assertion of p_ude (Unconditional Debug Event)
2. DEVT1 2. Assertion of p_devt1 and event enabled (External Debug Event 1)
31 3. DEVT2 3. Assertion of p_devi2 and event enabled (External Debug Event 2) 15
4. DCNT1? 4. Debug Counter 1 exception
5. DCNT2? 5. Debug Counter 2 exception
6. IDE 6. Imprecise Debug Event (event imprecise due to previous higher priority
interrupt
4! Critical Input Assertion of p_critint_b 0
512 Watchdog Timer Watchdog Timer first enabled time-out 12
6! External Input Assertion of p_extint_b 4
212 Fixed-Interval Timer | Posting of a FIT exception in TSR due to programmer-specified bit transition in the 11
Time Base register
gl2 Decrementer Posting of a Decrementer exception in TSR due to programmer-specified 10
Decrementer condition
Instruction Fetch Exceptions
9 Debug: Instruction address compare match for enabled IAC debug event and 15
IAC (unlinked) DBCRO[IDM] asserted
102 ITLB Error Instruction translation lookup miss in the TLB 14
Instruction Storage 1. Access control. (unused on Zen Z0n2pZen Z0OHN2p)
11 2. Precise external termination error (p_tea_b assertion and precise 3
recognition) and MSR[EE]=1
Instruction Dispatch/Execution Interrupts
12 Program: 6
lllegal Attempted execution of an illegal instruction.
13 Program: 6
Privileged Attempted execution of a privileged instruction in user-mode
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Table 5-19. e200 Exception Priorities (continued)

Priority Exception Cause IVOR
142 Floating-point Any floating-point unavailable exception condition. 7
Unavailable
15 Program: 6
Unimplemented Attempted execution of an unimplemented instruction.
Debug:
1. BRT 1. Attempted execution of a taken branch instruction
2. Trap 2. Condition specified in tw instruction met.
16 3. RET 3. Attempted execution of a se_rfi instruction. 15
4. CRET 4. Attempted execution of an se_rfci instruction.
Note: Exceptions requires corresponding debug event enabled, MSR[DE]=1,
and DBCRO[IDM]=1.
Program: 15
17 Trap Condition specified in tw instruction met and not trap debug.
System Call Execution of the System Call (se_sc) instruction. 8
18 Alignment Imw, stmw, Iwarx, or stwex. not word aligned. 5
dcbz with cache disabled or not present
Debug with
concurrent DSI Debug with concurrent DSI exception. DBSR[IDE] also set.
exception:
1. DAC/IAC linked® | Data Address Compare linked with Instruction Address Compare
19 2. DAC unlinked3 Data Address Compare unlinked 15
Note: Exceptions requires corresponding debug event enabled, MSR[DE]=1, and
DBCRO[IDM]=1. In this case, the Debug exception is considered imprecise, and
DBSRIIDE] is set. Saved PC points to the load or store instruction causing the
DAC event.
202 Data TLB Error Data translation lookup miss in the TLB. 13
Data Storage 1. Access control. (unused on Zen Z0On2pZen ZOHN2p)
21 2. Precise external termination error (p_tea_b assertion and precise 2
recognition) and MSR[EE]=1
2024 Alignment dcbz to W=1 or I=1 storage with cache enabled 5
Debug:
1. IRPT 1. Interrupt taken (non-critical)
23 2. CIRPT 2. Critical Interrupt taken (critical only) 15
Note: Exceptions requires corresponding debug event enabled, MSR[DE]=1,
and DBCRO[IDM]=1.
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Table 5-19. e200 Exception Priorities (continued)

Priority Exception Cause IVOR

Post-Instruction Execution Exceptions

Debug:

1. DAgC/IAC linked® 1. Data Address Compare linked with Instruction Address Compare

2. DAC unlinked® 2. Data Address Compare unlinked

24 Notes: Exceptions requires corresponding debug event enabled, MSR[DE]=1, 15

and DBCRO[IDM]=1. Saved PC points to the instruction following the load or
store instruction causing the DAC event.

Debug:

1. ICMP 1. Completion of an instruction.

25 15

Note: Exceptions requires corresponding debug event enabled, MSR[DE]=1,
and DBCRO[IDM]=1.

' These exceptions are sampled at instruction boundaries, thus may actually occur after exceptions which are due to a currently
executing instruction. If one of these exceptions occurs during execution of an instruction in the pipeline, it is not processed until
the pipeline has been flushed, and the exception associated with the excepting instruction may occur first.

2 Unused on Zen Z0n2p and Zen ZOHN2p

3 When no Data Storage Interrupt or Data TLB Error occurs, €200 implements the data address compare debug exceptions as
post-instruction exceptions which differs from the Power Architecture Book E definition. When a TEA (either a DTLB error or
DSI, or a Machine Check (if MSR[EE]=0)) occurs in conjunction with an enabled DAC or linked DAC/IAC on a load or store class
instruction, the Debug Interrupt takes priority, and the saved PC value points to the load or store class instruction, rather than
to the next instruction. In addition, the MMU MAS registers are updated due to the DTLB event.

Unused on cacheless cores

5.9 Interrupt Processing

When an interrupt istaken, the processor uses SRRO/SRRL1 for non-critical interrupts, CSRRO/CSRR1 for
critical and machine check interrupts, and either CSRRO/CSRR1 or DSRRO/DSRR1 for debug interrupts
to savethe contents of the M SR and to assi st in identifying where instruction execution should resume after
the interrupt is handled.

When an interrupt occurs, one of SRRO/CSRRO/DSRRO is set to the address of the instruction that caused
the exception, or to the following instruction if appropriate.

SRR1 is used to save machine state (selected M SR bits) on non-critical interrupts and to restore those
valueswhen an se _rfi instruction is executed. CSRR1 is used to save machine status (selected M SR hits)
on critical interrupts and to restore those values when an se_rfci instruction is executed. DSRR1 is used
to save machine status (selected M SR bits) on debug interrupts when the Debug APU is enabled and to
restore those values when an se _rfdi instruction is executed.

The Exception Syndromeregister isloaded with information specific to the exception type. Someinterrupt
types can only be caused by a single exception type, and thus do not use an ESR setting to indicate the
interrupt cause.
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The Machine State register is updated to preclude unrecoverable interrupts from occurring during the
initial portion of the interrupt handler. Specific settings are described in Table 5-20.

For Alignment or Data Storage interrupts, the Data Exception Address Register (DEAR) isloaded with the
address which caused the interrupt to occur.

For Machine Check interrupts, the Machine Check Syndrome register isloaded with information specific
to the exception type.

Instruction fetch and execution resumes, using the new M SR value, at alocation specific to the exception
type. The location is determined by the Interrupt Vector Prefix Register (IVPR), and an Interrupt Vector
Offset Register (IVOR) value specific for each type of interrupt (see Table 5-2).

Table 5-20 shows the M SR settings for different interrupt categories.
Table 5-20. MSR Setting Due to Interrupt

Bit(s) MSR Res_et Non-Critical Critical Debug Interrupt
Definition | Setting Interrupt Interrupt
5 (37) UCLE 0 0 0 0
13 (45) WE 0 0 0 0
14 (46) CE 0 — 0 —/0'
16 (48) EE 0 0 0 —/0'
17 (49) PR 0 0 0 0
18 (50) FP 0 0 0 0
19 (51) ME 0 — — —
20 (52) FEO 0 0 0 0
22 (54) DE 0 — —/0! 0
23 (55) FE1 0 0 0 0
26 (58) IS 0 0 0 0
27 (59) DS 0 0 0 0
30 (62) RI 0 — 0 —/02

Reserved and preserved bits are unimplemented and read as 0.

1 Conditionally cleared based on control bits in HIDO
2 Cleared if the Debug APU is disabled, otherwise unaffected

5.9.1 Enabling and Disabling Exceptions
When a condition exists that may cause an exception to be generated, it must be determined whether the
exception is enabled for that condition.

» System reset exceptions cannot be masked.

* A machine check exception can occur only if the machine check enable bit (MSR[ME]) is set, or
if anon-maskableinterrupt isreceived. If MSR[ME] is cleared, the processor goes directly into
checkstop state when amachine check exception condition occurs, unless the machine check isthe
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result of anon-maskableinterrupt. Individual machine check exceptions (other than non-maskable
interrupts) can be enabled and disabled through bit(s) in the HIDO register.

Asynchronous, maskable non-critical exceptions (such asthe External Input) are enabled by setting
MSR[EE]. When M SR[EE]=0, recognition of these exception conditionsis delayed. MSR[EE] is
cleared automatically when anon-critical or critical interrupt is taken to mask further recognition
of conditions causing those exceptions.

Asynchronous, maskable critical exceptions (such as Critical Input) are enabled by setting
MSR[CE]. When M SR[CE] =0, recognition of these exception conditionsis delayed. MSR[CE] is
cleared automatically when acritical interrupt is taken to mask further recognition of conditions
causing those exceptions. In addition, MSR[RI] is cleared to indicate that the CSRRO/1 registers
contain information essential to exception recovery.

Synchronous and asynchronous Debug exceptions are enabled by setting MSR[DE]. When
MSR[DE]=0, recognition of these exception conditions is masked. MSR[DE] is cleared
automatically when a Debug interrupt is taken to mask further recognition of conditions causing
those exceptions. See Chapter 8, “ Debug Support,” for more details on individual control of debug
exceptions.

Returning from an Interrupt Handler

The return from interrupt (se_rfi), return from critical interrupt (se_rfci) and return from debug interrupt
(se_rfdi) instructions perform context synchronization by allowing previously-issued instructions to
complete before returning to the interrupted process. In general, execution of areturn instruction ensures
the following:

All previous instructions have completed to a point where they can no longer cause an exception.
This includes post-execute type exceptions.

Previous instructions complete execution in the context (privilege and protection) under which
they were issued.

The se_rfi instruction copies SRR1 bits back into the MSR.

The se_rfci instruction copies CSRR1 bits back into the M SR.

The se_rfdi instruction copies DSRR1 bits back into the M SR.

Instructions fetched after this instruction execute in the context established by this instruction.

Program execution resumes at theinstruction indicated by SRROfor se_rfi, CSRRO for se_rfci and
DSRRO for se_rfdi.

Note that the return instruction se_rfi may be subject to a Return type debug exception, and that the return
from critical interrupt instruction se_rfci may be subject to a Critical Return type debug exception. For a
complete description of context synchronization, refer to Power Architecture Book E Specification.
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5.10 Process Switching

The following instructions are useful for restoring proper context during process switching:

» The msyncinstruction orders the effects of data memory instruction execution. All instructions
previously initiated appear to have completed before the msync instruction completes, and no
subsequent instructions appear to be initiated until the msync instruction completes.

» Theisyncinstruction waitsfor all previous instructions to complete and then discards any fetched
instructions, causing subsequent instructionsto be fetched (or refetched) from memory and to
execute in the context (privilege, translation, and protection) established by the previous
instructions.

* The stwcx. instructions clears any outstanding reservations, ensuring that aload and reserve
instruction in an old process is not paired with a store conditional instruction in a new one.
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Chapter 6
Core Complex Interfaces

This chapter describes the external interfaces to the €200 core complex. Signal descriptions aswell asthe
data transfer protocols are documented in the following subsections.

The external interfaces encompass control and data signals supporting instruction and data transfers,
support for interrupts, including vectored interrupt logic, reset support, power management interface
signals, debug event signal's, processor state information, Nexus OnCE/JTAG interface signals, and a Test
interface.

The memory portion of the €200 core interfaceis comprised of a pair of 32-bit wide system buses, one for
instructions and the other for datain the €200z0h, and a unified bus on the e200z0. The data memory
interface supports read and write transfers of 8, 16, 24, and 32 bits, supports misaligned transfers, and
operatesin a pipelined fashion. In the e200z0h the instruction memory interface supports read transfers of
16 and 32 bits, supports misaligned transfers, and operates in a pipelined fashion.

Single-beat and misaligned transfers are supported for read and write cycles. Incrementing burst transfers
are supported for instruction prefetch operations.

Misaligned accesses are supported with one or moretransfersto abusinterface. If an accessismisaligned,
but is contained within an aligned 32-bit word, the core performs a single transfer, and the memory
interface isresponsible for delivering (reads) or accepting (writes) the data corresponding to the size and
byte enable signals aligned according to the low order two address bits. If an accessis misaligned and
crosses a 32-bit boundary, the bus interface unite (BIU) performs apair of transfers beginning at the
effective addressfor thefirst transfer, along with appropriate byte enables, and for the second transfer the
address isincremented to the next 32-bit boundary, and the size and byte enable signals are driven to
correspond to the number of remaining bytes to be transferred.
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6.1 Signal Index
This section contains an index of the €200 signals.

The following prefixes are used for €200 signal mnemonics:
m denotes master clock and reset signals

p denotes processor or core-related signals

* | denotes JTAG mode signals

* jddenotes JTAG and Debug mode signals

* ipt denotes Scan and Test Mode signals

* nex denotes Nexus2 signals. Nexus signals support an optional Nexus2 and Nexus3 block on the
€200z1 core.

NOTE

The“_b" suffix denotesan active low signal. Signalswithout the active-low
suffix are active high.

Figure 6-1 and Figure 6-2 group core bus and control signals by function.
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Table 6-1 shows €200 external signal function and type, signal definition, and reset value. Signals are
presented in functional groups.

Table 6-1. External Interface Signal Definitions

Signal Name Type ?I:Isue(: Definition
Clock and Reset-Related Signals
m_clk | — Global system clock
m_por | — Power-on reset
p_reset_b | — Processor reset input
p_resetout_b (0] — Processor reset output
p_rstbase[0:29] | — Reset exception handler base address
Memory Interface Signals
p_d_hmaster[3:0], p_i_hmaster3:0] (0] — Master ID
p_d_haddri31:0], p_i_haddi31:0] (@] — Address buses
p_d_hwrite, p_i_ hwrite” (e} 0 Write signal (always driven low for p_i_hwrite)
_d_hprot{5:0], p_i_hprot[5:0] (0] — Protection Codes
p_d_htrans[1:0], p_i_htrans[1:0] (0] — Transfer Type
p_d_hbursfi2:0], p_i_hburst2:0] (0] — Burst Type
p_d_hsize[1:0], p_i_hsize[1:0] (0] — Transfer Size
p_d_hunalign, p_i_hunalign (0] — Indicates the current access is a misaligned access.
p_d_hbstrb[3:0], p_i_hbstrb[3:0] (0] 0 Byte strobes
p_d_hrdata[31:0], p_i_hrdata[31:0] | — Read data buses
p_d_hwdata[31:0] (@] — Write data bus
p_d_hready, p_i_hready | — Transfer Ready
p_d_hresp[2:0], p_i_hresp[1:0] | — Transfer Response
Interrupt Interface Signals
p_nmi_b | — Non-maskable interrupt request
p_extint_b | — External Input interrupt request
p_critint_b | — Critical Input interrupt request
p_avec_b | — Autovector request
Use internal interrupt vector offset
p_voffsef{0:9] | — Interrupt vector offset for vectored interrupts
p_iack (0] 0 Interrupt Acknowledge. Indicates an interrupt is being
acknowledge.
p_ipend (0] 0 Interrupt Pending. Indicates an interrupt is pending internally.
p_mcp_b | — Machine Check input request
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Table 6-1. External Interface

Signal Definitions (continued)

Reset

Signal Name Type Value Definition
Misc. CPU Signals
p_pid0[0:7] (0] 0 PID0[24:31] outputs
p_hid1_syscti[0:7] (0] 0 HID1[16:23] outputs

CPU Reservation Signals

p_rsrv (0] 0 Reservation status
p_rsrv_clr | — Clear Reservation flag
CPU State Signals
p_pstat{0:5] (0] 0 Indicates processor status
p_EE, p_DE, p_CE, p_ME (0] 0 Reflect the values of these MSR bits
p_mcp_out (0] 0 Indicates a machine check has occurred
p_chkstop (0] 0 Indicates a checkstop has occurred
p_doze (0] 0 Indicates low-power doze mode of operation
p_nap (0] 0 Indicates low-power nap mode of operation
p_sleep (0] 0 Indicates low-power sleep mode of operation
p_wakeup (0] 0 Indicates to external clock control module to enable clocks and
exit from low-power mode
p_halt | — CPU halt request
p_halted (0] 0 CPU halted
p_stop | — CPU stop request
p_stopped (0] 0 CPU stopped
p_waiting (0] 0 CPU waiting
CPU Debug Event Signals

p_ude | — Unconditional Debug Event
p_devti1 | — Debug Event 1 input
p_devit2 | — Debug Event 2 input

Debug/Emulation Support Signals (Nexus 1/0nCE)
jd_en_once | — Enable full OnCE operation
jd_debug_b (0] 1 Indicates processor has entered debug session
jd_de_b | — Debug request
jd_de_en (0] 0 Active -high output enable for DE_b open-drain IO cell
jd_mclk_on | — Indicates the system clock controller is actively toggling m_clk
jd_watchpt{0:5] (e} 0 Indicate an address watchpoint has occurred

Development Supp

ort Signals (Nexus 2)
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Table 6-1. External Interface Signal Definitions (continued)

Signal Name Type ?I:Isue(: Definition
nex_mcko (0] — Nexus 2/3 Clock Output
nex_rdy_b (0] — Nexus 2/3 Ready Output
nex_evto_b (0] — Nexus 2/3 Event-Out Output
nex_evti_b | — Nexus 2/3 Event-In Input
nex_mdo[n:0] (0] — Nexus 2/3 Message Data Output
nex_mseo_b[1:0] (0] — Nexus 2/3 Message Start/End Output

JTAG-Related Signals

j_trst b | — JTAG test reset from pad

j_tclk | — JTAG test clock from pad

j_tms | — JTAG test mode select from pad

j_tdi | — JTAG test data input from pad

j_tdo (0] 0 JTAG test data out to master controller or pad

j_tdo_en (0] 0 Enables TDO output buffer

j_tst_log_rst (0] 0 Indicates Test-Logic-Reset state of JTAG controller

j_capture_ir (0] 0 Indicates Capture_IR state of JTAG controller

[_update_ir (0] 0 Indicates Update_IR state of JTAG controller

[_shift_ir (e} 0 Indicates Shift_IR state of JTAG controller

[_capture_dr (0] 0 Indicates parallel test data register load state of JTAG controller

j_shift_dr (e} 0 Indicates the TAP controller is in shift DR state

j_update_gp_reg (0] 0 Updates JTAG controller test data register

frti (0] 0 JTAG controller run-test-idle state

[_key_in | — Input for providing data to be shifted out during Shift_IR state
when jd_en_once is negated

J[_en_once_regsel (0] 0 external Enable Once register select

[_nexus_regsel (0] 0 external Nexus register select

j_sncr_regsel (0] 0 external Shared Nexus Control register select

[_Isrl_regsel (0] 0 external LSRL register select
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Table 6-1. External Interface Signal Definitions (continued)

. Reset A
Signal Name Type Value Definition
j_gp_regsef0:11] (@] 0 General-purpose external JTAG register select

j_id_sequence[0:1]

JTAG ID Register (2 MSBs of sequence field)

j_id_version[0:3]

JTAG ID Register Version Field

|_serial_data

Serial data from external JTAG registers

Test Primary Input/Output Signals

Test Control Interface’

Test Mode determination

Scan Test Interface’

Scan Configuration and Testing

Memory BIST Interface'

Memory BIST Configuration and Testing

' Please refer to the €200 Test Guide for information on the Test signals

6.2

Internal Interface Signals

Table 6-1 shows €200 internal signal function and type, signal definition, and reset value. Signals are

presented in functional groups. Note that these signals are for reference purposes and their functionality is

beyond the scope of this document.

Table 6-2. Internal Interface Signal Definitions

. Reset A
Signal Name Type Value Definition
Data Memory Interface Signals
p_d_addni0:31] (@] — Address bus
p_d_rw_b (0] 1 Read/write
p_d_tc[0:1] (@] — Transfer Code
p_d_ttype[0:3] (0] — Transfer Type
p_d_tsiZ0:2] (0] — Transfer Size
p_d_seq_b (0] 1 Indicates the current access is in sequential address order
from the last access.
p_d_misal_b (0] 1 Indicates the current data access is the first portion of a
misaligned access.
p_d_err_Kill (0] 1 Indicates the current access will cause an abort if terminated
with error.
p_d_treq_b (0] 1 Transfer Request
Indicates a request for a bus cycle.
p_d_tbusy_b (0] 1 Transfer Busy
Indicates a bus cycle is in progress.
p_d_abort b (0] 1 Aborts a requested access.
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Table 6-2. Internal Interface Signal Definitions (continued)

Signal Name Type C:ISJ: Definition
p_d_data_in[0:31] | — Input data bus
p_d_data_oufl0:31] (0] — Output data bus
p_d_ta_b | — Transfer Acknowledge
p_d_tea_b | — Transfer Error
p_d_bus_wrerr | — Buffered Write Bus Error
p_d_tmiss_b | — Translation Miss
p_d_boerr_b | — Byte Ordering Error
p_d_xte_b | — Precise External Termination Error
p_d_xfail_b | — Store Exclusive Failure
Instruction Memory Interface Signals
p_i_add0:31] (0] — Address bus
p_i_tc[0:4] (0] — Transfer Code
p_i_tsiz[0:2] (0] — Transfer Size
p_i_ seq b (0] 1 Indicates the current access is in sequential address order
from the last access. For sequential instruction fetches.
p_i_err_kill (0] 1 Indicates the current access will cause an abort if terminated
with error.
p_i_treq_ b (0] 1 Transfer Request
Indicates a request for a bus cycle.
p_i_tbusy_b (0] 1 Transfer Busy
Indicates a bus cycle is in progress.
p_i_abort_b (0] 1 Aborts a requested access.
p_i_data_in[0:31] | — Input data bus
p_itab | — Transfer Acknowledge
p_i_tea_b | — Transfer Error
p_i_xte_b | — Precise External Termination Error
p_ifsiz | — Instruction Fetch Size
Indicates the port size of the device being accessed.
SPR Interface Signals
p_sprnum[0:9] (0] — Global SPR address bus
p_spr_out[0:31] (0] — Global SPR write bus
p_spr_in[0:31] | — Global SPR read bus
p_rd_spr (0] 0 SPR read control
p_wr_spr (0] 0 SPR write control
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Table 6-2. Internal Interface Signal Definitions (continued)

. Reset A
Signal Name Type Value Definition

Misc. CPU Signals

p_pid0[0:7] (@] 0 PID0[24:31] outputs
p_pid0_updt (0] 0 PIDO update status
p_d_cmbusy, p_i_cmbusy | — BIU busy

Test Primary Input/Output Signals

Test Control Interface — — Test Mode determination
Scan Test Interface — — Scan Configuration and Testing
Memory BIST Interface — — Memory BIST Configuration and Testing

6.3 Signal Descriptions

The following paragraphs provide descriptions of the external signals.

6.3.1 €200 Processor Clock (m_clk)
The m_clk input is the synchronous clock source for the €200 processor core.

Because €200 is designed for static operation, m_clk can be gated off to lower power dissipation (for
example, during low-power stopped states).

6.3.2 Reset-Related Signals

€200 supports several reset input signals for the CPU and JTAG/OnCE control logic: m_por, p_reset_b,
p_resetout_b andj_trst_b. The reset domains have been partitioned such that the CPU p_reset_b signal
does not affect JTAG/OnCE logic and j_trst_b does not affect processor logic. It is possible and desirable
to access ONCE registers while the processor is running or in reset. Alternatively, it is also possible and
desirableto assert j_trst_b and clear the JTAG/OnCE logic without affecting the state of the processor.

The synchronization logic between the processor and debug module requires an assertion of either j_trst b
or m_por during initial processor power-up reset in order to ensure proper operation. If the pin associated
withthej_trst_b input is designed with a pull-up resistor and | eft floating, then assertion of m_por is
required during theinitial power-on processor reset. Similarly, for those systems which do not have a
power-on reset circuit and choose to tie m_por low, it isrequired to assert j_trst_b during processor
power-up reset. Once a power-up reset has been achieved, the two resets can be asserted independently.

A reset output signal p_resetout_b is also provided.

A set of input signals (p_rstbase[0:29]) are provided to rel ocate the reset exception handler to allow for
flexible placement of boot code.

These signals are described in detail in the following sub-sections.
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6.3.2.1 Power-On Reset (m_por)

The m_por signal isthe power-on reset input for the e200 processor. This signal serves the following
purposes:

* m _poris“ORed” withthej_trst_b function and theresulting signal clearsthe JTAG TAP controller
and associated registers as well as the OnCE state machine. Thisisan asynchronous clear with a
short assertion time requirement.

* m_por is“ORed” with thep_reset_b function and theresulting signal clears certain CPU registers.
Thisis an asynchronous clear with a short assertion time requirement.

6.3.2.2 Reset (p_reset_b)

The p_reset_b input isthe active-low reset input for the €200 processor. p_reset_b istreated as an
asynchronous input and is sampled by the clock control logic in the €200 debug module.

6.3.2.3 Reset Out (p_resetout_b)

The p_resetout_b output is an active-low reset output control signal from the €200 core. p_resetout_bis
conditionally asserted by Debug control logic (Section 8.3.2.1, “Debug Control Register 0 (DBCRO0)”).
p_resetout_b isnot asserted by p_reset_b.

6.3.2.4 Reset Base (p_rstbase[0:29])

The p_rstbase[0:29] inputs are provided to allow system integrators to be able to specify/rel ocate the base
address of the reset exception handler. These inputs are used to form the upper 30 bits of the instruction
access following negation of reset which is used to fetch the initial instruction of the reset exception
handler. These bits should be driven to a value corresponding to the desired boot memory devicein the
system. These inputs must remain stable in awindow beginning two clocks prior to the negation of reset
and extending into the cycle in which the reset vector fetch is initiated.

The initial instruction fetch occurs to the location [p_rstbase[0:29]] || 2’ bOO.

6.3.2.5 JTAG/ONnCE Reset (j_trst_b)

The|_trst_b signal (referred to in the IEEE 1149.1 JTAG Specification asthe TRST* signal) isan
asynchronous reset with a short assertion time requirement. It is“ORed” with the m_por function and the
resulting signal clears the OnCE TAP controller and associated registers as well as the OnCE state
machine.

6.3.3 Address and Data Buses

Dual instruction and data interfaces are provided by the CPU. They are described together, with
appropriate differences denoted.
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6.3.3.1 Address Bus (p_d_hadd{31:0], p_i_haddrf31:0])

These outputs provide the address for a bus transfer. Per the AHB definition, p_[d,i]_haddr[31] isthe
MSB and p_[d,i]_haddr[0Q] isthe LSB.

6.3.3.2 Read Data Bus (p_d_hrdata[31:0], p_i_hrdata[31:0])

These inputs provide data to the CPU on read transfers. The data read data bus can transfer 8, 16, 24, or
32 hits of data per bus transfer. The instruction read data bus can transfer 16 or 32 bits of data per bus
transfer. Instruction transfers do not use the 8-bit and 24-bit capability. Per AHB definition,
p_[d,i]_hrdata[31] isthe MSB and p_hrdata[0] is the LSB. Table 6-3 shows the relationship of byte
addresses to read data bus signals.

Table 6-3. p_hrdata[31:0] Byte Address Mappings

Memory Byte Address | Wired to p_d_hrdata Bits
00 7:0
01 15:8
10 23:16
11 31:24

6.3.3.3 Write Data Bus (p_d_hwdata[31:0])

These outputs transfer data from the CPU on write transfers. The write data bus can transfer 8, 16, 24, or
32 hits of data per bustransfer. Per AHB definition, p_d_hwdata[31] istheMSB and p_d_hwdata[0] isthe
LSB. Figure 6-4 shows the relationship of byte addresses to write data bus signals.

Table 6-4. p_d_hwdata[31:0] Byte Address Mappings

Memory Byte Address | Wired to p_d_hwdata Bits
00 7:0
01 15:8
10 23:16
11 31:24

6.3.4  Transfer Attribute Signals

The following paragraphs describe the transfer attribute signals, which provide additional information
about the bus transfer cycle. Transfer attributes are driven with address at the beginning of a bus transfer.
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Core Complex Interfaces

The processor drives these signals to indicate the current transfer type. Table 6-5 shows
p_[d,i]_htrans[1:0] encoding.

Table 6-5. p_[d,i]_htrans[1:0] Transfer Type Encoding

p_[d,i]_htrans[1]

p_[d,i]_htrans[0]

Access type

0 0 IDLE—no data transfer is required
0 1 BUSY—Master is busy, burst transfer continues. (encoding not used by e200)
1 0 NONSEQ—indicates the first transfer of a burst, or a single transfer. Address and

control signals are unrelated to the previous transfer

SEQ—indicates the continuation of a burst. Address and control signals are related to
the previous transfer. Control signals are the same, Address has been incremented by
the size of the data transferred (optionally wrapped)

If the p_[d,i]_htrang1:0] encoding is not IDLE or BUSY, atransfer isbeing requested. €200 does not
utilizethe BUSY encoding, and does not present thistype of transfer to abusslave. Slaves must terminate
IDLE transfers with a zero wait-state OKAY response and ignore the (non-existent) transfer.

6.3.4.2 Write (p_d_hwrite, p_i_hwrite)

This output signal defines the data transfer direction for the current bus cycle. A high (logic one) level
indicates awrite cycle, and alow (logic zero) level indicates aread cycle. For p_i_hwrite, the signal is
internally driven low for al IAHB transfers.

6.3.4.3 Transfer Size (p_d_hsize[1:0], p_i_hsize[1:0])

The p_[d,i]_hsize[1:0] signals indicate the data size for a bus transfer. Table 6-6 shows the definitions of
thep_[d,i]_hsize[1:0] encodings. For misaligned transfers, thetransfer size may indicate asizelarger than
the requested size to ensure that all asserted byte strobes are contained within the “container” defined by
p_[d,i]_hsize[1:0]. Refer to Table 6-10 and Table 6-11 for p_[d,i] _hsize[1:0] encodings used for aligned

and misaligned transfers.

Table 6-6. p_[d,i]_hsize[1:0] Transfer Size Encoding

p_[d,i]_hsize[1:0]

Transfer Size

00 Byte
01 Halfword (2 bytes)
10 Word (4 bytes)

11

Reserved
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6.3.4.4 Burst Type (p_d_hburst{2:0], p_i_hburst2:0])

The p_[d,i]_hburst[2:0] signalsindicate the burst type for abus transfer. Table 6-7 shows the definitions
of the p_[d,i]_hburst[2:0] encodings.

Table 6-7. p_[d,i] hburst[2:0] Burst Type Encoding

p_hburst{2:0] Burst Type
000 SINGLE—No burst, single beat only
001 INCR—Incrementing burst of unspecified length
010 WRAP4—4-beat wrapping burst—Unused
011 INCR4—4-beat incrementing burst—Unused
100 WRAP8—8-beat wrapping burst—Unused
101 INCR8—8-beat incrementing burst—Unused
110 WRAP16—16-beat wrapping burst—Unused
111 INCR16—16-beat incrementing burst—Unused

€200 only utilizes SINGLE and INCR (for instruction) burst types. In addition, all INCR burstsare of word
size aligned to word boundaries.

6.3.4.5 Protection Control (p_d_hprot[5:0], p_i_hprot5:0])

€200 drivesthe p_[d,i] _hprot[5:0] signals to indicate the type of access for the current bus cycle.
p_[d,i]_hprot[0] indicates instruction/data, p_[d,i] _hprot[1] indicates user/supervisor. p_[d,i] _hprot[5]
indicates whether the accessis Exclusive (such asfor alwarx or stwex.). p_[d,i]_hprot[4:2] (Allocate,
Cacheable, Bufferable) are used to indicate particular cache attributes for the access and are driven to
default values of 3'b000. Table 6-8 shows the definitions of the p_[d,i]_hprot[5:0] signals.

Table 6-8. p_[d,i]_hprot[5:0] Protection Control Encoding

p_hprot[5] | p_hprof[4] | p_hprof{3] | p_hprot[2] | p_hprot{1] | p_hprot[0] Transfer Type

_ _ — — — 0 Instruction Access

— — — — — 1 Data Access

_ _ — — 0 — User mode access

_ _ — — 1 — Supervisor mode access

0 — — — — — Not Exclusive

1 — — — — — Exclusive Access

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Notethat all signalsare provided on both | and D ports, although they do not all change state (for example,
p_d_hprotO isalways high, etc.).

6.3.5 Byte Lane Specification

Read transactions transfer from 1 to 4 bytes of data on the p_[d,i] _hrdata[31:0] bus. The byte lanes
involved in the transfer are determined by the starting byte number specified by the lower address bitsin
conjunction with the transfer size and byte strobes. Addressing of the byte lanesis shown big-endian (left
toright). The byte of memory corresponding to address O is connected to BO (p_[d,i]_h{r,w}data[7:0]) and
the byte of memory corresponding to address 3 is connected to B3 (p_[d,i] _h{rw}data[31:24]). The CPU
internally permutes read data as required for the current access. Misaligned transfers areindicated with the
p_[d,i]_hunalign signal to indicate that byte strobes do not correspond exactly to size and |ow-order
address bits.

6.3.5.1 Unaligned Access (p_d_hunalign, p_i_hunalign)

The p_[d,i]_hunalign output signal indicates that the current accessis a misaligned access. Thissignal is
asserted for misaligned data accesses. The timing of this signal is approximately the same as address
timing. When p_[d,i] _hunalignis asserted, the p_[d,i] _hbstrb[3:0] byte strobe signals indicate the
selected bytesinvolved in the current portion of the misaligned access, which may not include all bytes
defined by the size and low-order address signals. Aligned transfers also assert the byte strobes, but in a
manner corresponding to size and low order address bits.

6.3.5.2 Byte Strobes (p_d_hbstrb[3:0], p_i_hbstrb[3:0])

Thep_[d,i]_hbstrb[3:0] byte strobe signalsindicate the selected bytesinvolved in the current transfer. For
amisaligned access, the current transfer may not include all bytes defined by the size and |ow-order
address signals. For aligned transfers, the byte strobe signals correspond to the bytes defined by the size
and low-order address signals. Table 6-9 shows the relationship of byte addresses to the byte strobe
signals.

Table 6-9. p_hbstrb[3:0] to Byte Address Mappings

Memory Byte Address | Wired to p_h{r,w}data Bits | Corresponding Byte Strobe Signal
00 7:0 p_[d,i]_hbstrb[0]
01 15:8 p_[d,i]_hbstrb[1]
10 23:16 p_[d,i]_hbstrb[2]
11 31:24 p_[d,i]_hbstrb[3]
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Table 6-10 lists all of the data transfer permutations. Note that misaligned data requests which cross a
32-bit boundary are broken up into two separate bus transactions, and the address value and the size
encoding for thefirst transfer is not modified. Thetableisarranged in abig-endian fashion. €200 performs
the proper byte routing internally .

Table 6-10. Byte Strobe Assertion for Transfers

Program Size and Byte Offset A(1:0) 11SI§]E Data Bus Byte Strobes HUNALIGN
BO B1 B2 B3
Byte @00 00 00 X — — — 0
Byte @01 01 00 — X — — 0
Byte @10 10 00 — — X — 0
Byte @11 11 00 — — — X 0
Half @00 00 01 X X — — 0
Half @01 01 1 0* - X X — 1
Half @10 10 01 — — X X 0
Half @11 11 01* — - — X 1
(2 bus transfers) 00 00 X — — — 0
Word @00 00 10 X X X X 0
Word @01 01 10" — X X X 1
(2 bus transfers) 00 00 X — — — 0
Word @10 10 10" — — X X 1
(2 bus transfers) 00 01 X X — — 0
Word @11 11 10* - - — X 1
(2 bus transfers) 00 1 o* X X X — 1

Note:
“X” indicates byte lanes involved in the transfer; Other lanes contain driven but unused data.
# These misaligned transfers drive size according to the size of the power of two aligned
“container” in which the byte strobes are asserted.
* These misaligned cases drive request size according to the size specified by the load or store
instruction.
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Table 6-11 shows the final layout in memory for datatransferred from a 32-bit GPR containing the bytes
‘E F G H’' tomemory. Misaligned accesses which cross aword boundary are broken into apair of accesses

by the CPU.

Table 6-11. Big-Endian Memory Storage

Even Word—0 0dd Word—1
Program Size and Byte Offset A(2:0) HSIZE (1:0)
BO B1 B2 B3|B0 B1 B2 B3
Byte @000 000 00 H — — — | — — — —
Byte @001 001 00 — H — —|— — — —
Byte @010 010 00 — — H —|— — — —
Byte @011 011 00 — — — H|— — — —
Byte @100 100 00 — — — —|H — — —
Byte @101 101 00 - — — —|— H — —
Byte @110 110 00 - — — —|— — H —
Byte @111 111 00 - — —|— — — H
B. E. Half @000 000 01 G H — —|— — — —
B. E. Half @001 001 1 0% — G H —|— — — —
B. E. Half @010 010 01 — — G H|— — — —
B. E. Half @011 011 01 - - - H — — —
100 00
B. E. Half @100 100 01 — — — —|e H — —
B. E. Half @101 101 1 o* - — — —|—= H —
B. E. Half @110 110 01 — — — —|— — G H
B.E. Half @111 111 01 - — — —|— — — @
+ 00 0 (next word) 00 H — — —|— — — —
. E. Word @000 000 10 G H|— — — —
B. E. Word @001 001 10 — E F H — — —
100 00
B. E. Word @010 010 10 — — E F|G H — —
100 01
B. E. Word @011 011 10 — — — E|F G H —
100 10*
B. E. Word @100 100 10 — — — —|E F G H
B. E. Word @101 101 10* — — — —|— E F
+ 00 0 (next word) 00 H — — —|— — — —
110 10* - — — —|— — E F
B. E. Word @110
+ 0 0 0 (next word) 01 G H — —|— — — —
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Table 6-11. Big-Endian Memory Storage (continued)

Even Word—0 0dd Word—1
Program Size and Byte Offset A(2:0) HSIZE (1:0)

BO B1 B2 B3| B0 B1 B2 B3

111 10* - — — —|— — — E
B. E. Word @111

+ 0 0 0 (next word) 10# F G H —|— — — —

Notes:
Assumes a 32-bit GPR contains ‘EF G H’

# These misaligned transfers drive size according to the size of the power of two aligned “container” in which
the byte strobes are asserted.

* These misaligned cases drive request size according to the size specified by the load or store instruction.

6.3.6 Transfer Control Signals

The following paragraphs describe the transfer control signals.

6.3.6.1 Transfer Ready (p_d_hready, p_i_hready)

Thep_[d,i]_hready input signal indicates completion of arequested transfer operation. An external device
asserts p_[d,i] _hready to terminate the transfer. The p_[ d,i]_hresp[2:0] signals indicate status of the
transfer.

6.3.6.2 Transfer Response (p_d_hresp[2:0], p_i_hresp[1:0])

Thep_d hresp[2:0] and p_i_hresp[1:0] signals indicate status of aterminating transfer on the respective
interfaces. Table 6-12 shows the definitions of the p_d_hresp[2:0] and p_i_hresp[1:0] encodings.

Table 6-12. p_d_hresp[2:0] Transfer Response Encoding

p_d_hresp[2:0] Response Type
000 OKAY—transfer terminated normally
001 ERROR—transfer terminated abnormally
010 Reserved (RETRY not supported in AHB-Lite protocol)
011 Reserved (SPLIT not supported in AHB-Lite protocol)
100 XFAIL—EXxclusive store failed (stwex. did not completed successfully)
101 Reserved
110 Reserved
111 Reserved
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Table 6-13. p_i_hresp[1:0] Transfer Response Encoding

p_i_hresp[1:0] Response Type
00 OKAY—transfer terminated normally
01 ERROR—transfer terminated abnormally
10 Reserved (RETRY not supported in AHB-Lite protocol)
11 Reserved (SPLIT not supported in AHB-Lite protocol)

The ERROR and XFAIL responses are required to be two cycle responses. In this case, the ERROR or
XFAIL responses must be signaled one cycle prior to assertion of p_[d,i] _hready, and must remain
unchanged during the cycle p_[d,i] _hready is asserted.

The XFAIL responseis signaled to the CPU.

6.3.7 Interrupt Signals

The following paragraphs describe the signals which control the interrupt functions. Interrupt request
inputs p_extint_b and p_critint_b to the core are level sensitive, not edge-triggered, thus the interrupt
controller module must keep the interrupt request as well as the p_voffset or p_avec b inputs (as
appropriate) asserted until the interrupt is serviced to guarantee that the CPU core recognizes the request.
On the other hand, once a request is generated, there is no guarantee the CPU will not recognize the
interrupt request even if the request is later removed. Interrupt requests must be held stable to avoid
spurious responses. The interrupt inputs p_nmi_b and p_mcp_b are transition-sensitive and must be held
asserted until acknowledged in order to be guaranteed to be recognized, although thereis no guarantee the
CPU will not recognize the interrupt request even if the request is later removed.

6.3.7.1 External Input Interrupt Request (p_extint_b)

Thisactive-low signal providesthe External Input interrupt request to the €200 core. p_extint_bismasked
by the MSR[EE] bit. Thissignal is not internally synchronized by the €200 core, thus it must meet setup
and hold time constraints relative to m_clk when the e200 core clock isrunning. Thissignal islevel
sensitive and must remain asserted to be guaranteed to be recognized.

6.3.7.2 Critical Input Interrupt Request (p_critint_b)

Thisactive-low signal providesthe Critical Input interrupt request to the €200 core. p_critint_bismasked
by the MSR[CE] bit. This signal is not internally synchronized by the €200 core, thus it must meet setup
and hold time constraints relative to m_clk when the e200 core clock isrunning. Thissignal islevel
sensitive and must remain asserted to be guaranteed to be recognized.

6.3.7.3 Non-Maskable Input Interrupt Request (p_nmi_b) on e200z0h

Thisactive-low, transition sensitive signal providesanon-maskableinterrupt request to the €200 core. This
signal isnot internally synchronized by the €200 core, thusit must meet setup and hold time constraintsto
m_clk when the €200 core clock isrunning. The p_nmi_b input is sampled on two consecutive m_clk

periods to detect a transition from the negated to the asserted state. Initiation of exception processing for
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the NMI isinternally qualified with this transition, but must remain asserted low to be guaranteed to be
recognized. Note that when the coreis halted or stopped, without clocks, transitions on this signal are not
immediately detected, but the p_ipend and p_wakeup signals are asserted to indicate to system logic that
an interrupt is pending and so the clocks should be started, and the halt and stop inputs should be negated
in order for the interrupt to be processed. Also, when the core isin the debug state, the internal m_clk is
not running, so the p_nmi_b input does not guaranteed to be recognized until the core is released with a
go+noexit or agot+exit ONCE command.

6.3.7.4 Interrupt Pending (p_ipend)

This active-high signal indicates that an asserted p_extint_b, p_critint_b, or p_nmi_b interrupt request
input, or an enabled Timer facility interrupt (Watchdog, Fixed-Interval, or Decrementer) has been
recognized internally by the core and is enabled by the appropriate bit in the MSR (p_nmi_b is never
masked), and is asserted combinationally from the qualified interrupt request inputs. The p_ipend signal
can be used to signal other bus masters or a bus arbiter that an interrupt condition is pending. External
power management logic can use this output to control operation of the core and other logic or may use
the p_wakeup signa similarly. Actual handling of the interrupt request may be delayed due to higher
priority exceptions; assertion of p_ipend does not mean that exception processing for the interrupt has
begun. The p_nmi_b input affects the p_ipend signal slightly differently; the p_ipend output asserts any
time the p_nmi_b input is asserted.

6.3.7.5 Autovector (p_avec_b)

This active-low signal is asserted with either the p_extint_b or p_critint_b interrupt request to request use
of theinternal 1VOR4 or IVORO values for obtaining an exception vector offset. If thissignal is negated
when ap_extint_b or p_critint_b interrupt is requested, an external vector offset is taken from the
p_voffset[0:9] input signals. Thissignal islevel sensitive and must remain asserted to be guaranteed to be
recognized. This signal must be driven to avalid state during each clock cycle that either p_extint_b or
p_critint_b is asserted.

6.3.7.6 Interrupt Vector Offset (p_voffset[0:9])

These input signals provide a vector offset to be used when exception processing begins for an incoming
interrupt request. These signals are sampled along with the p_extint_b and p_critint_b interrupt request
inputs, and must be driven to avalid value when either of these signalsis asserted unlessthe p_avec b
signal isalso asserted. If p_avec b is asserted, these inputs are not used. The p_voffset[0:9] signals
correspond to bits 20:29 of the exception handler address (the low order two bits 30:31 are forced to 00).
The p_voffset[0:9] signals are level sensitive and must remain asserted to be guaranteed to be recognized
correctly. In addition, these signals must be asserted concurrently with the p_extint_b and p_critint_b
inputs when used.

6.3.7.7 Interrupt Vector Acknowledge (p_iack)

The p_iack output signal provide an interrupt vector acknowledge indicator to allow external interrupt
controllersto be informed when acritical input or external input interrupt is being processed. The p_iack
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signal is asserted after the cyclein which the p_avec_b and p_voffset[0:9] signals are sampled in
preparation for exception processing. See Table 6-13 and Figure 6-32 for timing diagrams of operation.

6.3.7.8 Machine Check (p_mcp_b)

Thisactive-low signal provides the Machine Check interrupt request to the €200 core. p_mcp_bismasked
by the HIDO[EMCP] hit. Thissignal is not internally synchronized by the €200 core, thus it must meet
setup and hold time constraints to m_clk when the €200 core clock is running. The p_mcp_b input is
sampled on two consecutive m_clk periods to detect atransition from the negated to the asserted state. It
isinternally qualified with this transition, but must remain asserted to be guaranteed to be recognized.

The p_mcp_b signal is not sampled while the €200 core isin the halted or stopped power management
states, but is sampled while the CPU isin the waiting state. See Section 6.3.11.3, “ Processor Halted
(p_halted),” and Section 6.3.11.5, “Processor Stopped (p_stopped).” Also, when the coreisin the debug
state (as reflected on the cpu_dbgack internal state signal), the internal m_clk is not running, so the
p_mcp_b input is not recognized until the coreis released with a go+noexit or ago+exit OnCE command.

6.3.8 Processor Reservation Signals

The following sub-sections describe processor reservation signals associated with the lwar x and stwcx..
instructions.

6.3.8.1 CPU Reservation Status (p_rsrv)

The active-high p_rsrv output signal is used to indicate that a reservation has been established by the
execution of alwar x instruction. Thissignal is set following the successful completion of alwarx. This
signal remains set until the reservation has been cleared. (Refer to Section 3.4, “Memory Synchronization
and Reservation Instructions”). Thissignal is provided as a status indicator for specialized system
applications only.

6.3.8.2 CPU Reservation Clear (p_rsrv_clir)

The active-high p_rsrv_clr input signal isused to clear areservation that has been previoudly established.
External reservation management logic may usethissignal toimplement reservation management policies
which are outside of the scope of the CPU. (Refer to Section 3.4, “Memory Synchronization and
Reservation Instructions’). This signal may be asserted independently of any bus transfer.

The p_rsrv_clr input signal is not intended for normal use in managing reservations. It is provided for
specialized system applications. The normal bus protocol is used to manage reservations using external
reservation logic in systems with multiple coherent bus masters, using the transfer type and transfer
response signals. In single coherent master systems, no external logic is required, and the internal
reservation flag is sufficient to support multi-tasking applications.

Thep_d_xfail_bsignal isprovided to indicate success/failure of a stwcx. instruction as part of bustransfer
termination using the XFAIL p_d_hresp[2:0] encoding. See Section 7.2.3.7, “ Store Exclusive Failure
(p_d_xfail_b),” for more detail on p_d_xfail_b.

€200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor 6-21



Core Complex Interfaces

6.3.9 Miscellaneous Processor Signals

The following paragraph describes several miscellaneous processor signals.

6.3.9.1 PIDO Outputs (p_pid0[0:7])

The active-high p_pid0[0:7] output signals are used to provide the current process ID in the Process ID
Register 0 (PID0). These outputs correspond to the low order eight bits of PIDO.

6.3.9.2 PIDO Update (p_pid0_updf)

The active-high p_pid0_updt signal is used to indicate that the Process ID Register 0 (PIDO) is being
updated by a mtspr instruction. This output asserts during the clock cycle the p_pid0[0:7] outputs are
changing.

6.3.9.3 HID1 System Control (p_hid1_sysctl[0:7])

The active-high p_hid1_sysctl[0:7] output signals are used to provide a set of control output signals
externa to the CPU viavalues written to the HID1 specia purpose register. These outputs change state
following the rising edge of m_clk, and may need synchronization depending on actual use. See
Section 2.3.10, “Hardware Implementation Dependent Register 1 (HID1).”

6.3.10 Processor State Signals

The following sub-sections describe processor interna state signals.

6.3.10.1 Processor Status (p_pstat[{0:5])

These signalsindicate the internal execution unit status. The timing is synchronous with them_clk, so the
indicated status may not apply to a current bus transfer. Table 6-14 shows p_pstat[0:5] encoding.

Table 6-14. Processor Status Encoding’

p_pstat{0:5] Internal Processor Status

0 0 x | Execution Stalled

x | Execute Exception

x | Instruction Squashed

x | Reserved

x | Reserved

x | Reserved

x | Processor in Waiting State

0

1

0

1

0 x | Reserved
]

0

1

0 x | Processor in Halted state
]

oO| Ol ©o|l ol o]l ol ol o| o| o
-| 2| O]l O| O] Ol O| O] ©O| ©

010
0 1
0 1
1 0
1 0
1 1
1 1
010
010

x | Processor in Stopped state
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Table 6-14. Processor Status Encoding' (continued)

p_pstat{0:5] Internal Processor Status
0 1 0 1 0 X | Processor in Debug mode?
0 1 0 1 1 x | Processor in Checkstop state
0 1 1 0] O x | Reserved
0 1 1 0 1 x | Reserved
0 1 1 1 0 x | Reserved
0 1 1 1 1 x | Reserved
1 10| 01] 0] 0| s |Complete Instruction®*
1 0] 0 0 1 0 | Complete e_Imw, or e_stmw
1 0] 0 1 0 1 | Complete se_isync
1 0] O 1 1 0 | Complete lwarx or stwex.
1 0 1 0] O 0 | Reserved
1 0 1 0 1 0 | Reserved
1 0 1 1 0 0 | Reserved
1 0 1 1 1 0 | Reserved
1 1 0 0 0 0 | Complete Branch Instruction e_bc, e_bcl, e_b, e_bl resolved as not taken
1 1 0 0 0 1 | Complete Branch Instruction se_bc, se_bcl, se_b, se_bl resolved as not taken
1 1 0 0 1 0 | Complete Branch Instruction e_bc, e_bcl, e_b, e_bl resolved as taken
1 1 0 0 1 1 | Complete Branch Instruction se_bc, se_bcl, se_b, se_bl resolved as taken
1 1 0 1 1 1 | Complete se_blr, se_birl, se_bctr, se_bctrl (always taken)
1 1 1 0 0 0 | Complete isel with condition false
1 1 1 0 1 0 | Complete isel with condition true
1 1 1 1 0 x | Reserved
1 1 1 1 1 1 | Complete se_rfi, se_rfci, or se_rfdi

-y

All encodings which do not appear in the table are reserved

As reflected on the cpu_dbgack internal state signal

Except rfi, rfci, rfdi, Imw, stmw, lwarx, stwcx., isync, isel, se_rfi, se_rfci, se_rfdi, e_Imw, e_stmw,
se_isel, and Change of Flow Instructions

4 s—instruction size, 0=32-bit, 1=16-bit

6.3.10.2 Processor Exception Enable MSR Values (p_EE, p_CE, p_ DE, p_ ME)

These active-high output signalsreflect the state of the corresponding M SR[EE,CE,DE,ME] bits. They
may be used by external system logic to determine the set of enabled exceptions. These signals change
state on execution of amtmsr, se rfi, se rfci, se_rfdi, wrtee, or wrteel instruction, or during exception
processing where one or more bits may be cleared during the exception processing sequence.
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6.3.10.3 Processor Machine Check (p_mcp_ouft)

Theactive-high p_mcp_out output signal is asserted by the processor when a machine check condition has
caused asyndrome bit to be set in the Machine Check Syndrome register. Refer to Section 2.3.7, “ Machine
Check Syndrome Register (MCSR).”

6.3.10.4 Processor Checkstop (p_chkstop)

The active-high p_chkstop output signal is asserted by the processor when a checkstop condition has
occurred and the CPU has entered the checkstop state.

6.3.11  Power Management Control Signals

The following signals are provided for power management or other control functions by external control
logic.

6.3.11.1  Processor Waiting (p_waiting)

The active-high p_waiting output signal isused to indicate that the processor has entered the Waiting state
(Section 8.1.2, “Waiting State”).

6.3.11.2 Processor Halt Request (p_halt)

The active-high p_halt input signal isused to request the processor to enter the Halted state (Section 8.1.3,
“Halted State”).

6.3.11.3 Processor Halted (p_halted)

The active-high p_halted output signal is used to indicate that the processor has entered the Halted state

(Section 8.1.3, “Halted State”).

6.3.11.4 Processor Stop Request (p_stop)

The active-high p_stop input signal is used to request the processor to enter the Stopped state

(Section 8.1.4, “ Stopped State”).

6.3.11.5 Processor Stopped (p_stopped)

The active-high p_stopped output signal isused to indicate that the processor has entered the Stopped state
(Section 8.1.4, “ Stopped State”).

6.3.11.6 Low-Power Mode Signals (p_doze, p_nap, p_sleep)

The active-high p_doze, p_nap, and p_sleep output signals are asserted by the processor to reflect the
settings of the HIDO[DOZE], HIDO[NAP], and HIDO[SLEEP] control bits when the MSR[WE] bit is set.

These outputs may assert for one or more clock cycles. External logic can detect the asserted edge or level
of these signals to determine which low-power mode has been requested and then place the e200 core and
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peripheralsin alow-power consumption state. The p_wakeup signal can be monitored to determine when
to end the low-power condition.

The €200 core can be placed in alow-power state by forcing the m_clk input to a quiescent state, and
brought out of low-power state by re-enabling m_clk.

6.3.11.7 Wakeup (p_wakeup)

The active-high p_wakeup output signal should be used by external logic to remove the €200 core and
system logic from alow-power state. It alsoisused to indicate to the system clock controller that them_clk
input should be re-enabled for debug purposes. This signal isasynchronous to the system clock and should
be synchronized to the system clock domain to avoid hazards.

p_wakeup asserts whenever the following occurs:

» A valid pending interrupt is detected by the core

* A request to enter debug mode is made by setting the DR bit in the OnCE control register (OCR)
or viathe assertion of the jd_de b or p_ude input signals.

* The processor isin adebug session and the jd_debug_b output is asserted

* A request to enable the m_clk input has been made by setting the WKUP bit in the OnCE control
register

 Thep_nmi_binput isasserted

p_wakeup (or other system state) should be monitored to determine when to release the processor (and
system if applicable) from alow-power state.

6.3.12 Debug Event Signals

The following interface signals are provided to signal debug events to the €200 core.

6.3.12.1 Unconditional Debug Event (p_ude)

The active-high p_udeinput signal isused to request an unconditional debug event. Thisevent isdescribed
indetail in Section 8.2.12, “Unconditional Debug Event.” Thissignal isnot internally synchronized by the
€200 core, thusit must meet setup and hold time constraintsrelative to m_clk when the e200 core clock is
running. Thissignal islevel sensitive and must be held asserted until acknowledged by software, or, when
external debug mode isenabled, by assertion of the jd_debug_b output to be guaranteed to be recognized.
In addition, only atransition from the negated state to the asserted state of thep_ude signal causes an event
to occur. The level on thissignal is used however to cause assertion of the p_wakeup output.

6.3.12.2 External Debug Event 1 (p_devt1)

The active-high p_devtl input signal is used to request an external debug event. Thisevent isdescribed in
detail in Section 8.2.11, “External Debug Event.” Thissignal is not internally synchronized by the €200
core, thus it must meet setup and hold time constraints relative to m_clk when the €200 core clock is
running. If the €200 core clock isdisabled, thissignal is not recognized. In addition, only atransition from
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the negated state to the asserted state of the p_devt1 signal causes an event to occur. It isintended to signal
€200 related events that are generated while the CPU is active.

6.3.12.3 External Debug Event 2 (p_devt2)

The active-high p_devt2 input signal is used to request an external debug event. Thisevent isdescribed in
detail in Section 8.2.11, “External Debug Event.” Thissignal is not internally synchronized by the €200
core, thus it must meet setup and hold time constraints relative to m_clk when the €200 core clock is
running. If the €200 core clock isdisabled, thissignal is not recognized. In addition, only atransition from
the negated state to the asserted state of the p_devt2 signal causes an event to occur. It isintended to signal
€200 related events that are generated while the CPU is active.

6.3.13 Debug/Emulation (Nexus 1/0nCE) Support Signals

The following interface signals are provided to assist in implementing an On-Chip Emulation capability
with a controller external to the €200 core.

Table 6-15. €200 Debug/Emulation Support Signals

Signal Type Description
jd_en_once | Enable full OnCE operation
jd_debug_b (0] Debug Session indicator
jd_de_b | Debug request
jd_de_en (0] DE_b active high output enable
jd_mclk_on | CPU clock is active indicator

6.3.13.1 OnCE Enable (jd_en_once)

The OnCE enable signal jd_en_once is used to enable the OnCE controller to allow certain instructions
and operations to be executed. Assertion of this signal enables the full OnCE command set, aswell as
operation of control signals and OnCE Control register functions. When this signal is disabled, only the
Bypass, ID and Enable_OnCE commands are executed by the Z5 OnCE unit, and all other commands
default to a“Bypass’ command. The OnCE Status register (OSR) is not visible when OnCE operation is
disabled. In addition, OnCE Control register (OCR) functions are disabled, asis the operation of the
jd_de b input. Secure systems may choose to leave this signal negated until a security check has been
performed. Other systems should tie this signal asserted to enable full OnCE operation. The

j_en_once regsel andj_key insignals are provided to assist external logic performing security checks.
Refer to Section 6.3.15.15, “Enable Once Register Select (j_en_once_regsel),” for a description of the
j_en_once _regsel output signal, and to Section 6.3.15.20, “Key Data In (j_key _in),” for adescription of
thej_key _ininput signal.

The jd_en_onceinput must only change state during the Test-L ogic-Reset, Run-Test/Idle, or Update DR
TAP states. A new value takes effect after one additional j_tclk cycle of synchronization.
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6.3.13.2 Debug Session (jd_debug b)

The jd_debug_b active-low output signal is asserted when the processor first enters into debug mode. It
remains asserted for the duration of a*“debug session”.

NOTE

A debug session includes single-step operations (Go+NoExit OnCE
commands). That is, jd_debug_b remains asserted during OnCE single-step
executions.

Thissignal is provided to allow system resourcesto be aware that accessisoccurring for debug purposes,
thus allowing certain resource side effects to be frozen or otherwise controlled. Examples might include
FIFO state change control, control of side-effects of register or memory accesses, etc. Refer to

Section 8.4.4.3, “€200 OnCE Debug Output (jd_debug_b),” for additional information on this signal.

6.3.13.3 Debug Request (jd_de_b)

This signal is the debug mode request input. Thissignal is not internally synchronized by the e200 core,
thus it must meet setup and hold time constraints relative to j_tclk. To be recognized, it must be held
asserted for aminimum of two j_tclk periods, and the jd_en_once input must be in the asserted state.
jd_de bissynchronized to m_clk in the debug module before being sent to the processor (two clocks).

Thissignal is normally the input from the top-level DE_b open-drain bidirectional 1/0 cell. Refer to
Section 8.4.4.2, “OnCE Debug Request/Event (jd_de b, jd_de en),” for additional information on this
signal.

6.3.13.4 DE_b Active High Output Enable (jd_de_en)

This output signal is an active-high enable for the top-level DE_b open-drain bidirectional 1/0 cell. This
signal is asserted for three_tclk periods upon processor entry into debug mode. Refer to Section 8.4.4.2,
“OnCE Debug Request/Event (jd_de b, jd_de en),” for additional information on this signal.

6.3.13.5 Processor Clock On (jd_mclk_on)

This active-high input signal is driven by system level clock control logic to indicate that the processor’s
m_clk input isactive. Thissignal issynchronized to j_tclk and provided as a status bit in the OnCE Status
register.

6.3.13.6 Watchpoint Events (jd_watchpoint{0:5])

The jd_watchpoint[0:5] active-high output signals are used to indicate that a watchpoint has occurred.
Each debug address compare function (IAC1-4, DAC1-2) is capable of triggering a watchpoint output.
Refer to Section 8.5, “Watchpoint Support,” for the signal assignments of each watchpoint source.
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6.3.14 Development Support (Nexus2+) Signals

The following interface signals are provided to assist in implementing a real-time development tool
capability with acontroller external to the €200 core. These signals are optional and are described in an
external Nexus2/3 specification.

Table 6-16. €200 Development Support (Nexus2+) Signals

Signal Type Description
nex_mcko (0] Nexus Clock Output
nex_rdy_b (0] Nexus Ready Output
nex_evto_b (0] Nexus Event-Out Output
nex_evti_b | Nexus Event-In Input
nex_mdo[n:0] (0] Nexus Message Data Output
nex_mseo_b[1:0] (0] Nexus Message Start/End Output

6.3.15 JTAG Support Signals

Table 6-17 details the primary JTAG interface signals. These signals are usually connected directly to
device pins (except for j_tdo, which needstri-state and edge support logic). However, this may not be the
case when JTAG TAP controllers are concatenated together.

Table 6-17. JTAG Primary Interface Signals

Signal Name Type Description
j trst b | JTAG test reset
J_tclk | JTAG test clock
j_tms | JTAG test mode select
f tdi | JTAG test data input
j_tdo (0] Test data out to master controller or pad
j_tdo_en’ O | Enables TDO output buffer

! j_tdo_en is asserted when the TAP controller is in the shift_dr or shift_ir state.

6.3.15.1 JTAG/OnCE Serial Input (j_tdi)

Dataand commands are provided to the OnCE controller through the|_tdi pin. Dataislatched ontherising
edge of thej_tclk seria clock. Datais shifted into the OnCE serial port least significant bit (L SB) first.

6.3.15.2 JTAG/OnCE Serial Clock (j_tclk)

The|_tclk pin supplies the seria clock to the OnCE control block. The seria clock provides pulses
required to shift data and commands into and out of the OnCE serial port. (Datais clocked into the OnCE
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on the rising edge and is clocked out of the OnCE serial port on the rising edge.) The debug serial clock
frequency must be no greater than 50% of the processor clock frequency.

6.3.15.3 JTAG/OnCE Serial Output (j_tdo)

Serial dataisread from the OnCE block through the _tdo pin. Datais always shifted out the OnCE serial
port least significant bit (L SB) first. When data is clocked out of the OnCE serial port, j_tdo changes on
therising edge of j_tclk. Thej_tdo output signal is aways driven.

An externa system-level TDO pin may be tri-stateable and should be actively driven in the shift-IR and
shift-DR controller states. Thej_tdo_en signal is supplied to indicate when an external TDO pin should be
enabled and isasserted during the shift-IR and shift-DR controller states. In addition, for IEEE Std 1149™
compatibility, the system level pin should change state on the falling edge of TCLK.

6.3.15.4 JTAG/OnCE Test Mode Select (j_tms)
Thej_tmsinput isused to cyclethrough statesin the OnCE Debug Controller. Toggling thej_tmspinwhile
clocking with j_tclk controls transitions through the TAP state controller.

6.3.15.5 JTAG/OnCE Test Reset (j_trst_b)

The|_trst_b input is used to externally reset the OnCE controller by placing it in the Test-L ogic-Reset
state.

Table 6-18 details additional signalswhich may be used to support external JTAG dataregisters using the
€200 TAP controller.

Table 6-18. JTAG Signals Used to Support External Registers

Signal Name Type Description
[_tst_log_rst (0] Indicates the TAP controller is in the Test-Logic-Reset state
frti (0] JTAG controller run-test/idle state
[_capture_ir (0] Indicates the TAP controller is in the capture IR state
[_shift_ir (e} Indicates the TAP controller is in shift IR state
[_update_ir (0] Indicates the TAP controller is in update IR state
[_capture_dr (0] Indicates the TAP controller is in the capture DR state
j_shift_dr (0] Indicates the TAP controller is in shift DR state
[_update_gp_reg (0] Updates JTAG controller general-purpose data register
j_gp_regsef[0:11] (0] General-purpose external JTAG register select
[_en_once_regsel (0] External Enable OnCE register select
[_key_in | Serial data from external key logic
[_Isrl_regsel (0] External LSRL register select
|_serial _data | Serial data from external JTAG register(s)
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6.3.15.6 Test-Logic-Reset (j_tst_log_rst)
This signal indicates the TAP controller isin the Test-L ogic-Reset state.

6.3.15.7 Run-Test/Idle (j_rti)
This signal indicates the TAP controller isin the Run-Test/Idle state.

6.3.15.8 Capture IR (j_capture_ir
This signal indicates the TAP controller isin the Capture_IR state.

6.3.15.9 Shift IR (j_shift _ir)
This signal indicates the TAP controller isin the Shift_IR state.

6.3.15.10 Update IR (j_update_ir)
This signal indicates the TAP controller isin the Update IR state.

6.3.15.11 Capture DR (j_capture_dr)
This signal indicates the TAP controller isin the Capture DR state.

6.3.15.12 Shift DR (j_shift_dr)
This signal indicates the TAP controller isin the Shift_DR state.

6.3.15.13 Update DR (j_update_gp_reg)

This signal indicates the TAP controller isin the Update DR state and that the R/W bit in the OnCE
Command register islow (write command). Thej_gp_regsel[0:11] signals should be monitored to see
which register, if any, needsto be updated.

6.3.15.14 Register Select (j_gp_regsel)

The outputs shown in Table 6-19 are a decode of the REGSEL[0:6] field in the OnCE Command Register
(OCMD). They are used to specify which external general purpose JTAG register to access viathe e200
TAP controller.

Table 6-19. JTAG General Purpose Register Select Decoding

Signal Name Type Description

j_gp_regsell0] (0] REGSEL[0:6]=7"h70

J_gp_regsel1] REGSEL[0:6]=7"h71

o]
j_gp_regsel2] (0] REGSEL[0:6]=7'h72
o]

j_gp_regsel[3] REGSEL[0:6]=7'h73
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Table 6-19. JTAG General Purpose Register Select Decoding (continued)

Signal Name Type Description

j_gp_regsel4] (0] REGSEL[0:6]=7'h74

j_gp_regsel5] REGSEL[0:6]=7'h75
j_9gp_regsel[6]
j_9gp_regsel7]
j_9gp_regsel8]
J_gp_regsel9]
j_gp_regsel[10]

j_gp_regsef[11]

REGSEL[0:6]=7"h76

REGSEL[0:6]=7"h77

REGSEL[0:6]=7"h78

REGSEL[0:6]=7"h79

REGSEL[0:6]=7"h7A

O|lO0|lO|0O|0O|0O]|O

REGSEL[0:6]=7"h7B

6.3.15.15 Enable Once Register Select (j_en_once_regsel)

Thej_en_once regsel output isasserted when adecode of the REGSEL[0:6] field in the OnCE Command
Register (OCMD) indicatesan external Enable_OnCE register isselected (0b1111110 encoding) for access
viathe €200 TAP controller. This control signal may be used by external security logic to assist in
controlling the jd_enable_once input signal. The external Enable_OnCE register should be muxed onto
thej_serial_data input (Refer to Section 6.3.15.19, “Serial Data (j_serial_data)”). During the Shift DR
state, j_serial_datais supplied to the j_tdo output.

6.3.15.16 External Nexus Register Select (j_nexus_regsel)

The|_nexus regsel output is asserted when a decode of the REGSEL [0:6] field in the OnCE Command
Register (OCMD) indicates an external Nexusregister is selected (0b1111100 encoding) for accessviathe
€200 TAP controller.

6.3.15.17 External Shared Nexus Control Register Select (j_sncr_regsel)

The_sncr_regsel output is asserted when a decode of the REGSEL[0:6] field in the OnCE Command
Register (OCMD) indicates an external Shared Nexus Control register is selected (0b1101111 encoding)
for access viathe €200 TAP controller.

6.3.15.18 External LSRL Register Select (j_Isrl_regsel)

The|_lsrl_regsel output is asserted when a decode of the REGSEL[0:6] field in the OnCE Command
Register (OCMD) indicatesan external L SRL register is selected (0b1111101 encoding) for accessviathe
€200 TAP controller.

6.3.15.19 Serial Data (j_serial_data)

Thisinput signal receives serial data from external JTAG registers. All external registers share this one
serial output back to the core, therefore it must be muxed using thej_gp_regsel[0:11], j_lsrl_regsel, and
j_en _once regsel signals. The dataisinternaly routed toj_tdo.
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Figure 6-3 shows one example of how an external JTAG register set (2) could be designed using the inputs
and outputs provided and by the JTAG primary inputs themselves. The main components are a clock
generation unit, a JTAG shifter (load, shift, hold, clr), the registers (load, hold, clr), and an input mux to
the shifter for the serial output back to the €200 core.The shifter and the registers may be aswide as the
application warrants [0:x]. The length determines the number of states the TAP controller isheld in
Shift_DR (x+1).

Y M
. 1 0
j_op_regsel[1.0] ———»|g
\i
j_tdi »| S| D
j_shift_dr » SHIFT
j_capture_dr »>|LOAD Shifter
j_tclk olk_shftert j_serid_data
» o Q SO >
j_op_regsel[L:0] T
- — Data
j_capture_dr i« 5 y
> LK clk_reg0
gEN = . D REGO
i_shift_dr | Q reg0_dat
j_update_gp_reg 3 jj w
> clk_regl
— D REG1
Q
regl dat
j_trst_b Cﬁ >
NOTES:

1. clk_shfter =j_tclk and (j_shift_dr |j_capture_dr)
2.clk_reg0=j_tclk andj_update gp_reg andj_gp_regsel[0]
3.clk_regl =j_tclk and j_update gp_regand j_gp_regsel[1]

Figure 6-3. Example External JTAG Register Design

6.3.15.20 Key Data In (j_key_in)

Thisinput signal receives serial data from logic to indicate a key or other value to be scanned out in the
Shift_IR state when the current value in the IR isthe Enable_OnCE instruction. Thisinput is provided to
assist in implementing security logic outside of the processor which conditionally asserts jd_en_once.
During the Shift_IR state, when jd_en_onceis negated, thisinput is sampled on the rising edge of j_tclk,
and after atwo clock delay the dataisinternally routed to j_tdo. This allows provision of akey value via
the j_tdo output following atransition from Capture_IR to Shift_IR. The key value is provided viathe
j_key ininpuit.
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6.3.16 JTAG ID Signals

Table 6-20 shows the JTAG ID register unique to Freescale as specified by the IEEE 1149.1 JTAG
Soecification. Note that bit 31 isthe MSB of this register.

Table 6-20. JTAG Register ID Fields

Bit Field Type Description Value
[31:28] Variable Version Number Variable
[27:22] Fixed Design Center Number 6'b011111
[21:12] Variable Sequence Number Variable
[11:1] Fixed Freescale Manufacturer ID 11’b00000001110
0 Fixed JTAG ID Register Identification Bit 1’b1

The €200 core shiftsout a“1” asthefirst bit onj_tdo if the Shift_ DR stateis entered directly from the
test-logic-reset state. Thisis per the JTAG specification and informs any JTAG controller that an 1D
register existson the part. The €200 JTAG I D register isaccessed by writing the OCMR (OnCE Command
Register) with the value 7°h02 in the REGSEL [0:6] field.

The JTAG ID bit, manufacturer 1D field, and design center number are fixed by the JTAG Consortium
and/or Freescale. The version numbers and the two most significant bits (M SBs) of the sequence number
are variable and brought out to external ports. The lower eight bits of the sequence number are variable
and strapped internally to track variations in processor deliverables.

Table 6-21 shows the inputs to the JTAG ID register that are input ports on the €200 core. These bits are
provided for acustomer to track revisions of a device using the €200 core.

Table 6-21. JTAG ID Register Inputs

Signal Name Type Description
j_id_sequence[0:1] | JTAG ID register (2 MSBs of sequence field)
j_id_version[0:3] | JTAG ID register version field

6.3.16.1 JTAG ID Sequence (j_id_sequence[0:1])

Thej_id_sequence[0:1] inputs correspond to the two M SBs of the 10-bit sequence number in the JTAG
ID register. These inputs are normally static. They are provided for the customer for further component
variation identification.

6.3.16.2 JTAG ID Sequence (j_id_sequence[2:9])

The|_id_sequence[2:9] field isinternally strapped to track variationsin processor and module
deliverables. Each €200 deliverable has a unique sequence number. Additionally, each revision of these
modules can be identified by unique sequence numbers.
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6.3.16.3 JTAG ID Version (j_id_version[0:3])

Thej_id_version[0:3] inputs correspond to the 4-bit version number in the JTAG ID register. Theseinputs
arenormally static. They are provided to the customer for strapping in order to facilitate easy identification
of component variants.

6.4 Timing Diagrams

6.4.1 Processor Instruction/Data Transfers

Transfer of data between the core and peripherasinvolves the address bus, data busses, and control and
attribute signals. The address and data buses are parallel, non-multiplexed buses, supporting byte,
halfword, three byte, and word transfers. All businput and output signals are sampled and driven with
respect to the rising edge of the m_clk signal. The core moves data on the bus by issuing control signals
and using a handshake protocol to ensure correct data movement.

The memory interface operates in a pipelined fashion to alow additional access time for memory and
peripherals. AHB transfers consist of an address phase which lastsonly asinglecycle, followed by the data
phase which may last for one or more cycles depending on the state of the p_hready signal.

Read transfers consist of arequest cycle, where address and attributes are driven along with atransfer
request, and one or more memory access cycles to perform accesses and return data to the CPU for
alignment, sign or zero extension, and forwarding.

Write transfers consist of arequest cycle, where address and attributes are driven along with atransfer
request, and one or more datadrive cycleswhere write dataisdriven and external devices accept write data
for the access.

Accessreguests are generated in an overlapped fashion in order to support sustained single cycletransfers.
Up to two access requests may be in progress at any one cycle, one access outstanding and a second in the
pending request phase.

Access requests are assumed to be accepted aslong as there are no accessesin progress, or if an accessin
progress is terminated during the same cycle a new request is active (p_hready asserted). Once an access
has been accepted, the BIU isfree to change the current request at any time, even if part of aburst transfer.

Thelocal memory control logicisresponsiblefor proper pipelining and latching of all interface signalsto
initiate memory accesses.

The system hardware can usethe p_hresp[2:0] signalsto signal that the current bus cycle has an error when
afault isdetected, using the ERROR response encoding. ERROR assertion requires atwo cycle response.
In thefirst cycle of the response, the p_hresp[2:0] signals are driven to indicate ERROR and p_hready
must be negated. During the following cycle, the ERROR response must continue to be driven, and
p_hready must be asserted. When the core recognizes abus error condition for an access at the end of the
first cycle of the two cycle error response, a subsequent pending access request may be removed by the
BIU drivingthe p_htrang2:0] signalstothelDLE statein the second cycle of the two cycle error response.
Not all pending requests are removed, however.
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When abus cycle is terminated with a bus error, the core can enter storage error exception processing
immediately following the bus cycle, or it can defer processing the exception.

The instruction prefetch mechanism requestsinstruction words from theinstruction memory unit before it
isready to execute them. If abus error occurs on an instruction fetch, the core does not take the exception
until it attempts to use the instruction. Should an intervening instruction cause a branch, or should a task
switch occur, the storage error exception for the unused access does not occur. A bus error termination for
any write access or read access that reference data specifically requested by the execution unit causes the
core to begin exception processing.

6.4.1.1 Basic Read Transfer Cycles

During aread transfer, the core receives data from a memory or periphera device. Figure 6-4 illustrates
functional timing for basic read transfers. Clock-by-clock descriptions of activity in Figure 6-4 follow.

Single cycle reads, full pipelining
3

1 4 5

S A I e A e A e N R

p_htrans -( nonseq X nonseq : X nonseq _ ) id:Ie |
p_hsize, | 5 é :

p_hbstrb, etc

single K single N

p_hburst -( single
p_hunalign - - _
o_nwite. [ - A
p_hrdata | |
p_hwdata —
p_ hready | E E

p_hresp | - - - -

Figure 6-4. Basic Read Transfers

Clock 1 (C1):

The first read transfer startsin clock cycle 1. During C1, the core places valid values on the address bus
and transfer attributes. The burst type (p_hburst[2:0]), protection control (p_hprot[5:0]), and transfer type
(p_htrang 1:Q]) attributes identify the specific accesstype. The transfer size attributes (p_hsize[1:0])
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indicates the size of the transfer. The byte strobes (p_hbstrb[3:0]) are driven to indicate active byte lanes.
The write (p_hwrite) signal isdriven low for aread cycle.

The core asserts transfer request (p_htrans= NONSEQ) during C1 to indicate that a transfer is being
requested. Because the busiis currently idle, (O transfers outstanding), the first read request to addr, is
considered taken at the end of C1. The default slave drives an ready/OKAY response for the current idle
cycle.

Clock 2 (C2):

During C2, the addr, memory access takes place using the address and attribute values which were driven
during C1 to enable reading of one or more bytes of memory. Read data from the slave device is provided
on the p_hrdata inputs. The slave device responds by asserting p_hready to indicate the cycleis
completing and drives an OKAY response.

Another read transfer request is made during C2 to addr,, (p_htrans = NONSEQ), and because the access
to addr, is completing, it is considered taken at the end of C2.

Clock 3 (C3):

During C3, the addr, memory access takes place using the address and attribute values which were driven
during C2 to enable reading of one or more bytes of memory. Read datafrom the slave device for addry is
provided on the p_hrdata inputs. The slave device responds by asserting p_hready to indicate the cycleis
completing and drives an OKAY response.

Another read transfer request is made during C3 to addr, (p_htrans = NONSEQ), and because the access
to addry is completing, it is considered taken at the end of C3.

Clock 4 (C4):

During C4, the addr, memory access takes place using the address and attribute values which were driven
during C3 to enable reading of one or more bytes of memory. Read data from the slave devicefor addr, is
provided on the p_hrdata inputs. The slave device responds by asserting p_hready to indicate the cycleis
completing and drives an OKAY response.

The CPU has no more outstanding requests, so p_htransindicates IDLE. The address and attribute signals
are thus undefined.

6.4.1.2 Read Transfer with Wait State

Figure 6-5 shows an example of wait state operation. Signal p_hready for the first request (addr,) is not
asserted during C2, so await state isinserted until p_hready is recognized (during C3).

Meanwhile, a subsequent request has been generated by the CPU for addry which is not takenin C2,
because the previous transaction is still outstanding. The address and transfer attributes remain drivenin
cycle C3 and are taken at the end of C3 because the previous access is completing. Data for addr, and a
ready/OKAY response is driven back by the slave device. In cycle C4, arequest for addr, is made. The
request for access to addr, istaken at the end of C4, and during C5, the data and aready/OKAY response
is provided by the slave device. In cycle C5, no further accesses are requested.
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1

Read with wait-state, single cycle reads, full pipelining
4

2

5 6
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p_addr,p_hprot [ _addr x
p_hsize, 7
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p_hburst -( single

) nonseq @ _nonseq K idle |
) addry D@ edrz
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p_hunalign -
p_hwrite -
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Figure 6-5. Read Transfer with Wait-state
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6.4.1.3 Basic Write Transfer Cycles

During a write transfer, the core provides write data to a memory or peripheral device. Figure 6-6
illustratesfunctional timing for basic write transfers. Clock-by-clock descriptionsof activity in Figure 6-6
follow.

Single cycle writes, full pipelining
3

1 4 5

mok [ L[ L [ L[ 1 [

p_htrans MK nonseq M nonseq MM nonseq X idle |
p_hsize, | 5 é :

p_hbstrb, etc
p_hburst -( single A single K single _
p_hunalign - y -\ _
o_rwite. I - - .
p_hwdata _( data x W datay W  dataz ) |
p_ hready | E E E E

p_nresp | - - - -

Figure 6-6. Basic Write Transfers

Clock 1 (C1):

The first write transfer startsin clock cycle 1. During C1, the core places valid values on the address bus
and transfer attributes. The burst type (p_hburst[2:0]), protection control (p_hprot[5:0]), and transfer type
(p_htrang 1:0Q]) attributes identify the specific accesstype. The transfer size attributes (p_hsize[1:0])
indicates the size of the transfer. The byte strobes (p_hbstrb[3:0]) are driven to indicate active byte lanes.
The write (p_hwrite) signal isdriven high for awrite cycle.

The core asserts transfer request (p_htrans= NONSEQ) during C1 to indicate that a transfer is being
requested. Because the busiis currently idle, (0 transfers outstanding), the first read request to addr, is
considered taken at the end of C1. The default slave drives an ready/OKAY response for the current idle
cycle.

Clock 2 (C2):
During C2, the write data for the access is driven, and the addr, memory access takes place using the
address and attribute values which were driven during C1 to enable writing of one or more bytes of
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memory. The slave device responds by asserting p_hready to indicate the cycle is completing and drives
an OKAY response.

Another write transfer request is made during C2 to addr, (p_htrans = NONSEQ), and because the access
to addr, is completing, it is considered taken at the end of C2.

Clock 3 (C3):

During C3, write data for addry, is driven, and the addr, memory access takes place using the address and
attribute values which were driven during C2 to enable writing of one or more bytes of memory. The dave
device responds by asserting p_hready to indicate the cycle is completing and drives an OKAY response.

Another write transfer request is made during C3 to addr, (p_htrans = NONSEQ), and because the access
to addry is completing, it is considered taken at the end of C3.

Clock 4 (C4):

During C4, write data for addr, is driven, and the addr, memory access takes place using the address and
attribute valueswhich were driven during C3 to enable reading of one or more bytes of memory. The slave
device responds by asserting p_hready to indicate the cycle is completing and drives an OKAY response.

The CPU has no more outstanding requests, so p_htransindicates IDLE. The address and attribute signals
are thus undefined.

6.4.1.4 Write Transfer with Wait States

Figure 6-7 shows an example of write wait state operation. Signal p_hready for the first request (addr,) is
not asserted during C2, so await state isinserted until p_hready is recognized (during C3).

Meanwhile, a subsequent request has been generated by the CPU for addr, which is not takenin C2,
because the previous transaction is still outstanding. The address, transfer attributes, and write dataremain
driven in cycle C3 and are taken at the end of C3 because aready/OKAY response is driven back by the
dave device for the previous access. In cycle C4, arequest for addr, is made. The request for access to
addr, istaken at the end of C4, and during C5, aready/OKAY responseis provided by the slave device. In
cycle C5, no further accesses are requested.
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Write with wait-state, single cycle writes, full pipelining
1 2 3 4 5 6
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Figure 6-7. Write Transfer with Wait-State
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6.4.1.5 Read and Write Transfers

Figure 6-8 shows a sequence of read and write cycles.

Single cycle reads, single cycle write, full pipelining
3

1 4 5
m_clk ’—|—I—|—I—|—IT
p_htrans -( nonseq X nonseq K nonseq YK idle |
p_addr,p_hprot [N adorx N addry N addrz (N
p_hsize, | | | |

p_hbstrb, etc
p_hburst -( single A single K single _
p_hunalign - )\ AR _
p_hrdata
p_hwciata — Galaz

p_ hready

)
-
o_hresp |

Figure 6-8. Single Cycle Read and Write Transfers

The first read request (addr,) is taken at the end of cycle C1 because the busisidle.

The second read request (addry) is taken at the end of C2 because aready/OKAY responseis asserted
during C2 for the first read access (addry). During C3, arequest is generated for awrite to addry, whichis
taken at the end of C3 because the second access is terminating.

Datafor the addr, write cycle is driven in C4, the cycle after the access is taken, and aready/OKAY
response is signaled to complete the write cycle to addr,.
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Figure 6-9 shows another sequence of read and write cycles. This example shows an interleaved write
access between two reads.

Single cycle read, write, read - full pipelining

1 4 5
m_clk ’—I—,—l—,—l—,T
p_htrans [ nonseq | X nonseq | K nonseq X idle |
p_addr,p_hprot -( addr x E A addry 2 W addrz _
p_hsize, |

p_hbstrb, etc

p_ourst [N _single @Y __single @Y _single

p_hunalign [ -\ AR I
p_hwrite [ a A WY 220000000
p_hrdata | | data x_ j

p_hwdata
p_hready -7 - - B B
p_hresp m

Figure 6-9. Single Cycle Read and Write Transfers—2

The first read request (addr, ) is taken at the end of cycle C1 because the busisidle.
The first write request (addry) is taken at the end of C2 because the first access is terminating (addry).

Datafor the addr, write cycleisdrivenin C3, the cycle after the access istaken. Also during C3, arequest
is generated for aread to addr,, which is taken at the end of C3 because the write access is terminating.

During C4, the addr,, write accessis terminated, and no further accessis requested

Figure 6-10 shows another sequence of read and write cycles. In this example, reads incur asingle wait
state.
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Reads with wait-state, single cycle writes, full pipelining
1 2 3 4 5 6 7 8
mew | | [ [ [ L/ 7 7 [7 [_]

p_htrans -< nonseq).( nonseq b nonseq ).( nonseq).( idle |
p_addr,p_hprot .( addr x ).( addry ).( éddr z >.( addr w

p_hsize,

p_hbstrb, etc

single @ single >—

p_hburst .( single ).( single

p_hunalign - . : .
p_hwrite - . . ' —
p_hrdata E data E

p_hwdata —( data z >.<data w
p_hready -— | : f w \
p_hresp -( okay @K okay (K okay‘ @ okay Y@ okay X okay Y@ okay

Figure 6-10. Multi-Cycle Read and Write Transfers

The first read request (addr, ) is taken at the end of cycle C1 because the busisidle.

The second read request (addry) is not taken at the end of cycle C2 because no ready responseis signaled
and only one access can be outstanding (addr,). It istaken at the end of C3 once the first read request has
signaled aready/OKAY response.

The first write request (addr,) is not taken during C4 because aready response is not asserted during C4
for the second read access (addry). During C5, the request for awrite to addr, is taken because the second
access is terminating.

Datafor the addr, write cycle is driven in C6, the cycle after the accessis taken.
During C6, the addr, write access is terminated and the addr,, write request is taken.

During C7, data for the addr,, write access is driven, and aready/OKAY response is asserted to complete
the write cycle to addr,,,.
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Figure 6-11 shows another sequence of read and write cycles. In this example, reads incur a single wait
state.

Read with wait-state, single cycle write, read with wait-state, single cycle write, full pipelining
1 2 3 4 5 6 7 8
mek | [ | [ ] 7 ] [_] [_]

p_htrans [l nonseq @i nonseq @ nonseq K nonseq 8 ide |

p_addr,p_hprot [ addrx X adary W adarz @ adarw _
p_hsize,
p_hbstrb, etc |
p_hburst -< single Yl single ).( single YK single _
p_hunalign - . . .
p_hwrite -_ Y 4 ‘_.
P

pheay [l WA AN W WA A W
p_hresp [N okay I okay N okay I okay XS okay {EK okay @ okay il

Figure 6-11. Multi-Cycle Read and Write Transfers—2

The first read request (addr, ) is taken at the end of cycle C1 because the busisidle.

The first write request (addry) is not taken at the end of cycle C2 because no ready response is signaled
and only one access can be outstanding (addr, ). It istaken at the end of C3 once the first read request has
signaled a ready/OKAY response.

Data for the addr, write cycleis drivenin C4, the cycle after the accessis taken.
The second read request (addr) is taken during C4 because the addry, write is terminating.

A second write request (addr,,) is not taken at the end of C5 because the second read accessis not
terminating, thus it continues to drive the address and attributes into cycle C6.

During C6, the addr, read access is terminated and the addr,, write accessis taken.

In cycle C7, data for the addr,, write accessis driven. During C7, aready/OKAY response is asserted to
complete the write cycle to addr,,. No further accesses are requested, so p_htrans signals IDLE.
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6.4.1.6 Misaligned Accesses

Figure 6-12 illustrates functional timing for amisaligned read transfer. The read to addr, is misaligned
across a 32-hit boundary.

Misaligned read, read, full pipelining

1 2 3 4 5
mek[ | [ L L [ [ [
p_htrans [ nonseq K nonseq XK nonseq K idle |
p_addr,p_hprot -( addr x W addr x+ W addry _
p_hsize,

p_hbstrb, etc
p_hburst -( single X single A single _
p_hunalign - -< b _ _
o rwrite. [ - - AEE—

p_hrdata | '

p_hwdata [

p_hready

p_hresp
Figure 6-12. Misaligned Read Transfer

The first portion of the misaligned read transfer startsin C1. During C1, the core placesvalid values on
the address bus and transfer attributes. The p_hwritesignal isdriven low for aread cycle. Thetransfer size
attributes (p_hsize) indicate the size of the transfer. Even though the transfer is misaligned, the size value
driven correspondsto the size of the entire misaligned dataitem. p_hunalign isdriven high to indicate that
the accessis misaligned. The p_hbstrb outputs are asserted to indicate the active byte lanes for the read,
which may not correspond to size and low-order address outputs. p_htransis driven to NONSEQ.

During C2, the addr, memory access takes place using the address and attribute values which were driven
during C1 to enable reading of one or more bytes of memory.

The second portion of the misaligned read transfer request is made during C2 to addr, ;. (which is aligned
to the next higher 32-bit boundary), and because the first portion of the misaligned access is completing,
it istaken at the end of C2. The p_htrans signals indicate NONSEQ. The size value driven isthe size of
the remaining bytes of datain the misaligned read, rounded up (for the 3-byte case) to the next higher
power-of-2. The p_hbstrb signals indicate the active byte lanes. For the second portion of a misaligned
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transfer, the p_hunalign signal isdriven high for the 3-byte case (low for all others). The next read access
isrequested in C3 and p_htransindicates NONSEQ. p_hunalignis negated, because this accessis aligned.

Figure 6-13 illustrates functional timing for a misaligned write transfer. The write to addr, is misaligned
across a 32-hit boundary.

Misaligned write, write, full pipelining

1 4 5
m_clk 4| \—I

p_htrans MM nonseq K nonseq MK nonseq K idle |
p_addr,p_hprot [ adarx K addr Y adory
p_hsize,
p_hbstrb, etc
p_hburst -< singe @ single @K single _
p_hunalign - w — Y —
p_hwrite - w w -
p_hwoata oz x o ey
p_hready -7—-7—- w —

p_hresp m_-(j-

Figure 6-13. Misaligned Write Transfer

The first portion of the misaligned write transfer startsin C1. During C1, the core places valid values on
the address bus and transfer attributes. The p_hwrite signal isdriven high for awrite cycle. The transfer
size attribute (p_hsize) indicate the size of the transfer. Even though the transfer is misaligned, the size
value driven corresponds to the size of the entire misaligned dataitem. p_hunalign isdriven high to
indicate that the access is misaligned. The p_hbstrb outputs are asserted to indicate the active byte lanes
for the write, which may not correspond to size and low-order address outputs. p_htransis driven to
NONSEQ.

During C2, data for addr, is driven, and the addr, memory access takes place using the address and
attribute values which were driven during C1 to enable writing of one or more bytes of memory.

The second portion of the misaligned write transfer request is made during C2 to addr, . (whichis aligned
to the next higher 32-bit boundary), and because the first portion of the misaligned access is completing,
it istaken at the end of C2. The p_htrans signals indicate NONSEQ. The size value driven isthe size of
the remaining bytes of datain the misaligned write, rounded up (for the 3-byte case) to the next higher
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power-of-2. The p_hbstrb signals indicate the active byte lanes. For the second portion of a misaligned
transfer, the p_hunalign signal is driven high for the 3-byte case (low for al others).

The next write accessisrequested in C3 and p_htransindicatesNONSEQ. p_hunalign is negated, because
thisaccessis aligned.

An example of amisaligned write cycle followed by an aligned read cycle is shown in Figure 6-14. It is
similar to the previous examplein Figure 6-13.

Misaligned write, single cycle read, full pipelining
1 2 3 4 5
m_clk 4| \—I
p_htrans [ nonseq K nonseq K nonseq K idle |
p_addr,p_hprot [ _addrx N addrx- N addry (N

p_hsize,

p_hbstrb, etc
p_hburst -( single XX single t A single _
p_hunalign - \ - .\ —
o twirite [ w | Uy
p_hrata
p_hwdata _( data x )-( data x+ _
prrcacy I W W W -—
p_hresp m_-m-

Figure 6-14. Misaligned Write, Single Cycle Read Transfer
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6.4.1.7 Burst Accesses
Figure 6-15 illustrates functional timing for aburst read transfer.

Burst Read
1 2 3 4 5 6
m_clk \—l \—l

p_htrans [ _nonseq K seq K seq K seq K
p_addr,p_hprot [ _addrx Y@ _addrx+ Y addr x++ N addr x+++

p_hsize,

p_hbstrb, etc

p_hburst -( incr _
p_hunalign - —
p_hwrite - —
p_hrdata | o=to > N daia -
p_hwdata — | | | g

p_hreacy (I |/ |/ \ |/
p_tresp [N okay NN okay I okey N okay @ okay

Figure 6-15. Burst Read Transfer

The p_hburst signalsindicate INCR for al burst transfers. The p_hunalign signal is negated. p_hsize
indicates 32-bits, and all four p_hbstrb signals are asserted. The burst address is aligned to a 32-bit
boundary and increments by words. Note that in this example four beats are shown, but in operation the
burst may be of any length including only a single bezt.

NOTE

Bursts may beinterrupted immediately at any time, and be followed by any
type of cycle. Noidle cycleisrequired.
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Figure 6-16 illustrates functiona timing for aburst read with wait-state transfer.

Burst Read with wait-state

1 2 3 4 5 6 7
m_clk | | | | | | | | | | | L
p_htrans I nonseq:).( _seq t).( seq ).( seq K e |
p_addr,p_hprot -( addr x ) a;:idr X+ L ).( addr x++ ).(addr x+++)—
p_hsize, z é |
p_hbstrb, etc
p_hburst -( incr )—
p_hunalign - é | —
o_hwrite - A
p_hrdata _@-(data x+ (K data x++ )il data x++).

p_hwdata
p_hready | -w
p_hresp | okay Y okay ) okay Y okay oka

1

Figure 6-16. Burst Read with Wait-State Transfer

Thefirst cycle of the burst incurs a single wait-state.
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Figure 6-17 illustrates functional timing for aburst write transfer.

Burst Write
1 2 3 4 5 6

m_clk \—l \—l
p_htrans [ nonseq K seq K seq N  seq K
p_addr,p_hprot -( addr x ;).( addr x+_ X addr Xt Y addr Xrrt

p_hsize,

p_hbstrb, etc

p_hburst incr

p_hunalign

p_hwrite

p_hrdata

p_hwdata _( data x X data Xt W data Xt A data x-;@.
p_hreacy [N \ \ \ |
p_resp NN okay NN okay )N okay Y okay ) okay

Figure 6-17. Burst Write Transfer

€200z0 Power Architecture Core Reference Manual, Rev. 0

6-50 Freescale Semiconductor



b -

Core Complex Interfaces

Figure 6-16 illustrates functional timing for aburst write with wait-state transfer.

Burst Write with wait-state

p_hrdata

1 2 3 4 5 6 7

m_clk | | | | | | | | | | | L

p_htrans [HIIK nonseq:).( _seq t).( seq ).( seq K e |

p_addr,p_hprot -( addr x Y a;:idr X+ L @ addr x++ ).(addr x+++)—
p_hsize, g é |
p_hbstrb, etc

p_hburst -( incr _

p_hunalign - —

p_hwrite . _

p_hwdata — data x @ data x+ I data x+ ) data x-
| - \ w
p_hresp --( okay ).( okay X okay K okay oka

p_ hready

Figure 6-18. Burst Write with Wait-State Transfer

Thefirst cycle of the burst incurs asingle wait-state. Datafor the second beat of the burst isvalid thecycle
after the second beat is taken.
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Figure 6-19 illustrates functional timing for apair of burst read transfers.

Burst Read
1 2 3 4 5 6
m_clk

p_htrans [ nonseq K seq K nonseq @ seq K

p_addr,p_hprot I addrx @ addrx+ @ addry @ addry+ )

p_hsize,

p_hbstrb, etc

p_hburst. [ nor I
p_hunaiign [, A——
p_nwite. [ A—
p_hrdiata [ -tz ) data -

p_hwdata

p_hreacy I |/ |/ \ |/
p_hresp [N okay Y okay @ okay @Y okay )@ okay

Figure 6-19. Burst Read Transfers

Note that in this example the first burst is two beats long and is followed immediately by a second burst,
which isunrelated to the first.

NOTE

Bursts may be of any length (including a single beat) and may be followed
immediately by any type of transfer. No idle cycles are required.
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Figure 6-20 illustrates functional timing for a burst read with wait-state transfer where the second beat to
addr x+ isretracted and replaced with anew burst transfer.

Burst Read with wait-state

1 2 3 4 5 6 7
m_clk | | | | | | | | | | | L
p_htrans -( nonseq X seq .(nonseq OE_seq ).( seq ).( idle |
p_addr,p_hprot -( addr x ).(addr X+ .(addry t).(addr v+ ).(addr Vit )—
p_hsize,
p_hbstrb, etc
p_hburst -( incr )—
p_hunalign - E | —
p_write. [ A—
p_hrdata _@-(datay ).(data v+ K data y++>.

p_hwdata
pheasy [ WA AN W W
p_hresp | okay Y okay Y@ okay Y@ okay oka

1

Figure 6-20. Burst Read with Wait-State Transfer, Retraction

The first cycle of the burst incurs asingle wait-state, and the burst is replaced by another burst.
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Figure 6-21 illustrates functional timing for a burst write transfer. The second burst is only one beat long.

Burst Write
1 2 3 4 5 6
mek [ L[ [ [ L[ L7 LT
p_htrans [ nonseq YK seq B  seq K nonseq){il idle |
p_addr,p_hprot -( addr x ).( addr x+ ; X addr x++E ) addry ; _
p_hsize,
p_hbstrb, etc
p_hburst [ incr .
p_hunaiign [N A
p_nwite. [ U
p_hrdata_

p_hwdata [N datz x @ data x+ (@ date x-—+ @ data y )@l
p_treacy [N |/ |/ |/ |
p_hresp I okay @Y okay MY okay N okay N okay

Figure 6-21. Burst Write Transfers, Single Beat Burst

This same scenario can occur for read bursts as well.

6.4.1.8 Address Retraction

Address retraction is the process of replacing an existing request with anew request unrelated to the first
request. Although the AMBA AHB protocol requires an access request to remain driven unchanged once
presented on the bus, higher system performance may be obtained if this aspect of the protocol is modified
to allow an access request to be changed prior to being taken. €200z1Zen Z0n2p and Zen ZOHN2p aways
performs address retraction under conditionsin which performance may be optimized. Figure 6-22 shows
an example of address retraction during wait state operation. Signal p_hready for the first request (addr,)
is not asserted during C2, so await state isinserted until p_hready is recognized (during C3).

Meanwhile, a subsequent request has been generated by the CPU for addr, which is not takenin C2,
because the previous transaction is still outstanding. The address and transfer attributes are retracted in
cycle C3, and anew accessreguest to addr, isrequested and are taken at the end of C3 because the previous
access is completing. Data for addr, and a ready/OKAY responseis driven back by the slave device. In
cycle C4, arequest for addr,, is made. The request for accessto addr,, istaken at the end of C4, and during
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C5, the data and aready/OKAY responseis provided by the dave device. In cycle C5, no further accesses

are requested.

1

Read with wait-state, address retraction
2 3 4 5 6

m_clk \—I \—I

p_htrans [ nonseq ).( nonseq_ [ X nonseq X nonseq ).( idle |

p_addr,p_hprot -( addr x

p_hsize,

p_hbstrb, etc

@ addry .( addr z >.( addr w _

single B singe (NN

p_hburst -( single ).(
p_hunaiign [ A A _EEE——
p_hwrite - A A —

p_hrdata _( data x O daia z - data w )N
p_hwdata —

p_hreacy NN

-__.---

p_hresp [ okay

B okay D okay Y okay @ okay @

Figure 6-22. Read Transfer with Wait-State, Address Retraction
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Figure 6-23 illustrates functional timing for a burst read with wait-state transfer where the second beat to
addr x+ isretracted and replaced with anew burst transfer.

Burst Read with wait-state
1 2 3 4 5
m_clk | | | | | | | | | | |

p_htrans -(nonseq>.( seq .(nonseq OE_seq ).( seq ).( idle

Ef

p_addr,p_hprot -( addr x ).(addr X+ .(addry t).(addr v+ ).(addr Vit _
p_hsize,
p_hbstrb, etc

L — — —

p_hunalign - | —

p_hwrite - —

p_hrdata _@-(datay K data y+ XK data y++).

o hucars

p_hready -—-_.—- -
p_hresp Y okay Y okay N okay Y okay Y okay oka

1

Figure 6-23. Burst Read with Wait-State Transfer, Retraction

Thefirst cycle of the burst incurs asingle wait-state, and the second beat of the burst drivenin C2 burstis
replaced by another burst in C3. Replacement by a single accessis aso possible.

Addressretraction does not occur on arequested write cycle, only on read cycles, and may occur any time
during aburst cycle as well.

6.4.1.9 Error Termination Operation

The p_hresp[2:0] inputs are used to signal an error termination for an access in progress. The ERROR
encoding is used in conjunction with the assertion of p_hready to terminate a cycle with error. Error
termination is atwo-cycle termination; the first cycle consists of signaling the ERROR response on
p_hresp[2:0] while holding p_hready negated, and during the second cycle, asserting p_hready while
continuing to drive the ERROR response on p_hresp[2:0]. Thistwo cycle termination alows the BIU to
retract a pending accessiif it desires to do so. p_htrans may be driven to IDLE during the second cycle of
the two-cycle error response, or may change to any other value, and anew access unrelated to the pending
access may be requested. The cycle which may have been previously pending whilewaiting for aresponse
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which terminates with error may be changed. It is not required to remain unchanged when an error
responseis received.

Figure 6-24 shows an example of error termination.

Instruction read with error, full pipelining

1 2 4 5 6
m_clk
p_htrans [ nonseq K nonseq @ _nonseq K idle
p_addr,p_hprot [ addrx @K iaddr y Y addrz

p_hsize,

p_hbstrb, etc
p_hburst -( single
p_hunalign -
p_hwrite -
p_hrdata _mn datay
p_hwdata
phready [N WA A \ |/
p_hresp -( okay K error5>-( error Y okay X okay

single

single

o
Q
—
[

Figure 6-24. Read and Write Transfers, Instr. Read Error Termination
The first read request (addr,) is taken at the end of cycle C1 because the busisidle. It isan instruction
prefetch.

The second read request (addry) is not taken at the end of C2 because the first accessis still outstanding
(no p_hready assertion). An error responseis signaled by the addressed dlave for addr, by driving ERROR
onto the p_hresp[2:0] inputs. Thisisthefirst cycle of the two cycle error response protocol.

p_hready is asserted during C3 for thefirst read access (addr,) while the ERROR encoding remainsdriven
on p_hresp[2:0], terminating the access. The read data bus is undefined.

Inthis example of error termination, the CPU continues to request an accessto addry. Itistaken at theend
of C3. During C4, read datais supplied for the addry, read, and the accessisterminated normally during C4.

Also during C4, arequest is generated for aread to addr,, which is taken at the end of C4 because the
second access is terminating.

Datafor the addr, read cycleis provided in C5, the cycle after the access is taken.
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During C5, aready/OKAY response is signaled to complete the read cycle to addr,.

In this example of error termination, a subsequent access remained requested. This does not always occur
when certain types of transfers are terminated with error. The following figures outline cases where an
error termination for a given cycle causes a pending request to be aborted prior to initiation.

Figure 6-25 shows another example of error termination.

Data read with error, data write retracted, inst. read, full pipelining
1 2 3 6
m_clk \—I \—I
p_htrans -( nonseq ).( nonseq ).( idle @K _idle ).( dle |
p_addr,p_hprot -< addr x @ _addry _

p_hsize,

p_hbstrb, etc

p_hburst I single Y@_single _
p_hunalign - A _
o_hrcata
preay IS WER AN W 2 W WE
p_hresp -( okay K error§>-( error Y okay X okay

Figure 6-25. Data Read Error Termination

The first read request (addr,) is taken at the end of cycle C1 because the busisidle. It isadataread.

The second request (writeto addry) isnot taken at the end of C2 because the first accessisstill outstanding
(no p_hready assertion). An error responseis signaled by the addressed slave for addr, by driving ERROR
onto the p_hresp[2:0] inputs. Thisisthefirst cycle of the two cycle error response protocol.

p_hready is asserted during C3 for thefirst read access (addr,) while the ERROR encoding remainsdriven
on p_hresp[2:0], terminating the access. The read data bus is undefined.

Inthisexampleof error termination, the CPU retractsthe requested accessto addry by driving the p_htrans
signalsto the IDLE state during the second cycle of the two-cycle error response.

In this example of error termination, a subsequent access was aborted.
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Figure 6-26 shows another example of error termination, this time on the initial portion of amisaligned
write.

misaligned write with error, data write retracted, full pipelining
1 2 3 4 5 6 7 8
moek | [ [ | L7 [ L7 [_F L] |

p_htrans .(nonsec).(nonsec}.( idle ).(ldle @ idle ).( idle ).( idle ).( |dle|
p_addr, [N acor Y@ acan t

1

p_hprot
p_hsize,
p_hbstrb, etc :

p_nburst. I single M single )<
p_hunaign I W~ <
p_hwrite . ' _ | | |

p_hrdata

p_hwdata data x

p_hreacy N WA AW ' w W ' w
p_hresp I okay N error )Y error M okay XY okay N okay (Y okay Y okay

Figure 6-26. Misaligned Write Error Termination

Thefirst portion of the misaligned write request is terminated with error. The second portion is aborted by
the CPU during the second cycle of the two cycle error response.

6.4.2 Power Management

Thefollowing diagram shows the rel ationship of the wakeup control signal p_wakeup to the relevant input
signals.

L T VA A A
m_c - — -

p_extint_b

p_critint_b -
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Figure 6-27. Wakeup Control Signal (p_wakeup)
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6.4.3 Interrupt Interface

The following diagram shows the relationship of the interrupt input signals to the CPU clock. The
p_avec b, p_extint_b, p_critint_b and p_voffset[0:9] inputs aswell asthe p_nmi_b input must meet setup
and hold timing relative to therising edge of them_clk. In addition, during each clock cycleinwhich either
of the interrupt request inputs p_extint_b or p_critint_b are asserted, p_avec b and p_voffset[0:9] are
required to be in avalid state for the highest priority unmasked interrupt being requested.

- (
m_ck \ 4 )) \ ] !
p_extint_b -
p_critint_b (c
p_avec b )]
p_voffset ( X| S S )
-~ (C
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p_nmi_b
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J)

Figure 6-28. Interrupt Interface Input Signals
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Figure 6-29 and Figure 6-30 shows the relationship of the interrupt pending signal to the interrupt request
inputs. Note that p_ipend is asserted combinationally from the p_extint_b, and p_critint_b, and p_nmi_b
inputs.
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| | | | | | |
p_extint b | | | | | | |
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|
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|
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| | | | |

Figure 6-29. €200 Interrupt Pending Operation
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Figure 6-30. €200z0h Interrupt Pending Operation
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Figure 6-31 shows the relationship of the interrupt acknowledge signal to the interrupt request inputs and
exception vector fetching.
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Figure 6-31. Interrupt Acknowledge Operation

In this example, an external input interrupt is requested in cycle 1. The p_voffset[0:9] inputs are driven
with the vector offset for ‘A’, and p_avec_b is negated, indicating vectoring is desired. For this example,
the busisidle at the time of assertion. The CPU may sample arequested interrupt as early asthe cycle it
isinitially requested, and does so in this example. The interrupt request and the vector offset and
autovector input are sampled at the end of cycle 1. In cycle 3, the interrupt is acknowledged by the
assertion of the p_iack output, indicating that the values present on interrupt inputs at the beginning of
cycle 2 have been internally latched and committed to for servicing. Note that the interrupt vector lines
have changed to avalue of ‘B’ during cycle 2, and the p_critint_b input has been asserted by the interrupt
controller. The vector number / autovector signals must be consistent with the higher priority critical input
request, thus must change at the same time the state of the interrupt request inputs change. Because the
p_iack output assertsin cycle 3, it isindicating that the values present at the rise of cycle 2 (vector *A")
have been committed to. During cycle 3, the CPU beginsinstruction fetching of the handler for vector *A’.
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The new request for a subsequent critical interrupt ‘B’ was not received in time to be acted uponfirst. Itis
acknowledged after the fetch for the external input interrupt handler has been completed and has entered
decode.

Note that the time between assertion of an interrupt request input and the acknowledgment of an interrupt
may be multiple cycles, and the interrupt inputs may change during that interval. The CPU asserts the
p_iack output to indicate the cycle at which aninterrupt iscommitted to. In thefollowing example, because
the CPU was unabl e to acknowledge the external input interrupt during cycle 2 dueto internal or external
execution conditions, the critical input request was sampled. This caseis shown in Figure 6-32.
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Figure 6-32. Interrupt Acknowledge Operation—2
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6.4.4 Time Base Interface

The following figure shows the required relationships of the Time Base inputs. The electrical values
associated with these timings may be found in the Zen Integration Guide.
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Figure 6-33. Time Base Input Timing

6.4.5 JTAG Test Interface

The following figures show the relationships of the various JTAG related signalsto thej_tclk input. The
electrical values associated with these timings may be found in the Zen Integration Guide.
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Figure 6-34. Test Clock Input Timing
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Figure 6-35. j_trst b Timing
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Figure 6-36. Test Access Port Timing
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Chapter 7
Power Management

7.1 Power Management

Power management is supported by €200 coresto minimize overall system power consumption. The e200
core provides the ability to initiate power management from external sources aswell as through software
techniques. The power states on the €200 core are described below.

7.1.1 Active State

The Active state is the default state for the €200 core in which all of itsinternal units are operating at full
processor clock speed. In this state, the e200 core still provides dynamic power management in which
individual internal functional units may stop clocking automatically whenever they areidle.

7.1.2 Waiting State

The €200 core enters the Waiting state as aresult of executing await instruction. Following entry into the
waiting state, instruction execution and bus activity issuspended. Most internal clocks are gated off in this
state. The e200 core asserts p_waiting to indicate it is in the waiting state. Prior to entering the waiting
state, all outstanding instructions and bus transactions are completed. The m_clk input should remain
running while in the waiting state to allow for interrupt sampling, and to allow further transitions into the
Halted or Stopped state if requested.

In the waiting state, the core is waiting for avalid unmasked pending interrupt request. Once a pending
interrupt request is received, the core exits the waiting state and begin interrupt processing. The return
program counter value points to the next instruction after the wait instruction. The interrupt can be an
external input interrupt, various critical interrupts, a debug interrupt (based on ICMP), a non-maskable
interrupt (on €200z0h), or a machine check interrupt (p_mcp_b assertion, etc.). Once the interrupt
processing begins, the core does not return to the waiting state until another wait instruction is executed.

The waiting state can be temporarily exited and returned to if arequest is made to enter hardware debug
mode (various mechanisms), the Halted state, or the Stopped state. After exiting one of these states, the
processor returns to the waiting state. While temporarily exited, the p_waiting output negates, and is
re-asserted once the CPU returns to the waiting state.

7.1.3 Halted State

Instruction execution and bus activity is suspended in the Halted state. However, none of the internal
clocks are gated off in this state. The €200 core asserts p_halted to indicate it isin the halted state. Prior to
entering the halted state, all outstanding bus transactions are completed. The m_clk input should remain
running while in the Halted state to allow further transitions into the Stopped state if requested.
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7.1.4 Stopped State

The Stopped state is characterized as having al internal functional units of the e200 core stopped except
the clock control state machine logic. Theinternal m_clk may be kept running to allow quick recovery to
the full on state. Clocks are not running to functional unitsin this state. The Stopped state is reached after
transitioning through the Halted state with the p_stop input asserted. The p_stopped output signal is
asserted once the Powerdown state i s reached.

Whilein the Stopped state, further power savings may be achieved by stopping the m_clk input. Thisis
done externally by the system after the €200 core is safely in the Stopped state and has asserted the
p_stopped output signal. To exit from the Stopped state, the system must first restart the m_clk input.

7.1.5 Power Management Pins
p_waiting—output pin asserted when the €200 core is in the Waiting state.

p_halt—input pin is asserted by system logic to request the core to go into the Halted state. Negating this
pin causes the €200 core to transition back into the Active or Waiting state if p_stop is aso negated.

p_halted—output pin asserted when the €200 coreisin the Halted state.

p_stop—input pin is asserted by system logic to request that the €200 core go into the Powerdown state.
Negating this pin causes the e200 core to transition back into the Halted state from the Stopped state.

p_stopped—output pin asserted when the €200 core is in the Stopped state.

p_doze, p_nap, and p_sleep output pins that reflects the state of HIDO[DOZE]. HIDO[NAP]., and
HIDO[SLEEP] respectively. These pinsare qualified with MSR[WE] = 1. Interpretation of thesesignalsis
done by the system logic.

p_wakeup—output pin asserted when an interrupt is pending or other condition which requires the clock
to be running.

7.1.6 Power Management Control Bits
The following bits are used by software to generate a request to enter a power-saving state and to choose
the state to be entered:

* MSR[WE]—The WE hit is used to qualify assertion of the p_doze, p_nap, and p_sleep output
pins to the system logic. When M SR[WE] is negated, these pins are negated. When MSR[WE] is
set, these pins reflect the state of their respective control bitsin the HIDO register.

» HIDO[DOZE]—The interpretation of the doze mode bit is done by the external system logic. Doze
mode on the €200 coreisintended to be the halted state with the clocks running.

» HIDO[NAP]—The interpretation of the nap mode bit is done by the external system logic. Nap
mode on the €200 core may be used for a powerdown state with the Time Base enabled.

* HIDO[SLEEP|—The interpretation of the sleep mode bit is done by the external system logic.
Sleep mode on the €200 core may be used for a powerdown state with the Time Base disabled.
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7.1.7 Software Considerations for Power Management Using Wait
Instructions

Executing await instruction causes the €200 core to complete instruction fetch and execution activity and
await an interrupt. The p_waiting output is asserted once the Waiting state is entered. External system
hardware may interpret the state of this signal and activate the p_halt and/or p_stop inputs to cause the
€200 core to enter aquiescent state in which clocks may be disabled for low power operation.
Alternatively, system hardware may utilize some other clock control mechanism while the processor isin
the Waiting state, and p_wakeup remains negated.

7.1.8 Software Considerations for Power Management Using Doze, Nap
or Sleep

Setting MSR[WE] generates arequest to enter a power saving state. The power saving state (doze, nap, or
deep) must be previously determined by setting the appropriate HIDO bit. Setting M SR[WE] has no direct
effect on instruction execution, but it smply reflected on p_doze, p_nap, and p_sleep depending on the
setting of HIDO[DOZE], HIDO[NAP], and HIDO[SLEEP] respectively. Note that the e200 core is not
affected by assertion of these pins directly. Externa system hardware may interpret the state of these
signals and activate the p_halt and/or p_stop inputs to cause the €200 core to enter a quiescent statein
which clocks may be disabled for low power operation.

To ensure a clean transition into and out of a power saving mode, the following program sequenceis
recommended:

sync

mtmsr (WE)

isync

loop:br loop (optionally use a wait instruction)
Aninterrupt istypically used to exit a power saving state. The p_wakeup output is used to indicate to the
system logic that an interrupt (or a debug request) has become pending. System logic uses this output to
re-enable the clocks and exit alow power state. The interrupt handler is responsible for determining how
to exit the low power branching loop if oneis used. Wait instructions are exited automatically. The
vectored interrupt capability provided by the core may be useful in assisting the determination if an
external hardware interrupt is used to perform the wake-up.

7.1.9 Debug Considerations for Power Management

When adebug request is presented to the €200 core while in either the Waiting, Halted or Stopped state,
the p_wakeup signal isasserted, and when m_clkis provided to the CPU, it temporarily exits the Waiting,
Halted or Stopped state and enters Debug mode regardless of the assertion of p_halt or p_stop. The
p_waiting, p_halted or p_stopped outputs are negated for the duration of the time the CPU remainsin a
debug session (jd_debug_b asserted). When the debug session is exited, the CPU re-samples the p_halt
and p_stop inputs and re-enters the Halted or Stopped state as appropriate. If the CPU was previously
waliting, and no interrupt was received while in the debug session, it re-enters the Waiting state and
re-asserts p_waiting.
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Chapter 8
Debug Support

This chapter describes the debug features of the e200 core.

8.1 Overview

Internal debug support in the €200 core allows for software and hardware debug by providing debug
functions, such as instruction and data breakpoints and program trace modes. For software based
debugging, debug facilities consisting of a set of software accessible debug registers and interrupt
mechanisms are provided. These facilities are also available to a hardware based debugger which
communicates using amodified |EEE 1149.1 Test Access Port (TAP) controller and pin interface. When
hardware debug is enabled, the debug facilities are protected from software modification.

Software debug facilitiesare defined as part of Power Architecture Book E. €200 supportsasubset of these
defined facilities. In addition to the facilities defined in Power Architecture Book E, €200 provides
additional flexibility and functionality in the form of linked instruction and data breakpoints, and
sequential debug event detection. These features are also available to a hardware-based debugger.

The €200 core provides support for an external Nexus real -time debug module. Real-time debugging in a
€200-based system is supported by a Nexus class 1 module.

8.1.1 Software Debug Facilities

€200 provides debug facilities to enable hardware and software debug functions, such as instruction and
data breakpoints and program single stepping. The debug facilities consist of a set of debug control
registers (DBCRO0-2), a set of address compare registers (IAC1, IAC2, IAC3, IAC4, DACL, and DAC2),
aDebug Status Register (DBSR) for enabling and recording various kinds of debug events, and a special
Debug interrupt type built into the interrupt mechanism (see Section 5.7.10, “ Debug Interrupt
(IVOR15)"). The debug facilities also provide a mechanism for software-controlled processor reset in a
debug environment.

Software debug facilities are enabled by setting the internal debug mode bit in Debug Control register O
(DBCRO[IDM]). When internal debug mode is enabled, debug events can occur, and can be enabled to
record exceptions in the Debug Status register (DBSR). If enabled by MSR[DE], these recorded
exceptions cause Debug interrupts to occur. When DBCRO[IDM] is cleared, (and DBCRO[EDM] is
cleared aswell), no debug events occur, and no statusflags are set in DBSR unless already set. In addition,
when DBCRO[IDM] is cleared (or is overridden by DBCRO[EDM] being set) no Debug interrupts occur,
regardless of the contents of DBSR. A software Debug interrupt handler may access all system resources
and perform necessary functions appropriate for system debug.
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8.1.1.1 Power Architecture Book E Compatibility

The €200 core implements a subset of the Power Architecture Book E internal debug features. The
following restrictions on functionality are present:

* Instruction address compares do not support compare on physical (real) addresses.
» Data address compares do not support compare on physical (real) addresses.
» Datavalue compares are not supported.

8.1.2 Additional Debug Facilities

In addition to the debug functionality defined in Power Architecture Book E, €200 provides capability to
link instruction and data breakpoints, and also provides a sequential breakpoint control mechanism.

€200 also defines two new debug events (CIRPT, CRET) for debugging around critical interrupts.

In addition, e200 implements the Debug APU, which when enabled allows Debug Interrupts to utilize a
dedicated set of save/restore registers (DSRRO, DSRR1) for saving state information when a Debug
Interrupt occurs, and for restoring this state information at the end of adebug interrupt handler by means
of the se_rfdi instruction.

8.1.3 Hardware Debug Facilities

The €200 core contains facilities that allow for external test and debugging. A modified IEEE 1149.1
control interfaceis used to communicate with the core resources. Thisinterfaceisimplemented through a
standard 1149.1 TAP (test access port) controller.

By using public instructions, the external debugger can freeze or halt the e200 core, read and writeinternal
state and debug facilities, single-step instructions, and resume normal execution.

Hardware Debug is enabled by setting the External Debug Mode enable bit in Debug Control register O
(DBCRO[EDM]). Setting DBCRO[EDM] overrides the Internal Debug M ode enable bit DBCRO[IDM].
When the Hardware Debug facility is enabled, softwareis blocked from modifying the debug facilities. In
addition, becauseresources are” owned” by the Hardware debugger, inconsistent values may be present if
software attempts to read debug-related resources.

When hardware debug is enabled by setting DBCRO[EDM]=1, the registers and resources described in
Section 8.3, “Debug Registers,” arereserved for use by the external debugger. The same events described
in Section 8.2, “ Software Debug Events and Exceptions,” are also used for external debugging, but
exceptions are not generated to running software. Debug events enabled in the respective DBCR[0-2]
registersarerecorded inthe DBSR regardlessof MSR[DE], and no debug interrupts are generated. I nstead,
the CPU enters debug mode when an enabled event causesa DBSR bit to become set. DBCRO[EDM] may
only be written through the OnCE port.

Access to most debug resources (registers) requires that the core clock (m_clk) be running in order to
perform write accesses from the external hardware debugger.
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Figure 8-1 shows the €200 debug resources.
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Figure 8-1. €200 Debug Resources

8.2 Software Debug Events and Exceptions

Software debug events and exceptions are available when internal debug mode is enabled
(DBCRO[IDM]=1) and not overridden by external debug mode (DBCRO[EDM] must be cleared). When
enabled, debug events cause debug exceptionsto be recorded in the Debug Status Register. Specific event
typesare enabled by the Debug Control Registers (DBCR0-2). The Unconditional Debug Event (UDE) is
an exception to thisrule; it is always enabled. Once a Debug Status Register (DBSR) bit is set (other than
MRR), if Debug interrupts are enabled by MSR[DE], a Debug interrupt is generated. The debug interrupt
handler is responsible for ensuring that multiple repeated debug interrupts do not occur by clearing the
DBSR as appropriate.
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Certain debug events are not allowed to occur when M SR[DE]=0 and DBCRO[EDM]=0. In such
situations, no debug exception occurs and thus no DBSR bit is set. Other debug events may cause debug
exceptions and set DBSR bits regardless of the state of MSR[DE]. A Debug interrupt is delayed until
MSR[DE] islater setto‘1’.

When a Debug Status Register bit is set while M SR[DE]=0 and DBCRO[EDM]=0, an Imprecise Debug
Event flag (DBSR[IDE]) also is set to indicate that an exception bit in the Debug Status Register was set
while Debug interrupts were disabled. Debug interrupt handler software can use this bit to determine
whether the address recorded in Debug Save/Restore Register O is an address associated with the
instruction causing the debug exception, or the address of the instruction which enabled a delayed Debug
interrupt by setting the MSR[DE] bit. A mtmsr or mtdbcr 0 which causes both MSR[DE] and
DBCRO[IDM] to become set, enabling precise debug mode, may cause an Imprecise (Delayed) Debug
exception to be generated due to an earlier recorded event in the Debug Status register.

There are eight types of debug events defined by Power Architecture Book E, as follows:

Instruction Address Compare debug events

Data Address Compare debug events

Trap debug events

Branch Taken debug events

Instruction Complete debug events

Interrupt Taken debug events

Return debug events

8. Unconditional debug events

In addition, e200 defines additional debug events:
» The External debug events DEVT1 and DEVT2 which are described in Section 8.2.11, “External
Debug Event.”

» The Critical Interrupt Taken debug event CIRPT which is described in Section 8.2.8, “Ciritical
Interrupt Taken Debug Event.”

» The Critical Return debug event CRET which is described in Section 8.2.10, “Critical Return
Debug Event.”

N o as~ bR

The €200 debug configuration supports most of these event types. Unsupported Power Architecture Book
E defined functionality is as follows:

* Instruction Address Compare and Data Address Compare real address mode is not supported.
» Data Vaue Compare Mode is not supported.

A brief description of each of the event typesfollows. In these descriptions, DSRR0 and DSRR1 are used,
assuming that the Debug APU is enabled. If it is disabled, use CSRR0O and CSRR1, respectively.

8.2.1 Instruction Address Compare Event

Instruction Address Compare debug events occur when enabled and execution is attempted of an
instruction at an address that meets the criteria specified in the DBCRO, DBCR1, IAC1, IAC2, IAC3, and
|AC4 Registers. Instruction Address compares may specify user/supervisor mode and instruction space
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(MSR[I9)]), along with an effective address, masked effective address, or range of effective addresses for
comparison. This event can occur and be recorded in DBSR regardless of the setting of MSR[DE]. IAC
events do not occur when an instruction would not have normally begun execution due to ahigher priority
exception at an instruction boundary.

|AC compares perform a 31-bit compare for VLE instructions. Each halfword fetched by the instruction
fetch unit is marked with aset of bitsindicating whether an Instruction Address Compare occurred on that
halfword. Debug exceptions occur if enabled and a 16-bit instruction, or the first halfword of a 32-bit
instruction, is tagged with an IAC hit.

8.2.2 Data Address Compare Event

Data Address Compare debug events occur when enabled and execution of aload or store classinstruction
results in a data access that meets the criteria specified in the DBCRO, DBCR2, DACL1, and DAC2
Registers. Data address compares may specify user/supervisor mode and data space (MSR[DS)]), along
with an effective address, masked effective address, or range of effective addresses for comparison. This
event can occur and be recorded in DBSR regardless of the setting of MSR[DE]. Two address compare
values (DAC1, DAC?2) are provided.

NOTE

In contrast to the Power Architecture Book E definition, Data Address
Compare events on €200 do not prevent the load or store class instruction
from completing. If aload or store class instruction completes successfully
without a Data TLB or Data Storage interrupt, Data Address Compare
exceptions are reported at the compl etion of theinstruction. If the exception
resultsin a precise Debug interrupt, the address value saved in DSRRO (or
CSRRO if the Debug APU is disabled) is the address of the instruction
following the load or store class instruction.

If aload or store class instruction does not complete successfully dueto a
Data Storage exception, and a Data Address Compare debug exception also
occurs, the result is an imprecise Debug interrupt, the address value saved
in DSRRO (or CSRRO if the Debug APU is disabled) is the address of the
load or store class instruction, and the DBSR[IDE] bit is set. In addition to
occurring when DBCRO[IDM]=1, this circumstance can also occur when
DBCRO[EDM]=1.

NOTE

DAC events are not recorded or counted if almw or ssmw instruction is
interrupted prior to completion by acritical input or external input interrupt.

NOTE

DAC events are not signaled on the second portion of amisaligned load or
store that is broken up into two separate accesses.
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8.2.3 Linked Instruction Address and Data Address Compare Event

Data Address Compare debug events may be ‘linked’ with an Instruction Address Compare event by
setting the DAC1LNK and/or DAC2LNK control bitsin DBCR2 to further refine when a Data Address
Compare debug event isgenerated. DAC1 may belinked with IAC1, and DAC2 (when not used as amask
or range bounds register) may be linked with IAC3. When linked, aDAC1 (or DAC2) debug event occurs
when the same instruction which generates the DAC1 (or DAC2) ‘hit’ also generatesan IACL1 (or IAC3)
‘hit’. When linked, the IAC1 (or IAC3) event is not recorded in the Debug Status register, regardless of
whether a corresponding DAC1 (or DAC2) event occurs, or whether the IAC1 (or IAC3) event enableis
Set.

When enabled and execution of aload or store classinstruction results in adata access with an address that
meets the criteria specified in the DBCRO, DBCR2, DAC1, and DAC2 Registers, and the instruction also
meets the criteriafor generating an I nstruction Address Compare event, a Linked Data Address Compare
debug event occurs. This event can occur and be recorded in DBSR regardless of the setting of M SR[DE].
The normal DAC1 and DAC2 status bitsin the DBSR are used for recording these events. The IAC1 and
|AC3 status bits are not set if the corresponding Instruction Address Compare register is linked.

Linking is enabled using control bitsin DBCR2.

NOTE

Linked DAC events are not recorded if aload multiple word or store
multiple word instruction is interrupted prior to completion by acritical
input or external input interrupt.

8.24 Trap Debug Event

A Trap debug event (TRAP) occursif Trap debug events are enabled (DBCRO[TRAP]=1), a Trap
instruction (tw) is executed, and the conditions specified by theinstruction for thetrap are met. Thisevent
can occur and be recorded in DBSR regardless of the setting of MSR[DE]. When a Trap debug event
occurs, the DBSR[TRARP] hit is set to 1 to record the debug exception.

8.2.5 Branch Taken Debug Event

A Branch Taken debug event (BRT) occursif Branch Taken debug events are enabled (DBCRO[BRT]=1)
and execution is attempted of a branch instruction, which is taken (either an unconditional branch, or a
conditional branch whose branch condition istrue), and MSR[DE]=1 or DBCRO[EDM]=1. Branch Taken
debug events are not recognized if MSR[DE]=0 and DBCRO[EDM]=0 at the time of execution of the
branch instruction and thus DBSR[IDE] can not be set by a Branch Taken debug event. When a Branch
Taken debug event is recognized, the DBSR[BRT] bit is set to 1 to record the debug exception, and the
address of the branch instruction is recorded in DSRRO.

8.2.6 Instruction Complete Debug Event

An Instruction Complete debug event (ICMP) occursif Instruction Complete debug events are enabled
(DBCRO[ICMP]=1), execution of any instruction is completed, and MSR[DE]=1 or DBCRO[EDM]=L1. If
execution of an instruction is suppressed due to the instruction causing some other exception which is
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enabled to generate an interrupt, then the attempted execution of that instruction does not cause an
Instruction Complete debug event. The scinstruction doesnot fall into the category of an instructionwhose
execution is suppressed, because the instruction actually executes and then generates a System Call
interrupt. Inthiscase, the I nstruction Compl ete debug exception is also set. When an Instruction Complete
debug event is recognized, DBSR[ICMP] is set to 1 to record the debug exception and the address of the
next instruction to be executed is recorded in DSRRO.

Instruction Complete debug events are not recognized if MSR[DE]=0 and DBCRO[EDM]=0 at the time
of execution of the instruction, thus DBSR[IDE] is not generaly set by an ICMP debug event.

NOTE

Instruction compl ete debug events are not generated by the execution of an
instruction which setsMSR[DE] to ‘1’ while DBCRO[ICMP]=1, nor by the
execution of an instruction which sets DBCRO[ICMP] to ‘1’ while
MSR[DE]=1 or DBCRO[EDM]=1.

8.2.7 Interrupt Taken Debug Event

An Interrupt Taken debug event (IRPT) occursif Interrupt Taken debug events are enabled
(DBCRO[IRPT]=1) and anon-critical interrupt occurs. Only non-critical classinterrupts cause an Interrupt
Taken debug event. This event can occur and be recorded in DBSR regardless of the setting of MSR[DE].
When an Interrupt Taken debug event occurs, the DBSR[IRPT] bit is set to 1 to record the debug exception.
The value saved in DSRRO is the address of the non-critical interrupt handler.

8.2.8 Critical Interrupt Taken Debug Event

A Critical Interrupt Taken debug event (CIRPT) occursif Critical Interrupt Taken debug events are enabled
(DBCRO[CIRPT]=1) and acritical interrupt (other than a Debug interrupt when the Debug APU is
disabled) occurs. Only critical classinterrupts cause a Critical Interrupt Taken debug event. Thisevent can
occur and be recorded in DBSR regardless of the setting of MSR[DE]. When a Critical Interrupt Taken
debug event occurs, the DBSR[CIRPT] bit is set to 1 to record the debug exception. The value saved in
DSRRO is the address of the critical interrupt handler. Note that this debug event should not normally be
enabled unless the Debug APU is also enabled to avoid corruption of CSRRO0/1.

8.2.9 Return Debug Event

A Return debug event (RET) occursif Return debug events are enabled (DBCRO[RET]=1) and an attempt
ismade to execute an se_rfi instruction. This event can occur and be recorded in DBSR regardless of the
setting of MSR[DE]. When aReturn debug event occurs, the DBSR[RET] bit isset to 1 to record the debug
exception.

If MSR[DE]=0 and DBCRO[EDM]=0 at the time of the execution of the se_rfi (such as before the MSR
is updated by the se rfi), then DBSR[IDE] is also set to 1 to record the imprecise debug event.

If MSR[DE]=1 at the time of the execution of the se_rfi, a Debug interrupt occurs provided there exists
no higher priority exception which is enabled to cause an interrupt. Debug Save/Restore Register O is set
to the address of the se_rfi instruction.
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8.2.10 Critical Return Debug Event

A Critical Return debug event (CRET) occursif Critical Return debug events are enabled
(DBCRO[CRET]=1) and an attempt is made to execute an se_rfci instruction. Thisevent can occur and be
recorded in DBSR regardless of the setting of M SR[DE]. When aCritical Return debug event occurs, the
DBSR[CRET] bit is set to 1 to record the debug exception.

If MSR[DE]=0 and DBCRO[EDM]=0 at the time of the execution of the se_rfci (such as before the MSR
is updated by the se rfci), then DBSR[IDE] is also set to 1 to record the imprecise debug event.

If MSR[DE]=1 at the time of the execution of the se_rfci, a Debug interrupt occurs provided there exists
no higher priority exception which is enabled to cause an interrupt. Debug Save/Restore Register O is set
to the address of the se_rfci instruction. Note that this debug event should not normally be enabled unless
the Debug APU is also enabled to avoid corruption of CSRRO/1.

8.2.11 External Debug Event

An External debug event (DEVT1, DEVT2) occursif External debug events are enabled
(DBCRO[DEVT1]=1 or DBCRO[DEVTZ2]=1), and the respective p_devt1 or p_devt2 input signal
transitions to the asserted state. This event can occur and be recorded in DBSR regardless of the setting of
MSR[DE]. When an External debug event occurs, DBSR[DEVT{1,2}] issetto ‘1’ to record the debug
exception.

8.2.12 Unconditional Debug Event

An Unconditional debug event (UDE) occurs when the Unconditional Debug Event (p_ude) input
transitions to the asserted state, and either DBCRO[IDM]=1 or DBCRO[EDM]=1. The Unconditional
debug event is the only debug event which does not have a corresponding enable bit for the event in
DBCRO. This event can occur and be recorded in DBSR regardless of the setting of MSR[DE]. When an
Unconditional debug event occurs, the DBSR[UDE] hit isset to ‘1’ to record the debug exception.

8.3 Debug Registers

This section describes debug-rel ated registersthat are software accessible. Theseregistersare intended for
use by special debug tools and debug software, not by general application code.

Access to these registers by software is conditioned by the External Debug Mode control bit
(DBCRO[EDM]) which can be set by the hardware debug port. If DBCRO[EDM] is set, softwareis
prevented from modifying debug register values. Execution of amtspr instruction targeting a debug
register does not cause modifications to occur. In addition, because the external debugger hardware may
be manipulating debug register values, the state of these registers is not guaranteed to be consistent if
accessed (read) by software with a mfspr instruction, other than the DBCRO[EDM] bit itself.

8.3.1 Debug Address and Value Registers

Instruction Address Compare registers IAC1, IAC2, IAC3, and IAC4 are used to hold instruction
addresses for address comparison purposes. In addition, IAC2 and | AC4 hold mask information for IAC1
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and | AC3 respectively when Address Bit Match compare modes are selected. Note that when performing
instruction address compares, the low order bit of the instruction address and the corresponding IAC
register isignored.

Data Address Compare registers DAC1 and DAC2 are used to hold data access addresses for address
comparison purposes. In addition, DAC2 holds mask information for DAC1 when Address Bit Match
compare mode is selected.

8.3.2 Debug Control and Status Registers

Debug Control Registers 0-2 (DBCRO, DBCR1, DBCR?2) are used to enable debug events, reset the
processor, and set the debug mode of the processor. The Debug Status register (DBSR) records debug
exceptions while Internal or External Debug Mode is enabled.

€200 requires that a context synchronizing instruction follow amtspr DBCRO-2 or DBSR to ensure that
any alterations enabling/disabling debug events are effective. The context synchronizing instruction may
or may not be affected by the alteration. Typically, anisync instruction is used to create a synchronization
boundary beyond which it can be guaranteed that the newly written control values are in effect.

For watchpoint generation, configuration settings contained in DBCR1and DBCR2 are used, even though
the corresponding event(s) may be disabled (via DBCRO) from setting DBSR flags.
8.3.2.1 Debug Control Register 0 (DBCRO)

Debug Control Register 0is used to enable debug modes and controls which debug events are allowed to
set DBSR flags. €200 adds some implementation specific bits to this register, as seen in Figure 8-2.

~] [
ol Yt ] I I BT R B I DY 8 |+ E| E
S8l 2 |35 EE88SS 2 gl o gz |z o
w= & [Q®FF=3==%4a | 4a & ol o 0| ©
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—308; Read/Write; Reset'—0x0

Figure 8-2. DBCRO Register

1 DBCRO[EDM] is affected by j_trst_b or m_por assertion, and while in the Test_Logic_Reset state, but not by
p_reset_b. All other bits are reset by processor reset p_reset_b as well as by m_por.
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Table 8-1 provides bit definitions for Debug Control Register 0.

Table 8-1. DBCRO Bit Definitions

Bit(s)

Name

Description

0

EDM

External Debug Mode. This bit is read-only by software.

0 External debug mode disabled. Internal debug events not mapped into external debug events.

1 External debug mode enabled. Events do not cause the CPU to vector to interrupt code. Software is
not permitted to write to debug registers {DBCRx, DBSR, DBCNT, IAC1-4, DAC1-2}.

Programming Notes:

It is recommended that debug status bits in the Debug Status Register be cleared before disabling
external debug mode to avoid any internal imprecise debug interrupts.

Software may use this bit to determine if external debug has control over the debug registers.

The hardware debugger must set the EDM bit to ‘1’ before other bits in this register (and other debug
registers) may be altered. On the initial setting of this bit to ‘1°, all other bits are unchanged. This bit is
only writable through the OnCE port.

IDM

Internal Debug Mode

0 Debug exceptions are disabled. Debug events do not affect DBSR unless EDM is set.

1 Debug exceptions are enabled. Enabled debug events update the DBSR. If MSR[DE]=1, the
occurrence of a debug event, or the recording of an earlier debug event in the Debug Status Register
when MSR[DE] was cleared, causes a Debug interrupt.

2:3

RST

Reset Control

00 No function

01 Reserved

10 p_resetout_b pin asserted by Debug Reset Control. Allows external device to initiate processor
reset.

11 Reserved

ICMP

Instruction Complete Debug Event Enable
0 ICMP debug events are disabled
1 ICMP debug events are enabled

BRT

Branch Taken Debug Event Enable
0 BRT debug events are disabled
1 BRT debug events are enabled

IRPT

Interrupt Taken Debug Event Enable
0 IRPT debug events are disabled
1 IRPT debug events are enabled

TRAP

Trap Taken Debug Event Enable
0 TRAP debug events are disabled
1 TRAP debug events are enabled

IAC1

Instruction Address Compare 1 Debug Event Enable
0 IAC1 debug events are disabled
1 1AC1 debug events are enabled

IAC2

Instruction Address Compare 2 Debug Event Enable
0 IAC2 debug events are disabled
1 1AC2 debug events are enabled

10

IAC3

Instruction Address Compare 3 Debug Event Enable
0 IAC3 debug events are disabled
1 1AC3 debug events are enabled
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Table 8-1. DBCRO Bit Definitions (continued)

Bit(s) Name Description

11 IAC4 Instruction Address Compare 4 Debug Event Enable
0 IAC4 debug events are disabled
1 1AC4 debug events are enabled

12:13 DACH1 Data Address Compare 1 Debug Event Enable

00 DAC1 debug events are disabled

01 DAC1 debug events are enabled only for store-type data storage accesses

10 DAC1 debug events are enabled only for load-type data storage accesses

11 DAC1 debug events are enabled for load-type or store-type data storage accesses

14:15 DAC2 Data Address Compare 2 Debug Event Enable

00 DAC2 debug events are disabled

01 DAC2 debug events are enabled only for store-type data storage accesses

10 DAC2 debug events are enabled only for load-type data storage accesses

11 DAC2 debug events are enabled for load-type or store-type data storage accesses

16 RET Return Debug Event Enable
0 RET debug events are disabled
1 RET debug events are enabled

17:20 — Reserved

21 DEVT1 |External Debug Event 1 Enable
0 DEVT1 debug events are disabled
1 DEVT1 debug events are enabled

22 DEVT2 |External Debug Event 2 Enable
0 DEVT2 debug events are disabled
1 DEVT2 debug events are enabled

23:24 — Reserved

25 CIRPT | Critical Interrupt Taken Debug Event Enable
0 CIRPT debug events are disabled
1 CIRPT debug events are enabled

26 CRET | Critical Return Debug Event Enable
0 CRET debug events are disabled
1 CRET debug events are enabled

27:31 — Reserved

8.3.2.2 Debug Control Register 1 (DBCR1)

Debug Control Register 1 is used to configure Instruction Address Compare operation. The DBCR1
register is shown in Figure 8-3.

IAC1US
IAC2US
IAC2ER
IAC12M
o
IAC3US
IAC3ER
IAC4US
IAC4ER
IAC34M
o

IAC1ER

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—309; Read/Write; Reset—0x0

Figure 8-3. DBCR1 Register
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Table 8-2 provides bit definitions for Debug Control Register 1.
Table 8-2. DBCR1 Bit Definitions

Bit(s) Name Description

0:1 IAC1US |Instruction Address Compare 1 User/Supervisor Mode

00 IAC1 debug events not affected by MSR[PR]

01 Reserved

10 IAC1 debug events can only occur if MSR[PR]=0 (Supervisor mode)
11 IAC1 debug events can only occur if MSR[PR]=1. (User mode)

2:3 IAC1ER |Instruction Address Compare 1 Effective/Real Mode

00 IAC1 debug events are based on effective address

01 Unimplemented in €200 (Book E real address compare), no match can occur

10 IAC1 debug events are based on effective address and can only occur if MSR[IS]=0
11 IAC1 debug events are based on effective address and can only occur if MSR][IS]=1

4:5 IAC2US |Instruction Address Compare 2 User/Supervisor Mode

00 IAC2 debug events not affected by MSR[PR]

01 Reserved

10 IAC2 debug events can only occur if MSR[PR]=0 (Supervisor mode)
11 IAC2 debug events can only occur if MSR[PR]=1. (User mode)

6:7 IAC2ER |Instruction Address Compare 2 Effective/Real Mode

00 IAC2 debug events are based on effective address

01 Unimplemented in €200 (Book E real address compare), no match can occur

10 IAC2 debug events are based on effective address and can only occur if MSR[IS]=0
11 IAC2 debug events are based on effective address and can only occur if MSR][IS]=1

Instruction Address Compare 1/2 Mode

00 Exact address compare. IAC1 debug events can only occur if the address of the instruction fetch is
equal to the value specified in IAC1. IAC2 debug events can only occur if the address of the
instruction fetch is equal to the value specified in IAC2.

01 Address bit match. IAC1 debug events can occur only if the address of the instruction fetch, ANDed
with the contents of IAC2 are equal to the contents of IAC1, also ANDed with the contents of IAC2.

8:9 IAC12M IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

10 Inclusive address range compare. IAC1 debug events can occur only if the address of the instruction
fetch is greater than or equal to the value specified in IAC1 and less than the value specified in IAC2.
IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

11 Exclusive address range compare. IAC1 debug events can occur only if the address of the
instruction fetch is less than the value specified in IAC1 or is greater than or equal to the value
specified in IAC2. IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

10:15 — Reserved

Instruction Address Compare 3 User/Supervisor Mode

00 IAC3 debug events not affected by MSR[PR]

16:17 IAC3US |01 Reserved

10 IAC3 debug events can only occur if MSR[PR]=0 (Supervisor mode)
11 IACS3 debug events can only occur if MSR[PR]=1 (User mode)

Instruction Address Compare 3 Effective/Real Mode

00 IAC3 debug events are based on effective address

18:19 IAC3ER |01 Unimplemented in €200 (Book E real address compare), no match can occur

10 IACS3 debug events are based on effective address and can only occur if MSR[IS]=0
11 IACS debug events are based on effective address and can only occur if MSR[IS]=1
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Table 8-2. DBCR1 Bit Definitions (continued)

Bit(s)

Name

Description

20:21

IAC4US

Instruction Address Compare 4 User/Supervisor Mode

00 IAC4 debug events not affected by MSR[PR]

01 Reserved

10 1AC4 debug events can only occur if MSR[PR]=0 (Supervisor mode).
11 IAC4 debug events can only occur if MSR[PR]=1. (User mode)

22:23

IAC4ER

Instruction Address Compare 4Effective/Real Mode

00 IAC4 debug events are based on effective address

01 Unimplemented in €200 (Book E real address compare), no match can occur

10 IAC4 debug events are based on effective address and can only occur if MSR[IS]=0
11 IAC4 debug events are based on effective address and can only occur if MSR][IS]=1

24:25

IAC34M

Instruction Address Compare 3/4 Mode

00 Exact address compare. IAC3 debug events can only occur if the address of the instruction fetch is
equal to the value specified in IAC3. IAC4 debug events can only occur if the address of the
instruction fetch is equal to the value specified in IAC4.

01 Address bit match. IAC3 debug events can occur only if the address of the instruction fetch, ANDed
with the contents of IAC4 are equal to the contents of IAC3, also ANDed with the contents of IAC4.
IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

10 Inclusive address range compare. IAC3 debug events can occur only if the address of the instruction
fetch is greater than or equal to the value specified in IAC3 and less than the value specified in IAC4.
IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

11 Exclusive address range compare. IAC3 debug events can occur only if the address of the
instruction fetch is less than the value specified in IAC3 or is greater than or equal to the value
specified in IAC4. IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

26:31

Reserved

8.3.2.3

Debug Control Register 2 (DBCR2)

Debug Control Register 2 is used to configure Data Address Compare and Data Value Compare
operation.The DBCR2 register is shown in Figure 8-4.

X | X
o | |lo |«
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a | o|a| o | o |88
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—310; Read/Write; Reset—0x0

Figure 8-4. DBCR2 Register
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Table 8-3 provides bit definitions for Debug Control Register 2.

Table 8-3. DBCR2 Bit Definitions

Bit(s) Name Description
Data Address Compare 1 User/Supervisor Mode
00 DAC1 debug events not affected by MSR[PR]
0:1 DAC1US |01 Reserved
10 DAC1 debug events can only occur if MSR[PR]=0 (Supervisor mode)
11 DAC1 debug events can only occur if MSR[PR]=1. (User mode)
Data Address Compare 1 Effective/Real Mode
00 DACT1 debug events are based on effective address
2:3 DAC1ER |01 Unimplemented in €200 (Book E real address compare), no match can occur
10 DAC1 debug events are based on effective address and can only occur if MSR[DS]=0
11 DAC1 debug events are based on effective address and can only occur if MSR[DS]=1
Data Address Compare 2 User/Supervisor Mode.
00 DAC2 debug events not affected by MSR[PR]
4:5 DAC2US |01 Reserved
10 DAC2 debug events can only occur if MSR[PR]=0 (Supervisor mode)
11 DAC2 debug events can only occur if MSR[PR]=1. (User mode)
Data Address Compare 2 Effective/Real Mode
00 DAC2 debug events are based on effective address
6:7 DAC2ER |01 Unimplemented in €200 (Book E real address compare), no match can occur
10 DAC2 debug events are based on effective address and can only occur if MSR[DS]=0
11 DAC2 debug events are based on effective address and can only occur if MSR[DS]=1
Data Address Compare 1/2 Mode
00 Exact address compare. DAC1 debug events can only occur if the address of the data access is
equal to the value specified in DAC1. DAC2 debug events can only occur if the address of the data
access is equal to the value specified in DAC2.
01 Address bit match. DAC1 debug events can occur only if the address of the data access ANDed with
the contents of DAC2, are equal to the contents of DAC1 also ANDed with the contents of DAC2.
8:9 DAC12M DAC2 debug events do not occur. DAC1US and DAC1ER settings are used.
10 Inclusive address range compare. DAC1 debug events can occur only if the address of the data
access is greater than or equal to the value specified in DAC1 and less than the value specified in
DAC2. DAC2 debug events do not occur. DAC1US and DAC1ER settings are used.
11 Exclusive address range compare. DAC1 debug events can occur only if the address of the data
access is less than the value specified in DAC1 or is greater than or equal to the value specified in
DAC2. DAC2 debug events do not occur. DAC1US and DAC1ER settings are used.
Data Address Compare 1 Linked
0 no affect
10 DAC1LNK (1 DAC1 debug events are linked to IAC1 debug events. IAC1 debug events do not affect DBSR
When linked to IAC1, DAC1 debug events are conditioned based on whether the instruction also
generated an IAC1 debug event
Data Address Compare 2 Linked
0 no affect
11 DAC2LNK 1 DAC 2 debug events are linked to IAC3 debug events. IAC3 debug events do not affect DBSR
When linked to IAC3, DAC2 debug events are conditioned based on whether the instruction also
generated an IAC3 debug event. DAC2 can only be linked if DAC12M specifies Exact Address Compare
because DAC2 debug events are not generated in the other compare modes.
12:31 — Reserved for Data Value Compare control (not supported by e200)
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8.3.24 Debug Status Register (DBSR)

The Debug Status Register (DBSR) contains status on debug events and the most recent processor reset.
The Debug Status Register is set viahardware, and read and cleared via software. Bitsin the Debug Status
Register can be cleared using mtspr DBSR RS. Clearing is done by writing to the Debug Status Register
withalinany bit position that isto be cleared and 0 in all other bit positions. The write data to the Debug
Status Register is not direct data, but amask. A ‘1’ causes the bit to be cleared, and a‘0’ has no effect.
Debug Status bits are set by Debug events only while Internal Debug Mode is enabled or External Debug
Mode is enabled. When debug interrupts are enabled (MSR[DE]=1, DBCRO[IDM]=1, and
DBCRO[EDM]=0), a st bit in DBSR other than MRR or VLES causes a debug interrupt to be generated.
The debug interrupt handler is responsible for clearing DBSR bits prior to returning to normal execution.
The Power Architecture VLE APU adds the DBSR[VLES] status bit to indicate debug events occurring
due to a Power Architecture VLE instruction. The DBSR register is shown in Figure 8-5.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR—304; Read/Write; Reset—0x1000_0000
Figure 8-5. DBSR Register

Table 8-4 provides bit definitions for the Debug Status Register.
Table 8-4. DBSR Bit Definitions

Bit(s) Name Description

0 IDE Imprecise Debug Event

Set to 1 if MSR[DE]=0 and DBCRO[EDM]=0 and a debug event causes its respective Debug Status
Register bit to be set to 1. It may also be set to ‘1’ if DBCRO[EDM]=1 and an imprecise debug event
occurs due to a DAC event on a load or store which is terminated with error.

1 UDE Unconditional Debug Event
Set to 1 if an Unconditional debug event occurred.

2:3 MRR Most Recent Reset.

00 No reset occurred because these bits were last cleared by software

01 A hard reset occurred because these bits were last cleared by software
10 Reserved

11 Reserved

4 ICMP Instruction Complete Debug Event
Set to 1 if an Instruction Complete debug event occurred.

5 BRT Branch Taken Debug Event
Set to 1 if an Branch Taken debug event occurred.

6 IRPT Interrupt Taken Debug Event
Set to 1 if an Interrupt Taken debug event occurred.

7 TRAP Trap Taken Debug Event
Set to 1 if a Trap Taken debug event occurred.
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Table 8-4. DBSR Bit Definitions (continued)

Bit(s) Name Description
8 IAC1 Instruction Address Compare 1 Debug Event
Set to 1 if an IAC1 debug event occurred.
9 IAC2 Instruction Address Compare 2 Debug Event
Set to 1 if an IAC2 debug event occurred.
10 IAC3 Instruction Address Compare 3 Debug Event
Set to 1 if an IAC3 debug event occurred.
11 IAC4 Instruction Address Compare 4 Debug Event
Set to 1 if an IAC4 debug event occurred.
12 DAC1R Data Address Compare 1 Read Debug Event
Set to 1 if a read-type DAC1 debug event occurred while DBCRO[DAC1]=0b10 or DBCRO[DAC1]=0b11
13 DAC1W |Data Address Compare 1 Write Debug Event
Set to 1 if a write-type DAC1 debug event occurred while DBCRO[DAC1]=0b01 or DBCRO[DAC1]=0b11
14 DAC2R Data Address Compare 2 Read Debug Event
Set to 1 if a read-type DAC2 debug event occurred while DBCRO[DAC2]=0b10 or DBCRO[DAC2]=0b11
15 DAC2W | Data Address Compare 2 Write Debug Event
Set to 1 if a write-type DAC2 debug event occurred while DBCRO[DAC2]=0b01 or DBCRO[DAC2]=0b11
16 RET Return Debug Event
Set to 1 if a Return debug event occurred
17:20 — Reserved
21 DEVT1 External Debug Event 1 Debug Event
Setto 1 if a DEVT1 debug event occurred
22 DEVT2 External Debug Event 2 Debug Event
Setto 1 if a DEVT2 debug event occurred
23:24 — Reserved
25 CIRPT Critical Interrupt Taken Debug Event
Set to 1 if a Critical Interrupt Taken debug event occurred.
26 CRET Critical Return Debug Event
Set to 1 if a Critical Return debug event occurred
27 VLES VLE Status
Setto 1if an ICMP, BRT, TRAP, RET, CRET, IAC, or DAC debug event occurred on a Power Architecture
VLE Instruction. Undefined for IRPT, CIRPT, DEVTI[1,2], and UDE events
28:31 — Reserved
8.4 External Debug Support

External debug support is supplied through the €200 OnCE controller serial interface which allows access
to internal core registers and other system state while in External Debug Mode (EDM). All debug
resources including DBCRO-2, DBSR, IAC1-4, and DAC1-2 are accessible through the serial OnCE
interface in external debug mode. Setting the DBCRO[EDM ]bitto* 1" through the OnCE interface enables
external debug mode and disables software updates to the debug registers. When DBCRO[EDM] is set,
debug events enabled to set respective DBSR status bits also cause the CPU to enter Debug Mode as
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opposed to generating Debug Interrupts. In Debug Mode, the CPU ishalted at arecoverable boundary, and
an external Debug Control Module may control CPU operation through the On-Chip Emulation logic
(ONnCE). No Debug interrupts can occur while DBCRO[EDM] remains set.

NOTE

Ontheinitia setting of DBCRO[EDM] to ‘1, other bitsin DBCRO remain
unchanged. After DBCRO[EDM] has been set, all debug register resources
may be subsequently controlled through the OnCE interface. The DBSR
register should be cleared as part of the process of enabling external debug
activity. The core should be placed into debug mode viathe OCR[DR]
control bit prior to writing EDM to ‘1'. This gives the debugger the
opportunity to cleanly write to the DBCRX registers and the DBSR to clear
out any residual state / control information which could cause unintended
operation.

NOTE

It isintended for the core to remain in external debug mode
(DBCRO[EDM]=1) in order to single step or perform other debug mode
entry/ reentry viathe OCR[DR], by performing go+noexit commands, or by
assertion of thejd_de_b signal.

NOTE

DBCRO[EDM] operation is blocked if OnCE operation is disabled
(jd_en_once negated) regardless of whether it is set or cleared. This means
that if DBCRO[EDM] was previously set, and then jd_en_once is negated
(this should not occur), entry into debug mode is blocked, all events are
blocked, and watchpoints are blocked.

Due to clock domain design, the CPU clock (m_clk) must be active in order to perform writes to debug
registers other than the ONCE Command register (OCMD), the OnCE Control register (OCR), or the
DBCRO[EDM] bhit. Register read datais synchronized back to thej_tclk clock domain. The OnCE Control
register providesthe capability of signaling the system level clock controller that the CPU clock should be
activated if not already active.

Updatesto the DBCRx and DBSR registers viathe OnCE interface should be performed with the CPU in
debug mode to guarantee proper operation. Due to the various pointsin the CPU pipeline where control is
sampled and event handshaking is performed, it is possible that modifications to these registers while the
CPU isrunning may result in early or late entry into debug mode, and may have incorrect status posted in
the DBSR register.

8.4.1 OnCE Introduction

The €200 on-chip emulation circuitry (OnCE™/Nexus Class 1 interface) provides a means of interacting
with the €200 core and integrated system so that a user may examine registers, memory, or on-chip
peripherals facilitating hardware/software devel opment. OnCE operation is controlled via an industry
standard IEEE 1149.1 TAP controller. By using public instructions, the external hardware debugger can
freeze or halt the CPU, read and write internal state, and resume normal execution. The core does not
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contain |EEE 1149.1 standard boundary cells on itsinterface, asit is abuilding block for further
integration. It does not support the JTAG related boundary scan instruction functionality, although JTAG
public instructions may be decoded and signaled to external logic.

The OnCE logic providesfor Nexus Class 1 static debug capability (utilizing the same set of resources
available to software while in internal debug mode), and is present in all €200-based designs. The OnCE
module also provides support for directly integrating a Nexus class 2 or class 3 Real-Time Debug unit with
the €200 core for development of real-time systems where traditional static debug is insufficient. The
partitioning between a OnCE module and a connected Nexus module to provide real-time debug allows
for capability and cost trade-offs to be made.

The €200 core is designed to be a fully integrateable module. The OnCE TAP controller and associated
enabling logic are designed to allow concatenation with an existing JTAG controller if present in the
system. Thus, the €200 module can be easily integrated with existing JTAG designs or as a stand-alone
controller.

In order to enable full OnCE operation, the jd_enable_once input signal must be asserted. In some system
integrations, thisis automatic, because the input is tied asserted. Other integrations may require the
execution of the Enable OnCE command via the TAP and appropriate entry of serial data. Exact
requirements are documented by the integrated product specification. The jd_enable_once input signal
should not change state during a debug session, or undefined activity may occur.

The following figures show the TAP controller state model and the TAP registers implemented by the
OnCE logic.

> Auxiliary dataregisters —L
> ONnCE mapped Debug registers —|—>
j_tdi > External Data registers > | tdo
> Bypass register f g
> TAP instruction register
(OnCE OCMD)
j_tclk ——>
j_tms —> TAP = TDO .
jtrs b ——> controller ~] mux logic > |_tdo_en

Figure 8-6. OnCE TAP Controller and Registers

The OnCE controller isimplemented as a 16-state FSM, with a one-to-one correspondence to the states
defined for the JTAG TAP controller.
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Access to e200 processor registers and the contents of memory locations are performed by enabling
external debug mode (setting DBCRO[EDM] to ‘1’), placing the processor into debug mode, followed by
scanning instructions and datainto and out of the €200 CPU Scan Chain (CPUSCR); execution of scanned
instructions by the €200 is used as the method to access required data. Memory locations may be read by
scanning aload instruction into the €200 core, which references the desired memory location, executing
the load instruction, and then scanning out the result of the load. Other resources are accessed in asimilar
manner.

The initial entry by the CPU into the debug state (or mode) from normal, stopped, halted, or checkstop
states (al indicated viathe OnCE Status Register (OSR), Section 8.4.5.1, “€200 OnCE Status Register”)
by assertion of one or more debug requests, begins a debug session. The jd_debug_b output signal
indicates that a debug session is in progress, and the OSR indicates the CPU isin the debug state.
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Instructions may the be single-stepped by scanning new valuesinto the CPUSCR, and performing a OnCE
go+noexit command (See Section 8.4.5.2, “e200 OnCE Command Register (OCMD)”). The CPU then
temporarily exitsthe debug state (but not the debug session) to execute the instruction, and then returnsto
the debug state (again indicated viathe OnCE Status Register (OSR)). The debug session remainsin force
until the final OnCE go+exit command is executed, at which time the CPU returnsto the previous state it
was in (unless a new debug request is pending). A scan into the CPUSCR is required prior to executing
each gotexit or go+noexit ONCE command.

8.4.2 JTAG/OnCE Pins

The JTAG/OnCE pin interface is used to transfer OnCE instructions and data to the OnCE control block.
Depending on the particul ar resource being accessed, the CPU may need to be placed in the Debug mode.
For resources outside of the CPU block and contained in the OnCE block, the processor is not disturbed,
and may continue execution. If aprocessor resource is required, an internal debug request (dbg_dbgraq)
may be asserted to the CPU by the OnCE controller, and causes the CPU to finish the current instruction
being executed, save the instruction pipeline information, enter Debug Mode, and wait for further
commands. Asserting dbg_dbgrq causes the chip to exit the low power mode enabled by the setting of
MSR[WE], as well as temporarily exiting the waiting, stopped, or halted power management states.

Table 8-5 details the primary JTAG/OnCE interface signals.
Table 8-5. JTAG/OnCE Primary Interface Signals

Signal Name Type Description
j_trst_b | JTAG test reset
j_tclk | JTAG test clock
j_tms | JTAG test mode select
J_tdi | JTAG test data input
j_tdo (0] Test data out to master controller or pad
j_tdo_en’ O  |Enables TDO output buffer

1 j_tdo_en is asserted when the TAP controller is in the shift_DR or shift_IR

state.

A full description of JTAG pinsis provided in Section 6.3.15, “JTAG Support Signals.”

8.4.3 ONnCE Internal Interface Signals
The following paragraphs describe the €200 OnCE interface signals to other internal blocks associated
with the €200 OnCE controller.

8.4.3.1 CPU Debug Request (dbg_dbgrq)

The dbg_dbgrq signal is asserted by the €200 OnCE control logic to request the CPU to enter the debug
state. It may be asserted for a number of different conditions, and causes the CPU to finish the current
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instruction being executed, save the instruction pipeline information, enter the debug mode, and wait for
further commands.

8.4.3.2 CPU Debug Acknowledge (cpu_dbgack)

The cpu_dbgack signal is asserted by the CPU upon entering the debug state. Thissignal is used as part of
the handshake mechanism between the €200 OnCE control logic and the rest of the CPU. The CPU core
may enter debug mode either through a software or hardware event.

8.4.3.3 CPU Address, Attributes

The CPU address and attribute information are used by a Nexus class 2-4 debug unit with information for
real-time address trace information.

8.4.3.4 CPU Data

The CPU data bus(es) are used to supply a Nexus class 2-4 debug unit with information for real-time data
trace capability.

8.44 ONnCE Interface Signals

The following paragraphs describe additional €200 OnCE interface signals to other external blocks such
as a Nexus Controller and external blocks which may need information pertaining to debug operation.

8.4.4.1 ONnCE Enable (jd_en_once)

The OnCE enable signal jd_en_once is used to enable the OnCE controller to allow certain instructions
and operations to be executed. Assertion of this signal enables the full OnCE command set, aswell as
operation of control signals and OnCE Control register functions. When this signal is disabled, only the
Bypass, I D and Enable_OnCE commands are executed by the OnCE unit, and all other commands default
toa“Bypass’ command. The OnCE Statusregister (OSR) is not visible when OnCE operation is disabled.
In addition, OnCE Control register (OCR) functions are disabled, asisthe operation of thejd_de_b inpui.
Secure systems may choose to leave the jd_en_once signal negated until a security check has been
performed. Other systems should tie this signal asserted to enable full OnCE operation. The

j_en_once _regsel output signal is provided to assist external logic performing security checks. Refer to
Section 6.3.15.15, “Enable Once Register Select (j_en_once regsel),” for adescription of the
j_en_once_regsel output signal.

Thejd_en_onceinput must only change state during the Test-L ogic-Reset, Run-Test/Idle, or Update DR
TAP states. A new value takes effect after one additional j_tclk cycle of synchronization. In addition,
jd_enable_once input signal must not change state during a debug session, or undefined activity may
occur.

8.4.4.2 OnCE Debug Request/Event (jd_de_b, jd_de en)

If implemented at the SoC level, a system level bidirectional open drain debug event pin DE_b (not part
of the €200 interface) provides afast means of entering the Debug Mode of operation from an external
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command controller (when input) as well as afast means of acknowledging the entering of the Debug
Mode of operation to an external command controller (when output). The assertion of thispin by a
command controller causes the CPU core to finish the current instruction being executed, save the
instruction pipeline information, enter Debug Mode, and wait for commands to be entered. If DE_b was
used to enter the Debug Mode then DE_b must be negated after the OnCE controller responds with an
acknowledge and before sending the first ONnCE command. The assertion of this pin by the CPU Core
acknowledges that it has entered the Debug Mode and is waiting for commands to be entered.

To support operation of this system pin, the OnCE logic supplies the jd_de_en output and samples the
jd_de_binput when OnCE isenabled (jd_en_once asserted). Assertion of jd_de b causes the OnCE logic
to place the CPU into Debug Mode. Once Debug Mode has been entered, the jd_de_en output is asserted
for threej_tclk periodsto signal an acknowledge. jd_de_en can be used to enable the open-drain pulldown
of the system level DE_b pin.

For systems which do not implement a system level bidirectional open drain debug event pin DE_b, the
jd_de enand jd_de b signals may till be used to handshake debug entry.

8.4.4.3 €200 OnCE Debug Output (jd_debug_b)

The €200 OnCE Debug output jd_debug_b is used to indicate to on-chip resources that a debug sessionis
in progress. Peripherals and other units may use this signal to modify normal operation for the duration of
adebug session, which may involve the CPU executing a sequence of instructions solely for the purpose
of visibility/system control which are not part of the normal instruction stream the CPU would have
executed had it not been placed in debug mode. This signal is asserted the first time the CPU entersthe
debug state, and remains asserted until the CPU isreleased by awrite to the €200 OnCE Command
Register with the GO and EX bits set, and a register specified as either “No Register Selected” or the
CPUSCR. This signal remains asserted even though the CPU may enter and exit the debug state for each
instruction executed under control of the €200 OnCE controller. See Section 8.4.5.2, “e200 OnCE
Command Register (OCMD),” for more information on the function of the GO and EX bits. Thissignal is
not normally used by the CPU.

8.4.4.4 €200 CPU Clock On Input (jd_mclk_on)

The €200 CPU Clock On input jd_mclk_on is used to indicate that the CPU’s m_clk input is active. This
input signal isexpected to be driven by system logic external to the €200 core, issynchronized to thej_tclk
(scan clock) clock domain, and is presented as a status flag on the j_tdo output during the Shift_IR state.
External firmware may use this signal to ensure proper scan sequences occur to access debug resourcesin
the m_clk clock domain.

8.4.45 Watchpoint Events (jd_watchpt{0:5])

The jd_watchpt[0:5] signals may be asserted by the €200 OnCE control logic to signal that a watchpoint
condition has occurred. Watchpoints do not cause the CPU to be affected. They are provided to allow
external visibility only. Watchpoint events are conditioned by the settings in the DBCRO, DBCR1, and
DBCR2 registers.
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8.4.5 e200 OnCE Controller and Serial Interface

The €200 OnCE Controller contains the €200 OnCE command register, the €200 OnCE decoder, and the
status/control register. Figure 8-7 is ablock diagram of the €200 OnCE controller. In operation, the €200
OnCE Command register acts as the IR for the €200 TAP controller, and all other OnCE resources are
treated as data registers (DR) by the TAP controller. The Command register isloaded by serially shifting
in commands during the TAP controller Shift-IR state, and is loaded during the Update-IR state. The
Command register selects aresource to be accessed as adata register (DR) during the TAP controller
Capture-DR, Shift-DR and Update-DR states.

-t TDI
ONnCE COMMAND REGISTER <—|_C : TCLK
UPDATE
E DECODER
ONnCE DECO <
4 B STATUSAND CONTROL | %
REGISTERS -
1 - p TDO
REGREAD o REGWRITE MODE SELECT
CPU CONTROL/STATUS

Figure 8-7. €200 OnCE Controller and Serial Interface

8.4.5.1 €200 OnCE Status Register

Status information regarding the state of the €200 CPU is latched into the OnCE Status register when the
OnCE controller state machine enters the Capture-IR state. When OnCE operation is enabled, this
information is provided on the ] _tdo output in serial fashion when the Shift_IR state is entered following
a Capture-IR. Information is shifted out least significant bit first.

MCLK ERR |CHKSTOP| RESET HALT STOP DEBUG WAIT 0 1

0 1 2 3 4 5 6 7 8 9

Figure 8-8. OnCE Status Register
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Table 8-6 provides bit definitions for the Once Status Register.
Table 8-6. OnCE Status Register Bit Definitions

Bit(s) Name Description

0 MCLK MCLK

m_clk Status Bit

0 Inactive state

1 Active state

This status bit reflects the logic level on the jd_mclk_on input signal after capture by j fclk.

1 ERR ERROR

This bit is used to indicate that an error condition occurred during attempted execution of the last
single-stepped instruction (GO+NoExit with CPUSCR or No Register Selected in OCMD), and that
the instruction may not have been properly executed. This could occur if an Interrupt (all classes
including External, Critical, machine check, Storage, Alignment, Program, etc.) occurred while
attempting to perform the instruction single step. In this case, the CPUSCR contains information
related to the first instruction of the Interrupt handler, and no portion of the handler will have been
executed.

2 CHKSTOP |CHECKSTOP Mode
This bit reflects the logic level on the CPU p_chkstop output after capture by j_tclk.

3 RESET RESET Mode
This bit reflects the inverted logic level on the CPU p_reset_b input after capture by j_tclk.

4 HALT HALT Mode
This bit reflects the logic level on the CPU p_halted output after capture by j_tclk.

5 STOP STOP Mode
This bit reflects the logic level on the CPU p_stopped output after capture by j_tclk.

6 DEBUG Debug Mode
This bit is asserted once the CPU is in debug mode. It is negated once the CPU exits debug mode
(even during a debug session)

7 WAIT Waiting Mode

This bit reflects the logic level on the CPU p_waiting output after capture by j_tclk.
8 — Reserved, set to 0 for 1149.1 compliance
9 — Reserved, set to 1 for 1149.1 compliance

8.4.5.2 €200 OnCE Command Register (OCMD)

The OnCE Command Register (OCMD) isa 10-bit shift register that receivesits serial datafrom the TDI
pinand servesastheinstruction register (IR). It holdsthe 10-bit commandsto be used asinput for the €200
OnCE Decoder. The Command Register is shown in Figure 8-9. The OCMD is updated when the TAP
controller enters the Update-IR state. It contains fields for controlling access to aresource, as well as
controlling single-step operation and exit from ONCE mode.

Although the OCMD is updated during the Update-IR TAP controller state, the corresponding resourceis
accessed in the DR scan sequence of the TAP controller, and as such, the Update-DR state must be
transitioned through in order for an access to occur. In addition, the Update-DR state must also be
transitioned through in order for the single-step and/or exit functionality to be performed, even though the
command appears to have no data resource requirement associated with it.
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Figure 8-9. OnCE Command Register

Table 8-7 provides bit definitions for the Once Command Register.

Table 8-7. OnCE Command Register Bit Definitions

Bit(s)

Name

Description

0

R/W

Read/Write Command Bit

The R/W bit specifies the direction of data transfer. The table below describes the options defined by the
R/W bit.

0 Write the data associated with the command into the register specified by RS[0:6]

1 Read the data contained in the register specified by RS[0:6]

Note: The R/W bit generally ignored for read-only or write-only registers. In addition, it is ignored for all
bypass operations. When performing writes, most registers are sampled in the Capture-DR state into a
32-bit shift register, and subsequently shifted out on j_tdo during the first 32 clocks of Shift-DR.

GO

Go

Go Command Bit

0 Inactive (no action taken)

1 Execute instruction in IR

If the GO bit is set, the chip executes the instruction that resides in the IR register in the CPUSCR. To
execute the instruction, the processor leaves the debug mode, executes the instruction, and if the EX bit is
cleared, returns to the debug mode immediately after executing the instruction. The processor goes on to
normal operation if the EX bit is set, and no other debug request source is asserted. The GO command is
executed only if the operation is a read/write to CPUSCR or a read/write to “No Register Selected”.
Otherwise the GO bit is ignored.The processor leaves the debug mode after the TAP controller Update-DR
state is entered.

On a GO+NoExit operation, returning to debug mode is treated as a debug event, thus exceptions such as
machine checks and interrupts may take priority and prevent execution of the intended instruction. Debug
firmware should mask these exceptions as appropriate. The OSR[ERR)] bit indicates such an occurrence.

EX

Exit Command Bit

0 Remain in debug mode

1 Leave debug mode

If the EX bit is set, the processor leaves the debug mode and resume normal operation until another debug
request is generated. The Exit command is executed only if the Go command is issued, and the operation
is a read/write to CPUSCR or a read/write to “No Register Selected”. Otherwise the EX bit is ignored.
The processor leaves the debug mode after the TAP controller Update-DR state is entered. Note that if the
DR bit in the OnCE control register is set or remains set, or if a bit in the DBSR is set and DBCRO[EDM]=1
(external debug mode is enabled), or if another debug request source is asserted, then the processor may
return to the debug mode without execution of an instruction, even though the EX bit was set.

3:9

RS

Register Select
The Register Select bits define which register is source (destination) for the read (write) operation. Table 8-9
indicates the e200 OnCE register addresses. Attempted writes to read-only registers are ignored.
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Table 8-8 indicates the €200 OnCE register addresses.
Table 8-8. €200 OnCE Register Addressing

RS[0:6] Register Selected
000 0000 Reserved
000 0001 Reserved
000 0010 JTAG ID (read-only)

000 0011-000 1111

Reserved

001 0000 CPU Scan Register (CPUSCR)
001 0001 No Register Selected (Bypass)
001 0010 OnCE Control Register (OCR)
001 0011 Reserved

001 0100-001 1111 | Reserved

010 0000 Instruction Address Compare 1 (IAC1)
010 0001 Instruction Address Compare 2 (IAC2)
010 0010 Instruction Address Compare 3 (IAC3)
010 0011 Instruction Address Compare 4 (IAC4)
010 0100 Data Address Compare 1 (DAC1)

010 0101 Data Address Compare 2 (DAC2)

010 0110 Reserved (DVC1 future use)

010 0111 Reserved (DVC2 future use)

010 1000-010 1011

Reserved

010 1100

Reserved (DBCNT)

010 1101-010 1111

Reserved

011 0000 Debug Status Register (DBSR)

011 0001 Debug Control Register 0 (DBCRO)
011 0010 Debug Control Register 1 (DBCR1)
011 0011 Debug Control Register 2 (DBCR2)

011 0100-101 1111

Reserved (do not access)

110 0000-110 1110

Reserved (do not access)

110 1111

Shared Nexus Control Register Register Select

111 0000-111 1001

General Purpose register selects [0:9]

111 1010

(Reserved))

111 1011

(Reserved)

111 1100

Nexus2/3-Access

111 1101

Reserved
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Table 8-8. €200 OnCE Register Addressing (continued)

RS[0:6] Register Selected
111 1110 Enable_OnCE'
111 1111 Bypass

' Causes assertion of the j_en_once_regsel output. Refer to Section 6.3.15.15,
“Enable Once Register Select (j_en_once_regsel)”

The Once Decoder receives as input the 10-bit command from the OCMD, and status signals from the
processor, and generates all the strobes required for reading and writing the selected OnCE registers.

Single stepping of instructions is performed by placing the CPU in debug mode, scanning in appropriate
information into the CPUSCR, and setting the Go bit (with the EX bit cleared) with the RSfield indicating
either the CPUSCR or No Register Selected. After executing asingleinstruction, the CPU re-enters debug
mode and await further commands. During single-stepping, exception conditions may occur if not
properly masked by debug firmware (interrupts, machine checks, bus error conditions, etc.) and may
prevent the desired instruction from being successfully executed. The OSR[ERR] bit is set to indicate this
condition. In these cases, valuesin the CPUSCR correspond to the first instruction of the exception
handler.

Additionally, the DBCRO[EDM] bit isforced to ‘1’ internally while single-stepping to prevent Debug
events from generating Debug interrupts. Also, during a debug session, the DBSR is frozen from updates
due to debug events regardless of DBCRO[EDM]. They may still be modified during a debug session via
asingle-stepped mtspr instruction if DBCRO[EDM] is programmed to a‘0’, or via OnCE access if
DBCRO[EDM] is set.

8.4.5.3 €200 OnCE Control Register (OCR)

The €200 OnCE Control Register is a 32-bit register used to force the €200 core into debug mode and to
enable/ disable sections of the €200 OnCE control logic. It aso provides control over the MMU during a
debug session. The control bits are read/write. These bits are only effective while OnCE is enabled
(jd_en_once asserted). The OCR is shown in Figure 8-10.
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Reset—0x0000_0000 on m_por, j_trst_b, or entering Test_logic_Reset state

Figure 8-10. OnCE Control Register
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Table 8-9 provides bit definitions for the OnCE Control Register.

Table 8-9. OnCE Control Register Bit Definitions

Bit(s)

Name

Description

0:7

Reserved

8

I_DMDIS!

Instruction Side Debug MMU Disable Control Bit (I_DMDIS)

0 MMU not disabled for debug sessions

1 MMU disabled for debug sessions

This bit may be used to control whether the MMU is enabled normally, or whether the MMU is disabled
during a debug session for Instruction Accesses. When enabled, the MMU functions normally. When
disabled, for Instruction Accesses, no address translation is performed (1:1 address mapping), and
the TLB VLE, I,M, and E bits are taken from the OCR bits I_VLE, |_DI, |_DM, and |_DE bits. The W
and G bits are assumed ‘0’. The SX and UX access permission control bits are set to'1’ to allow full
access. When disabled, no TLB miss or TLB exceptions are generated for Instruction accesses.
External access errors can still occur.

9:10

Reserved

11

|_DVLE!

Instruction Side Debug TLB ‘VLE’ Attribute Bit (I_DVLE)
This bit is used to provide the ‘VLE’ attribute bit to be used when the MMU is disabled during a debug
session.

12

)L

Instruction Side Debug TLB ‘I’ Attribute Bit (I_DI)
This bit is used to provide the ‘I’ attribute bit to be used for Instruction accesses when the MMU is
disabled for Instruction accesses during a debug session.

13

|_DMm?

Instruction Side Debug TLB ‘M’ Attribute Bit (I_DM)
This bit is used to provide the ‘M’ attribute bit to be used for Instruction accesses when the MMU is
disabled for Instruction accesses during a debug session.

14

Reserved

15

|_DE!

Instruction Side Debug TLB ‘E’ Attribute Bit (I_DE)
This bit is used to provide the ‘E’ attribute bit to be used for Instruction accesses when the MMU is
disabled for Instruction accesses during a debug session.

16

D_DMDIS!

Data Side Debug MMU Disable Control Bit (D_DMDIS)

0 MMU not disabled for debug sessions

1 MMU disabled for debug sessions

This bit may be used to control whether the MMU is enabled normally, or whether the MMU is disabled
during a debug session for Data Accesses. When enabled, the MMU functions normally. When
disabled, for Data Accesses, no address translation is performed (1:1 address mapping), and the TLB
WIMGE bits are taken from the OCR bits D_DW, D_DI, D_DM, D_DG, and D_DE bits. The SR, SW,
UR, and UW access permission control bits are set to‘1’ to allow full access. When disabled, no TLB
miss or TLB exceptions are generated for Data accesses. External access errors can still occur.

17:18

Reserved

19

D_DW!'

Data Side Debug TLB ‘W’ Attribute Bit (D_DW)
This bit is used to provide the ‘W’ attribute bit to be used for Data accesses when the MMU is disabled
for Data accesses during a debug session.

20

D_DI'

Data Side Debug TLB ‘I Attribute Bit (D_DI)
This bit is used to provide the ‘I’ attribute bit to be used for Data accesses when the MMU is disabled
for Data accesses during a debug session.

21

D_DMm!

Data Side Debug TLB ‘M’ Attribute Bit (D_DM)
This bit is used to provide the ‘M’ attribute bit to be used for Data accesses when the MMU is disabled
for Data accesses during a debug session.
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Table 8-9. OnCE Control Register Bit Definitions (continued)

Bit(s) Name Description

22 D_DG' Data Side Debug TLB ‘G’ Attribute Bit (D_DG)
This bit is used to provide the ‘G’ attribute bit to be used for Data accesses when the MMU is disabled
for Data accesses during a debug session.

23 D_DE! Data Side Debug TLB ‘E’ Attribute Bit (D_DE)
This bit is used to provide the ‘E’ attribute bit to be used for Data accesses when the MMU is disabled
for Data accesses during a debug session.

24:28 — Reserved

29 WKUP Wakeup Request Bit (WKUP)

This control bit may be used to force the €200 p_wakeup output signal to be asserted. This control
function may be used by debug firmware to request that the chip-level clock controller restore the
m_clk input to normal operation regardless of whether the CPU is in a low power state to ensure that
debug resources may be properly accessed by external hardware through scan sequences.

30 FDB Force Breakpoint Debug Mode Bit (FDB)

This control bit is used to determine whether the processor is operating in breakpoint debug enable
mode or not. The processor may be placed in breakpoint debug enable mode by setting this bit. In
breakpoint debug enable mode, execution of the ‘bkpf pseudo- instruction causes the processor to
enter debug mode, as if the jd_de_b input had been asserted.

This bit is qualified with DBCRO[EDM], which must be set for FDB to take effect.

31 DR CPU Debug Request Control Bit

This control bit is used to unconditionally request the CPU to enter the Debug Mode. The CPU
indicates that Debug Mode has been entered via the data scanned out in the shift-IR state.

0 No Debug Mode request

1 Unconditional Debug Mode request

When the DR bit is set the processor enters Debug mode at the next instruction boundary.

1 Unused by Zen Z0n2p and Zen ZOHn2p

8.4.6 Access to Debug Resources

Resources contained in the €200 ONCE Module which do not require the €200 processor core to be halted
for access may be accessed whilethe €200 core isrunning, and does not interfere with processor execution.
Accesses to other resources such as the CPUSCR require the €200 core to be placed in debug mode to
avoid synchronization hazards. Debug firmware may ensure that it is safe to access these resources by
determining the state of the €200 core prior to access. Note that a scan operation to update the CPUSCR
isrequired prior to exiting debug mode if debug mode has been entered.

Some cases of write accesses other than accesses to the OnCE Command and Control registers, or the
EDM bit of DBCRO require the €200 m_clk to be running for proper operation. The OnCE control register
provides a means of signaling this need to a system level clock control module.

In addition, because the CPU may cause multiple bits of certain registers to change state, reads of certain
registerswhilethe CPU isrunning (DBSR, etc.) may not have consistent bit settingsunlessread twice with
the same value indicated. In order to guarantee that the contents are consistent, the CPU should be placed
into debug mode, or multiple reads should be performed until consistent values have been obtained on
consecutive reads.

Table 8-10 provides alist of access requirements for OnCE registers.
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Table 8-10. OnCE Register Access Requirements

Access Requirements

Requires Requires Requires Requires
Register Name | . d e?r once Requires m_clk CPUtobe | CPUtobe Notes
Ja- o bo DBCRO Active Halted Halted
[EDM] =1 for Write for Read for Write
Asserted
Access Access Access
Enable_OnCE N N N N — —
Bypass N N N N —
CPUSCR Y Y Y Y Y —

DACH Y Y Y N *1 —

DAC2 Y Y Y N *1 —

DBCRO Y Y Y N *1 *DBCRO[EDM] access only
requires jd_en_once asserted

DBCR1 Y Y Y *1 —

DBCR2 Y Y Y *1 —

DBSR Y Y Y N2 *1 —

IAC1 Y Y Y N *1 —

IAC2 Y Y Y N *1 —

IAC3 Y Y Y N *1 —

IAC4 Y Y Y N *1 —

JTAG ID N N — N — Read-only

OCR Y N N N N —

OSR Y N — N — Read-only, accessed by scanning
out IR while jd_en_once is
asserted

Cache Debug Y N Y Y Y CPU must be in debug mode with
Access Control clocks running
(CDACNTL)?
Cache Debug Y N Y Y Y CPU must be in debug mode with
Access Data clocks running
(CDADATA)?
Nexus2/3-Access N N N N —
External GPRs N N N N —
LSRL Select N ? ? ? System Test logic implementation

determines LSRL functionality

Writes to these registers while the CPU is running may have unpredictable results due to the pipelined nature of

operation, and the fact that updates are not synchronized to a particular clock, instruction, or bus cycle boundary,
therefore it is strongly recommended to ensure the processor is first placed into debug mode before updates to these
registers are performed.
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2 Not present on Zen Z0n2p or Zen ZOHN2p

8.4.7 Methods of Entering Debug Mode

The OnCE Status Register indicates that the CPU has entered the debug mode viathe DEBUG status bit.
The following sections describe how €200 Debug Mode is entered assuming the OnCE circuitry has been
enabled. €200 OnCE operation is enabled by the assertion of the jd_en_once input (see Section 8.4.4.1).

8.4.71 External Debug Request During RESET

Holding the jd_de b signal asserted during the assertion of p_reset_b, and continuing to hold it asserted
following the negation of p_reset_b causes the €200 core to enter Debug Mode. After receiving an
acknowledge viathe OnCE Status Register DEBUG bit, the external command controller should negate
thejd_de b signal before sending the first command. Note that in this case the €200 core does not execute
an instruction before entering Debug Mode, although the first instruction to be executed may be fetched
prior to entering Debug Mode.

In this case, all values in the debug scan chain are undefined, and the external Debug Control Moduleis
responsible for proper initialization of the chain before debug modeis exited. In particular, the exception
processing associated with reset, may not be performed when the debug mode is exited, thus, the Debug
controller must initialize the PC, MSR, and IR to the image that the processor would have obtained in
performing reset exception processing, or must cause the appropriate reset to be re-asserted.

8.4.7.2 Debug Request During RESET

Asserting a debug request by setting the DR bit in the OCR during the assertion of p_reset b causes the
chipto enter debug mode. In thiscase the chip may fetch thefirst instruction of the reset exception handler,
but does not execute an instruction before entering debug mode. In this case, al valuesin the debug scan
chain are undefined, and the external Debug Control Module isresponsible for proper initialization of the
chain before debug mode is exited. In particular, the exception processing associated with reset may not
be performed when the debug mode is exited, thus, the Debug controller must initialize the PC, MSR, and
IR to the image that the processor would have obtained in performing reset exception processing, or must
cause the appropriate reset to be re-asserted.

8.4.7.3 Debug Request During Normal Activity

Asserting adebug request by setting the DR bit in the OCR during normal chip activity causes the chip to
finish the execution of the current instruction and then enter the debug mode. Note that in this case the chip
completes the execution of the current instruction and stops after the newly fetched instruction enters the
CPU instruction register. This processisthe same for any newly fetched instruction including instructions
fetched by the interrupt processing, or those that are aborted by the interrupt processing.

8.4.7.4 Debug Request During Waiting, Halted or Stopped State

Asserting adebug request by setting the DR bit inthe OCR when the chipisin the Waiting state (p_waiting
asserted), Halted state (p_halted asserted) or Stopped state (p_stopped asserted) causesthe CPU to exit the
state and enter the debug mode once the CPU clock m_clk has been restored. Note that in this case, the
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CPU negatesthe p_waiting, p_halted and p_stopped outputs. Once the debug session has ended, the CPU
returns to the state it was in prior to entering debug mode.

To signal the chip-level clock generator to re-enable m_clk, the p_wakeup output is asserted whenever the
debug block is asserting a debug request to the CPU due to OCR[DR] being set, or jd_de b assertion, and
remains set from then until the debug session ends (jd_debug_b goes from asserted to negated). In
addition, the status of the jd_mclk_on input (after synchronization to the j_tclk clock domain) may be
sampled along with other status bits from the j_tdo output during the Shift_IR TAP controller state. This
status may be used if necessary by external debug firmware to ensure proper scan sequences occur to
registersin the m_clk clock domain.

8.4.7.5 Software Request During Normal Activity

Upon executing a “bkpt” pseudo-instruction (for €200, defined to be an al 0'sinstruction opcode) when
the OCR register’s (FDB) bit is set (debug mode enable control bit istrue), and DBCRO[EDM]=1, the CPU
enters the debug mode after the instruction following the “ bkpt” pseudo-instruction has entered the
instruction register.

8.4.8 CPU Status and Control Scan Chain Register (CPUSCR)

A number of on-chip registers store the CPU pipeline status and are configured in asingle scan chain for
access by the €200 OnCE controller. The CPUSCR register contains these processor resources, which are
used to restore the pipeline and resume normal chip activity upon return from the debug mode, aswell as
amechanism for the emulator software to access processor and memory contents. Figure 8-11 shows the
block diagram of the pipeline information registers contained in the CPUSCR. Once debug mode has been
entered, it isrequired to scan in and update this register prior to exiting debug mode.
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Figure 8-11. CPU Scan Chain Register (CPUSCR)

8.4.8.1 Instruction Register (IR)

The Instruction Register (IR) provides a mechanism for controlling the debug session by serving asa
means for forcing in selected instructions, and then causing them to be executed in a controlled manner by
the debug control block. The opcode of the next instruction to be executed when entering debug mode is
contained in this register when the scan-out of this chain begins. This value should be saved for later
restoration if continuation of the normal instruction stream is desired.

Onscan-in, in preparation for exiting debug mode, thisregister isfilled with an instruction opcode selected
by debug control software. By selecting appropriate instructions and controlling the execution of those
instructions, the results of execution may be used to examine or change memory locations and processor
registers. The debug control module external to the processor core controls execution by providing a
single-step capability. Once the debug session is complete and normal processing is to be resumed, this
register may be loaded with the value originally scanned out.
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8.4.8.2 Control State Register (CTL)

The Control State Register (CTL) is a 32-bit register that stores the value of certain internal CPU state
variables before the debug mode is entered. This register is affected by the operations performed during
the debug session and should normally be restored by the external command controller when returning to
normal mode. In addition to saved internal state variables, two of the bits are used by emulation firmware
to control the debug process. In certain circumstances, emulation firmware must modify the content of this
register as well asthe PC and IR values in the CPUSCR before exiting debug mode. These cases are
described below. Figure 8-12.
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Figure 8-12. Control State Register (CTL)

WAITING—WAITING State Status

Thisbit indicates whether the CPU was in the waiting state prior to entering debug mode. If set, the CPU
was in the waiting state. Upon exiting a debug session, the value of this bit in the restored CPUSCR
determines whether the CPU re-enters the waiting state on a go+exit.

0—CPU was not in the waiting state when debug mode was entered

1—CPU was in the waiting state when debug mode was entered
PCOFST—PC Offset Field
Thisfield indicates whether the value in the PC portion of the CPUSCR must be adjusted prior to exiting
debug mode. Due to the pipelined nature of the CPU, the PC value must be backed-up by emulation
softwarein certain circumstances. The PCOFST field specifies the value to be subtracted from the original
value of the PC. This adjusted PC value should be restored into the PC portion of the CPUSCR just prior
to exiting debug mode with a go+texit. In the event the PCOFST isnon-zero, the IR should be loaded with

anop instruction instead of the original IR value, other wise the original value of IR should be restored.
(But see PCINV which overrides this field)

0000—No correction required.
0001—Subtract 0x04 from PC.
0010—Subtract 0x08 from PC.
0011—Subtract 0xOC from PC.
0100—Subtract 0x10 from PC.
0101—Subtract 0x14 from PC.
All other encodings are reserved
* — Internal State Bits
These control bits represent internal processor state and should be restored to their original

value after adebug session is completed, i.e when ae200 OnCE command isissued with the
GO and EX bits set and not ignored. When performing instruction execution during a debug
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session (see Section 8.4.4.3, “e200 OnCE Debug Output (jd_debug_b)”) which is not part
of the normal program execution flow, these bits should be set to a 0.
PCINV—PC and IR Invalid Status Bit

This status bit indicates that the values in the IR and PC portions of the CPUSCR are
invalid. Exiting debug mode with the saved values in the PC and IR have unpredictable
results. Debug firmware should initialize the PC and IR valuesin the CPUSCR with desired
values prior to exiting debug mode if this bit was set when debug mode was initially
entered.

0= No error condition exists.
1= Error condition exists. PC and IR are corrupted.

FFRA— Feed Forward RA Operand Bit

Thiscontrol bit causes the content of the WBBR,,, to be used asthe RA (RS for logical and
shift operations or RX for VLE se_instructions) operand value of the first instruction to be
executed following an update of the CPUSCR. This allows the debug firmware to update
processor registers — initialize the WBBR|,, with the desired value, set the FFRA bit, and
execute a ori Rx,Rx,0 instruction to the desired register.

0= Noaction.
1= Content of WBBR,, used as RA (RS for logical and shift operations) operand value

IRStat0—IR Status Bit O
This control bit indicates a TEA status for the IR.

0= No TEA occurred on the fetch of this instruction.
1= TEA occurred on the fetch of thisinstruction.

IRStat1—IR Status Bit 1
This control bit indicatesaTLB Miss status for the IR. (Note: this bit isreserved.)

0= NoTLB Miss occurred on the fetch of this instruction.
1= TLB Missoccurred on the fetch of thisinstruction.

IRStat2—IR Status Bit 2
This control bit indicates an Instruction Address Compare 1 event status for the IR.

0= NoInstruction Address Compare 1 event occurred on the fetch of thisinstruction.
1= AnlInstruction Address Compare 1 event occurred on the fetch of thisinstruction.

IRStat3—IR Status Bit 3
This control bit indicates an Instruction Address Compare 2 event status for the IR.

0= NoInstruction Address Compare 2 event occurred on the fetch of thisinstruction.
1= AnlInstruction Address Compare 2 event occurred on the fetch of thisinstruction.

IRStat4—IR Status Bit 4

This control bit indicates an Instruction Address Compare 3 event status for the IR.
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0= NoInstruction Address Compare 3 event occurred on the fetch of thisinstruction.
1= AnlInstruction Address Compare 3 event occurred on the fetch of thisinstruction.

IRStat5—IR Status Bit 5
This control bit indicates an Instruction Address Compare 4 event status for the IR.

0= NoInstruction Address Compare 4 event occurred on the fetch of thisinstruction.
1= AnInstruction Address Compare 4 event occurred on the fetch of thisinstruction.

IRStat6—IR Status Bit 6
This control bit indicates a Parity Error status for the IR. (Note: this bit is reserved.)

0= No Parity Error occurred on the fetch of thisinstruction.
1= Parity Error occurred on the fetch of thisinstruction.

IRStat7—IR Status Bit 7
This control bit indicates a Precise External Termination Error status for the IR.

0= 0= No Precise Externa Termination Error occurred on the fetch of thisinstruction.
1= Precise External Termination Error occurred on the fetch of thisinstruction.

IRStat8—IR Status Bit 8

This control bit indicates the Power Architecture VLE status for the IR. (Note: thisbitis
always set on Zen Z0n2p and Zen ZOHN2p.)

0= IR containsaBook E instruction.
1= IR contains a Power Architecture VLE instruction, aligned in the Most Significant
Portion of IR if 16-bit.

IRStat9—IR Status Bit 9

This control bit indicatesthe Power Architecture VLE Byte-ordering Error statusfor the IR,
or aBook E misaligned instruction fetch, depending on the state of IRStat8. (Note: this bit
isreserved on Zen Z0n2p and Zen ZOHN2p.)

0= IR contains an instruction without a byte-ordering error and no Misaligned
Instruction Fetch Exception has occurred (no MIF).

1= If IRSat8="0", A Book E Misaligned Instruction Fetch Exception has occurred
whilefilling the IR.
If IRSat8 =*1’, IR contains an instruction with a byte-ordering error due to
mismatched VLE page attributes, or due to E indicating little-endian for a VLE page.

Emulation firmware should modify the content of the CTL, PC, and IR vauesin the CPUSCR during
execution of debug related instructions as well as just prior to exiting debug with a go+exit command.
During the debug session, the CTL register should be written with the FFRA bit set as appropriate, and al
other bit setto ‘0’, and the IR set to the value of the desired instruction to be executed. IRStat8 is used to
determine the type of instruction present in the IR.

Just prior to exiting debug mode with a go+exit, the PCINV status bit which was originally present when
debug modewasfirst entered should be tested, and if set, the PC and IR initialized for performing whatever
recovery sequence is appropriate for afaulted exception vector fetch. If the PCINV bit iscleared, then the
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PCOFST bits should be examined to determine whether the PC value must be adjusted. Dueto the
pipelined nature of the CPU, the PC value must be backed-up by emulation software in certain
circumstances. The PCOFST field specifies the value to be subtracted from the original value of the PC.
This adjusted PC value should be restored in to the PC portion of the CPUSCR just prior to exiting debug
mode with ago+exit. In the event the PCOFST is non-zero, the IR should be loaded with anop instruction
(suchasorir0,r0,0) instead of the original IR value, otherwisethe original value of IR should be restored.
Note that when a correction is made to the PC value, it generally points to the last completed instruction,
although that instruction is not re-executed. The nop instruction is executed instead, and instruction fetch
and execution resumes at |ocation PC+4. IRStat8 is used to determine the type of instruction present in the
IR, thus should be cleared in this case.

For the CTL register, the internal state bits should be restored to their original value. The IRStatus bits
should be set to ‘O'sif the PC was adjusted. If no PC adjustment was performed, emulation firmware
should determine whether IRStat2-5 should be set to ‘0’ to avoid re-entry into debug mode for an
instruction breakpoint request. Upon exiting debug mode with got+exit, if one of these bitsis set, debug
mode is re-entered prior to any further instruction execution.

8.4.8.3 Program Counter Register (PC)

The PC isa 32-hit register that stores the value of the program counter which was present when the chip
entered the debug mode. It is affected by the operations performed during the debug mode and must be
restored by the external command controller when the CPU returns to norma mode. PC normally points
to the instruction contained in the IR portion of CPUSCR. If debug firmware wishes to redirect program
flow to an arbitrary location, the PC and IR should be initialized to correspond to thefirst instruction to be
executed upon resumption of normal processing. Alternatively, the IR may be set to a nop and the PC set
to point to the location prior to the location at which it is desired to redirect flow to. On exiting debug
mode, the nop is executed, and instruction fetch and execution resumes at PC+4.

8.4.8.4  Write-Back Bus Register (WBBR,,,,, WBBR},;gn)

WBBR is used as a means of passing operand information between the CPU and the external command
controller. Whenever the external command controller needs to read the contents of aregister or memory
location, it forcesthe chip to execute an instruction that bringsthat information to WBBR. WBBR|,,, holds
the 32-bit result of most instructionsincluding load datareturned for aload or |load with updateinstruction.
WBBRy,ign holdsthe updated effective address cal culated by aload with updateinstruction. It isundefined
for other instructions.

As an example, to read the lower 32 bits of processor register r 1, ane_ori r1,r 1,0 instruction is executed,
and the result value of the instruction is latched into WBBRq,,. The contents of WBBR,,, can then be
delivered serially to the external command controller. To update a processor resource, thisregister is
initialized with a data value to be written, and an e _ori instruction is executed which usesthisvalue as a
substitute data value. The Control State register FFRA bit forces the value of the WBBR|,, to be
substituted for the normal RS source value of the e_ori instruction, thus allowing updates to processor
registersto be performed (refer to Section 8.4.8.2, “ Control State Register (CTL),” for more detail on the
CTL[FFRA] bit).
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WBBR|q,, and WBBRy;; 4, are generally undefined on instructionswhich do not writeback aresult, and due
to control issues are not defined on Imw or branch instructions as well.

8.4.8.5 Machine State Register (MSR)

The MSR is a 32-hit register used to read/write the Machine State Register. Whenever the externa
command controller needs to save or modify the contents of the Machine State Register, thisregister is
used. This register is affected by the operations performed during the debug mode and must be restored by
the external command controller when returning to normal mode.

8.4.9 Reserved Registers (Reserved)

The Reserved Registers are used to control varioustest control logic. These registers are not intended for
customer use. To preclude device and/or system damage, these registers should not be accessed.

8.5 Watchpoint Support

€200 supports the generation and signalling of watchpoints when operating in internal debug mode
(DBCRO[IDM]=1) or in external debug mode (DBCRO[EDM]=1). Watchpoints are indicated with a
dedicated set of interface signals. The jd_watchpoint[0:5] output signals are used to indicate that a
watchpoint has occurred.

Each debug address compare function (IAC1-4, DAC1-2) is capabl e of triggering awatchpoint output. The
DBCRXx control fields are used to configure watchpoints, regardless of whether events are enabled in
DBCRO. Watchpoints may occur whenever an associated event would have been posted in the Debug
Status Register if enabled. No explicit enable bits are provided for watchpoints; they are always enabled
by definition (except during a debug session). If not desired, the base address values for these events may
be programmed to an unused system address. MSR[DE] has no effect on watchpoint generation.

External logic may monitor the assertion of these signals for debugging purposes. Watchpoints are
signaled in the clock cycle following the occurrence of the actual event. The Nexus2+ module also
monitors assertion of these signals for various development control purposes.

Table 8-11. Watchpoint Output Signal Assignments

Signal Name Type Description

jd_watchpt0] IAC1 |Instruction Address Compare 1 watchpoint
Asserted whenever an IAC1 compare occurs regardless of being enabled to set DBSR status

jd_watchpf1] IAC2 |Instruction Address Compare 2 watchpoint
Asserted whenever an IAC2 compare occurs regardless of being enabled to set DBSR status

jd_watchpf2] IAC3 |Instruction Address Compare 3 watchpoint
Asserted whenever an IAC3 compare occurs regardless of being enabled to set DBSR status

jd_watchpf[3] IAC4 |Instruction Address Compare 4 watchpoint
Asserted whenever an IAC4 compare occurs regardless of being enabled to set DBSR status
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Table 8-11. Watchpoint Output Signal Assignments (continued)

Signal Name Type Description

jd_watchpt4] DAC1' | Data Address Compare 1 watchpoint

Asserted whenever a DAC1 compare occurs regardless of being enabled to set DBSR status

jd_watchpf[5] DAC2' | Data Address Compare 2 watchpoint

Asserted whenever a DAC2 compare occurs regardless of being enabled to set DBSR status

T lfthe corresponding event is completely disabled in DBCRO, either load-type or store-type data accesses are allowed to
generate watchpoints, otherwise watchpoints are generated only for the enabled conditions.

8.6

Basic Steps for Enabling, Using, and Exiting External Debug
Mode

Thefollowing steps show one possible scenario for adebugger wishing to use the external debug facilities.
This simplified flow isintended to illustrate basic operations, but does not cover al potential methods in

depth.

Enabling External Debug Mode and initializing Debug registers

The debugger should ensure that thejd_en_once control signal isasserted in order to enable OnCE
operation

Select the OCR and write avaueto it in which OCR[DR], OCR[WKUP], aresetto ‘1'. The tap
controller must step through the proper states as outlined earlier. This step placesthe CPU in a
debug state in which it is halted and awaiting single-step commands or arelease to normal mode
Scan out the value of the OSR to determine that the CPU clock is running and the CPU hasentered
the Debug state. This can be done in conjunction with a Read of the CPUSCR. The OSR is shifted
out during the Shift_IR state. The CPUSCR is shifted out during the Shift_ DR state. The debugger
should save the scanned-out value of CPUSCR for later restoration.

Select the DBCRO register and update it with the DBCRO[EDM)] bit set

Clear the DBSR status bits

Write appropriate valuesto the DBCRx, IAC, DAC registers. Note that theinitial writeto DBCRO
only affects the EDM bit, so the remaining portion of the register must now beinitialized, keeping
the EDM bit set

At this point the system is ready to commence debug operations. Depending on the desired operation,
different steps must occur.

Optionally, set the OCR[I_DMDIS] and/or OCR[I_DMDIS] control bitsto ensurethat no TLB
misses occur while performing the debug operations

Optionally, ensure that the values entered into the M SR portion of the CPUSCR during the
following steps cause interrupt to be disabled (clearing M SR[EE] and MSR[CE). This ensures that
external interrupt sources do not cause single-step errors.
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To single-step the CPU:

» debugger scansin either anew or a previoudy saved value of the CPUSCR (with appropriate
modification of the PC and IR as described in Section 8.4.8.2, “ Control State Register (CTL)"),
with a Go+Noexit OnCE Command value.

» The debugger scans out the OSR with ‘ no-register selected’, Go cleared, and determines that the
PCU has re-entered the Debug state and that no ERR condition occurred
To return the CPU to normal operation (without disabling external debug mode)
* The OCR[DMDIS], OCR[DR], control hits should be cleared, leaving the OCR[WKUP] bit set

* The debugger restores the CPUSCR with a previously saved value of the CPUSCR (with
appropriate modification of the PC and IR as described in Section 8.4.8.2, “Control State Register
(CTL)"), with aGo+Exit OnCE Command value.

» The OCR[WKUP] bit may then be cleared

To exit External Debug Mode

* The debugger should place the CPU in the debug state via the OCR[DR] with OCR[WKUP]
asserted, scanning out and saving the CPUSCR

» Thedebugger should write the DBCRX registers as needed, likely clearing every enable except the
DBCRO[EDM] bit

» The debugger should write the DBSR to a cleared state
» The debugger should re-write the DBCRO with all bitsincluding EDM cleared
* The debugger should clear the OCR[DR] bit

* The debugger restores the CPUSCR with the previously saved value of the CPUSCR (with
appropriate modification of the PC and IR as described in Section 8.4.8.2, “Control State Register
(CTL)"), with aGo+Exit OnCE Command value.

» The OCR[WKUP] bit may then be cleared

NOTE

These steps are meant by way of examples, and are not meant to be an exact
template for debugger operation.
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Chapter 9
Nexus 2+ Module

The €200z0 and e200z0h Nexus 2+ module provides real-time development capabilities for Zen
processors in compliance with the |EEE-ISTO Nexus 5001-2003. This modul e provides devel opment
support capabilities without requiring the use of address and data pins for internal visibility.

A portion of the pininterface (the JTAG port) is aso shared with the OnCE/Nexus 1 unit. IEEE-ISTO
5001-2003 defines an extensible auxiliary port which is used in conjunction with the JTAG port in Zen
processors.

The Nexus modules are coupled to the core and monitor a variety of signalsincluding addresses, data,
control signals, status signals, etc. In some SoC designs, there may be a single shared Nexus module with
the capability of selectively monitoring more than one CPU. Control over this selection of the source if
information is provided by a SoC-level Shared Nexus Control Module, which is accessed through JTAG
viathe Nexusl Shared Nexus Control register. Specifics of this module are provided in a separate
document. The CPU provides an interface signal to communicate selection of this register.

9.1 Introduction

9.1.1 General Description

This chapter definesthe auxiliary pin functions, transfer protocols and standard development features of a
Class 2 devicein compliance with the IEEE-1STO Nexus 5001-2003. The devel opment features supported
are Program Trace, Data Trace, Watchpoint Messaging, Ownership Trace, and Read/Write Accessviathe
JTAG interface. The Nexus 2+ module also supports two Class 4 features. Watchpoint Triggering and
Processor Overrun Control.

9.1.2 Terms and Definitions

Table 9-1 contains a set of terms and definitions associated with the Nexus 2+ module.

Table 9-1. Terms and Definitions

Term Description

Consortium and standard for real-time embedded system design. World wide

IEEE-ISTO 5001 Web documentation at http://www.ieee-isto.org/Nexus5001

Refers to Nexus auxiliary port. Used as auxiliary port to the IEEE 1149.1 JTAG

Auxiliary Port interface.

Branch Trace Messaging Visibility of addresses for taken branches and exceptions, and the number of
(BTM) sequential instructions executed between each taken branch.
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Table 9-1. Terms and Definitions (continued)

Term Description

JTAG Compliant Device complying to IEEE 1149.1 JTAG standard

JTAG Instruction Register (IR) scan to load an opcode value for selecting a
development register. The JTAG IR corresponds to the OnCE command
register (OCMD). The selected development register is then accessed via a
JTAG Data Register (DR) scan.

JTAG IR and DR Sequence

The Zen (OnCE) debug module. This module integrated with each Zen
Nexus1 processor provides all static (core halted) debug functionality. This module is
compliant with Class1 of IEEE-ISTO 5001.

Ownership Trace Visibility of process/function that is currently executing.
Message (OTM)

Messages on the auxiliary pins for accomplishing common visibility and

Public Messages controllability requirements

“System-on-a-Chip”. SOC signifies all of the modules on a single die. This
SOC generally includes one or more processors with associated peripherals,
interfaces and memory modules.

The phrase “according to the standard” is used to indicate according to

Standard IEEE-ISTO 5001.

Message header that identifies the number and/or size of packets to be

Transfer Code (TCODE) transferred, and how to interpret each of the packets.

A Data or Instruction Breakpoint which does not cause the processor to halt.
Watchpoint Instead, a pin is used to signal that the condition occurred. A Watchpoint
Message is also generated.

9.1.3 Feature List

The Nexus 2+ module is compatible with Class 2 of IEEE-ISTO 5001-2003, with additional Class 3 and
Class 4 features available. The following features are implemented:

* Program Trace via Branch Trace Messaging (BTM). Branch trace messaging displays program
flow discontinuities (direct and indirect branches, exceptions, etc.), allowing the devel opment tool
to interpolate what transpires between the discontinuities. Thus static code may be traced.

*  Ownership Trace via Ownership Trace Messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process|D or operating system task is activated. An Ownership Trace
Message is transmitted when a new process/task is activated, allowing the development tool to
trace ownership flow.

* Run-time access to embedded processor memory map viathe JTAG port. Thisallowsfor enhanced
download/upload capabilities.

» Watchpoint Messaging viathe auxiliary pins
» Watchpoint Trigger enable of Program and/or Data Trace Messaging
» Auxiliary interface for higher data input/output
— Configurable (min/max) Message Data Out pins (nex_mdo[n:0])
— One (2) or two (2) Message Start/End Out pins (nex_mseo_b[1:0])

€200z0 Power Architecture Core Reference Manual, Rev. 0
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— One (1) Read/Write Ready pin (nex_rdy_b) pin

— One (1) Watchpoint Event pin (nex_evto_b)

— One (1) Event In pin (nex_evti_b)

— One (1) MCKO (Message Clock Out) pin
* Registersfor Program Trace, Ownership Trace and Watchpoint Trigger.
» All features controllable and configurable viathe JTAG port

NOTE
For multi-Nexus implementations, the configuration of the Message Data
Out pinsis controlled by the Port Control Register (@ the SoC level). For
single Nexus implementations, this configuration is controlled by
Development Control Register 1 (DC1) within the €200 Nexus 2+ module.

In either implementation, Full Port Mode (FPM—maximum number of
MDO pins) or Reduced Port Mode (RPM—minimum number of MDO
pins) are supported. This setting should not be changed whilethe systemis
running.

NOTE

The configuration of the Message Start/End Out pins (1 or 2) is determined
at the SOC integration level. This option is hard-wired based on SOC
bandwidth requirements.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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9.1.4

Functional Block Diagram

AHB System Bus
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ext_multi_nex_sel
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—»- nex_aux_busy]|

—»-nex_mseo0_b
—» nex_mseol_b

—»- nex_mcko

— nex_evto b
- — nex_evti_b

DMA (Read/Write)

Registers

control/status
registers

DMA registers

Note: The “nex_aux_req[1:0]”, “npc_aux_grant” and “nex_aux_busy” signals are used for inter-modul g
communication in a multi-Nexus environment. They are not pins on the SoC.

OnNCE Debug

Nexus2+ Block [T

Nexusl Block (W/in e200 CPU)

9.2
The Nexus module is enabled by loading a single instruction (NEXUS2-ACCESS) into the JTAG

Instruction Register (IR) (OnCE OCMD register). For the €200 Nexus 2+ module, the OCMD valueis

Enabling Nexus 2+ Operation

Figure 9-1. Nexus 2+ Functional Block Diagram

0b0001111100. Once enabled, the module is ready to accept control input viathe JTAG/OnCE pins.
Enabling the Nexus 2+ module automatically enables the generation of Debug Status M essages.
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Nexus 2+ Module

The Nexus modul e is disabled when the JTA G state machine reaches the Test-L ogic-Reset state. Thisstate
can be reached by the assertion of thej_trst_b pin or by cycling through the state machine using the j_tms
pin. The Nexus module also is disabled if a Power-on-Reset (POR) event occurs. If the Nexus 2+ module
isdisabled, no trace output is provided, and the modul e disables (drivesinactive) auxiliary port output pins
(nex_mdo[n:0], nex_mseo[1:0], nex_mcko). Nexus registers are not available for reads or writes.

NOTE

Please refer to the “Nexus 2+ Integration Guide” for detailson IEEE-ISTO
5001 compatibility w.r.t. output pins and multiple Nexus module
configurations.

9.3 TCODEs Supported

The Nexus 2+ pins allow for flexible transfer operations via Public Messages. A TCODE defines the
transfer format, the number and/or size of the packets to be transferred, and the purpose of each packet.
|EEE-ISTO 5001-2003 defines a set of public messages. The Nexus 2+ block supportsthe public TCODEs
seen in Table 9-2. Each message contains multiple packets transmitted in the order shown in the table.

Table 9-2. Public TCODEs Supported

Minimum .
Packet Maximum Packet
Message Name . Packet Packet Description
Size | o6 (bits) | 1YPC
(bits)
6 6 fixed TCODE number =0
Debug Status 4 4 fixed source processor identifier (multiple Nexus configuration)
8 8 fixed Debug Status Register (DS[31:24])
6 6 fixed TCODE number =2
Ownership Trace 4 4 fixed source processor identifier (multiple Nexus configuration)
Message
32 32 fixed Task/Process ID tag
6 6 fixed TCODE number =3
Program Trace—
Direct Branch 4 4 fixed source processor identifier (multiple Nexus configuration)
M - - -
essage 1 8 variable | # sequential instructions executed since last taken branch
6 6 fixed TCODE number = 4
Program Trace— 4 4 fixed | source processor identifier (multiple Nexus configuration)
Indirect Branch
Message 1 8 variable | # sequential instructions executed since last taken branch
1 32 variable | unique part of target address for taken branches/exceptions
6 6 fixed TCODE number =8
Error Message 4 4 fixed source processor identifier (multiple Nexus configuration)
5 5 fixed error code

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Table 9-2. Public TCODEs Supported (continued)

Minimum

Packet Maximum Packet
Message Name - Packet Packet Description
Size | giye (bits) | TYPC
(bits)
6 6 fixed TCODE number = 11
Program Trace— 4 4 fixed source processor identifier (multiple Nexus configuration)
Direct Branch
Message w/ Sync 1 8 variable | # sequential instructions executed since last taken branch
1 32 variable | full target address (leading zeros truncated)
6 6 fixed TCODE number = 12
Program Trace— 4 4 fixed source processor identifier (multiple Nexus configuration)
Indirect Branch
Message w/ Sync 1 8 variable | # sequential instructions executed since last taken branch
1 32 variable | full target address (leading zeros truncated)
6 6 fixed TCODE number = 15
Watchpoint 4 4 fixed source processor identifier (multiple Nexus configuration)
Message
8 8 fixed # indicating watchpoint source(s)
6 6 fixed TCODE number = 27
4 4 fixed source processor identifier (multiple Nexus configuration)
Resource Full
Message 4 4 fixeq | resource code (Refer to Table 9-4)—indicates which resource is
the cause of this message
1 32 variable | branch / predicate instruction history (see Section)
6 6 fixed TCODE number = 28 (see Note below)
4 4 fixed source processor identifier (multiple Nexus configuration)
Program
Trace—Indirect 1 8 variable | # sequential instructions executed since last taken branch
Hist : ;
Bra’\r/l1ch istory 1 32 variable | unique part of target address for taken branches/exceptions
essage
1 30 variable branch / predicate instruction history (see Section 9.8.1, “Branch
Trace Messaging (BTM)”)
6 6 fixed TCODE number = 29 (see Note below)
4 4 fixed source processor identifier (multiple Nexus configuration)
Program
Trace—Indirect 1 8 variable | # sequential instructions executed since last taken branch
Branch History - -
Message w/ Sync 1 32 variable | full target address (leading zero (0) truncated)
1 30 variable branch / predicate instruction history (see Section 9.8.1, “Branch
Trace Messaging (BTM)”)
6 6 fixed TCODE number = 33
4 4 fixed source processor identifier (multiple Nexus configuration)
Program
Trace—Program 4 4 fixed event correlated w/ program flow (Refer to Table 9-5)
lati — - -
C,\(/l) rreration 1 8 variable | # sequential instructions executed since last taken branch
essage
1 30 variable branch / predicate instruction history (see Section 9.8.1, “Branch

Trace Messaging (BTM)”)

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Table 9-3 shows the error code encodings used when reporting an error viathe Nexus 2+ Error Message.

Table 9-3. Error Code Encoding (TCODE = 8)

Error Code Description
00000 Ownership Trace overrun
00001 Program Trace overrun
00010 Reserved for Data Trace overrun (not in Nexus 2+)
00011 Read/write access error
00101 Invalid access opcode (Nexus Register unimplemented)
00110 Watchpoint overrun
00111 Program Trace and Ownership Trace overrun
01000 (Program Trace or Ownership Trace) and Watchpoint overrun
01001-10111 | Reserved
11000 BTM lost due to collision w/ higher priority messages
11001-11111 | Reserved

Table 9-4 shows the encodings used for resource codes for certain messages.

Table 9-4. RCODE values (TCODE = 27)

Resource Code Description

0000 Program Trace Instruction counter reached 255 and was reset.

Program Trace, Branch / Predicate Instruction History. This type of packet is

0001 terminated by a stop bit set to 1 after the last history bit.

Table 9-5 shows the event code encodings used for certain messages.

Table 9-5. Event Code Encoding (TCODE = 33)

Event Code Description

0000 Entry into Debug Mode

0001 Entry into Low Power Mode (CPU only)

0010-0011 | Reserved for future functionality

0100 Disabling Program Trace

0101-1111 | Reserved for future functionality

€200z0 Power Architecture Core Reference Manual, Rev. 0
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Table 9-6 shows the data trace size encodings used for certain messages.

Table 9-6. Data Trace Size Encodings (TCODE = 5,6,13,14)

DTM Size Encoding Transfer Size
000 Byte
001 Halfword (2 bytes)
010 Word (4 bytes)
011 Reserved
100 String (3 bytes)
101-111 Reserved
NOTE

Program Trace can be implemented using either Branch History/Predicate
Instruction Messages, or traditional Direct/Indirect Branch Messages. The
user can select between the two types of Program Trace. The advantages for
each are discussed in Section 9.8.1, “Branch Trace Messaging (BTM)”. If

the Branch History method is selected, the shaded TCODES above are not
messaged out.

9.4 Nexus 2+ Programmer’s Model

This section describes the Nexus 2+ programmers model. Nexus 2+ registers are accessed using the
JTAG/ONCE port in compliance with IEEE 1149.1. See Section 9.5, “Nexus 2+ Register Accessvia
JTAG/ONCE,” for details on Nexus 2+ register access.

NOTE

Nexus 2+ registers and output signals are numbered using bit 0 as the least
significant bit. This bit ordering is consistent with the ordering defined by
|[EEE-ISTO 5001.

€200z0 Power Architecture Core Reference Manual, Rev. 0
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details the register map for the Nexus 2+ module.

Table 9-7. Nexus 2+ Register Map

Nexus Register :lce::sss Rea_xd/ Read Write
Opcode Write Address Address
Client Select Control (CSC)’ Ox1 R 0x02 —
Port Configuration Register (PCR)' PCR_INDEX? R/W — —
Development Control1 (DC1) 0x2 R/W 0x04 0x05
Development Control2 (DC2) 0x3 R/W 0x06 0x07
Development Status (DS) 0x4 R 0x08 —
Read/Write Access Control/Status (RWCS) 0x7 R/W O0x0E Ox0F
Read/Write Access Address (RWA) 0x9 R/W 0x12 0x13
Read/Write Access Data (RWD) OxA R/W Ox14 0x15
Watchpoint Trigger (WT) 0xB R/W 0x16 0x17
Reserved 0xC -> Ox3F — Ox1A->0x7E | Ox19->7F

! The CSC and PCR registers are shown in this table as part of the Nexus programmer's model. They are only
present at the top level SoC Nexus controller in a multi-Nexus implementation, not in the Nexus 2+ module.
The SoC’s CSC Register is readable through Nexus, but the PCR is shown for reference only here.

2 The “PCR_INDEX’” is a parameter determined by the SoC.

9.4.1 Client Select Control (CSC)

The CSC Register determines which Nexus client is under development. This register is present at the
top-level SOC Nexus 2+ controller to select one of multiple on-chip Nexus 2+ units.

Reserved CSs

7 6 5 4 3 2 1 0

Nexus Reg#—O0x1;
Read-only; Reset—0x0

Figure 9-2. Client Select Control Register

Table 9-8. Client Select Control Register Fields

CSC[7:4] RES—Reserved for future Nexus Clients (read as 0)
. CSC—Client Select Control
CSCL3:0] 0xX = Nexus client (SoC level)

€200z0 Power Architecture Core Reference Manual, Rev. 0

Freescale Semiconductor 9-9



Nexus 2+ Module

9.4.2 Port Configuration Register (PCR)

The Port Configuration Register (PCR) controls the basic port functions for all Nexus modulesin a
multi-Nexus environment. Thisincludes clock control and auxiliary port width. All bitsin thisregister are
writable only once after system reset.

OPC
0
MCK_EN

MCK_DIV
0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Nexus Reg#—PCR_INDEX; Read/Write; Reset—0x0

Figure 9-3. Port Configuration Register

Table 9-9. Port Configuration Register Fields

OPC—Output Port Mode Control
0 Reduced Port Mode configuration (min# nex_mdo[n:Q] pins defined by

PCR[31] OPC SOC)
1 Full Port Mode configuration (max# nex_mdo[n:0] pins defined by SOC)
PCRJ[30] — Reserved for future functionality

MCK_EN—MCKO Clock Enable
PCR[29] MCK_EN | 0 nex_mcko is disabled
1 nex_mcko is enabled

MCK_DIV—MCKO Clock Divide Ratio (see note below)
000 nex_mckois 1x processor clock freq.

001 nex_mckois 1/2x processor clock freq.

PCR[28:26] | MCK_DIV | 010 Reserved (default to 1/2x processor clock freq.)

011 nex_mcko is 1/4x processor clock freq.

100-110 Reserved (default to 1/2x processor clock freq.)
111 nex_mcko is 1/8x processor clock freq.

PCR[25:0] — Reserved for future functionality

NOTE

The CSC and PCR Registers exist in a separate module at the SoC level in
amulti-Nexus environment. If the €200 Nexus 2+ moduleisthe only Nexus
module, these registers are not implemented and the €200 Nexus 2+ defined
Development Control Register 1 (DC1) is used to control Nexus port
functionality.

9.4.3 Development Control Register 1, 2 (DC1, DC2)

The Development Control Registers are used to control the basic development features of the Nexus 2+
module. Development Control Register 1 isshown in Figure 9-4 and itsfields are described in Table 9-10.

€200z0 Power Architecture Core Reference Manual, Rev. 0

9-10 Freescale Semiconductor



Nexus 2+ Module

OPC
MCK_D1V|
EOC
o
PTM
WEN
o
ovC
EIC
™

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Nexus Reg#—0x2; Read/Write; Reset—0x0

Figure 9-4. Development Control Register 1

Table 9-10. Development Control Register 1 Fields

OPC—Output Port Mode Control
DC1[31] OPC 0 Reduced Port Mode configuration (min# nex_mdo[n:0] pins defined by SOC)
1 Full Port Mode configuration (max# nex_mdo[n:0] pins defined by SOC)

MCK_DIV—MCKO Clock Divide Ratio (see note below)
00 nex_mcko is 1x processor clock freq.

DC1[30:29] MCK_DIV | 01 nex_mcko is 1/2x processor clock freq.

10 nex_mcko is 1/4x processor clock freq.

11 nex_mcko is 1/8x processor clock freq.

EOC—EVTO Control

00 nex_evto_b upon occurrence of Watchpoints (configured in DC2)
DC1[28:27] EOC 01 nex_evto_b upon entry into Debug Mode

10 nex_evto_b upon Timestamping Event

11 Reserved

DC1[26] — Reserved for future functionality
PTM—Program Trace Method
DC[25] PTM 0 Program Trace uses traditional Branch Messages

1 Program Trace uses Branch History Messages

WEN—Watchpoint Trace Enable
DC1[24] WEN 0 Watchpoint Messaging disabled
1 Watchpoint Messaging enabled

DC1[23:8] — Reserved for future functionality

OVC—Overrun Control

000 Generate overrun messages

DC1[7:5] ovC 001-010 Reserved

011 Delay processor for BTM / OTM overruns
1XX Reserved

EIC—EVTI Control

00 nex_evti_bis used for synchronization (Program Trace/ Data Trace)
01 nex_evti_bis used for Debug request

1X Reserved

TM—Trace Mode

000 No Trace

DC1[2:0] ™ 1XX Program Trace enabled
X1X Reserved

XX1 Ownership Trace enabled

DC1[4:3] EIC

€200z0 Power Architecture Core Reference Manual, Rev. 0
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NOTE
The Output Port Mode Control bit (OPC) and MCKO Clock Divide Ratio
bits (MCK_DIV) MUST ONLY be modified during system reset or debug
mode to insure correct output port and output clock functionality. It is also
recommended that all other bits of the DC1 also only be modified in one of
these two modes.

Development Control Register 2 is shown in Figure 9-5 and its fields are described in Table 9-11.

EWC 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Nexus Reg#—0x3; Read/Write; Reset—0x0

Figure 9-5. Development Control Register 2

Table 9-11. Development Control Register 2 Fields

EWC—EVTO Watchpoint Configuration

00000000 No Watchpoints trigger nex_evto_b

IXXXXXXX  Watchpoint #0 (IAC1 from Nexus1) triggers nex_evito_b
X1XXXXXX Watchpoint #1 (IAC2 from Nexus1) triggers nex_evto_b

: (
DC2[31:24] EWC XX1XXXXX Watchpoint #2 (IAC3 from Nexus1) triggers nex_evto_b
XXX1XXXX Watchpoint #3 (IAC4 from Nexus1) triggers nex_evto_b
XXXX1XXX Watchpoint #4 (DAC1 from Nexus1) triggers nex_evto_b
XXXXX1XX Watchpoint #5 (DAC2 from Nexus1) triggers nex_evto_b
DC2[23:0] — Reserved for future functionality

NOTE

The EOC bitsin DC1 must be programmed to trigger EV TO on Watchpoint
occurrence for the EWC bits to have any effect.

9.4.4 Development Status Register (DS)

The Development Status Register is used to report system debug status. When Debug Mode is entered or
exited, or an SOC or Zen defined Low Power Mode is entered (see Note below), a Debug Status Message
istransmitted with DS[31:24]. The external tool can read this register at any time.

[©] n 4
m o 8 T 0
(=) — — (@)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Nexus Reg#—0x4; Read-only; Reset—0x0

Figure 9-6. Development Status Register
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Table 9-12. Development Status Register Fields

DBG—Zen CPU Debug Mode Status
DS[31] DBG 0 CPU not in Debug mode
1 CPU in Debug mode (jd_debug_b signal asserted)

LPS—Zen System Low Power Mode Status
000 Normal (Run) mode

DS[30:28] LPS XX1 DOZE mode (p_doze signal asserted)
X1X NAP mode (p_nap signal asserted)
1XX SLEEP mode (p_sleep signal asserted)

LPC—Zen CPU Low Power Mode Status

00 Normal (Run) mode

DS[27:26] LPC 01 CPU in Halted state (p_halted signal asserted)

10 CPU in Stopped state (p_stopped signal asserted)
11 CPU in Waiting state (p_waiting signal asserted)

CHK—Zen CPU Checkstop Status
DS[25] CHK 0 CPU not in Checkstop state
1 CPU in Checkstop state (p_chkstop signal asserted)

DS[24:0] — Reserved for future functionality (read as 0)

9.4.5 Read/Write Access Control/Status (RWCS)

The Read Write Access Control/Status Register provides control for Read/Write Access. Read/Write
access providesDM A-like access to memory-mapped resources on the AHB buseither whilethe processor
ishalted, or during runtime. The RWCS Register also provides Read/Write Access Status information per
Table 9-14.

o
(@) N o
<§ 0] <§( o 0

CNT
ERR
DV

-
o

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
Nexus Reg#—O0x7; Read/Write'; Reset—0x0

Figure 9-7. Read/Write Access Control/Status Register
' ERR and DV are read-only

Table 9-13. Read/Write Access Control/Status Register Fields

AC—Access Control
RWCS[31] AC 0 End access
1 Start access

RW—Read/Write Select
RW 0 Read access
1 Write access

RWCS[30]
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Table 9-13. Read/Write Access Control/Status Register Fields (continued)

SZ—Word Size

000 8-bit (byte)

001 16-bit (half-word)

010 32-bit (word)

011 Reserved

100-111 Reserved (default to word)

MAP—MAP Select
RWCS[26:24] MAP 000 Primary memory map
001-111 Reserved

RWCS[29:27] SZ

PR—Read/Write Access Priority

00 Lowest access priority
RWCS[23:22] PR 01 Reserved (default to lowest priority)
10 Reserved (default to lowest priority)
11 Highest access priority

RWCS[21:16] — RES—Reserved for future functionality

CNT—Access Control Count

RWCS[15:2] CNT hhhh Number of accesses of word size SZ
RWCS[1] ERR'’ ERR—Read/Write Access Error (see Table 9-14)
RWCS[0] DV ! DV—Read/Write Access Data Valid (see Table 9-14)

' ERR and DV are read-only

Table 9-14. Read/Write Access Status Bit Encoding

Read Action Write Action ERR DV
Read Access has not completed Write Access completed without error 0 0
Read Access error has occurred Write Access error has occurred 1 0
Read Access completed without error Write Access has not completed 0 1
Not Allowed Not allowed 1 1

9.4.6 Read/Write Access Data (RWD)

The Read/Write Access Data Register (RWD) provides the data to/from AHB bus memory-mapped
locations when initiating a read or awrite access.

Read/Write Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Nexus Reg#—0xA; Read/Write; Reset—0x0
Figure 9-8. Read/Write Access Data Register

Read/Write accesses to the AHB bus require that the debug firmware properly retrieve/place the datain
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the RWD. Table 9-15 shows the proper placement of datainto the RWD.

Table 9-15. RWD data placement for Transfers

az’:';ft‘:’ oSfIfZZt RWA(2:0) | RWCS[SZ] RWD
31:24 23:16 158  7:0
Byte X X X 000 — —
Half X% 0 001 —  x X
Word X00 010 X

Note:

“X” indicates byte lanes with valid data
“-” indicates byte lanes that contain unused data.

Nexus 2+ Module

Table 9-16 shows the mapping of RWD bytesto byte lanes of the AHB system bus read and write data

buses.

Table 9-16. RWD byte lane data placement

e S, AWAG)

31:24 23:16 15:8 7:0
Byte @000 000 — — — AHB[7:0]
Byte @001 001 — — — AHB[15:8]
Byte @010 010 — — — AHB[23:16]
Byte @011 011 — — — AHB[31:24]
Half @000 000 — — AHB[15:8] AHB[7:0]
Half @010 010 — — AHB[31:24] AHB[23:16]
Word @000 000 AHB[31:24] AHB[23:16] AHBJ[15:8] AHBJ7:0]

Note:

“n

€200z0 Power Architecture Core Reference Manual, Rev. 0
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9.4.7 Read/Write Access Address (RWA)

The Read/Write Access Address Register provides the AHB system bus address to be accessed when
initiating aread or awrite access.

Read/Write Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Nexus Reg#—0x9; Read/Write; Reset—0x0

Figure 9-9. Read/Write Access Address Register

9.4.8 Watchpoint Trigger Register (WT)

The Watchpoint Trigger Register allows the watchpoints defined within the Zen Nexusl logic to trigger
actions. These watchpoints can control Program and/or Data Trace enable and disable. The WT bits can
be used to produce an address related “window” for triggering Trace Messages.

PTS PTE 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Nexus Reg#—0xB; Read/Write; Reset—0x0

Figure 9-10. Watchpoint Trigger Register
Table 9-17 details the Watchpoint Trigger register fields.

Table 9-17. Watchpoint Trigger Register Fields

PTS—Program Trace Start Control

000 Trigger disabled

001 Use Watchpoint #0 (IAC1 from Nexus1)
010 Use Watchpoint #1 (IAC2 from Nexus1)
WTI[31:29] PTS 011 Use Watchpoint #2 (IAC3 from Nexus1)
100 Use Watchpoint #3 (IAC4 from Nexus1)
101 Use Watchpoint #4 (DAC1 from Nexus1)
110 Use Watchpoint #5 (DAC2 from Nexus1)
111 Reserved

PTE—Program Trace End Control

000 Trigger disabled

001 Use Watchpoint #0 (IAC1 from Nexus1)
010 Use Watchpoint #1 (IAC2 from Nexus1)
WT[28:26] PTE 011 Use Watchpoint #2 (IAC3 from Nexus1)
100 Use Watchpoint #3 (IAC4 from Nexus1)
101 Use Watchpoint #4 (DAC1 from Nexus1)
110 Use Watchpoint #5 (DAC2 from Nexus1)
111 Reserved

WT[25:0] — RES—Reserved for future functionality (read as 0)
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NOTE

The WT bits ONLY control ProgramTrace if the TM bits within the
Development Control Register 1 (DC1) have not already been set to enable
Program Trace.

If the TM bits are set to disable Program Trace, then avaue of O for PTS
causesInstruction Traceto remain disabled regardlessof the setting of PTE.
Also, oncetriggered, (with the TM bits set to disable Program Trace)
writing avalue of 0 to PTS causes Instruction Trace to be disabled.

9.5 Nexus 2+ Register Access via JTAG/OnCE

Access to Nexus 2+ register resources is enabled by loading a single instruction (“NEXUS2-ACCESS’)
intothe JTAG Instruction Register (IR) (OnCE OCMD register). For the Nexus 2+ block, the OCMD value
is 0b0001111100.

Once the *NEXUS2-ACCESS’ instruction has been loaded, the JTAG/OnCE port allows tool/target
communications with all Nexus 2+ registers according to the register map in Table 9-7.

Reading/writing of a Nexus 2+ register then requires two (2) passes through the Data-Scan (DR) path of
the JTAG state machine (see Section 9.15, “|EEE 1149.1 (JTAG) RD/WR Sequences”).

1. Thefirst pass through the DR selects the Nexus 2+ register to be accessed by providing an index
(see Table 9-7), and the direction (read/write). Thisis achieved by loading an 8-bit valueinto the
JTAG Data Register (DR). Thisregister has the following format:

(7bits) (1 bit)
Nexus Register Index R/W
RESET Vdue: 0x00

Nexus Register Index: Selected from values in Table 9-7
. . 0 = Read
Read/Write (R/W): 1 = Write

2. The second pass through the DR then shifts the data in or out of the JTAG port, LSB first.
a) During aread access, datais latched from the selected Nexus register when the JTAG state
machine passes through the “ Capture-DR” state.

b) During awrite access, dataislatched into the selected Nexus register when the JTAG state
machine passes through the “Update-DR” state.

9.6 Debug Status Messages

Debug Status M essages report low power mode and debug status. Debug Status Messages are enabled
when Nexus 2+ isenabled. Entering/exiting Debug Mode as well as entering aL ow Power Mode triggers
aDebug Status Message, indicating the value of the most significant byte in the Development Status
register. Debug status information is sent out in the following format:
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(8 bits) (4 bits) (6 bits)
DS[31:24] Src. Proc. | TCODE (000000)

Fixed length = 18 bits
Figure 9-11. Debug Status Message Format

9.7 Ownership Trace

This section detail s the ownership trace features of the Nexus 2+ module.

9.7.1 Overview

Ownership trace provides amacroscopic view, such astask flow reconstruction, when debugging software
written in ahigh level (or object-oriented) language. It offers the highest level of abstraction for tracking
operating system software execution. Thisis especially useful when the developer isnot interested in
debugging at lower levels.

9.7.2 Ownership Trace Messaging (OTM)

Ownership trace information is messaged via the auxiliary port using an Ownership Trace Message

(OTM). Zen processors contain a Power Architecture BookE defined “Process ID” register within the

CPU. It isupdated by the operating system software to provide task/process | D information. The contents

of thisregister are replicated on the pins of the processor and connected to Nexus. The Process | D register

value can be accessed using the mfspr/mtspr instructions. Please refer to the Programmer’sModel section

of the appropriate “ Zen Implementation Definition” document for more details on the Process I D register.
NOTE

The CPU includes a Process ID register (PIDO0), thus the Nexus UBA
functionality is not implemented.
There is one condition that causes an Ownership Trace Message, as follows:

1. When new information is updated in the Process I D register by the Zen processor, the datais
latched within Nexus, and is messaged out viathe auxiliary port, alowing development tools to
trace ownership flow.

Ownership trace information is messaged out in the following format

(32 bits) (4 bits) (6 bits)

Task / Process ID Tag Src. Proc. | TCODE (000010)

Fixed length = 42 bits
Figure 9-12. Ownership Trace Message Format
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9.7.3 OTM Error Messages

An Error M essage occurs when anew message cannot be queued due to the message queue being full. The
FIFO discards incoming messages until it has completely emptied the queue. Once emptied, an Error
Message is queued. The error encoding indicates which type(s) of messages attempted to be queued while
the FIFO was being emptied.

If only an OTM Message attempts to enter the queue while it is being emptied, the Error Message
incorporates the OTM only error encoding (00000). If both OTM and either BTM or DTM messages
attempt to enter the queue, the Error Message incorporates the OTM and (Program or Data) Trace error
encoding (00111). If a Watchpoint also attempts to be queued while the FIFO is being emptied, then the
Error Message incorporates error encoding (01000).
NOTE
The OV C bitswithin the DC1 Register can be set to delay the CPU in order
to alleviate (but not eliminate) potential overrun situations.

Error information is messaged out in the following format (see Table 9-3).

(5 bits) (4 bits) (6 bits)

Error Code (00000 / 00111 / 01000) Src. Proc. | TCODE (001000)

Fixed length = 15 bits
Figure 9-13. Error Message Format

9.7.4 OTM Flow

Ownership Trace Messages are generated when the operating system writesto the Zen Process I D register.

The following flow describes the OTM process.

1. The Process|D register isasystem control register. It isinternal to the Zen processor and can be
accessed by using PPC instructions. The contents of this register are replicated on the pins of the
processor and connected to Nexus.

2. Writestothe Zen internal Process ID register pulse awrite signal to Nexus. The data value written
into the Process ID register islatched and formed into the Ownership Trace Message that is
gueued to be transmitted.

3. Process D register reads do not cause Ownership Trace Messages to be transmitted by the Nexus
2+ module.

9.8 Program Trace

This section detail s the program trace mechanism supported by Nexus 2+ for the €200 processor. Program
trace isimplemented via Branch Trace Messaging (BTM) as per the IEEE-I STO 5001-2003 definition.
Branch Trace Messaging for Zen processors is accomplished by snooping the Zen virtual address bus
(between the CPU and MMU), attribute signals, and CPU Status (p_pstat[0:5]).
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9.8.1

Branch Trace Messaging (BTM)

Traditional Branch Trace Messaging facilitates program trace by providing the following types of
information:

Messaging for taken direct branches includes how many sequential instructions were executed
since the last taken branch or exception, including the taken direct branch. Branch instructions are
included in the count of sequential instructions.

Messaging for taken indirect branches and exceptions includes how many sequential instructions
were executed since the last taken branch or exception and the unique portion of the branch target
address or exception vector address. Branch instructions are included in the count of sequential
instructions. For taken indirect branches which trigger generation of amessage, the branch isalso
included in the count.

Branch History Messaging facilitates program trace by providing the following information.

Messaging for taken indirect branches and exceptionsincludes a) how many sequential instructions
(I-CNT) were executed since the last predicate instruction, taken/not taken direct branch,
taken/not-taken indirect branch, or exception, b) the unique portion of the branch target address or
exception vector address, and ¢) abranch/predicate instruction history field. Each bit in the history
field represents adirect branch or predicated instruction where avalue of one (1) indicates taken,
and avalue of zero (0) indicates not taken. Not-taken indirect branches generate a history bit with
avalueof zero (0). Instructionsthat generate history bits are not included in instruction counts. For
taken indirect brancheswhich trigger generation of this message type, the branchisincluded inthe
count, but not in the history field

9.8.1.1 Zen Indirect Branch Message Instructions

Table 9-18 shows the types of instructions and events which cause Indirect Branch Messages or Branch
History Messages to be encoded.

Table 9-18. Indirect Branch Message Sources

Source of Indirect Branch Message Instructions / Detail
Taken branch relative to a register value se_bctr, se_bctrl, se_blr, se_blrl
System Call/Trap exceptions taken sc, se_sc, tw
Return from interrupts / exceptions se_rfi, se_rfci, se_rfdi
Exit from reset with Program Trace Enabled Indirect branch with Sync, target address is initial instruction, count=1
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9.8.1.2 Zen Direct Branch Message Instructions

Table 9-19 shows the types of instructions that cause Direct Branch Messages or toggle a bit in the
instruction history buffer to be messaged out in a Resource Full Message or Branch History M essage.

Table 9-19. Direct Branch Message Sources

Source of Direct Branch Message Instructions

Taken direct branch instructions se_b.se_bc,se_bl,e_b,e_bc,e_bl,e_bcl, se_isync
Instruction Synchronize

9.8.1.3 BTM using Branch History Messages

Traditional BTM M essaging can accurately track the number of sequential instructions between branches,
but cannot accurately indicate which instructions were conditionally executed, and which were not.

Branch History Messaging solves this problem by providing a predicated instruction history field in each
Indirect Branch Message. Each bit in the history represents a predicated instruction or direct branch, or a
not-taken indirect branch. A value of one (1) indicates the conditional instruction was executed or the
direct branch wastaken. A value of zero (0) indicates the conditional instruction was not executed or the
branch was not taken.

Branch History Messages solve predicated instruction tracking and save bandwidth because only indirect
branches cause messages to be queued.

9.8.1.4 BTM using Traditional Program Trace Messages

Based on the PTM bit in the DC1 Register (DC1[25]), Program Tracing can utilize either Branch History
Messages (DC1[25]=1"b1) or traditional Direct/Indirect Branch Messages (DC1[25]=1Db0).

Branch History saves bandwidth and keep consistency between methods of Program Trace, yet may lose
temporal order between BTM messages and other types of messages. Because direct branches are not
messaged, but are instead included in the history field of the Indirect Branch History M essage, other types
of messages may enter the FIFO between Branch History Messages. The development tool cannot
determine the ordering of “events’ that occurred with respect to direct branches smply by the order in
which messages are sent out.

Traditional BTM messages maintain their temporal ordering because each event that can cause amessage
to be queued enters the FIFO in the order it occurred and is messaged out maintaining that order.

9.8.2 BTM Message Formats

The Nexus 2+ block supports three types of traditional BTM Messages—Direct, Indirect, and
Synchronization Messages. It supports two types of branch history BTM Messages—Indirect Branch
History, and Indirect Branch History with Synchronization Messages. Program Correlation, Resource
Full, and Error Messages are also supported.
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9.8.2.1 Indirect Branch Messages (History)

Indirect branches include all taken branches whose destination is determined at run time, interrupts, and
exceptions. If DC1[25] is set, indirect branch information is messaged out in the following format:

(1-32 bits) (1-32 bits) (1-8 bits) (4 bits) (6 bits)
Branch History Relative Address | Sequence Count | Src. Proc. | TCODE (011100)
Max length = 82 bits; Min length = 13 bits
Figure 9-14. Indirect Branch Message (History) Format

9.8.2.2 Indirect Branch Messages (Traditional)
If DC1[25] iscleared, indirect branch information is messaged out in the following format:

(1-32 bits) (1-8 bits) (4 bits) (6 bits)

Relative Address Sequence Count Src. Proc. | TCODE (000100)
Max length = 50 bits; Min length = 12 bits

Figure 9-15. Indirect Branch Message Format

9.8.2.3 Direct Branch Messages (Traditional)

Direct branches (conditional or unconditional) are all taken branches whose destination is fixed in the
instruction opcode. Direct branch information is messaged out in the following format

(1-8 bits) (4 bits) (6 bits)

Sequence Count Src. Proc. | TCODE (000011)
Max length = 18 bits; Min length = 11bits

Figure 9-16. Direct Branch Message Format

NOTE

When DC1[25] is set, Direct Branch Messages are not transmitted. Instead, each
direct branch, not-taken indirect branch, or predicated instructionisrecorded in the
history buffer.

9.8.2.4 Resource Full Messages

The Resource Full Message is used in conjunction with Branch Trace and Branch History Messages. The
Resource Full Message is generated when either the internal branch/predicate history buffer isfull, or if
the BTM Instruction sequence counter (I-CNT) overflows. If synchronization is needed at the time this
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message is generated, the synchronization is delayed until the next Branch Trace Message that is not a
Resource Full Message.

For history buffer overflow, the Resource Full Message transmits a Resource Code (RCODE) of 0b0001
and the current contents of the history buffer, including the stop bit, are transmitted in the Resource Data
(RDATA) field. This history information can be concatenated by the development tool with the
branch/predicate history information from subsequent messages to obtain the complete branch/predicate
history between indirect changes of flow.

For instruction counter overflow, the Resource Full Message transmits an RCODE of 0b0000 and avalue
of OxFF istransmitted inthe RDATA field, indicating that 255 sequential instructions have been executed
since the last change of flow or, if program traceisin history mode, sincethe last instruction that recorded
history information.

(1-32 bits) (4 bits) (4 bits) (6 bits)
RDATA RCODE Src. Proc. | TCODE (011011)

Max length = 46 bits; Min length = 15 bits
Figure 9-17. Resource Full Message Format

Table 9-20 shows the RCODE encodings and RDATA information used for Resource Full messages.

Table 9-20. RCODE Encoding

RCODE Description RDATA field
0000 Program Trace Instruction counter OxFF
reached 255 and was reset.
Program Trace, Branch / Predicate Branch Hlstory.
0001 Instruction History full. This type of packet is terminated by a stop

bit set to 1 after the last history bit.

9.8.2.5 Program Correlation Messages

Program Correlation Messages (PCMs) are used to correlate events to the program flow that may not be
associated with the instruction stream. The following events result in a PCM when program trace is
enabled:

* When the CPU enters debug mode, a PCM is generated. The instruction count and history
information provided by the PCM can be used to determine the last sequence of instructions
executed prior to debug mode entry.

*  When the CPU enters alow power mode in which instructions are no longer executed, a PCM is
generated. Theinstruction count and history information provided by the PCM can be used to
determine the last sequence of instructions executed prior to low power mode entry.

*  Whenever program traceis disabled by any means, aPCM is generated. The instruction count and
history information provided by the PCM can be used to determinethe last sequence of instructions
executed prior to disabling program trace.
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Refer to Table 9-5 for the event codes that are supported in thisimplementation. Program Correlation is
messaged out in the following format:

(1-32 bits) (1-8 bits) (4 bits) (4 bits) (6 bits)
Branch History Sequence Count | ECODE Src. Proc. | TCODE (100001)
Max length = 54 bits; Min length = 16 bits
Figure 9-18. Program Correlation Message Format

9.8.2.6 BTM Overflow Error Messages

An Error M essage occurs when anew message cannot be queued due to the message queue being full. The
FIFO discards incoming messages until it has completely emptied the queue. Once emptied, an Error
Message is queued. The error encoding indicates which type(s) of messages attempted to be queued while
the FIFO was being emptied.

If only aProgram Trace M essage attempts to enter the queue whileit is being emptied, the Error Message
incorporates the Program Trace only error encoding (00001). If both OTM and Program Trace M essages
attempt to enter the queue, the Error M essage incorporates the OTM and Program Trace error encoding
(00111). If a Watchpoint also attempts to be queued while the FIFO is being emptied, then the Error
Message incorporates error encoding (01000).

NOTE

The OV C bitswithin the DC1 Register can be set to delay the CPU in order
to alleviate (but not eliminate) potential overrun situations.

Error information is messaged out in the following format:

(5 bits) (4 bits) (6 bits)

Error Code (00001 / 00111 / 01000) Src. Proc. | TCODE (001000)

Fixed length = 15 bits
Figure 9-19. Error Message Format

9.8.2.7 Program Trace Synchronization Messages
A Program Trace Direct/Indirect Branch with Sync Message is messaged viathe auxiliary port (provided
Program Trace is enabled) for the following conditions (see Table 9-21):

» Exit from reset with program trace already enabled

» Initial Program Trace Message upon the first direct/indirect branch after exit from system reset or
whenever program trace is enabled.

» Upon direct/indirect branch after returning from a CPU Low Power state.
» Upon direct/indirect branch after returning from Debug Mode.

» Upon direct/indirect branch after occurrence of queue overrun (can be caused by any trace
message), provided Program Trace is enabled.
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» Upon direct/indirect branch after the periodic program trace counter has expired indicating 255
without-sync Program Trace Messages have occurred since the last with-sync message occurred.

» Upon direct/indirect branch after assertion of the Event In (nex_evti_b) pin if the EIC bits within
the DC1 Register have enabled this feature.

» Upon direct/indirect branch after the sequential instruction counter has expired indicating 255
instructions have occurred since the last change of flow.

» Upon direct/indirect branch after aBTM Message was lost due to an attempted access to a secure
memory location (for SOCs with security).

» Upon direct/indirect branch after aBTM Message was lost due to a collision entering the FIFO
between the BTM Message and both a Watchpoint Message and an Ownership Trace Message.

» Upon thefirst direct/indirect branch message after an execution mode switch into or out of a
sequence of VLE instructions.

The format for Program Trace Direct/Indirect Branch with Sync Messagesis as follows:

(1-32 bits) (1-8 bits) (4bity (6 bits)
Full Target Address Sequence Count Slgr%rge TCODE (001011 or 001100)

Max length = 50 bits; Min length = 12 bits
Figure 9-20. Direct/Indirect Branch w/ Sync. Message Format

The formats for Program Trace Direct/Indirect Branch with Sync. Messages and Indirect Branch History
with Sync. Messages are as follows

(1-32 bits) (1-32 bits) (1-8 bits) (4 bits) (6 bits)
Branch History  |Full Target Address | Sequence Count grogtfce TCODE (011101)
Max length = 82 bits; Min length = 13 bits
Figure 9-21. Indirect Branch History w/ Sync. Message Format

Exception conditions that result in Program Trace Synchronization are summarized in Table 9-21.

Table 9-21. Program Trace Exception Summary

Exception Condition Exception Handling

At the negation of JTAG reset (j_trst_b), queue pointers, counters, state machines, and registers
System Reset Negation within the Nexus 2+ module are reset. Upon exiting system reset, if Program Trace is already
enabled), a Program Trace Message is sent as an Indirect Branch w/ Sync. Message.

The first Program Trace Message (after Program Trace has been enabled) is a synchronization

Program Trace Enabled
message.

Upon exit from a Low Power mode or Debug mode the next direct/indirect branch is converted to

Exit from Low Power/Debug a Direct/Indirect Branch with Sync. Message.
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Table 9-21. Program Trace Exception Summary (continued)

Exception Condition Exception Handling

An Error Message occurs when a new message cannot be queued due to the message queue
being full. The FIFO discards messages until it has completely emptied the queue. Once emptied,
Queue Overrun an Error Message is queued. The error encoding indicates which type(s) of messages attempted
to be queued while the FIFO was being emptied. The next BTM message in the queue is a
Direct/Indirect Branch w/ Sync. Message.

A forced synchronization occurs periodically after 255 non-sync Program Trace Messages have
been queued. A Direct/Indirect Branch w/ Sync. Message is queued. The periodic program trace
message counter then resets.

Periodic Program Trace
Sync.

If the Nexus module is enabled, a nex_evti_b assertion initiates a Direct/Indirect Branch w/ Sync.
Event In Message upon the next direct/indirect branch (if Program Trace is enabled and the EIC bits of the
DC1 Register have enabled this feature).

After the sequential instruction counter reaches its maximum count (up to 255 sequential
instructions may be executed), a forced synchronization occurs. The sequential counter then
resets. A Program Trace Direct/Indirect Branch w/ Sync.Message is queued upon execution of
the next branch. A Resource Full Message is Queued on the overflow event.

If a branch instruction is the 255th instruction to occur, and causes a Program Trace message to
be queued, then no Resource Full Message is queued, and the w/Sync message is queued for
the next Program Trace Direct/Indirect Branch Message.

Sequential Instruction Count
Overflow

For SOCs that implement security, any attempted branch to secure memory locations temporarily
disables Program Trace and cause the corresponding BTM to be lost. The following direct/indirect
branch queues a Direct/Indirect Branch w/ Sync. Message. The count value within this message
is inaccurate because the re-enable of Program Trace is not necessarily aligned on an instruction
boundary.

Attempted Access to Secure
Memory

All Messages have the following priority: WPM -> OTM -> BTM. A BTM Message which attempts
to enter the queue at the same time as a Watchpoint Message and Ownership Trace Message is
lost. An Error Message is sent indicating the BTM was lost. The following direct/indirect branch
queues a Direct/Indirect Branch w/ Sync. Message. The count value within this message reflects
the number of sequential instructions executed after the last successful BTM Message was

generated. This count includes the branch that did not generate a message due to the collision.

Collision Priority

9.8.3 BTM Operation

9.8.3.1 Enabling Program Trace

Branch Trace Messaging can be enabled in one of two ways:
» Setting the TM field of the DC1 Register to enable Program Trace (DC1[2]).

» Using the PTSfield of the WT Register to enable Program Trace on Watchpoint hits (Zen
watchpoints are configured within the CPU).

9.8.3.2 Relative Addressing

The relative address feature is compliant with the | EEE-I STO 5001-2003 recommendations, and is
designed to reduce the number of bits transmitted for addresses of Indirect Branch Messages.

The address transmitted is relative to the target address of the instruction which triggered the previous
Indirect Branch (or Sync) Message. It is generated by X ORing the new address with the previous address,
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and then using only the results up to themost significant “ 1’ in the result. To recreate this address, an XOR
of the (most-significant 0-padded) message address with the previously decoded address gives the current
address.

Previous Address (A1) =0x0003FCO01, New Address (A2) = 0xO003F365

Message Generation:

A1 = 0000 0000 0000 0011 1111 1100 0000 0001
A2 = 0000 0000 0000 0011 1111 0011 0110 0101

Al ® A2 = 0000 0000 0000 0000 00001111 0110 0100 |

Address Message (M1) = 1111 0110 0100

Address Re-creation:

AleM1=A2
A1 = 0000 0000 0000 0011 1111 1100 0000 0001
M1 = 0000 0000 0000 0000 0000 1111 0110 0100

A2 = 0000 0000 0000 0011 1111 0011 0110 0101

Figure 9-22. Relative Address Generation and Re-creation

9.8.3.3 Execution Mode Indication

In order for a development tool to properly interpret instruction count and history information, it must be
aware of the execution mode context of that information. VLE instructionsareinterpreted differently from
non-VLE instructions.

Program trace messages provide the execution mode status in the least significant bit of the reconstructed
addressfield. A value of ‘O’ indicates that preceding instruction count and history information should be
interpreted in anon-VLE context. A value of ‘1’ indicates that the preceding instruction count and history
information should be interpreted in aVLE context. Note that when a branch resultsin an execution mode
switch, the program trace message resulting from that branch indicates the previous execution state. The
new state is not signaled until the next program trace message.

In some cases, a Program Correlation Message is generated to indicate execution mode status. Refer to
Section 9.8.2.5, “Program Correlation Messages,” for more information on these cases.
9.8.3.4 Branch/Predicate Instruction History (HIST)

If DC[25] is set, BTM messaging uses the Branch History format. The branch history (HIST) packet in
these messages provides a history of branch execution used for reconstructing the program flow. This
packet isimplemented as aleft-shifting shift register. Theregister isalways pre-loaded with avalue of one
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(2). Thishit actsasastop bit so that the devel opment tools can determine which bit isthe end of the history
information. The pre-loaded bit itself is not part of the history, but is transmitted with the packet.

A vaue of one (1) is shifted into the history buffer on ataken direct branch (conditional or unconditional)
and on any instruction whose predicate condition evaluated as true. A value of zero (0) is shifted into the
history buffer on any instruction whose predicate condition evaluated as false as well as on branches not
taken. Thisincludesindirect aswell as direct branches not taken.

9.8.3.5 Sequential Instruction Count (I-CNT)

Thel-CNT packetispresentinall BTM Messages. For traditional Branch Messages, I-CNT representsthe
number of sequential instructions including non-taken branches since the last Direct/Indirect Branch
Messages. Branch instructions which trigger message generation are included in the -CNT.

For Branch History Messages, |-CNT represents the number of instructions executed since the last
taken/non-taken direct branch, predicate instruction, last taken/not-taken indirect branch, or exception.
Branch instructions which trigger message generation are included in the I-CNT. Instructions which
generate history bits are not included in the [-CNT.

The sequential instruction counter overflows after its value reaches 255 and is reset to 0. In addition, the

next BTM Message (corresponding to the 256th or later instruction) is converted to a synchronization type
message.

9.8.3.6 Program Trace Queueing

Nexus 2+ implements a programmabl e depth queue (32 minimum entry recommended) for queuing all
messages. Messages that enter the queue are transmitted via the auxiliary pinsin the order in which they
are queued.

NOTE

If multiple trace messages need to be queued at the same time, Watchpoint
Messages have the highest priority (WPM -> OTM ->BTM -> DTM). Up
to two messages may be simultaneously queued.

9.8.4 Program Trace Timing Diagrams (2 MDO/1 MSEO configuration)

MCKO "\ / N\ /S \ /SN
MSEO_B A F
MDO[1:0] — 00 X 01 X00 X 00 X 00 X 00 X00 X 00 X10 X 01 X 01 X 10 X 10 X 00 }—

TCODE = 4
source processor = 0000

# of sequential instructions = 128
relative address = 8'ha5

Figure 9-23. Program Trace—Indirect Branch Message (Traditional)
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MDO[1:0] — 00 X 11 X 01 X 00 X 00 X 00 X01 X 01 X10X 10 X 01 X 01 X 10 X 10 X 00 r

TCODE = 28

source processor = 0000

# of sequential instructions =0

relative address = 8'hab

branch history = 8'b10100101 (w/ stop)

Figure 9-24. Program Trace—Indirect Branch Message (History)

Error

Direct Branch

MCKO

/— i

MDO[1:0] < 11 X 00 X 00 X 00 ¥ 00 X 11 X00¥ 00 X 10X 00 X 00 X 00 X 01 X 00 X 00 X |

MSEO_B

DBM: Error:
TCODE =3 TCODE =8
source processor = 0000 source processor = 0000

# of sequential instructions =3 error code = 1 (queue overrun—BTM only)

Figure 9-25. Program Trace—Direct Branch (Traditional) and Error Messages

MSEO_B /N /X
MDO[1:0] —{00%11X 00£00X00% 11X10X11X 00X 11X10X10X11X11X01X11X10X10X10¥11¥01¥ 11X00¥]
TCODE = 12

source processor = 0000
# of sequential instructions = 3
full target address = 32'hdeadface

Figure 9-26. Program Trace—Indirect Branch w/ Sync. Message
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9.9 Watchpoint Support

This section details the Watchpoint features of the Nexus 2+ module.

9.9.1 Overview

The Nexus 2+ module provides Watchpoint Messaging via the auxiliary pins, as defined by |EEE-ISTO
5001-2003.

Nexus 2+ is not compliant with Class4 Breakpoint/Watchpoint requirements defined in the standard. The
Breakpoint/Watchpoint Control Register is not implemented.

9.9.2 Watchpoint Messaging

Enabling Watchpoint M essaging is done by setting the Watchpoint Enable bit in the DC1 Register. Setting
theindividual Watchpoint sourcesis supported through the Zen Nexusl module. The Zen Nexusl module
iscapable of setting multiple address and/or data watchpoints. Please refer to the Debug chapter for details
on Watchpoint initialization.

When these watchpoints occur, awatchpoint event signal from the Nexusl modul e causes a message to be
sent to the queue to be messaged out. This message includes the watchpoint number indicating which
watchpoint caused the message.

The occurrence of any of the €200 defined watchpoints can be programmed to assert the Event Out
(nex_evto_b) pinfor one (1) period of the output clock (nex_mcko) (see Table 9-24 for details on
nex_evto_b).

Watchpoint information is messaged out in the following format.

(8 bits) (4 bits) (6 bits)
Watchpoint Source Src. Proc. | TCODE (001111)

Fixed length = 18 bits
Figure 9-27. Watchpoint Message Format.

Table 9-22. Watchpoint Source Encoding

Watchpoint Source (8 Bits) Watchpoint Description
00000001 Zen Watchpoint #0 (IAC1 from Nexus1)
00000010 Zen Watchpoint #1 (IAC2 from Nexus1)
00000100 Zen Watchpoint #2 (IAC3 from Nexus1)
00001000 Zen Watchpoint #3 (IAC4 from Nexus1)
00010000 Zen Watchpoint #4 (DAC1 from Nexus1)
00100000 Zen Watchpoint #5 (DAC2 from Nexus1)
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9.9.3 Watchpoint Error Message

An Error M essage occurs when anew message cannot be queued due to the message queue being full. The
FIFO discards messages until it has completely emptied the queue. Once emptied, an Error Message is
gueued. The error encoding indicates which type(s) of messages attempted to be queued while the FIFO
was being emptied.

If only a Watchpoint M essage attempts to enter the queue while it is being emptied, the Error Message
incorporates the Watchpoint only error encoding (00110). If an OTM and/or Program Trace and/or Data
Trace Message al so attempts to enter the queue while it is being emptied, the Error Message incorporates
error encoding (01000).

NOTE

The OV C bitswithin the DC1 Register can be set to delay the CPU in order
to alleviate (but not eliminate) potential overrun situations.

Error information is messaged out in the following format (see Table 9-3).

(5 bits) (4 bits) (6 bits)
Error Code (00110 / 01000) Src. Proc. | TCODE (001000)

Fixed length = 15 bits
Figure 9-28. Error Message Format

9.9.4 Watchpoint Timing Diagram (2 MDO/1 MSEO Configuration)

Watchpoint Error
p_mcko AN A AANANA

p_mseo_b / i( /
p_mdo[1:0] [ 11 Y11 X'00 X 00 X_10 X 00 X 00 X 00 X 10 X 00 X 00 X 10 X 01 X 00 }

WPM: Error:

TCODE =15 TCODE =8

source processor = 00 source processor = 00

watchpoint # = 2 error code = 6 (queue overrun—WPM only)

Figure 9-29. Watchpoint Message and Watchpoint Error Message
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9.10 Nexus 2+ Read/Write Access to Memory-Mapped Resources

The Read/Write access feature allows access to memory-mapped resources viathe JTAG/OnCE port. The
Read/Write mechanism supports single as well as block reads and writes to Zen bus resources.

The Nexus 2+ moduleis capable of accessing resources on the Zen system bus (AHB), with multiple
configurable priority levels. Memory-mapped registers and other non-cached memory can be accessed via
the standard memory map settings.

All accesses are setup and initiated by the Read/Write Access Control/Status Register (RWCS), aswell as
the Read/Write Access Address (RWA) and Read/Write Access Data Registers (RWD).

Using the Read/Write Access Registers (RWCS/RWA/RWD), memory mapped Zen AHB resources can
be accessed through Nexus 2+. The following subsections describe the steps which are required to access
memory-mapped resources.
NOTE
Read/Write Access can only access memory mapped resources when
system reset is de-asserted and clocks are running.

Misaligned accesses are NOT supported in the €200 Nexus 2+ module.

9.10.1 Single Write Access

1. Initialize the Read/Write Access Address Register (RWA) through the access method outlined in
Section 9.5, “Nexus 2+ Register Access viaJTAG/OnCE,” using the Nexus Register Index of 0x9
(see Table 9-7). Configure as follows:

— Write Address -> 32h' xxxxxxxx (write address)

2. Initialize the Read/Write Access Control/Status Register (RWCS) through the access method
outlined in Section 9.5, “Nexus 2+ Register Accessvia JTAG/OnCE,” using the Nexus Register
Index of ox7 (see Table 9-7). Configure the bits as follows:

— Access Control (AC) -> 1b'1 (to indicate start access)
— Map Select (MAP) -> 3’000 (primary memory map)
— Access Priority (PR) -> 2’00 (lowest priority)
— Read/Write (RW) -> 1b'1 (write access)
— Word Size (SZ) -> 3b’Oxx (32-bit, 16-bit, 8-bit)
— Access Count (CNT) -> 14h’ 0000 or 14h’'0001(single access)
NOTE
Access Count (CNT) of 14'h0000 or 14’ h0001 performs a single access.
3. Initiaize the Read/Write Access Data Register (RWD) through the access method outlined in

Section 9.5, “Nexus 2+ Register Access viaJTAG/ONCE,” using the Nexus Register Index of oxA
(see Table 9-7). Configure as follows:

— Wirite Data -> 32h" xxxxxxxx (write data)
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The Nexus block then arbitrates for the AHB bus and transfer the data value from the data buffer
RWD Register to the memory mapped address in the Read/Write Access Address Register
(RWA). When the access has completed without error (ERR=1’b0), Nexus asserts the nex_rdy b
pin (see Table 9-24 for detail on nex_rdy_b) and clearsthe DV bit in the RWCS Register. This
indicates that the device is ready for the next access.

NOTE

Only the nex_rdy_b pin aswell asthe DV and ERR bits within the RWCS
provide Read/Write Access status to the external development tool.

9.10.2 Block Write Access

1.

For ablock write access, follow Steps 1, 2, and 3 outlined in Section 9.10.1, “Single Write
Access,” toinitialize the registers, but using avalue greater than one (14’ h0001) for the CNT field
in the RWCS Register.

The Nexus block then arbitrates for the AHB system bus and transfer the first data value from the
RWD Register to the memory mapped address in the Read/Write Access Address Register
(RWA). When the transfer has completed without error (ERR=1’b0), the address from the RWA
Register isincremented to the next word size (specified in the SZ field) and the number from the
CNT field is decremented. Nexus then asserts the nex_rdy b pin. Thisindicates that the deviceis
ready for the next access.

Repeat Step 3in Section 9.10.1, “Single Write Access,” until theinternal CNT valueis zero (0).
When this occurs, the DV bit within the RWCS s cleared to indicate the end of the block write
access.

NOTE

The actual RWA value aswell asthe CNT field within the RWCS are not
changed when executing a block write access. The original values can be
read by the external development tool at any time.

9.10.3 Single Read Access

1.

Initialize the Read/Write Access Address Register (RWA) through the access method outlined in
Section 9.5, “Nexus 2+ Register Access viaJTAG/OnCE,” using the Nexus Register Index of 0x9
(see Table 9-7). Configure as follows:

— Read Address -> 32h’ xxxxxxxx (read address)

Initialize the Read/Write Access Control/Status Register (RWCS) through the access method
outlined in Section 9.5, “Nexus 2+ Register Accessvia JTAG/OnCE,” using the Nexus Register
Index of ox7 (see Table 9-7). Configure the bits as follows:

— Access Control (AC) -> 1b'1 (to indicate start access)
— Map Select (MAP) -> 3’000 (primary memory map)
— Access Priority (PR) -> 2’00 (lowest priority)

— Read/Write (RW) -> 1b'0 (read access)

— Word Size (SZ) -> 3b’ Oxx (32-hit, 16-hit, 8-bit)
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— Access Count (CNT) -> 14h’ 0000 or 14h’'0001(single access)

NOTE
Access Count (CNT) of 14'h0000 or 14’ h0001 performs a single access.

3. The Nexus block then arbitrates for the AHB system bus and the read datais transferred from the
AHB to the RWD Register. When the transfer is completed without error (ERR=1'b0), Nexus
assertsthe nex_rdy_b pin (see Table 9-24 for detail on nex_rdy_b) and setsthe DV bit in the
RWCS Register. This indicates that the device is ready for the next access.

4. The data can then be read from the Read/Write Access Data Register (RWD) through the access
method outlined in Section 9.5, “Nexus 2+ Register Access via JTAG/OnCE,” using the Nexus
Register Index of oxA (see Table 9-7).

NOTE

Only the nex_rdy_b pin aswell asthe DV and ERR bits within the RWCS
provide Read/Write Access status to the external development tool.

9.10.4 Block Read Access

1. For ablock read access, follow Steps 1 and 2 outlined in Section 9.10.3, “ Single Read Access.” to
initialize the registers, but using a value greater than one (14'h0001) for the CNT field in the
RWCS Register.

2. The Nexus block then arbitrates for the AHB system bus and the read datais transferred from the
AHB to the RWD Register. When the transfer has completed without error (ERR=1'b0), the
address from the RWA Register isincremented to the next word size (specified in the SZ field)
and the number from the CNT field is decremented. Nexus then assertsthe nex_rdy_b pin. This
indicates that the device is ready for the next access.

3. The data can then be read from the Read/Write Access Data Register (RWD) through the access
method outlined in Section 9.5, “Nexus 2+ Register Access via JTAG/OnCE,” using the Nexus
Register Index of oxA (see Table 9-7).

4. Repeat Steps 3 and 4 in Section 9.10.3, “Single Read Access,” until the CNT vaueis zero (0).
When this occurs, the DV bit within the RWCS s set to indicat the end of the block read access.

NOTE
The data values must be shifted out 32-bits at atime LSB first.

NOTE

The actual RWA value aswell asthe CNT field within the RWCS are not
changed when executing a block read access. The original values can be
read by the external development tool at any time.
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9.10.5 Error Handling

The Nexus 2+ module handles various error conditions as follows:

9.10.5.1 Bus Read/Write Error
All address and data errors that occur on read/write accesses to the Zen AHB system bus return a transfer
error encoding on the p_hresp[1:0] signals. If this occurs:

1. The accessisterminated without re-trying (AC bit is cleared)

2. The ERR bit in the RWCS Register is set

3. The Error Message is sent (TCODE = 8) indicating Read/Write Error

9.10.5.2 Access Termination

Thefollowing cases are defined for sequences of the Read/Write protocol that differ from those described
in the above sections.

1. If the AC bitin the RWCS Register is set to start Read/Write accesses and invalid values are
loaded into the RWD and/or RWA, then an AHB access error may occur. Thisis handled as
described above.

2. If ablock accessisin progress (all cycles not completed), and the RWCS Register iswritten, then
the original block accessisterminated at the boundary of the nearest completed access.

a) If the RWCSiswritten with the AC bit set, the next Read/Write access begins and the RWD
can be written to/read from.

b) If the RWCSiswritten with the AC bit cleared, the Read/Write access is terminated at the
nearest completed access. This method can be used to break (early terminate) block accesses.

9.10.6 Read/Write Access Error Message

The Read/Write Access Error Message is sent out when an AHB system bus access error (read or write)
has occurred.

Error information is messaged out in the following format:

(5 bits) (4 bits) (6 bits)
Error Code (00011) Src. Proc. | TCODE (001000)

Fixed length = 15 bits
Figure 9-30. Error Message Format

9.11 Nexus 2+ Pin Interface
This section detail s information regarding the Nexus 2+ pins and pin protocol.

The Nexus 2+ pin interface provides the function of transmitting messages from the messages queues to
the external tools. It is also responsible for handshaking with the message queues.
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9.11.1

Pins Implemented

The Nexus 2+ module implements one (1) nex_evti_b and one (1) nex_mseo_b or two (2)
nex_mseo_b[1:0]. It also implements a configurable number of nex_mdo[n:0] pins, (1) nex_rdy_b pin, (1)
nex_evto_b pin, and one (1) clock output pin (nex_mcko). The output pins are synchronized to the Nexus
2+ output clock (nex_mcko).

All Nexus 2+ input functionality is controlled through the JTAG/OnCE port in compliance with
|EEE 1149.1 (see Section 9.5, “Nexus 2+ Register Access viaJTAG/OnCE,” for details). The JTAG pins
areincorporated as I/0O to the Zen processor, and are further described in Section 8.4.2, “JTAG/OnCE

Pins.”
Table 9-23. JTAG Pins for Nexus 2+
JTAG Pins | Input/Output Description of JTAG Pins (included in Zen Nexus 1)
J_tdo The Test Data Output (j_tdo) pin is the serial output for test instructions and data. j_tdois
(e} three-stateable and is actively driven in the “Shift-IR” and “Shift-DR” controller states. j_tdo
changes on the falling edge of j_tclk.
f tdi | The Test Data Input (j_tdi) pin receives serial test instruction and data. TDI is sampled on the
rising edge of j_tclk.
j_tms | The Test Mode Select (j_tms) input pin is used to sequence the OnCE controller state machine.
j_tmsis sampled on the rising edge of j_fclk.
j_tclk | The Test Clock (j_fclk) input pin is used to synchronize the test logic, and control register access
through the JTAG/OnCE port.
j trst b | The Test Reset (j_trst_b) input pin is used to asynchronously initialize the JTAG/OnCE controller.
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The auxiliary pins are used to send and receive messages and are described in Table 9-24.

Table 9-24. Nexus 2+ Auxiliary Pins

Auxiliary Pins

Input/Output

Description of Auxiliary Pins

nex_mcko

0]

Message Clock Out (nex_mcko) is a free running output clock to development tools for
timing of nex_mdo[n:0] and nex_mseo_b[1:0] pin functions. nex_mcko is programmable
through the DC1 Register.

nex_mdo[n:0]

Message Data Out (nex_mdo[n:0]) are output pins used for OTM, BTM, and DTM.
External latching of nex_mdo[n:0] shall occur on the rising edge of the Nexus2+ clock
(nex_mcko).

nex_mseo_b[1:0]

Message Start/End Out (nex_mseo_b[1:0]) are output pins which indicate when a
message on the nex_mdo[n:0] pins has started, when a variable length packet has
ended, and when the message has ended. External latching of nex_mseo_b[1:0] shall
occur on the rising edge of the Nexus2+ clock (nex_mcko). One or two pin MSEO
functionality is determined at integration time per SOC implementation

nex_rdy_b

Ready (nex_rdy_b) is an output pin used to indicate to the external tool that the Nexus
block is ready for the next Read/Write Access. If Nexus2+ is enabled, this signal is
asserted upon successful (without error) completion of an AHB system bus transfer
(Nexus read or write) and is held asserted until the JTAG/OnCE state machine reaches
the “Capture_DR” state. Upon exit from system reset or if Nexus2+ is disabled,
nex_rdy_b remains de-asserted

nex_evto_b

Event Out (nex_evto_b) is an output which, when asserted, indicates one of two events
has occurred based on the EOC bits in the DC1 Register. nex_evto_b is held asserted
for one (1) cycle of nex_mcko:
1. One (or more) watchpoints has occurred (from Nexus1) and EOC = 2’b00
2. Debug mode was entered (jd_debug_b asserted from Nexus1) and EOC =
2'b01

nex_evti_b

EventIn (nex_evti_b) is aninput which, when asserted, initiates one of two events based
on the EIC bits in the DC1 Register (if the Nexus2+ module is enabled at reset):
1. Program Trace and Data Trace synchronization messages (provided Program
Trace and Data Trace are enabled and EIC = 2’b00).

2. Debug request to Zen Nexus1 module (provided EIC = 2’b01 and this feature
is implemented).

The Nexus auxiliary port arbitration pins are used when the Nexus 2+ module isimplemented in a
multi-Nexus SoC which shares asingle auxiliary output port. The arbitration iscontrolled by an SoC level
Nexus Port Control module (NPC). Refer to Section 9.13, “Auxiliary Port Arbitration,” for detail on
Nexus port arbitration.
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Table 9-25. Nexus Port Arbitration Signals

Nexus Port

Arbitration Pins Input/Output

Description of Arbitration Pins

nex_aux_req[1:0]

Nexus Auxiliary Request (nex_aux_req[1:0]) output signals indicate to an SoC level
Nexus arbiter a request for access to the shared Nexus auxiliary port in a multi-Nexus

© implementation. The priority encodings are determined by how many messages are
currently in the message queues (see Table 9-23).
nex_aux_busy Nexus Auxiliary Busy (nex_aux_busy) is an output signal to an SoC level Nexus arbiter
(0] indicating that the Nexus 2+ module is currently transmitting its message after being

granted the Nexus auxiliary port.

npc_aux_grant

Nexus Auxiliary Grant (npc_aux_grant) is an input from the SoC level Nexus Port
Controller (NPC) that the auxiliary port has been granted to the Nexus 2+ module to
transmit its message.

ext_multi_nex_sel

Multi-Nexus Select (ext_multi_nex_sel) is a static signal indicating that the Nexus 2+
module is implemented within a multi-Nexus environment. If set, port control and
arbitration is controlled by the SoC level arbitration module (NPC).

9.11.2 Pin Protocol

The protocol for the Zen processor transmitting messages viathe auxiliary pinsis accomplished with the
MSEOQO pin function outlined in Table 9-26. Both single and dual pin cases are shown.

nex_mseo_b[1:0] is used to signal the end of variable-length packets, and not fixed length packets.
nex_mseo_b[1:0] is sampled on the rising edge of the Nexus 2+ clock (nex_mcko).

Table 9-26. MSEO Pin(s) Protocol

nex_mseo_b Function Single nex_mseo_b data (serial) Dual nex_mseo_b[1:0] data
Start of message 1-1-0 11-00
End of message 0-1-1-(more 1’s) 00 (or 01)-11-(more 1’s)
End of variable length packet 0-1-0 00-01
Message transmission 0’s 00’s

Idle (no message)

1’s 11’s
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Figure 9-31 illustrates the state diagram for single pin MSEO transfers.

mn ex_mseo_b=1

Idle

MDO: Invalid

nex_m Seo_b = 1 nex_m Sm_b = O

End
M essage

MDO: Invalid

nex_mseo_b=0

nex_mseo_b=1

nex_mseo_b3F1 nex_mseo_b=0

nex_mseo_b=1

nex_mseo_b=0

Not Allowed nex_mseo_b=0

Figure 9-31. Single Pin MSEO Transfers

Note that the “End Message” state does not contain valid data on the nex_mdo[n:0] pins. Also, It isnot
possible to have two consecutive “End Packet” messages. Thisimplies the minimum packet size for a
variable length packet is 2x the number of nex_mdo[n:0] pins. This ensures that a false end of message
state is not entered by emitting two consecutive ‘ 1's on the nex_mseo_b pin before the actual end of

message.
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Figure 9-32 illustrates the state diagram for dual pin MSEO transfers.

m nex_mseo_b[1:0]=11

Idle

MDO: Invalid

nex_mseo_b[1:0]=01

nex_mseo_b[1:0]=00
ex_mseo_b[1:0]=10

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=00
nex_mseo_b[1:0]=01

Figure 9-32. Dual Pin MSEO Transfers

The dual pin MSEO option is more robust that the single pin option. Termination of the current message
may immediately be followed by the start of the next message on the consecutive clocks. An extra clock
to end the message is not necessary as with the one MSEO pin option. The dual pin option also allowsfor
consecutive “End Packet” states. This can be an advantage when small, variable sized packets are
transferred.

NOTE

The “End Message” state may also indicate the end of avariable-length
packet as well asthe end of the message when using the dual pin option.
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9.12 Rules for Output Messages

Zen based Class 3 compliant embedded processors must provide messages via the auxiliary port in a
consistent manner as described below:

* A variable-sized packet within a message must end on a port boundary.

* A variable-sized packet may start within a port boundary only when following a fixed length
packet. (If two variable-sized packets end and start on the same clock, it isimpossible to know
which bit isfrom the last packet and which bit is from the next packet.)

*  Whenever avariable-length packet is sized such that it does not end on a port boundary, itis
necessary to extend and zero fill the remaining bits after the highest-order bit so that it can end on
aport boundary.

For example, if the nex_mdo[n:0] port is2 bitswide, and the unique portion of an indirect address TCODE
is 5 bits, then the remaining 1 bit of nex_mdo[n:0] must be packed with a 0.

9.13 Auxiliary Port Arbitration

In a multi-Nexus environment, the Nexus 2+ module must arbitrate for the shared Nexus port at the SoC
level . The request scheme isimplemented as a 2-bit request with various levels of priority. The priority
levelsaredefined in Table 9-27 below. The Nexus 2+ modulereceivesa 1-bit grant signal (npc_aux_grant)
from the SoC |level arbiter. When agrant isreceived, the Nexus 2+ module beginstransmitting its message
following the protocol outlined in Section 9.11.2. The Nexus 2+ module maintains control of the port by
asserting the nex_aux_busy signal, until the M SEO state machine reaches the “End Message” state.

Table 9-27. MDO Request Encodings

MDO Request Encoding

(nex_aux_req[1:0]) Condition of Queue

Request Level

No Request 00 No message to send

Low Priority 01 Message queue less than 1/2 full
— 10 Reserved

High Priority 11 Message queue 1/2 full or more

9.14 Examples
The following are examples of Program Trace and Data Trace Messages.

Table 9-28 illustrates an example Indirect Branch Message with 2 MDO / 1M SEO configuration.
Table 9-29 illustrates the same example with an 8 MDO / 2 MSEO configuration.
Note that TO and SO are the least significant bits where:

* Tx =TCODE number (fixed)

»  Sx = Source processor (fixed)

* Ix = Number of instructions (variable)

* Ax = Unique portion of the address (variable)
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Note that during clock 12, the nex_mdo[n:0] pins areignored in the single MSEO case.

Table 9-28. Indirect Branch Message Example (2 MDO/1 MSEO)

Clock | nex_mdo[1:0] | nex_mseo_b State
0 X X 1 Idle (or end of last message)
1 T TO 0 Start Message
2 T3 T2 0 Normal Transfer
3 T5 T4 0 Normal Transfer
4 S1 SO 0 Normal Transfer
5 S3 S2 0 Normal Transfer
6 I 10 0 Normal Transfer
7 13 12 0 Normal Transfer
8 15 14 1 End Packet
9 A1 AO 0 Normal Transfer
10 A3 A2 0 Normal Transfer
11 A5 A4 0 Normal Transfer
12 A7 A6 1 End Packet
13 0 0 1 End Message
14 T TO 0 Start Message

Table 9-29. Indirect Branch Message Example (8 MDO/2 MSEO)

Clock nex_mdo[7:0] nex_mseo_b[1:0] State
0 X X X X X X X X 1 1 Idle (or end of last message)
1 S1 SO | T5 | T4 T3 | T2 | T1 TO 0 0 Start Message
2 15 14 13 12 11 10 S3 S2 0 1 End Packet
3 A7 | A6 | A5 | A4 | A3 | A2 | Al AO 1 1 End Packet/End Message
4 S1 SO | T5 | T4 T3 | T2 | T1 TO 0 0 Start Message

Table 9-30 and Table 9-31 illustrate examples of Direct Branch Messages: one with2 MDO/ 1 MSEO,
and one with 8 MDO / 2 MSEO.
Notethat TO and |10 are the least significant bits where:
* Tx =TCODE number (fixed)
» Sx = Source processor (fixed)
* Ix =Number of Instructions (variable)
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Table 9-30. Direct Branch Message Example (2 MDO/1 MSEO)

Clock nex_mdo[1:0] nex_mseo_b State
0 X X 1 Idle (or end of last message)
1 T TO 0 Start Message
2 T3 T2 0 Normal Transfer
3 T5 T4 0 Normal Transfer
4 S1 SO 0 Normal Transfer
5 S3 S2 0 Normal Transfer
6 11 10 1 End Packet
7 0 0 1 End Message

Table 9-31. Direct Branch Message Example (8 MDO/2 MSEO)

Nexus 2+ Module

Clock nex_mdo[7:0] nex_mseo_b[1:0] State
0 X X X X X X X X 1 1 Idle (or end of last message)
1 S1 SO | T5 | T4 | T3 | T2 | T1 TO 0 0 Start Message
2 0 0 0 0 1 10 S3 | S2 1 1 End Packet/End Message
3 S1 SO | T5 | T4 | T3 | T2 | T1 TO 0 0 Start Message

Table 9-32 illustrates an example Data Write Message with 8 MDO / 1 MSEO configuration, and
Table 9-33 illustrates the same DWM with 8 MDO / 2 MSEO configuration

Notethat TO, AO, DO are the least significant bits where:
* Tx =TCODE number (fixed)

» Sx = Source processor (fixed)

» Zx =Datasize (fixed)
* Ax = Unique portion of the address (variable)
» Dx = Write data (variable—8, 16 or 32-bit)

Table 9-32. Data Write Message Example (8 MDO/1 MSEOQ)

Clock nex_mdo[7:0] nex_mseo_b State
0 X X X X X X X X 1 Idle (or end of last message)
1 S1 SO | T5 | T4 | T3 | T2 | TH TO 0 Start Message
2 A2 | Al A0 | 22 | A Z0 | S3 | 82 1 End Packet
3 D7 | D6 | D5 | D4 | D3 | D2 | D1 DO 0 Normal Transfer
4 0 0 0 0 0 0 0 0 1 End Packet
5 0 0 0 0 0 0 0 0 1 End Message
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Table 9-33. Data Write Message Example (8 MDO/2 MSEOQ)

Clock nex_mdo[7:0] nex_mseo_b[1:0] State
0 X X X X X X X X 1 1 Idle (or end of last message)
1 S1 SO | T5 | T4 | T3 | T2 | T1 TO 0 0 Start Message
2 A2 | Al A0 | 22 | Z1 Z0 | S3 | 82 0 1 End Packet
3 D7 | De | D5 | D4 | D3 | D2 | D1 | DO 1 1 End Packet/ End Message

9.15 IEEE 1149.1 (JTAG) RD/WR Sequences

This section contains example JTAG/OnCE sequences used to access resources.

9.15.1 JTAG Sequence for Accessing Internal Nexus Registers

Table 9-34. Accessing Internal Nexus 2+ Registers via JTAG/OnCE

Step # TMS Pin Description
1 1 IDLE -> SELECT-DR_SCAN
2 0 SELECT-DR_SCAN -> CAPTURE-DR (Nexus Command Register value loaded in shifter)
3 0 CAPTURE-DR -> SHIFT-DR
4 0 (7) TCK clocks issued to shift in direction (rd/wr) bit and first 6 bits of Nexus reg. addr.
5 1 SHIFT-DR -> EXIT1-DR (7th bit of Nexus reg. shifted in)
6 1 EXIT1-DR -> UPDATE-DR (Nexus shifter is transferred to Nexus Command Register)
7 1 UPDATE-DR -> SELECT-DR_SCAN
8 0 SELECT-DR_SCAN -> CAPTURE-DR (Register value is transferred to Nexus shifter)
9 0 CAPTURE-DR -> SHIFT-DR
10 0 (31) TCK clocks issued to transfer register value to TDO pin while shifting in TDI value
11 1 SHIFT-DR -> EXIT1-DR (MSB of value is shifted in/out of shifter)
12 1 EXIT1-DR -> UPDATE -DR (if access is write, shifter is transferred to register)
13 0 UPDATE-DR -> RUN-TEST/IDLE (transfer complete—Nexus controller to Reg. Select state)
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9.15.2 JTAG Sequence for Read Access of Memory-Mapped Resources

Nexus 2+ Module

Table 9-35. Accessing Memory-Mapped Resources (Reads)

Step # TCLK Clocks Description
1 13 Nexus Command = write to Read/Write Access Address Register (RWA)
2 37 Write RWA (initialize starting read address—data input on TDI)
3 13 Nexus Command = write to Read/Write Control/Status Register (RWCS)
4 37 Write RWCS (initialize read access mode and CNT value—data input on TDI)
5 — Wait for falling edge of nex_rdy_b pin
6 13 Nexus Command = read Read/Write Access Data Register (RWD)
7 37 Read RWD (data output on TDO)
8 — If CNT > 0, go back to Step #5

9.15.3 JTAG Sequence for Write Access of Memory-Mapped Resources

Table 9-36. Accessing Memory-Mapped Resources (Writes)

Step # TCLK Clocks Description
1 13 Nexus Command = write to Read/Write Access Control/Status Register (RWCS)
2 37 Write RWCS (initialize write access mode and CNT value—data input on TDI)
3 13 Nexus Command = write to Read/Write Address Register (RWA)
4 37 Write RWA (initialize starting write address—data input on TDI)
5 13 Nexus Command = read Read/Write Access Data Register (RWD)
6 37 Write RWD (data output on TDO)
7 — Wait for falling edge of nex_rdy_b pin
8 — If CNT > 0, go back to Step #5
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Glossary

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this reference
manual.

A Architecture. A detailed specification of requirements for a processor or computer
system. It does not specify details of how the processor or computer system must
be implemented; instead it provides atemplate for afamily of compatible
implementations.

Atomic access. A bus accessthat attemptsto be part of aread-write operation to the same
address uninterrupted by any other access to that address (the term refers to the
fact that the transactions are indivisible). The Power Architecture technology
implements atomic accesses through the lwar x/stwcx. instruction pair.

Autobaud. The processof determining aserial datarate by timing the width of asingle bit.

B Beat. A single state on the bus interface that may extend across multiple bus cycles. A
transaction can be composed of multiple address or data beats.

Big-Endian. A byte-ordering method in memory where the address n of aword
corresponds to the most significant byte. In an addressed memory word, the bytes
areordered (left to right) O, 1, 2, 3, with O being the most significant byte. See
Little-Endian.

Boundedly undefined. A characteristic of certain operation results that are not rigidly
prescribed by the Power Architecture technology. Boundedly-undefined results
for agiven operation may vary among implementations and between execution
attempts in the same implementation.

Although the architecture does not prescribe the exact behavior for when results
are alowed to be boundedly undefined, the results of executing instructionsin
contexts where results are alowed to be boundedly undefined are constrained to
onesthat could have been achieved by executing an arbitrary sequence of defined
instructions, in valid form, starting in the state the machine was in before
attempting to execute the given instruction.

Breakpoint. A programmable event that forces the core to take a breakpoint exception.
Burst. A multiple-beat data transfer whose total sizeistypically equal to a cache block.

Busclock. Clock that causes the bus state transitions.
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Busmaster. The owner of the address or data bus; the device that initiates or requests the
transaction.

Cache. High-speed memory containing recently accessed data or instructions (subset of
main memory).

Cacheblock. A small region of contiguous memory that is copied from memory into a
cache. The size of acache block may vary among processors; the maximum block
Sizeisonepage. |n Power Architecture processors, cache coherency ismaintained
on a cache-block basis. Note that the term ‘cache block’ is often used
interchangeably with ‘cache line.’

Cache coherency. An attribute wherein an accurate and common view of memory is
provided to al devices that share the same memory system. Caches are coherent
if aprocessor performing aread fromits cacheissupplied with data corresponding
to the most recent value written to memory or to another processor’s cache.

Cacheflush. An operation that removes from a cache any data from a specified address
range. This operation ensures that any modified data within the specified address
range is written back to main memory. This operation is generated typically by a
Data Cache Block Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which the cacheis bypassed and the load
or store is performed to or from main memory.

Cast out. A cache block that must be written to memory when acache miss causes acache
block to be replaced.

Changed bit. One of two page history bits found in each page table entry (PTE). The
processor sets the changed bit if any storeis performed into the page. See also
Page access history bits and Referenced bit.

Clean. An operation that causes a cache block to be written to memory, if modified, and
then left in avalid, unmodified state in the cache.

Clear. To cause abit or bit field to register a value of zero. See also et.

Completer. InPCI-X, acompleter is the device addressed by atransaction (other than a
split completion transaction). If atarget terminates a transaction with a split
response, the completer becomes the initiator of the subsequent split completion.

Context synchronization. An operation that ensures that al instructions in execution
complete past the point where they can produce an exception, that all instructions
in execution complete in the context in which they began execution, and that all
subsequent instructions are fetched and executed in the new context. Context
synchronization may result from executing specific instructions (such asisync or
rfi) or when certain events occur (such as an exception).
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Copy-back operation. A cache operation in which acachelineis copied back to memory
to enforce cache coherency. Copy-back operations consist of snoop push-out
operations and cache cast-out operations.

Direct-mapped cache. A cache in which each main memory address can appear in only
one location within the cache; operates more quickly when the memory request is
acache hit.

Doubledatarate. Memory that allows data transfers at the start and end of aclock cycle.
thereby doubling the data rate.

Effective address (EA). The 32-bit address specified for aload, store, or an instruction
fetch. This addressis then submitted to the MMU for translation to either a
physical memory or an /O address.

Exclusive state. MEI state (E) in which only one caching device contains data that is also
in system memory.

Fetch. Retrieving instructions from either the cache or main memory and placing them
into the instruction queue.

Flush. An operation that causes a cache block to be invalidated and the data, if modified,
to be written to memory.

Frame-check sequence (FCYS). Specifiesthe standard 32-bit cyclic redundancy check
(CRC) obtained using the standard CCITT-CRC polynomial on al fields except
the preamble, SFD, and CRC.

General-purposeregister (GPR). Any of the 32 registersin the general-purpose register
file. These registers provide the source operands and destination results for all
integer data manipulation instructions. Integer load instructions move data from
memory to GPRs and store instructions move data from GPRs to memory.

Gigabit media-independent interface (GMI1) sublayer. Sublayer that provides a
standard interface between the MAC layer and the physical layer for 1000-Mbps
operation. It isolates the MAC layer and the physical layer, enabling the MAC
layer to be used with various implementations of the physical layer.

Guarded. The guarded attribute pertains to out-of-order execution. When a page is
designated as guarded, instructions and data cannot be accessed out-of-order.

Harvard architecture. An architectural model featuring separate caches and other
memory management resources for instructions and data
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Illegal instructions. A class of instructions that are not implemented for a particul ar
processor. These include instructions not defined by the architecture. In addition,
for 32-bit implementations, instructions that are defined only for 64-bit
implementations are considered to beillegal instructions. For 64-bit
implementations, instructionsthat are defined only for 32-bit implementations are
considered to be illegal instructions.

Implementation. A particular processor that conforms to the architecture, but may differ
from other architecture-compliant implementations (for example, in design,
feature set, and implementation of optional features).

I mprecise exception. A type of synchronous exception that isallowed not to adhere to the
precise exception model (see Precise exception). The Power Architecture
technology allows only floating-point exceptions to be handled imprecisely.

Inbound ATM U windows. Mappings that perform address translation from the external
address space to the local address space, attach attributes and transaction typesto
the transaction, and map the transaction to its target interface.

In-order. An aspect of an operation that adheres to a sequential model. An operationis
said to be performed in-order if, at thetimethat it is performed, it isknown to be
required by the sequential execution model.

Integer unit. An execution unit in the core responsible for executing integer instructions.

Instruction latency. Thetotal number of clock cycles necessary to execute an instruction
and make ready the results of that instruction.

Kill. An operation that causesacache block to beinvalidated without writing any modified
datato memory.

L2 cache. Level-2 cache. See Secondary cache.

Latency. The number of clock cycles necessary to execute an instruction and make ready
the results of that execution for a subsequent instruction.

L east significant bit (Isb). Thebit of least valuein an address, register, field, dataelement,
or instruction encoding.

L east significant byte (L SB). Thebyte of |least valuein an address, register, data element,
or instruction encoding.

Little-Endian. A byte-ordering method in memory where the address n of aword
corresponds to the least significant byte. In an addressed memory word, the bytes
areordered (left to right) 3, 2, 1, 0, with 3 being the most significant byte. See
Big-Endian.
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L ocal accesswindow. Mapping used to translate aregion of memory to a particular target
interface, such asthe DDR SDRAM controller or the PCI controller. The local
memory map is defined by a set of eight local access windows. The size of each
window can be configured from 4 Kbytesto 2 Gbytes.

Media access control (MAC) sublayer. Sublayer that provides alogical connection
between the MAC and its peer station. Its primary responsibility isto initialize,
control, and manage the connection with the peer station.

Medium-dependent interface (MDI) sublayer. Sublayer that defines different connector
types for different physical media and PMD devices.

Media-independent interface (M11) sublayer. Sublayer that provides a standard
interface between the MAC layer and the physical layer for 10/100-Mbps
operations. It isolates the MAC layer and the physical layer, enabling the MAC
layer to be used with various implementations of the physical layer.

Memory access ordering. The specific order in which the processor performs load and
store memory accesses and the order in which those accesses complete.

Memory coherency. An aspect of caching in which it is ensured that an accurate view of
memory is provided to al devices that share system memory.

Memory consistency. Refersto agreement of levels of memory with respect to asingle
processor and system memory (for example, on-chip cache, secondary cache, and
system memory).

Memory management unit (MM U). Thefunctional unit that is capable of trandating an
effective (logical) address to a physical address, providing protection
mechanisms, and defining caching methods.

Memory-mapped accesses. Accesses whose addresses use the page or block address
translation mechanisms provided by the MMU and that occur externally with the
bus protocol defined for memory.

Modified/exclusivelinvalid (MEI). Cache coherency protocol used to manage cacheson
different devices that share a memory system. Note that the Power Architecture
technology does not specify the implementation of an MEI protocol to ensure
cache coherency.

Modified state. MEI state (M) in which one, and only one, caching device has the valid
data for that address. The data at this address in external memory is not valid.

M ost significant bit (msb). The highest-order bit in an address, registers, dataelement, or
instruction encoding.

Most significant byte (M SB). The highest-order byte in an address, registers, data
element, or instruction encoding.
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NaN. An abbreviation for not a number; a symbolic entity encoded in floating-point
format. There are two types of NaNs—signaling NaNs and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect registers or generate
bus activity.

OCeaN (on-chip network). Non-blocking crossbar switch fabric. Enablesfull duplex port
connections at 128 Gb/s concurrent throughput and independent per port
transaction queuing and flow control. Permits high bandwidth, high performance,
as well as the execution of multiple data transactions.

Outbound ATM U windows. Mappings that perform address translations from local
32-bit address space to the address spaces of Rapidl O or PCI/PCI-X RapidIO,
which may be much larger than the local space. Outbound ATMU windows also
map attributes such as transaction type or priority level.

Packet. A unit of binary datathat can be routed through a network. Sometimes packet is
used to refer to the frame plus the preamble and start frame delimiter (SFD).

Page. A regionin memory. The OEA defines a page as a4-Kbyte area of memory aligned
on a 4-Kbyte boundary.

Page access history bits. The changed and referenced bitsin the PTE keep track of the
access history within the page. The referenced bit is set by the MMU whenever
the page is accessed for aread or write operation. The changed bit is set when the
page is stored into. See Changed bit and Referenced bit.

Page fault. A page fault is acondition that occurs when the processor attempts to access
amemory location that does not reside within a page not currently resident in
physical memory. A page fault exception condition occurswhen amatching, valid
page table entry (PTE[V] = 1) cannot be located.

Pagetable. A tablein memory is comprised of page table entries, or PTES. It is further
organized into eight PTEs per PTEG (page table entry group). The number of
PTEGs in the page table depends on the size of the page table (as specified in the
SDR1 register).

Pagetableentry (PTE). Datastructures containing information used to trand ate effective
address to physical address on a4-Kbyte page basis. A PTE consists of 8 bytes of
information in a32-bit processor and 16 bytes of information in a64-bit processor.

Physical coding sublayer (PCS). Sublayer responsible for encoding and decoding data
stream to and from the MA C sublayer. Medium (1000BASEX) 8B/10B coding is
used for fiber. Medium (1000BASET) 8B1Q coding isused for unshielded twisted
pair (UTP).
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Physical medium attachment (PM A) sublayer. Sublayer responsiblefor serializing code
groups into a bit stream suitable for serial bit-oriented physical devices (SerDes)
and vice versa. Synchronization isalso performed for proper datadecodinginthis
sublayer. The PMA sits between the PCS and the PM D sublayers. For fiber
medium (1000BA SEX) the interface on the PMD side of the PMA is aone-bit
1250-MHz signal, while on the PMA PCSside, theinterfaceis aten-bit interface
(TBI) a 125 MHz. The TBI is an alternative to the GMI|I interface. If the TBI is
used, the gigabit Ethernet controller must be capable of performing the PCS
function. For UTP medium, the PMD interface side of the PMA consists of four
pair of 62.5-MHz PAM5 encoded signals, while the PCS side provides the
1250-Mbps input to an 8B1Q4 PCS.

Physical medium dependent (PM D) sublayer. Sublayer responsible for signal
transmission. The typical PMD functionality includes amplifier, modulation, and
wave shaping. Different PMD devices may support different media.

Physical memory. Theactual memory that can be accessed through the system’s memory
bus.

Pipelining. A technique that breaks operations, such as instruction processing or bus
transactions, into smaller distinct stages or tenures (respectively) so that a
subsequent operation can begin before the previous one has compl eted.

Precise exceptions. A category of exception for which the pipeline can be stopped so
instructions that preceded the faulting instruction can complete and subsequent
instructions can be flushed and redispatched after exception handling has
completed. See Imprecise exceptions.

Primary opcode. The most-significant 6 bits (bits 0-5) of the instruction encoding that
identifies the type of instruction.

Program order. Theorder of instructionsin an executing program. More specifically, this
termisusedtorefer to the original order in which programinstructionsare fetched
into the instruction queue from the cache.

Protection boundary. A boundary between protection domains.

Protection domain. A protection domainisasegment, avirtual page, aBAT area, or a
range of unmapped effective addresses. It is defined only when the appropriate
relocate bit inthe MSR (IR or DR) is 1.

Q Quad word. A group of 16 contiguous locations starting at an address divisible by 16.

Quiesce. Tocometo rest. The processor issaid to quiesce when an exception istaken or a
syncinstruction is executed. Theinstruction stream is stopped at the decode stage
and executing instructions are allowed to complete to create a controlled context
for instructions that may be affected by out-of-order, parallel execution. See
Context synchronization.
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rA. TherA instruction field isused to specify a GPR to be used as a source or destination.
rB. TherB instruction field is used to specify a GPR to be used as a source.

rD. TherD instruction field is used to specify a GPR to be used as a destination.

rS. TherSinstruction field is used to specify a GPR to be used as a source.

Rapidl O. High-performance, packet-switched, interconnect architecture that provides
reliability, increased bandwidth, and faster bus speedsin an intra-system
interconnect. Designed to be compatible with integrated communications
processors, host processors, and networking digital signal processors,

Reconciliation sublayer. Sublayer that maps the terminology and commands used in the
MAC layer into electrical formats appropriate for the physical layer entities.

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set, updates the
condition register (CR) to reflect the result of the operation.

Reduced instruction set computing (RISC). An architecture characterized by
fixed-length instructions with nonoverlapping functionality and by a separate set
of load and store instructions that perform memory accesses.

Referenced bit. One of two page history bits found in each page table entry. The
processor setsthe referenced bit whenever the pageisaccessed for aread or write.
See also Page access history bits.

Requester. In PCI-X, arequester is an initiator that first introduces a transaction into the
PCI-X domain. If atransaction is terminated with a split response, the requester
becomes the target of the subsequent split completion.

Reservation. The processor establishes a reservation on a cache block of memory space
when it executes an lwar x instruction to read amemory semaphore into a GPR.

Reservation station. A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the results of instructions on which the
dispatched instruction may depend are not available.

Secondary cache. A cache memory that istypically larger and has alonger accesstime
than the primary cache. A secondary cache may be shared by multiple devices.
Also referred to asL 2, or level-2, cache.

Sequence. In PCI-X, asequenceis one or more transactions associated with carrying out
asingle logical transfer by a requester. Each transaction in the same sequence
carries the same unique sequence ID.

Set (v). Towrite anonzero valueto abit or bit field; the opposite of clear. The term *set’
may also be used to generally describe the updating of a bit or bit field.
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Set (n). A subdivision of a cache. Cacheable data can be stored in agiven location in one
of the sets, typically corresponding to itslower-order address bits. Because several
memory locations can map to the samelocation, cached dataistypically placed in
the set whose cache block corresponding to that address was used least recently.
See Set associative.

Set associative. Aspect of cache organization in which the cache spaceis divided into
sections, called sets. The cache controller associates a particular main memory
address with the contents of a particular set, or region, within the cache.

Slave. The device addressed by a master device. The slave isidentified in the address
tenure and is responsible for supplying or latching the requested data for the
master during the data tenure.

Snooping. Monitoring addresses driven by a bus master to detect the need for coherency
actions.

Snoop push. Response to a snooped transaction that hits a modified cache block. The
cache block is written to memory and made available to the snooping device.

Sall. Anoccurrence when an instruction cannot proceed to the next stage.
Sicky bit. A bit that when set must be cleared explicitly.

Super scalar machine. A machine that can issue multiple instructions concurrently from
aconventional linear instruction stream.

Supervisor mode. The privileged operation state of a processor. In supervisor mode,
software, typically the operating system, can access all control registers and can
access the supervisor memory space, among other privileged operations.

Synchronization. A processto ensure that operations occur strictly in order. See Context
synchronization.

Synchronous exception. An exception that is generated by the execution of a particular
instruction or instruction sequence. There are two types of synchronous
exceptions, precise and imprecise.

System memory. The physical memory available to a processor.

Tenure. The period of bus mastership. There can be separate address bus tenures and data
bus tenures.

Throughput. The measure of the number of instructions that are processed per clock
cycle.

Time-division multiplex (TDM). A singleseria channel used by several channelstaking
turns.
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Transaction. A complete exchange between two bus devices. A transaction is typicaly
comprised of an address tenure and one or more data tenures, which may overlap
or occur separately from the address tenure. A transaction may be minimally
comprised of an address tenure only.

Transfer termination. Signal that refersto both signals that acknowledge the transfer of
individual beats (of both single-beat transfer and individual beats of a burst
transfer) and to signals that mark the end of the tenure.

Translation lookaside buffer (TLB). A cachethat holdsrecently-used pagetable entries.

User mode. The operating state of a processor used typically by application software. In
user mode, software can access only certain control registers and can access only
user memory space. No privileged operations can be performed. Also referred to
as problem state.

Virtual address. Anintermediate address used in the translation of an effective addressto
aphysical address.

Virtual memory. The address space created using the memory management facilities of
the processor. Program accessto virtual memory is possibleonly when it coincides
with physical memory.

Way. A location in the cache that holds a cache block, its tags, and status bits.
Word. A 32-bit data element.

Write-back. A cache memory update policy in which processor write cycles are directly
written only to the cache. External memory is updated only indirectly, for
example, when amodified cache block is cast out to make room for newer data.

Write-through. A cache memory update policy in which all processor write cycles are
written to both the cache and memory.
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