

FAN7171_F085 High-Current High-Side Gate Drive IC

Features

- Automotive qualified to AEC Q100
- Floating Channel for Bootstrap Operation to +600V
- 4A Sourcing and 4A Sinking Current Driving Capability
- Common-Mode dv/dt Noise Cancelling Circuit
- 3.3V and 5V Input Logic Compatible
- Output In-phase with Input Signal
- Under- Voltage Lockout for V_{BS}
- 25V Shunt Regulator on V_{DD} and V_{BS}
- 8-Lead Small Outline Package (SO 8L NB)

Applications

- Common Rail Injection Systems
- DC-DC Converter
- Motor Drive (Electric Power Steering, Fans)

The FAN7171_F085 is a monolithic high-side gate drive IC, which can drive high-speed MOSFETs and IGBTs that operate up to +600V. It has a buffered output stage with all NMOS transistors designed for high pulse current driving capability and minimum cross-conduction.

Fairchild's high-voltage process and common-mode noise canceling techniques provide stable operation of the high-side driver under high dv/dt noise circumstances. An advanced level-shift circuit offers high-side gate driver operation up to $V_{\rm S}$ =-9.8V (typical) for $V_{\rm BS}$ =15V.

The UVLO circuit prevents malfunction when $\rm V_{BS}$ is lower than the specified threshold voltage.

The high-current and low-output voltage drop feature makes this device suitable for sustain switch driver and energy recovery switch driver in automotive motor drive inverter, switching power supply, and high-power DC-DC converter applications.

SO 8L NB

Description

Ordering Information

Part Number	Package	Operating Temperature Range	🖉 Eco Status	Packing Method
FAN7171M_F085 ⁽¹⁾	SO 8L NB	-40°C ~ 125°C	RoHS	Tube
FAN7171MX_F085 ⁽¹⁾	SO OL INB		RUHS	Tape & Reel

Note:

1. These devices passed wave soldering test by JESD22A-111.

🕗 For Fairchild's definition of "green" Eco Status, please visit: <u>http://www.fairchildsemi.com/company/green/rohs_green.html</u>.

Pin Configuration

Pin Definitions

Pin #	Name	Description
1	V _{DD}	Supply Voltage
2	IN	Logic Input for High-Side Gate Driver Output
3	NC	No Connection
4	GND	Ground
5	NC	No Connection
6	V _S	High-Voltage Floating Supply Return
7	НО	High-Side Driver Output
8	V _B	High-Side Floating Supply

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $-40^{\circ}C <= T_{A} <= 125^{\circ}C$ unless otherwise specified.

Symbol	Characteristics	Min.	Max.	Unit
V _S	High-Side Floating Offset Voltage	V _B -V _{SHUNT}	V _B +0.3	V
V _B	High-Side Floating Supply Voltage ⁽²⁾	-0.3	625.0	V
V _{HO}	High-Side Floating Output Voltage	V _S -0.3	V _B +0.3	V
V _{DD}	Low-Side and Logic Supply Voltage ⁽²⁾	-0.3	V _{SHUNT}	V
V _{IN}	Logic Input Voltage	-0.3	V _{DD} +0.3	V
dV _S /dt	Allowable Offset Voltage Slew Rate		± 50	V/ns
PD	Power Dissipation ^(3, 4, 5)	1	0.625	W
θ_{JA}	Thermal Resistance		200	°C/W
Т _Ј	Junction Temperature	-55	150	°C
T _{STG}	Storage Temperature	-55	150	°C
T _A	Operating Ambient Temperature	-40	125	°C
V _{ESD}	Human Body Model(HBM)		1500	V
V _{CDM}	Charge Device Model		500	V

Notes:

- This IC contains a shunt regulator on VDD and VBS with a normal breakdown voltage of 25V. Please note that this supply pin should not be driven by a low-impedance voltage source greater than the VSHUNT specified in the Electrical Characteristics section
- 2) Mounted on 76.2 x 114.3 x 1.6mm PCB (FR-4 glass epoxy material).
- Refer to the following standards: JESD51-2: Integral circuits thermal test method environmental conditions, natural convection, and JESD51-3: Low effective thermal conductivity test board for leaded surface mount packages.
- 4 Do not exceed power dissipation (P_D) under any circumstances.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{BS}	High-Side Floating Supply Voltage	V _S +10	V _S +20	V
V _S	High-Side Floating Supply Offset Voltage(DC)	6-V _{DD}	600	V
V _S	High-Side Floating Supply Offset Voltage(Transient)	-15(~170) -7(~400)	600	V
V _{HO}	High-Side Output Voltage	Vs	V _B	V
V _{IN}	Logic Input Voltage	GND	V _{DD}	V
V _{DD}	Supply Voltage	10	20	V

Electrical Characteristics

 $V_{BIAS}(V_{DD}, V_{BS})$ =15.0V, -40°C<=T_A <= 125°C, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to GND. The V_O and I_O parameters are relative to V_S and are applicable to the respective output HO.

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
POWER	SUPPLY SECTION	L		1	1	L
I _{QDD}	Quiescent V _{DD} Supply Current	V _{IN} =0V or 5V		25	70	μA
I _{PDD}	Operating V _{DD} Supply Current	f _{IN} =20KHz, No Load		35	100	μA
BOOTST	RAPPED SUPPLY SECTION				1	
V _{BSUV+}	V _{BS} Supply Under-Voltage Positive Going Threshold Voltage	V _{BS} =Sweep	8.2	9.2	10.2	V
V _{BSUV-}	V _{BS} Supply Under-Voltage Negative Going Threshold Voltage	V _{BS} =Sweep	7.5	8.5	9.5	V
V _{BSHYS}	V _{BS} Supply Under-Voltage Lockout Hysteresis Voltage	V _{BS} =Sweep		0.6		V
I _{LK}	Offset Supply Leakage Current	V _B =V _S =600V			50	μA
I _{QBS}	Quiescent V _{BS} Supply Current	V _{IN} =0V or 5V		60	120	μA
I _{PBS}	Operating V _{BS} Supply Current	C _{LOAD} =1nF, f _{IN} =20KHz, rms value		0.73	2.8	mA
SHUNT R	EGULATOR SECTION					
V _{SHUNT}	V _{DD} and V _{BS} Shunt Regulator Clamping Voltage	I _{SHUNT} =5mA	23	25		V
INPUT LC	OGIC SECTION(IN)					
V _{IH}	Logic "1" Input Voltage		2.5			V
V _{IL}	Logic "0" Input Voltage				0.8	V
I _{IN+}	Logic Input High Bias Current	V _{IN} =5V		45	125	μA
I _{IN-}	Logic Input Low Bias Current	V _{IN} =0V			2	μA
	Input Pull-down Resistance		40	110		KΩ
GATE DR	IVER OUTPUT SECTION(HO)					
V _{OH}	High Level Output Voltage (V _{BIAS} - V _O)	No Load			1.5	V
V _{OL}	Low Level Output Voltage	No Load			35	mV
I _{O+}	Output High, Short-Circuit Pulsed Current ⁽⁵⁾	V _{HO} =0V, V _{IN} =5V, PW ≤10µs	3.0	4.0		Α
I _{O-}	Output Low, Short-Circuit Pulsed Current ⁽⁵⁾	V _{HO} =15V,V _{IN} =0V, PW ≤10µs	3.0	4.0		Α
V _S	Allowable Negative V _S pin Voltage for IN Signal Propagation to HO			-9.8	-7.0	V

Note:

5 These parameters guaranteed by design.

Dynamic Electrical Characteristics

 $V_{BIAS}(V_{DD}, V_{BS})=15V, V_S=GND=0V, C_L=1000 pF, and -40^{\circ}C <= T_A <= 125^{\circ}C, unless otherwise specified.$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{on}	Turn-on Propagation Delay Time	V _S =0V		150	210	ns
t _{off}	Turn-off Propagation Delay Time	V _S =0V		150	210	ns
t _r	Turn-on Rise Time			25	50	ns
t _f	Turn-off Fall Time			15	45	ns

Switching Time Definitions

Figure 22. Switching Time Test Circuit (Referenced 8-SOP)

Figure 23. Switching Time Waveform Definitions

