

July 1997 Revised March 1999

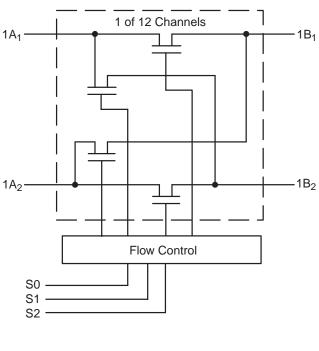
FST16212 24-Bit Bus Exchange Switch

General Description

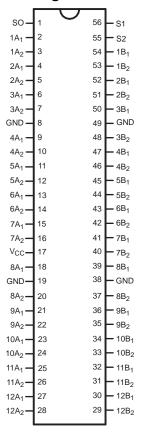
The Fairchild Switch FST16212 provides 24-bits of highspeed CMOS TTL-compatible bus switching or exchanging. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

The device operates as a 24-bit bus switch or a 12-bit bus exchanger, which allows data exchange between the four signal ports via the data-select terminals.

Features


- \blacksquare 4 Ω switch connection between two ports.
- Minimal propagation delay through the switch.
- Low I_{CC}.
- \blacksquare Zero bounce in flow-through mode.
- Control inputs compatible with TTL level.

Ordering Code:


Order Number	Package Number	Package Description
FST16212MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
FST16212MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Diagram

Connection Diagram

Pin Descriptions

Pin Name	Description
S2, S1, S0	Data-select inputs
A ₁ , A ₂	Bus A
B ₁ , B ₂	Bus B

Truth Table

S2	S1	S0	A ₁	A ₂	Function
L	L	L	Z	Z	Disconnect
L	L	Н	B ₁	Z	$A_1 = B_1$
L	Н	L	B ₂	Z	$A_1 = B_2$
L	Н	Н	Z	B_1	$A_2 = B_1$
Н	L	L	Z	B_2	$A_2 = B_2$
Н	L	Н	Z	Z	Disconnect
Н	Н	L	B ₁	B_2	$A_1 = B_1, A_2 = B_2$
Н	Н	Н	B ₂	B ₁	$A_1 = B_2, A_2 = B_1$

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions (Note 3)

 $\begin{array}{ll} \mbox{Power Supply Operating (V_{CC})} & 4.0 \mbox{V to } 5.5 \mbox{V} \\ \mbox{Input Voltage (V_{IN})} & 0 \mbox{V to } 5.5 \mbox{V} \\ \mbox{Output Voltage (V_{OUT})} & 0 \mbox{V to } 5.5 \mbox{V} \\ \end{array}$

Input Rise and Fall Time (t_r, t_f)

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused control inputs must be held high or low. They may not float.

DC Electrical Characteristics

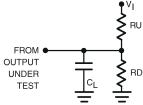
		v _{cc} (v)	$T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$				
Symbol	Parameter		Min	Typ (Note 4)	Max	Units	Conditions
V _{IK}	Clamp Diode Voltage	4.5			-1.2	V	$I_{IN} = -18mA$
V _{IH}	High Level Input Voltage	4.0-5.5	2.0			V	
V _{IL}	Low Level Input Voltage	4.0-5.5			0.8	V	
I _I	Input Leakage Current	5.5			±1.0	μΑ	0≤ V _{IN} ≤5.5V
		0			10	μΑ	V _{IN} = 5.5V
l _{OZ}	OFF-STATE Leakage Current	5.5			±1.0	μΑ	0 ≤A, B ≤V _{CC}
R _{ON}	Switch On Resistance	4.5		4	7	Ω	V _{IN} = 0V, I _{IN} = 64mA
	(Note 5)	4.5		4	7	Ω	$V_{IN} = 0V$, $I_{IN} = 30mA$
		4.5		8	12	Ω	V _{IN} = 2.4V, I _{IN} = 15mA
		4.0		14	20	Ω	V _{IN} = 2.4V, I _{IN} = 15mA
I _{CC}	Quiescent Supply Current	5.5			3	μΑ	V _{IN} = V _{CC} or GND, I _{OUT} = 0
ΔI _{CC}	Increase in I _{CC} per Input	5.5			2.5	mA	One input at 3.4V Other inputs at V _{CC} or GND

Note 4: Typical values are at V_{CC} = 5.0V and T_A=+25°C

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$T_A = -40$ °C to +85 °C, $C_L = 50 pF$, $RU = RD = 500 \Omega$						
		$V_{CC} = 4.5 - 5.5V$		$V_{CC} = 4.0V$		Units	Conditions	Figure No.
		Min	Max	Min	Max			
t _{PHL} ,t _{PLH}	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	V _I = Open	Figure 1,Figure 2
t _{PHL} ,t _{PLH}	Prop Delay S to Bus	1.5	7.0		7.5	ns	V _I = Open	Figure 1,Figure 2
t _{PZH} , t _{PZL}	Output Enable Time, S to A or B	1.5	7.5		8.0	ns	$V_I = 7V$ for t_{PZL} $V_I = Open$ for t_{PZH}	Figure 1,Figure 2
t _{PHZ} , t _{PLZ}	Output Disable Time S to A or B	1.0	8.5		9.0	ns	$V_I = 7V$ for t_{PLZ} $V_I = Open$ for t_{PHZ}	Figure 1,Figure 2

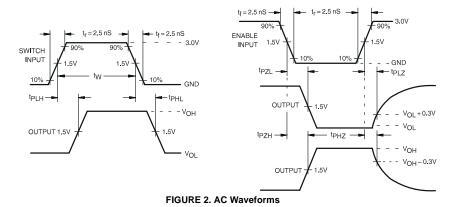

Note 6: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 7)

Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Control pin Input Capacitance	3		pF	V _{CC} = 5.0V
C _{I/O}	Input/Output Capacitance	10		pF	V _{CC} = 5.0V, S0, S1, or S2 =GND

Note 7: T_A = +25°C, f = 1 Mhz, Capacitance is characterized but not tested.

AC Loading and Waveforms



Note: Input driven by 50 Ohms source terminated in 50 Ohms

Note: C_L includes load and stray capacitance

Note Input PRR = 1.0 MHz, $t_W = 500 \text{ nS}$

FIGURE 1. AC Test Circuit

Physical Dimensions inches (millimeters) unless otherwise noted - A -ÄÄAAAAAAAAAAAAAAAAAAAAAAAAÄÄ 0.398 - 0.417 [10.10 - 10.60] LEAD #1 ◆ 0.010[0.25] C B S A S 0.291 - 0.299 [7.40 - 7.59] - B -0.005 - 0.009 [0.13 - 0.22] 0.020 ±0.003 TYP GAUGE PLANE 0.008 - 0.012 [0.21 - 0.30] TYP 0.010 [0.25] _0.020 - 0.040 [0.51 - 1.01] ⊕ 0.0031[0.08] W C A S B S DETAIL E TYP 45° x 0.015 - 0.025 SEATING PLANE -SEE DETAIL E ☐ 0.004[0.10] 0.025 TYP MSS6A (REV E) 56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide Package Number MS56A 14.0 ± 0.1 -A-8.1 (9.2 TYP) -B-4.05 (1.8 TYP) O.2 C B A (0.3 TYP) (0.5 TYP) LAND PATTERN RECOMMENDATION - 0.1 C ALL LEAD TIPS - SEE DETAIL A -(0.90) 1.1 MAX → 0.5 TYP ← 0.17 - 0.27 TYP └ 0.10 ± 0.05 TYP 0.09-0.20 TYP 0.13M A BS CS GAGE PLANE - SEATING PLANE 0.60 +0.15 DETAIL A TYPICAL

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

to perform when properly used in accordance with

which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com