
FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide
Rev. 2.2 — 5 April 2017 User guide

1 Introduction

This document describes the embedded firmware found in all derivatives of the
FXTH87xx02 device.

The intended audience for this document is firmware architects, developers, coders and
testers working with the FXTH87xx02 device.

This document is divided into three sections: This introduction, a section describing
global variables and standard formats used throughout the functions, and a third section
describing each function.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
2 / 46

2 Globals and formats

2.1 Global variables
Table 1 summarizes all global variables used by NXP firmware and their locations.
Developers must account for these variables when creating new user firmware.

Table 1. Global variable and their locations
Name Address Reference
TPMS_CONT_ACCEL_GLOBAL_VARIABLE $8E Section 2.1.2

TPMS_INTERRUPT_FLAG $8F Section 2.1.1.

2.1.1 TPMS_INTERRUPT_FLAG
This global variable keeps track of interrupts that have occurred. FXTH87xx02
Embedded Firmware uses it to keep track of expected interrupts. It can also be utilized
by the user for its own purposes. If an LFR interrupt occurs while a firmware function
is under execution, the LFR User Interrupt Vector will not be accessed, and the bit 2
(Table 2) will be the only indication available. Users should check this bit, either prior to
entering the firmware function or after the firmware function, to assure LF interrupts are
not missed. Also, a number of firmware functions utilize the Stop1 or Stop4 modes, which
disable the hardware Watch-dog block. In order to provide a back-up recovery, users
should utilize either the RTI or PWU which can be programmed for interrupt if a software
or firmware routine has consumed too much time. The Watch-dog is automatically
restarted when the program goes back in RUN mode.

The TPMS_INTERRUPT_FLAG is not cleared automatically. Users must clear this
variable after power-on-reset.

Table 2 shows the TPMS_INTERRUPT_FLAG format. The trigger condition column
describes what is necessary for that flag to be set.

Table 2. TPMS_INTERRUPT_FLAG format and trigger conditions
Flag BIT Trigger condition
LVD Interrupt 7 LVD interrupt entered.

PWU Interrupt 6 PWU interrupt entered.

TOF Interrupt 5 TOF interrupt entered.

LFR Error Interrupt 4 LFR interrupt entered and LFERF bit of the LFS register is set.

ADC Interrupt 3 ADC interrupt entered.

LFR Interrupt 2 LFR interrupt entered and LFERF bit of the LFS register is clear.

RTI Interrupt 1 RTI interrupt entered.

KBI Interrupt 0 KBI interrupt entered.

TPMS_INTERRUPT_FLAG is 1 byte long and is located at address $8F. Users must
account for this variable when developing for the FXTH87xx02.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
3 / 46

2.1.2 TPMS_CONT_ACCEL_GLOBAL_VARIABLE
TPMS_CONT_ACCEL_GLOBAL_VARIABLE is 1 byte long and is located at address
$8E. Users must account for this variable when developing for the FXTH87xx02, and can
ignore the contents of said variable as long as it is not overwritten. It is used internally by
the TPMS_READ_ACCEL family of functions and its purpose it to communicate the next
measurement’s sampling rate when the u8Avg argument is set to a value greater than 2.

2.2 Measurement error format

2.2.1 Definition of signal ranges
Each measured parameter (pressure, voltage, temperature, and acceleration) results
from an ADC conversion of an analog signal. This ADC result may then be passed by the
firmware to the application software as either the raw ADC result or further compensated
and scaled for an output between one and the maximum digital value minus one. The
minimum digital value of zero and the maximum digital value are reserved as error
codes.

The signal ranges and their significant data points are shown in Figure 1. In this definition
the signal source would normally output a signal between SINLO and SINHI. Due to
process, temperature and voltage variations this signal may increase its range to SINMIN
to SINMAX. In all cases the signal will be between the supply rails, so that the ADC
will convert it to a range of digital numbers between 0 and 1023 (or 0 and 4095 in the
case of temperature readings). These digital numbers will have corresponding DINMIN,
DINLO, DINHI, and DINMAX values. The ADC digital value is taken by the firmware and
compensated and scaled to give the required output code range.

Digital input values below DINMIN and above DINMAX are immediately flagged as being out
of range and generate error bits and the output is forced to the corresponding railed-high
or railed-low values.

Digital values below DINLO (but above DINMIN) or above DINHI (but not DINMAX) will most
likely cause an output that would be less than 1 or greater than 510, respectively. These
cases are considered underflow or overflow, respectively. Underflow results will be forced
to a value of 1. Overflow results will be forced to a value of 510.

Digital values between DINLO and DINHI will normally produce an output between 1 to
510 (for a 9-bit result). In some isolated cases due to compensation calculations and
rounding the result may be less than 1 or greater than 510, in which case the underflow
and overflow rule mentioned above is used.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
4 / 46

Figure 1. Measurement signal range definitions

2.2.2 Error status format
FXTH87xx02 Embedded Firmware functions that return a status byte commonly do so
using the error fields described in Table 3.

Table 3. Error status fields
Field Description

BIT7 - ADCERR

ADC Error — This status bit indicates an error was detected when
performing an ADC test within the TPMS_WIRE_AND_ADC_CHECK
routine.
0 — ADC operating as expected.
1 — ADC returned unexpected reading.

BIT6 – TERR

Temperature Measurement Error — This status bit indicates an error was
detected by a ADC reading of the temperature sensor that is outside of the
normally accepted range.
0 — Temperature error not detected in last firmware subroutine call.
1 — Temperature error detected in last firmware subroutine call.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
5 / 46

Field Description

BIT5 – VERR

Voltage Measurement Error — This status bit indicates an error was
detected by a ADC reading of the voltage reference that is outside of the
normally accepted range.
0 — Voltage error not detected in last firmware subroutine call.
1 — Voltage error detected in last firmware subroutine call.

BIT4 – AZERR

Z-axis Accelerometer Measurement Error (if applicable) — This status
bit indicates an error was detected by a bonding wire failure to the g-cell or
a ADC reading of the Z-axis accelerometer that is outside of the normally
accepted range.
0 — Acceleration error not detected in last firmware subroutine call.
1 — Acceleration error detected in last firmware subroutine call.

BIT3 – RESERVED Reserved

BIT2 – PERR

Pressure Measurement Error — This status bit indicates an error was
detected by a parity fault in the P-Chip trim, bonding wire failure to the
P-Chip or a ADC reading of the pressure that is outside of the normally
accepted range.
0 — Pressure error not detected in last firmware subroutine call.
1 — Pressure error detected in last firmware subroutine call.

BIT1 – BONDERR

Bond Wire Error — This status bit indicates an error was detected in any
of the bond wire checks of the g-cell or P-cell.
0 — Bond wire error not detected in last firmware subroutine call.
1 — Bond wire error detected in last firmware subroutine call.

BIT0 – OVFLOW

Calculation Overflow/Underflow — This status bit indicates that
a compensated measurement of pressure, temperature, voltage or
acceleration resulted in a digital output code outside of the expected range.
The output value will be clipped to the nearest highest or lowest allowed
value and the status bit will be set.
0 — Overflow/underflow not detected in last firmware subroutine call.
1 — Overflow/underflow detected in last firmware subroutine call.

2.3 Universal uncompensated measurement array (UUMA) format
The FXTH87xx02's measurement routines are divided into two subsets: routines
that return uncompensated measurements, and routines that take uncompensated
measurements as arguments and return compensated measurements.

In order to be consistent and keep the number of CPU cycles down, all uncompensated
measurement routines will return data following the array format described in Table 4,
and all compensating routines will take data from the same array.

Table 4. Universal uncompensated measurement array
Index Content

0 Uncompensated voltage

1 Uncompensated temperature

2 Uncompensated pressure

3 Uncompensated acceleration

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
6 / 46

This array is referred to as Universal Uncompensated Measurement Array (UUMA). It
can be located anywhere the user decides.

Each element must be 16-bits long (two bytes) regardless of what the actual bit-width of
the measurement is.

Each individual uncompensated measurement routine will only update its corresponding
item. For example, calling the TPMS_READ_VOLTAGE routine will only modify the
voltage element of the array. The rest will remain unchanged.

Compensation routines do not modify any elements in the UUMA.

2.4 Simulated SPI interface signal format
The FXTH87xx02 includes three routines (TPMS_MSG_INIT, TPMS_MSG_READ
and TPMS_MSG_WRITE) that, when used together, allow the user to perform serial
communication with the device through a simulated SPI interface.

The following assumptions are made:

• Only two pins are used: PTA0 for data (both incoming and outgoing) and PTA1 for
clock. No slave select is included by default, but the user may use any other pin if
required.

• The data pin has a pullup resistor enabled.
• The FXTH87xx02 will be a master device (the FXTH87xx02 will provide the clock).
• Data can be read/written eight bits at a time.
• Speed of the interface is dependant on bus clock settings.
• Data is transferred MSB first.
• A single line will be used for both sending and receiving data (BIDIROE = SET

according to NXP nomenclature).
– At the clock's rising edge, the master will place data on the pin. It will be valid until the

clock's falling edge. The slave must not drive the line during this period.
– At the clock's falling edge, the master will make the data pin an input and will "listen"

for data. The slave must then place data on the data line until the clock's rising edge.
• Clock Polarity = 0 (Normally low).
• Clock Phase = 1 (First half is high).

Figure 2 shows the details of the simulated SPI interface.

Write Read

Write
MSB

Read
MSB

Write
LSB

Read
LSB

PTA1

PTA0

Write WriteRead Read

Write Read

Figure 2. Description of the physical layer on the FXTH87xx02 simulated SPI interface

For further information on the use of the Simulated SPI interface routines, refer to Section
3.2.23, Section 3.2.24, and Section 3.2.25.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
7 / 46

2.5 Rapid decompression event array (T_RDE) format
The FXTH87xx02 includes a routine called TPMS_RDE_ADJUST_PRESSURE that
requires a pointer to an array of elements using a custom format called T_RDE. Said
format is easily manageable using a typedef instruction as shown in the following
example.

Example of sample typedef for a T_RDE array

typedef struct
{
 UINT16 u16CompPress; /* I/O 9-bit Compensated pressure reading */
 UINT8 u8ElapsedTime; /* I Elapsed time from previous reading */
 UINT16 u16WAvg; /* O Weighed average for running pressure */
 UINT8 u8PRes; /* O 8-bit pressure reserve value */
 UINT8 u8PMin; /* O 8-bit minimum pressure value */
 UINT8 u8RDEStatusFlags; /* O Contains flags for Clock and RDE Event */
 UINT16 u16RDEBailTimeOut; /* O Seconds to 60 mins bail-out */
 UINT8 u8RDETimeToAvg; /* O Seconds to next averaging event */
} T_RDE;

As shown by the comments, only the u16CompPress and u8ElapsedTime
elements of this array should be edited by the user; the rest will be updated by the
TPMS_RDE_ADJUST_PRESSURE function.

In order for TPMS_RDE_ADJUST_PRESSURE to work correctly, the T_RDE variable
must be declared as a global and must reside in an NVM location.

For more information on TPMS_RDE_ADJUST_PRESSURE, refer to Section 3.2.43.

2.6 LFR registers initialized by firmware
Some LFR registers are touched by firmware when taking the reset vector and before
giving control to the user. The goal of this action is to configure the LFR module in the
best-known configuration for Manchester-encoded reception.

LFR registers will be configured differently depending on the user-selected sensitivity.
Table 5 and Table 6 describe these settings.

Table 5. Customer-configurable TMPS7 and LF Register with SENS = 1
Page-0 Bit name

Register name 7 6 5 4 3 2 1 0

LFCTL1 LFEN SRES CARMOD PAGE IDSEL SENS

LFCTL2 LFSTM LFONTM

LFCTL3 LFDO TOGMOD SYNC LFCDTM

LFCTL4 LFDRIE LFERIE LFCDIE LFIDIE DECEN VALEN TIMOUT

LFS LFDRF LFERF LFCDF LFIDF LFOVF LFEOMF LPSM LFIAK

LFDATA RXDATA

LFIDL ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

LFIDH ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8

Page-1 Bit name

Register name 7 6 5 4 3 2 1 0

LFCTL1 LFEN SRES CARMOD PAGE IDSEL SENS = 1

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
8 / 46

Page-1 Bit name

Register name 7 6 5 4 3 2 1 0

LFCTRLE — — — — — 0 0 0

LFCTRLD 1 0 DEQS 1 1 1 0 1

LFCTRLC 0 0 0 1 AZEN LOWQ DEQEN

LFCTRLB 1 1 LFFAF LFCAF LFPOL 1 1 0

LFCTRLA — — — — LFCC

TRIM1 — — — — — — — —

TRIM2 — — — — — — — —

Shaded cells show register touched by firmware; loaded value is displayed.

Table 6. Customer-configurable TMPS and LF Register with SENS = 2
Page-0 Bit name

Register name 7 6 5 4 3 2 1 0

LFCTL1 LFEN SRES CARMOD PAGE IDSEL SENS

LFCTL2 LFSTM LFONTM

LFCTL3 LFDO TOGMOD SYNC LFCDTM

LFCTL4 LFDRIE LFERIE LFCDIE LFIDIE DECEN VALEN TIMOUT

LFS LFDRF LFERF LFCDF LFIDF LFOVF LFEOMF LPSM LFIAK

LFDATA RXDATA

LFIDL ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

LFIDH ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8

Page-1 Bit name

Register name 7 6 5 4 3 2 1 0

LFCTL1 LFEN SRES CARMOD PAGE IDSEL SENS = 2

LFCTRLE — — — — — 0 0 0

LFCTRLD 1 0 DEQS 1 1 1 0 1

LFCTRLC 0 0 0 1 AZEN LOWQ DEQEN

LFCTRLB 1 1 LFFAF LFCAF LFPOL 1 1 0

LFCTRLA — — — — LFCC

TRIM1 — — — — — — — —

TRIM2 — — — — — — — —

 Shaded cells show register touched by firmware; loaded value is displayed.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
9 / 46

3 Firmware functions

3.1 Firmware jump table
The FXTH87xx02 device contains an embedded firmware function jump table to allow
programmers to reference any function through a function pointer to an absolute address.
This helps isolate NXP firmware from the user's application. Table 7 shows a list of all
firmware functions, their address, and to which FXTH87xx02 derivative they apply.

For a description of how to implement pointers to fixed addresses using the C language,
please refer to Manual_Compiler_HC08.pdf (part of the CodeWarrior package).

Table 7. FXTH87xx02's firmware function jump table
Absolute Address Return type Function Reference

$E000 void TPMS_RESET Section 3.2.1

$E003 UINT8 TPMS_READ_VOLTAGE Section 3.2.2

$E006 UINT8 TPMS_COMP_VOLTAGE Section 3.2.3

$E009 UINT8 TPMS_READ_TEMPERATURE Section 3.2.4

$E00C UINT8 TPMS_COMP_TEMPERATURE Section 3.2.5

$E00F UINT8 TPMS_READ_PRESSURE Section 3.2.6

$E012 UINT8 TPMS_COMP_PRESSURE Section 3.2.7

$E015 UINT8 TPMS_READ_ACCELERATION Section 3.2.8

$E018 UINT8 TPMS_COMP_ACCELERATION Section 3.2.9

$E01B UINT8 TPMS_READ_V0 Section 3.2.10

$E01E UINT8 TPMS_READ_V1 Section 3.2.11

$E021 UINT8 TPMS_LFOCAL Section 3.2.12

$E024 UINT8 TPMS_MFOCAL Section 3.2.13

$E027 UINT16 TPMS_WAVG Section 3.2.14

$E02A void TPMS_RF_RESET Section 3.2.15

$E02D void TPMS_RF_READ_DATA Section 3.2.16

$E030 void TPMS_RF_READ_DATA_REVERSE Section 3.2.17

$E033 void TPMS_RF_WRITE_DATA Section 3.2.18

$E036 void TPMS_RF_WRITE_DATA_REVERSE Section 3.2.19

$E039 void TPMS_RF_CONFIG_DATA Section 3.2.20

$E03C void Reserved —

$E03F void TPMS_RF_SET_TX Section 3.2.21

$E042 void TPMS_RF_DYNAMIC_POWER Section 3.2.22

$E045 void TPMS_MSG_INIT Section 3.2.23

$E048 UINT8 TPMS_MSG_READ Section 3.2.24

$E04B UINT8 TPMS_MSG_WRITE Section 3.2.25

$E04E UINT8 TPMS_CHECKSUM_XOR Section 3.2.26

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
10 / 46

Absolute Address Return type Function Reference
$E051 UINT8 TPMS_CRC8 Section 3.2.27

$E054 UINT16 TPMS_CRC16 Section 3.2.28

$E057 UINT16 TPMS_SQUARE_ROOT Section 3.2.29

$E05A void TPMS_READ_ID Section 3.2.30

$E05D void TPMS_LF_ENABLE Section 3.2.31

$E060 UINT8 TPMS_LF_READ_DATA Section 3.2.32

$E063 UINT8 TPMS_WIRE_AND_ADC_CHECK Section 3.2.33

$E066 void TPMS_FLASH_WRITE Section 3.2.34

$E069 UINT16 TPMS_FLASH_CHECK Section 3.2.35

$E06C UINT8 TPMS_FLASH_ERASE Section 3.2.36

$E06F UINT8 TPMS_READ_DYNAMIC_ACCEL Section 3.2.37

$E072 void TPMS_RF_ENABLE Section 3.2.38

$E075 UINT8 TPMS_FLASH_PROTECTION Section 3.2.39

$E078 void Reserved —

$E07B void TPMS_MULT_SIGN_INT16 Section 3.2.40

$E07E UINT8 TPMS_VREG_CHECK Section 3.2.41

$E081 UINT8 TPMS_PRECHARGE_VREG Section 3.2.42

$E084 UINT8 TPMS_RDE_ADJUST_PRESSURE Section 3.2.43

$E087 UINT8 TPMS_READ_ACCEL_CONT_START Section 3.2.44

$E08A UINT8 TPMS_READ_ACCEL_CONT Section 3.2.45

$E08D UINT8 TPMS_READ_ACCEL_CONT_STOP Section 3.2.46

3.2 Function description
The following function descriptions include stack sizes and approximate duration.

Stack sizes have been calculated by executing each routine and measuring the amount
of memory utilized. Unless noted, they represent the maximum stack the function will
utilize.

Duration estimates are performed on one part at room temperature. They are intended to
serve as a guideline for typical execution time.

3.2.1 void TPMS_RESET(void)
• Description: This function is called when taking the reset vector. It will first configure

certain LF registers to settings matching internal test known as Case 4 at NXP. Next, it
will reset the Stack Pointer to the last RAM location and jump to the location stored by
the user in $DFFE:DFFF. No further initialization is performed.

• Stack size: 2 bytes
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await interrupts. It is not affected by

interrupts either.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
11 / 46

• Resources: Stack
• Input Parameters:

– None
• Returns:

– void

3.2.2 UINT8 TPMS_READ_VOLTAGE(UINT16 *u16UUMA)
• Description: Performs a 10-bit uncompensated voltage measurement and places it

in the UUMA. While waiting for the ADC to converge, this function goes into STOP4. If
the ADC, for an unexpected reason, fails to converge, this function has a built-in time-
out: After five continuous non-ADC interrupts, the function will assume a failed ADC
reading, flag it accordingly, and exit.
– If the ADC value is over or under the normal operating condition, the "voltage error"

status flag will be set. The expected voltage result will be forced to either "0" or
"1023." (rail high or rail low).

– If the ADC times out with no result, the "ADC error" status flag will be set.
– Measurements below 2.1 V are not guaranteed for accuracy.

• Stack size: 22 bytes
• Approx. Duration: 102 μs
• Power Management: This function requires the core to be configured for STOP4 mode

and running at full bus speed.
• Interrupt Management: This function utilizes the ADC interrupt to wake-up from STOP

mode.
• Resources: ADC, bandgap.
• Input Parameters:

– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as
described in Section 2.3). Only the 10-bit uncompensated voltage result will be
updated.

• Returns:
– UINT8 u8Status: Valid error flags/outputs are described in Table 8.

Table 8. Valid output conditions for TPMS_READ_VOLTAGE
u8Status Value Measurement Value Condition

$20 $03FF Uncompensated voltage reading outside of valid
range (high).

$20 $0000 Uncompensated voltage reading outside of valid
range (low).

$80 Undefined Uncompensated voltage reading not acquired.

$00 Between $0001 - $03FE Valid uncompensated voltage reading.

Warning: The bandgap bit (BIT0 in the SPMSC1 register) must be set prior to calling this
function for results to be valid.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
12 / 46

3.2.3 UINT8 TPMS_COMP_VOLTAGE(UINT8 *u8CompVoltage, *UINT16
u16UUMA)
• Description: Performs an 8-bit compensated voltage measurement. It is the user's

responsibility to ensure that updated and valid uncompensated voltage reading is
available in the UUMA for this routine to return a meaningful value.
– If Vout < 2.1 V, u8Voltage will be 1 and the "over/underflow" status flag will be set.
– Measurements below 2.1 V are not guaranteed for accuracy.
– If Vout ≥ 3.75 V, result will be $FE and the "over/underflow" status flag will be set.
– For repeatability data, refer to the FXTH87xxxx data sheet family.

• Stack size: 31 bytes
• Approx. Duration: 204 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await interrupts. It is not affected by

interrupts either.
• Resources: UUMA
• Input Parameters:

– UINT8 *u8Voltage: Updated 8-bit compensated voltage result.
– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as

described in Section 2.3). Uncompensated voltage will be utilized from this array.
• Returns:

– UINT8 u8Status: Valid error flags/outputs are described in Table 9.

Table 9. Valid output conditions for TPMS_COMP_VOLTAGE
u8Status Value Measurement Value Condition

$01 $FE Compensated voltage reading outside of valid
range (high).

$01 $01 Compensated voltage reading outside of valid
range (low).

$00 Between $01 - $FE Valid compensated voltage reading.

3.2.4 UINT8 TPMS_READ_TEMPERATURE(UINT16 *u16UUMA)
• Description: Performs a 12-bit uncompensated temperature measurement and places

it in the UUMA. While waiting for the ADC to converge, this function goes into STOP4.
If the ADC, for an unexpected reason, fails to converge, this function has a built-in time-
out: After five continuous non-ADC interrupts, the function will assume a failed ADC
reading, flag it accordingly, and exit. If the LVWF (Low Voltage Warning Flag) hardware
bit is set, it will flag it accordingly as well.
– If the ADC value is over or under the normal operating condition, the "temperature

error" status flag will be set. The expected temperature result will be forced to either
"0" or "4095." (rail high or rail low).

– If the ADC times out with no result, the "ADC error" status flag will be set.
• Stack size: 17 bytes
• Approx. Duration: 223 μs
• Power Management: This function requires the core to be configured for STOP4 mode

and running at full bus speed.
• Interrupt Management: This function utilizes the ADC interrupt to wake-up from STOP

mode.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
13 / 46

• Resources: ADC, bandgap.
• Input Parameters:

– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as
described in Section 2.3). Only the 12-bit uncompensated temperature result will be
updated.

• Returns:
– UINT8 u8Status:Valid error flags/outputs are described in Table 10.

Table 10. Valid output conditions for TPMS_READ_TEMPERATURE
u8Status Value Measurement Value Condition

$40 $0FFF Uncompensated temperature reading outside of
valid range (high).

$40 $0000 Uncompensated temperature reading outside of
valid range (low).

$60 $0FFF Uncompensated temperature reading outside of
valid range (high), and LVWF set.

$60 $0000 Uncompensated temperature reading outside of
valid range (low), and LVWF set.

$80 Undefined Uncompensated temperature reading not
acquired

$A0 Undefined Uncompensated temperature reading not
acquired, and LVWF set.

$00 Between $0001 - $0FFE Valid uncompensated temperature reading.

$20 Between $0001 - $0FFE Valid uncompensated temperature reading,
LVWF set.

Warning: The bandgap bit (BIT0 in the SPMSC1 register) must be set prior to calling this
function for results to be valid.

3.2.5 UINT8 TPMS_COMP_TEMPERATURE(UINT8 *u8Temp, UINT16 *u16UUMA)
• Description: Performs an 8-bit compensated temperature measurement. It is the

user's responsibility to ensure that updated and valid uncompensated temperature
reading is available in the UUMA for this routine to return a meaningful value.
– If Tout < -40 °C, u8Temp will be 1 and the "over/underflow" status flag will be set.
– If Tout ≥ 200 °C, u8Temp will be $FE and the "over/underflow" status flag will be set.

• Stack size: 30 bytes
• Approx. Duration: 221 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await interrupts. It is not affected by

interrupts either.
• Resources: UUMA
• Input Parameters:

– UINT8 *u8Temp: Updated 8-bit compensated temperature result.
– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as

described in Section 2.3). Uncompensated temperature will be utilized from this
array.

• Returns: UINT8 u8Status: Valid error flags/outputs are described in Table 11.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
14 / 46

Table 11. Valid output conditions for TPMS_COMP_TEMPERATURE
u8Status Value Measurement Value Condition

$01 $FE Compensated temperature reading outside of
valid range (high).

$01 $01 Compensated temperature reading outside of
valid range (low).

$00 Between $01 - $FE Valid compensated temperature reading.

3.2.6 UINT8 TPMS_READ_PRESSURE(UINT16 *u16UUMA, UINT8 u8Avg)
• Description: Performs an 10-bit uncompensated pressure measurement and places it

in the UUMA. While waiting for the ADC to converge, this function goes into STOP4. If
the ADC, for an unexpected reason, fails to converge, this function has a built-in time-
out: After five continuous non-ADC interrupts, the function will assume a failed ADC
reading, flag it accordingly, and exit. If the LVWF (Low Voltage Warning Flag) hardware
bit is set, it will flag it accordingly as well.
– If the ADC value is over or under the normal operating condition, the "pressure error"

status flag will be set. The expected pressure result will be forced to either "0" or
"1023." (rail high or rail low).

– If the ADC times out with no result, the "ADC error" status flag will be set.
• Stack size: 26 bytes
• Approx. Duration: 2870 μs with average of 1. Approximately 751 bus clock cycles +

312 MFO clock cycles + ~20 μs ADC conversion + STOP4 exit time for average of 1.

Table 12. Approximate duration for TPMS_READ_PRESSURE

Mode Component
Estimated

duration during
normal operation

Observed
duration

[ms]
Bus clock cycles 760 ——

MFO clock cycles 312 ——

ADC conversion time [μs] [1] 20 ——

STOP4 exit time [μs] [2] 100 ——

Average of 1

Total [ms] 2.806 2.87

Additional bus clock cycles 176 ——

Additional MFO clock cycles 312 ——

Additional ADC conversion time(1) 20 ——

Additional STOP4 exit time(2) 100 ——

Additional time [ms] 2.66 ——

Average of 2

Total [ms] 5.466 5.582

Additional bus clock cycles per additional
sample

176 ——

Additional MFO clock cycles per additional
sample

8 ——Average of ≥ 4

Additional ADC conversion time per
additional sample(1)

20 ——

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
15 / 46

Mode Component
Estimated

duration during
normal operation

Observed
duration

[ms]
Additional STOP4 exit time per additional
sample(2)

100 ——

Additional time per additional sample [ms] 0.228 ——

Total for average = 4 [ms] 5.922 5.971

Total for average = 8 [ms] 6.834 6.759

Total for average = 16 [ms] 8.658 8.33

[1] Typical ADC conversion time with nominal ADC clock at conversion settings.
[2] Typical STOP4 exit time. For exact range, refer to product data sheet.

• Power Management: This function requires the core to be configured for STOP4 mode
and running at full bus speed.

• Interrupt Management: This function utilizes the ADC interrupt to wake-up from STOP
mode.

• Resources: SMI, ADC, internal bond wires.
• Input Parameters:

– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as
described in Section 2.3). Only the 10-bit uncompensated pressure result will be
updated.

– UINT8 u8Avg: Number of measurements to average into one result. The value can
be set to 1, 2, 4, 8, or 16.

• Returns: UINT8 u8Status: Valid error flags/outputs are described in Table 13.

.

Table 13. Valid output conditions for TPMS_READ_PRESSURE
u8Status Value Measurement Value Condition

$04 $03FF Uncompensated pressure reading outside of valid
range (high).

$04 $0000 Uncompensated pressure reading outside of valid
range (low).

$24 $03FF Uncompensated pressure reading outside of valid
range (high), and LVWF set.

$24 $0000 Uncompensated pressure reading outside of valid
range (low), and LVWF set.

$80 $0000 Uncompensated pressure reading not acquired.

$A0 $0000 Uncompensated pressure reading not acquired,
and LVWF set.

$00 Between $0001 - $03FE Valid uncompensated pressure reading.

$20 Between $0001 - $03FF Valid uncompensated pressure reading, and
LVWF set.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
16 / 46

3.2.7 UINT8 TPMS_COMP_PRESSURE(UINT16 *u16CompPressure, UINT16
*u16UUMA)
• Description: Performs an 9-bit compensated pressure measurement. It is the user's

responsibility to ensure that updated and valid uncompensated voltage, temperature
and pressure readings are available in the UUMA for this routine to return a meaningful
value.
– If either the temperature or supply voltage measurements inherent to this function

result in a fault, the pressure reading will be forced to 0 and the appropriate pressure,
temperature and/or voltage flags will be set in the status flag.

– If Pout < 100 kPa, the "over/underflow" status flag will be set, and u16CompPressure
will be forced to $001.

– If Pout ≥ maximum pressure for the part number, u16CompPressure will be $1FE and
the "over/underflow" status flag will be set.

– If the passed uncompensated voltage measurement is estimated to be under the
guaranteed operational region, the routine will set the "Voltage" status flag. The
accuracy of the returned value is not guaranteed.

– For repeatability data, refer to the FXTH87xxxx data sheet family.
• Stack size: 46 bytes
• Approx. Duration: 872 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await interrupts. It is not affected by

interrupts either.
• Resources: UUMA
• Input Parameters:

– UINT16 *u16Pressure: Updated 9-bit compensated pressure result.
– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as

described in Section 2.3). Uncompensated voltage, temperature and pressure will be
taken from this array.

• Returns: UINT8 u8Status: Valid error flags/outputs are described in Table 14.

Table 14. Valid output conditions for TPMS_COMP_PRESSURE
u8Status Value Measurement Value Condition

$01 $01FE Compensated pressure reading outside of valid
range (high).

$01 $0001 Compensated pressure reading outside of valid
range (low).

$21 $01FE Compensated pressure reading outside of
valid range (high), and uncompensated voltage
suspected to be below valid operating range for
this function.

$21 $0001 Compensated pressure reading outside of
valid range (low), and uncompensated voltage
suspected to be under below operating range for
this function.

$20 Between $0001 - $01FE Uncompensated voltage suspected to be below
valid operating range for this function; The
compensated reading is not guaranteed for
accuracy.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
17 / 46

u8Status Value Measurement Value Condition
$00 Between $0001 - $01FE Valid compensated pressure reading.

3.2.8 UINT8 TPMS_READ_ACCELERATION(UINT16 *u16UUMA, UINT8 u8Avg,
UINT8 u8ModeSelect, UINT8 u8DynamicOffset)
• Description: Performs an uncompensated 10-bit measurement. While waiting for

the ADC to converge, this function goes into STOP4. If the ADC, for an unexpected
reason, fails to converge, this function has a built-in time-out: After five continuous
non-ADC interrupts, the function will assume a failed ADC reading, flag it accordingly,
and exit. If the LVWF (Low Voltage Warning Flag) hardware bit is set, it will flag it
accordingly as well.
– If the ADC value is over or under the normal operating condition, the "acceleration

error" status flag will be set. The expected acceleration result will be forced to either
"0" or "1023." (rail high or rail low).

– If the ADC times out with no result, the "ADC error" status flag will be set.
• Stack size: 31 bytes for 500 Hz, 34 bytes for 250 Hz.
• Approx. Duration:

Table 15. Approximate duration for TPMS_READ_ACCELERATION

Mode Component

Estimated
duration
during
normal

operation

Observed
duration

[ms]

Bus clock cycles 760 —

MFO clock cycles 312 ——

ADC conversion time [μs] [1] 20 ——

STOP4 exit time [μs] [2] 100 ——

500 Hz,
Average of 1

Total [ms] 2.806 2.87

Additional bus clock cycles 176 ——

Additional MFO clock cycles 312 ——

Additional ADC conversion time(1) 20 ——

Additional STOP4 exit time(2) 100 ——

Additional time [ms] 2.66 ——

500 Hz,
Average of 2

Total [ms] 5.466 5.5932

Additional bus clock cycles per additional
sample

176 ——

Additional MFO clock cycles per additional
sample

8 ——

Additional ADC conversion time per additional
sample(1)

20 ——
500 Hz,

Average of ≥ 4

Additional STOP4 exit time per additional
sample(2)

100 ——

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
18 / 46

Mode Component

Estimated
duration
during
normal

operation

Observed
duration

[ms]

Additional time per additional sample [ms] 0.228

Total for average = 4 [ms] 5.922 5.988

Total for average = 8 [ms] 6.834 6.774

Total for average = 16 [ms] 8.658 8.33

Bus clock cycles 805 ——

MFO clock cycles 468 ——

ADC conversion time [μs](1) 40 ——

STOP4 exit time [μs](2) 200 ——

250 Hz,
Average of 1

Total [ms] 4.18525 4.22

Additional bus clock cycles 176 ——

Additional MFO clock cycles 312 ——

Additional ADC conversion time 20 ——

Additional STOP4 exit time 100 ——

Additional time [ms] 2.66 ——

250 Hz,
Average of 2

Total [ms] 6.84525 7.058

Additional bus clock cycles per additional
sample

176 ——

Additional MFO clock cycles per additional
sample

8 ——

Additional ADC conversion time per additional
sample(1)

20 ——

Additional STOP4 exit time per additional
sample(2)

100 ——

Additional time per additional sample [ms] 0.228 ——

Total for average = 4 [ms] 7.30125 7.458

Total for average = 8 [ms] 8.21325 8.254

500 Hz,
Average of ≥ 4

Total for average = 16 [ms] 10.03725 9.827

[1] Typical ADC conversion time with nominal ADC clock at conversion settings.
[2] Typical STOP4 exit time. For exact range, refer to product data sheet.

• Power Management: This function requires the core to be configured for STOP4 mode
and running at full bus speed.

• Interrupt Management: This function utilizes the ADC interrupt to wake-up from STOP
mode.

• Resources: SMI, ADC, internal bond wires.
• Input Parameters:

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
19 / 46

– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as
described in Section 2.3). Only the 10-bit uncompensated acceleration result will be
updated.

– UINT8 u8Avg: Number of measurements to average into one result. The value can
be set to 1, 2, 4, 8, or 16.

– UINT8 u8ModeSelect: Will set-up the acceleration measurement based on Table 16.

Table 16. u8ModeSelect options
u8ModeSelect Value Selected Mode

0 500 Hz low-pass filter selected, normal dynamic range.

1 250 Hz low-pass filter selected, normal dynamic range.

• UINT8 u8DynamicOffset: Selects the offset setting for the appropriate acceleration
reading depending on what BIT1 of u8ModeSelect is. For normal dynamic offset mode,
default index is 6. Valid range is 0 - 15.

• Returns: UINT8 u8Status: Valid error flags/outputs are described in Table 17.

Table 17. Valid output conditions for TPMS_READ_ACCELERATION
u8Status Value Measurement Value Condition

$10 $03FF Uncompensated acceleration reading outside of
valid range (high).

$10 $0000 Uncompensated acceleration reading outside of
valid range (low).

$30 $03FF Uncompensated acceleration reading outside of
valid range (high), and LVWF set.

$30 $0000 Uncompensated acceleration reading outside of
valid range (low), and LVWF set.

$80 $0000 Uncompensated acceleration reading not
acquired.

$A0 $0000 Uncompensated acceleration reading not
acquired, and LVWF set.

$00 Between $0001 - $03FE Valid uncompensated acceleration reading.

$20 Between $0001 - $03FE Valid uncompensated acceleration reading, but
LVWF set.

3.2.9 UINT8 TPMS_COMP_ACCELERATION(UINT16 *u16CompAccel, UINT16*
u16UUMA)
• Description: Performs an 9-bit compensated acceleration measurement. It is the

user's responsibility to ensure that updated and valid uncompensated voltage,
temperature and acceleration readings are available in the UUMA for this routine to
return a meaningful value.
– If u16CompAccel rails low, u16CompAccel will be forced to 1 and the "over/

underflow" status flag will be set.
– If u16CompAccel rails high, u16CompAccel will be forced to $1FE and the "over/

underflow" status flag will be set.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
20 / 46

– If the incoming uncompensated voltage measurement is estimated to be under the
guaranteed operational region, the routine will set the "Voltage" status flag. The
accuracy of the returned value is not guaranteed.

– For repeatability data, refer to the FXTH87xxxx data sheet family.
• Stack size: 55 bytes
• Approx. Duration: 952 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await interrupts. It is not affected by

interrupts either.
• Resources: UUMA
• Input Parameters:

– UINT16 *u16Accel: Updated 9-bit compensated acceleration.
– UINT16 *u16UUMA: Pointer to Universal Uncompensated Measurement Array (as

described in Section 2.3). Uncompensated voltage, temperature and acceleration will
be taken from this array.

• Returns:
– UINT8 u8Status: Valid error flags/outputs are described in Table 18.

Table 18. Valid output conditions for TPMS_COMP_ACCELERATION
u8Status Value Measurement Value Condition

$01 $01FE Compensated acceleration reading outside of
valid range (high).

$01 $0001 Compensated acceleration reading outside of
valid range (low).

$21 $01FE

Compensated acceleration reading outside of
valid range (high), and uncompensated voltage
suspected to be below valid operating range for
this function.

$21 $0001

Compensated acceleration reading outside of
valid range (low), and uncompensated voltage
suspected to be below valid operating range for
this function.

$20 Between $0001 - $01FE

Uncompensated voltage suspected to be below
valid operating range for this function; The
compensated reading is not guaranteed for
accuracy.

$00 Between $0001 - $01FE Valid compensated acceleration reading.

3.2.10 UINT8 TPMS_READ_V0(UINT16 *u16Result, UINT8 u8Avg)
• Description: Performs an 10-bit uncompensated measurement at pin PTA0.
• Stack size: 23 bytes
• Approx. Duration: 109 μs
• Power Management: This function requires the core to be configured for STOP4 mode

and running at full bus speed.
• Interrupt Management: This function utilizes the ADC interrupt to wake-up from STOP

mode.
• Resources: ADC, PTA0.
• Input Parameters:

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
21 / 46

– UINT16 *u16Result: Updated 10-bit uncompensated measurement.
– UINT8 u8Avg: Number of measurements to average into one result. The value can

be set to 1, 2, 4, 8, or 16.
• Returns:

– UINT8 u8Status: Valid error flags/outputs are described in Table 19.

Table 19. Valid output conditions for TPMS_READ_V0 and TPMS_READ_V1
u8Status Value Measurement Value Condition

$01 $0000 Reading not acquired.

$00 Between $0000 - $03FE Valid reading.

3.2.11 UINT8 TPMS_READ_V1(UINT16 *u16Result, UINT8 u8Avg)
• Description: Performs an 10-bit uncompensated measurement at pin PTA1.
• Stack size: 23 bytes
• Approx. Duration: 109 μs
• Power Management: This function requires the core to be configured for STOP4 mode

and running at full bus speed.
• Interrupt Management: This function utilizes the ADC interrupt to wake-up from STOP

mode.
• Resources: ADC, PTA1.
• Input Parameters:

– UINT16 *u16Result: Updated 10-bit uncompensated measurement.
– UINT8 u8Avg: Number of measurements to average into one result. The value can

be set to 1, 2, 4, 8, or 16.
• Returns:

– UINT8 u8Status: Valid error flags/outputs are described in Table 19.

3.2.12 UINT8 TPMS_LFOCAL(void)
• Description: Performs PWU clock calibration. The wake-up and periodic reset time

can be calibrated more accurately by using the TPMS_LFOCAL firmware subroutine.
This subroutine turns on the RFM crystal oscillator and feeds a 500-kHz clock via the
DX signal to the TPM1 for one cycle of the LFO, but first executes a test to verify the
presence of the external XTAL. The measured time is used to calculate the correct
value for the WDIV0:5 bits for a WCLK period of 1 second. The resulting value for use
in the WDIV0:5 bits is returned in the accumulator. The user can decide whether to
load the value to the WDIV0:5 bits or store for future reference. In case the returned
value is out-of-range (i.e. the LFO is out of spec), the returned value will be truncated
to the minimum or the maximum possible ($0 or $3F). The TPMS_LFOCAL subroutine
cannot be used while the RFM is transmitting or the TPM1 is being used for another
task. This routine will also consume more power due to the crystal oscillator running.
This function accesses and writes data to the SIMOPT2 register. Since some of the bits
in this register are write-once-only, it should be configured prior to calling this routine.

• Stack size: 9 bytes
• Approx. Duration: 1870 μs
• Power Management: This function executes entirely in RUN mode. It requires the

MCU to be configured for 4-MHz bus clock, and the RFM to be enabled but not
transmitting prior to making the call.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
22 / 46

• Interrupt Management: This function does not await any interrupts. It WILL be
affected by interrupts.

• Resources: TPM, SIMOPT2, RFM
• Input Parameters:

– None
• Returns:

– UINT8 u8WDIV: WDIV compensated value, or $80 if the XTAL was not found.

Warning: This routine writes to SIMOPT2. Any configuration involving this register
must be performed before calling this routine. Prior to calling this routine, the RFM must
be turned on. The execution of this routine will change the contents of RFM registers.
Specifically note that RF Direct Mode will be selected after its execution.

3.2.13 UINT8 TPMS_MFOCAL(void)
• Description: Performs MFO cross-check verification. This function will measure the

bus clock relative to Dx, but first executes a test to verify the presence of the external
XTAL. When error is zero, it returns "128." Any deviation from this value should be
considered an error. This result can then be used to estimate the error in the RFBT
setting. The TPMS_MFOCAL subroutine cannot be used while the RFM is transmitting
or the TPM1 is being used for another task. This function accesses and writes data
to the SIMOPT2 register. Since some of the bits in this register are write-once-only, it
should be configured prior to calling this routine.

• Stack size: 9 bytes
• Approx. Duration: 1821 μs
• Power Management: This function executes entirely in RUN mode. It requires the

MCU to be configured for 4 MHz bus clock, and the RFM to be enabled but not
transmitting prior to making the call. It requires the MCU to be configured for 4-MHz
bus clock, and the RFM to be enabled but not transmitting prior to making the call.

• Interrupt Management: This function does not await any interrupts. It WILL be
affected by interrupts.

• Resources: TPM, SIMOPT2, RFM
• Input Parameters:

– None
• Returns:

– UINT8 u8Error: 128 when no error is found. Each LSB away from this value is equal
to a 0.78% error. For example, if u8Error = 125, MFO has a -2.34% error, or is
running at 122 kHz. 255 is reserved as an error code for when the external XTAL is
not present.

Warning: This routine writes to SIMOPT2. Any configuration involving this register
must be performed before calling this routine. Prior to calling this routine, the RFM must
be turned on. The execution of this routine will change the contents of RFM registers.
Specifically note that RF Direct Mode will be selected after its execution.

3.2.14 UINT16 TPMS_WAVG(UINT8 u8PNew, UINT16 u16POld, UINT8 u8PAvg)
• Description: This subroutine calculates a new weighed average value for a given new

and old measurement readings by using the following equation:

(1)

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
23 / 46

• Stack size: 12 bytes
• Approx. Duration: 40 μs (average of 2), 46 μs (average of 4), 51 μs (average of 8), 56

μs (average of 16), 60 μs (average of 32).
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A
• Input Parameters:

– UINT8 u8Avg: Weight of the average. This value can be 2, 4, 8, 16, 32; any other
value will return an incorrect response.

– UINT16 u16Pold: Old average.
– UINT8 u8PNew: New value to include in average.

• Returns:
– UINT16 u8NewAverage: resulting weighed average of both old average and the new

value (refer to Example 1).

3.2.15 void TPMS_RF_RESET(void)
• Description: This function sends a master reset to the RFM and reloads PLL trim

values into the module. It requires the RFM to have been enabled previously.
• Stack size: 3 bytes
• Approx. Duration: 228 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input Parameters:

– None
• Returns:

– void

3.2.16 void TPMS_RF_READ_DATA(UINT8 u8Size, UINT8 *u8RAMBuffer, UINT8
u8RFMBuffer)
• Description: This function reads several consecutive bytes from the dedicated RFM

buffer registers and copies them to a given address in RAM. It assumes that BUFF0 is
location "0". The data is transferred from the LSB bit of the RFM data registers to the
LSB of the target memory address (standard data bit order). This function manages the
RFM's buffer paged memory.
– In case the required buffer address is out of bounds, the routine will return "0" for that

location.
• Stack size: 9 bytes
• Approx. Duration: 196 μs (for 8 bytes, switching pages included).
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input Parameters:

– UINT8 u8Size: Number of bytes to read.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
24 / 46

– UINT8 *u8RamBuffer: Target memory location.
– UINT8 u8RFMBuffer: Buffer register (0 to 31) to read.

• Returns:
– void

3.2.17 void TPMS_RF_READ_DATA_REVERSE(UINT8 u8Size, UINT8
*u8RAMBuffer, UINT8 u8RFMBuffer)
• Description: This function reads several consecutive bytes from the dedicated RFM

buffer registers and copies them to a given address in RAM. It assumes that BUFF0
is location "0". The data is transferred from the LSB bit of each byte of the RFM data
registers to the MSB of each of the bytes of the target memory address (reversed data
bit order). This function manages the RFM's buffer paged memory.
– In case the required buffer address is out of bounds, the routine will return "0" for that

location.
• Stack size: 10 bytes
• Approx. Duration: 236 μs (for 8 bytes, switching pages included).
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input Parameters:

– UINT8 u8Size: Number of bytes to read.
– UINT8 *u8RamBuffer: Target memory location.
– UINT8 u8RFMBuffer: Buffer register (0 to 31) to read.

• Returns:
– void

3.2.18 void TPMS_RF_WRITE_DATA(UINT8 u8Size, UINT8 *u8RAMBuffer, UINT8
u8RFMBuffer)
• Description: This function copies several consecutive bytes from RAM into the

dedicated RFM Output Buffer. It assumes that BUFF0 is location "0". The data is
transferred from the LSB bit of RAM to the LSB of the RFM data register (standard data
bit order). This function manages the RFM's buffer paged-memory.
– In case the destination buffer address is out of bounds, the register value will not be

written.
• Stack size: 8 bytes
• Approx. Duration: 182 μs (for 8 bytes, switching pages included).
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input Parameters:

– UINT8 u8Size: Number of bytes to write.
– UINT8 *u8RamBuffer: Source memory location.
– UINT8 u8RFMBuffer: Starting buffer register (0 to 31) to write.

• Returns:
– void

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
25 / 46

3.2.19 void TPMS_RF_WRITE_DATA_REVERSE(UINT8 u8Size, UINT8
*u8RAMBuffer, UINT8 u8RFMBuffer)
• Description: This function copies several consecutive bytes from RAM into the

dedicated RFM Output Buffer. It assumes that BUFF0 is location "0". The data is
transferred from the LSB bit of each byte in RAM to the MSB of each byte in the RFM
data register (reversed data bit order). This function manages the RFM's buffer paged-
memory.
– In case the destination buffer address is out of bounds, the register value will not be

written.
• Stack size: 9 bytes
• Approx. Duration: 242 μs (for 8 bytes, switching pages included).
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input Parameters:

– UINT8 u8Size: Number of bytes to write.
– UINT8 *u8RamBuffer: Source memory location.
– UINT8 8uRFMBuffer: Starting buffer register (0 to 31) to write.

• Returns:
– void

3.2.20 void TPMS_RF_CONFIG_DATA(UINT16 *u16RFParam)
• Description: This function is included for backward compatibility with the MPXY8300.

This function configures the RFM for transmission. It does not configure inter-frame
wait times, which must be configured manually.

• Stack size: 4 bytes
• Approx. Duration: 32 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input Parameters:

– UINT16* u16RFParam Format as described in Table 20.

Table 20. u16RFParam array format
Index Description

0 Refer to Table 21 for description

1 PLLA value

2 PLLB value

Table 21. Description of element 0 in the u16RFParam array
Bits Description
15:8 Prescaler value. Described in data sheets as RFCR0.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
26 / 46

Bits Description
7 End Of Message- If '1', EOM is set, if '0', it's not set.

6 Polarity Bit - If '1', polarity is inverted, If '0', it is non-inverted.

5:4 Not used.

2:3 Encoding value.

1 Frequency selection - If '1', RFM is configured for 434 MHz, if '0', it is configured
for 315 MHz.

0 Modulation - If '1', RFM is configured for FSK, if '0' it is configured for OOK.

• Returns:
– void

3.2.21 void TPMS_RF_SET_TX(UINT8 u8BufferSize)
• Description: This function allows the RFM to transmit data previously loaded in the

buffer. It should be called after the RF module has been enabled and configured.
• Stack size: 3 bytes
• Approx. Duration: 12 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input Parameters:

– UINT8 u8BufferSize: Number of bits in the buffer -1 (i.e. To transmit one bit,
u8BufferSize should equal 0).

• Returns:
– void

3.2.22 void TPMS_RF_DYNAMIC_POWER(UINT8 u8CompT, UINT8 u8CompV,
UINT8* pu8PowerManagement)
• Description: Depending on the passed parameters, this function can:

– Force the RF power setting (RFCFR2_PWR) to a passed value (when BIT5 of
u8PowerManagement is clear).

– Set the RF power setting (RFCFR2_PWR) dynamically based on voltage,
temperature, and current carrier frequency (when BIT5 of u8PowerManagement
is set). The target output level is 3 dBm across all voltages and temperatures, with
some small variations. When this option is engaged, the routine limits settings to valid
PWR settings - if the resulting value is above maximum allowed setting, the setting
is set to maximum; if the resulting value is less than minimum allowed setting, the
setting is set to the minimum.

– When BIT5 of u8PowerManagement is set, find the best RF power setting
(RFCFR2_PWR) dynamically based on voltage, temperature, and current carrier
frequency in order to target 3 dBm as actual output power. This value of 3 dBm can
be increased or decreased in given temperature ranges using the offsets (0.5 dBm/
count) in the pu8PowerManagement array.

– Similar to the case above, the user can specify a target power region with an offset.
• Stack size: 21 bytes

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
27 / 46

• Approx. Duration: 140 μs when using voltage, temperature; 22 μs when the power
step is passed.

• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: RFM
• Input Parameters:

– UINT8 u8CompT: Compensated temperature reading.
– UINT8 u8CompV: Compensated voltage reading.
– UINT8* pu8PowerManagement: This is a pointer to an array as described below:

Table 22. *pu8PowerManagement format
Index Value Description

0 Dynamic Compensation switch as described in Table 23.

1 Offset step for power target when temperature is higher than 92 °C. Negative
values admitted.

2 Offset step for power target when temperature is lower than 92 °C and higher
than 60 °C. Negative values admitted.

3 Offset step for power target when temperature is lower than 60 °C and higher
than 43 °C. Negative values admitted.

4 Offset step for power target when temperature is lower than 43 °C and higher
than 25 °C. Negative values admitted.

5 Offset step for power target when temperature is lower than 25 °C and higher
than 0 °C. Negative values admitted.

6 Offset step for power target when temperature is lower than 0 °C and higher than
-20 °C. Negative values admitted.

7 Offset step for power target when temperature is lower than -20 °C. Negative
values admitted.

Table 23. pu8PowerManagement[0] format
BIT Description
MSB Not used

BIT6 Not used

BIT5

Dynamic compensation enable.
If set, the function will decide what the optimal power setting is based on voltage
and temperature; In this case, values stored in the pu8PowerManagement array,
and corresponding to the temperature range will be added to the found target.
If clear, BIT4:0 will be used to set the power level directly.

BIT4:0 When BIT5 is clear, the value passed here will be used to set the RF power step
in the RFCR2 register directly.

• Returns:
– void

Warning: The RF Module must be turned on prior to calling this routine.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
28 / 46

3.2.23 void TPMS_MSG_INIT(void)
• Description: This function is to be called before using any MSG routine. It initializes

PTA1 and PTA0 to their correct initial state for a simulated SPI.
• Stack size: 2 bytes
• Approx. Duration: 10 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: Pins PTA1 and PTA0.
• Input Parameters:

– None
• Returns:

– void

3.2.24 UINT8 TPMS_MSG_READ(void)
• Description: This function is in charge to read any incoming message at a network

level via an emulated serial interface on PTA1 and PTA0. As the master, the
FXTH87xx02 manages the clock on PTA1. On falling edge of the clock, the module
reads a new data bit on PTA0 (programmed as input), MSB first.

• Stack size: 2 bytes
• Approx. Duration: 80 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: Pins PTA1 and PTA0.
• Input Parameters:

– None
• Returns:

– UINT8 u8ReadByte: Incoming byte from the emulated serial interface.

3.2.25 UINT8 TPMS_MSG_WRITE(UINT8 u8SendByte)
• Description: This function is in charge to write a message at a network level via

an emulated serial interface on PTA1 and PTA0. As the master, the FXTH87xx02
manages the clock on PTA1. On rising edge of the clock, the module puts down a new
data bit on PTA0 (programmed as output), MSB first.

• Stack size: 2 bytes
• Approx. Duration: 80 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: Pins PTA1 and PTA0.
• Input Parameters:

– UINT8 u8SendByte: Byte to be outputted through the emulated serial interface.
• Returns:

– UINT8 u8ReadByte: Incoming byte from the emulated serial interface.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
29 / 46

3.2.26 UINT8 TPMS_CHECKSUM_XOR(UINT8 *u8Buffer, UINT8 u8Size, UINT8
u8Checksum)
• Description: Calculates a checksum for the given buffer based on XOR operations.
• Stack size: 5 bytes
• Approx. Duration: 78 μs for 8 bytes of data.
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A
• Input Parameters:

– UINT8 *u8Buffer: Buffer where data is located.
– UINT8 u8Size: Size of buffer (in bytes).
– UINT8 u8Checksum: Previous checksum. This argument is useful when the function

is used recursively. It must equal "0" if there is no previous data.
• Returns:

– UINT8 u8NewChecksum: New calculated checksum.

3.2.27 UINT8 TPMS_CRC8(UINT8 *u8Buffer, UINT8 u8Poly, UINT8 u8MBitSize,
UINT8 u8Remainder)
• Description: Calculates a CRC8 on a portion of the designated area.
• Stack size: 12 bytes
• Approx. Duration: 780 μs for 8 bytes (64 bits) of data.
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A
• Input Parameters:

– UINT8 *u8Buffer: Buffer where data is located.
– UINT8 u8Poly: Polynomial to be used for calculating the CRC8.
– UINT8 u8MBitSize: Size of the designated buffer (in bits)
– UINT8 u8Remainder: Initial remainder. This argument is useful when the function is

used recursively. It must equal "0" if there is no previous data.
• Returns:

– UINT8 u8NewCRC: New calculated CRC8.

3.2.28 UINT16 TPMS_CRC16(UINT8 *u8Buffer, UINT16 u16MByteSize, UINT16
u16Remainder)
• Description: Calculates a CRC16 on a portion of the designated memory area by

using a look-up table. Polynomial used is an inverted $8005 (standard for CRC16).
• Stack size: 12 bytes
• Approx. Duration: 236 μs for 8 bytes.
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
30 / 46

• Input Parameters:
– UINT8 *u8Buffer: Buffer where data is located.
– UINT16 u16MByteSize: Size of the designated buffer (in bytes).
– UINT16 u16Remainder: Initial remainder.

• Returns:
– UINT16 u16NewCRC: New calculated CRC16.

3.2.29 UINT16 TPMS_SQUARE_ROOT(UINT16 u16Process)
• Description: Calculates a two-digit remainder of (square root * 10) using a fast

algorithm.
• Stack size: 49 bytes
• Approx. Duration: 362 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A
• Input Parameters:

– UINT16 u16Process: The number from which to get the square root from.
• Returns:

– UINT16 Root of the number * 10.

3.2.30 void TPMS_READ_ID(UINT8 *u8Code)
• Description: Copies the device's UniqueID and firmware version stored in firmware

flash to RAM.
• Stack size: 2 bytes
• Approx. Duration: 17 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A
• Input Parameters:

– UINT8 *u8Code: RAM location where data will be copied. Table 24 describes the
format of the 6-bytes returned.

Table 24. u8Code format
Index Description

0 Firmware version

1 Derivative descriptor

2:5 32-bit UniqueID

• Returns:
– void

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
31 / 46

3.2.31 void TPMS_LF_ENABLE(UINT8 u8Switch)
• Description: Enables/disables the LFR module; Loads best-case-known LF settings

for NXP-only LF registers.
• Stack size: 5 bytes
• Approx. Duration: 31 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: LFR
• Input Parameters:

– UINT8 u8Switch: Enable (non-zero) or disable (zero) LFR.
• Returns:

– void

3.2.32 UINT8 TPMS_LF_READ_DATA(UINT8 *u8Buffer, UINT8 u8Count)
• Description: Once the user has configured and enabled the LFR, it is customary to go

into a low-power state mode and wait for a datagram. After the first byte of an incoming
datagram is successfully received, this function should be called immediately; It will
receive the complete datagram and place it in RAM. Be careful to call the function
upon reception of the first data byte (LFDRF flag) and not upon detection of the ID
(LFIDF flag) in case the LFIDIE is enabled. This function assumes that the LFR module
is configured accordingly for a Manchester reception; that the module’s interrupts
are enabled; and that the first byte has already been received and is waiting in the
LFR received buffer. While waiting for the next byte, this function goes into STOP4. If
the byte, for an unexpected reason, is not received, this function has a built-in time-
out: After five continuous non-LFR interrupts, the function will assume a failed LFR
reception and exit. In order to leave the routine as soon as possible after reception
of all the data bytes it is recommended to enable the LF error interrupt (LFERIE). In
summary, the two necessary interrupts to be enabled are LFDRIE and LFERIE.

• Description:
• Stack size: 7 bytes
• Approx. Duration: Data dependant; ~2 ms per byte received.
• Power Management: This function requires the core to be configured for STOP4 mode

and running at full bus speed.
• Interrupt Management: This function utilizes the LFR interrupt to wake-up from STOP

mode. It does not await any other interrupts and should not be affected by them.
• Resources: LFR
• Input Parameters:

– UINT8 *u8Buffer: RAM Buffer where data will be placed.
– UINT8 u8Count: Number of bytes expected.

• Returns:
– UINT8 u8BytesReceived: Actual number of bytes received.

Warning: This function requires ~24 μs from the moment it is called to the moment the
first byte is copied into the RAM buffer. The user must consider this time when designing
their firmware.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
32 / 46

3.2.33 UINT8 TPMS_WIRE_AND_ADC_CHECK(UINT8 u8TestMask)
• Description: This function will check if there is any bonding wire failure between the

embedded core and the P-cell; or between the core and the g-cell. It will also perform
an optional a g-cell self-test, and/or an ADC test. The latter will consist on taking two
reference measurements (ground and VDD) using internal channels and comparing
them with the expected results. The optional g-cell self-test sends a self-test signal and
verifies that the g-cell deflects as expected. It can only be called when the device is in
parking or static mode. When configuring for a P-cell or g-cell wire check, Interrupts
must be enabled before calling this routine. In case of no issues found, "0" will be
returned, else it will set status flags as follows:
– On P-cell wire-bond error, sets "pressure error" flag.
– On g-cell wire-bond or self-test error, sets "acceleration error" flag.
– On ADC error, sets the "ADCERR" flag.

• Stack size: Up to 36 bytes.
• Approx. Duration: 11,865 μs (all checks), 104 μs (ADC only), 3,087 μs (P-cell only),

3,087 μs (g-cell wire-bond only), 5622 μs (g-cell self-test only).
• Power Management: This function requires the core to be configured for STOP4 mode

and running at full bus speed.
• Interrupt Management: This function utilizes the ADC interrupt to wake-up from STOP

mode.
• Resources: ADC, SMI (for g-cell, P-cell checks), internal bond wires.
• Input Parameters:

– UINT8 u8TestMask: This variable determines what checks are performed as
described by Table 25.

Table 25. u8TestMask format
u8TestMask Bit Description

BIT0 Reserved.

BIT1 If set, g-cell Self-test performed. Refer to warning below.

BIT2 If set, P-cell wire-bond check performed.

BIT3 Reserved.

BIT4 If set, g-cell wire-bond check performed.

BIT5:6 Reserved.

BIT7 If set, ADC check performed.

• Returns:
– UINT8 u8Status: Status flags as described in Table 26.

Table 26. u8Status valid values for TPMS_WIRE_AND_ADC_CHECK
u8TestMask Bit Description

BIT0 Always clear.

BIT1 Always clear.

BIT2 If set, P-cell wire-bond error detected.

BIT3 Always clear.

BIT4 If set, g-cell wire-bond or self-test error detected.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
33 / 46

u8TestMask Bit Description
BIT5:6 Always clear.

BIT7 If set, ADC error detected.

Warning: The self-test option will only return valid readings when the device is static (i.e.
the vehicle is not moving). It is the user's responsibility to ensure it is only called while in
parking or static mode.

3.2.34 void TPMS_FLASH_WRITE(UINT16 u16Address, UINT8* u8Buffer, UINT8
u8Size)
• Description: This function writes consecutive bytes from a given address in memory to

a specified location in FLASH.
• Stack size: 15 bytes
• Approx. Duration: 1310 μs for 8 bytes of data.
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will be affected

by interrupts.
• Resources: Global RAM locations $0090 - $00CA.
• Input Parameters:

– UINT16 u16Address: Flash starting address.
– UINT8 *u8Buffer: Source memory address.
– UINT8 u8Size: Number of data bytes to be written.

• Returns:
– void

Warning: This routine will overwrite the contents of RAM locations $0090 - $00CA.

3.2.35 UINT16 TPMS_FLASH_CHECK(void)
• Description: This function calculates the CRC16 checksum for the NXP firmware area

(addresses $E000 - FFAD) using the function TPMS_CRC16. It compares it with a pre-
calculated stored value and reports if these two values match or not.

• Stack size: 16 bytes
• Approx. Duration: 226,603 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will not be

affected by interrupts.
• Resources: N/A
• Input Parameters:

– None.
• Returns:

– UINT16 u16Status: "0" in case the calculated checksum and the stored one are the
same, or the calculated checksum in case they are different.

3.2.36 UINT8 TPMS_FLASH_ERASE(UINT16 u16Address)
• Description: This function erases 1 page (512 bytes) of flash at a time.
• Stack size: 11 bytes

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
34 / 46

• Approx. Duration: 22,750 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It may be affected

by interrupts.
• Resources: Global RAM locations $0090 - $00CA.
• Input Parameters:

– UINT16 u16Address: any given address. The whole page where this address resides
will be erased (i.e. if u16Address = $D234, the contents of addresses $D200 - $D3FF
will be erased).

• Returns:
– Zero if the page was erased successfully; else, one.

Warning: This routine will overwrite the contents of RAM locations $0090- $00CA.

3.2.37 UINT8 TPMS_READ_DYNAMIC_ACCEL(UINT8 u8Filter, UINT8* u8Offset,
UINT16* u16UUMA)
• Description: This function automatically executes a TPMS_READ_ACCELERATION

measurement with a given initial dynamic offset. If the result is too high or too low, it will
change the dynamic offset value and re-execute TPMS_READ_ACCELERATION until
a) the result is valid or b) the result is railed high or low and there are no more offset
steps. Offset and uncompensated acceleration inside the UUMA are updated.

• Stack size: 48 bytes
• Approx. Duration: 2950 μs when starting offset is in target; 29050 μs when the offset

is 10 steps away.
• Power Management: This function requires the core to be configured for STOP4 mode

and running at full bus speed.
• Interrupt Management: This function utilizes the ADC interrupt to wake-up from STOP

mode.
• Resources: SMI, ADC, internal bond wires.
• Input Parameters:

– UINT8 u8FiltSelect: If non-zero, 250-Hz filter enabled. Otherwise, 500-Hz filter
selected.

– UINT8* u8Offset: Pointer to initial offset step to load. Valid offset steps range from 0
- 15 and are described in the device's data sheet. An updated offset value is returned
at the end of the function. In case the acceleration is too high or too low and function
has run out of offset steps, a value of 255 ("0 - 1") or 16 ("15 + 1") shall be returned.

– UINT16* Pointer to the Universal Uncompensated Measurement Array.
Uncompensated acceleration will be updated accordingly.

• Returns:
– UINT8 u8Status: Refer to TPMS_READ_ACCELERATION for more information on

the format of this status byte.

3.2.38 void TPMS_RF_ENABLE(UINT8 u8Switch)
• Description: This function enables or disables the RF module in the FXTH87xx02 and

transfers adequate PLL trim data to the module. It should be called prior to any other
RF operation.

• Stack size: 4 bytes
• Approx. Duration: 378 μs when turning on; 11.2 μs when turning off.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
35 / 46

• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will be affected

by interrupts.
• Resources: SIMOPT1, RFM.
• Input Parameters:

– UINT8 u8Switch: Enable (non-zero) or disable (zero) RFM.
• Returns:

– void.

Warning: This routine writes to SIMOPT1. Any configuration involving this register must
be performed before calling this routine.

3.2.39 UINT8 TPMS_FLASH_PROTECTION(UINT16 u16Key)
• Description: This function enables flash protection for the complete user block. After

its execution, both TPMS_FLASH_WRITE and TPMS_FLASH_ERASE will become
disabled permanently. Re-programming of the device can only be achieved through
BDM after execution of this routine.

• Stack size: Up to 11 bytes
• Approx. Duration: 746 μs for a successful attempt; 21 μs for a failed attempt.
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It will be affected

by interrupts.
• Resources: Global RAM locations $0090 - $00CA.
• Input Parameters:

– UINT16 u16Key: Due to the irreversible status after the execution of this routine, this
argument is used as a fail-safe to guarantee desired execution of the function. Only
when u16Key is equal to the least-significant word of the UniqueID will this function
execute successfully.

• Returns: UINT8 u8Status: according to Table 27.

Table 27. Possible status values for TPMS_FLASH_PROTECTION
Return Value Description

$0 u16Key matches lower 16-bits of UniqueID; protection was disabled and now
is enabled. (Success)

$1 u16Key does not match lower 16-bits of UniqueID; protection was disabled
and continues to be so.

$2 Protection was already enabled.

$4 u16Key matches lower 16-bits of UniqueID; protection was disabled and
continues to be so (Failed writing protection)

All others Reserved

Warning: This routine can only be executed once. After successful execution of this
routine, TPMS_FLASH_WRITE and TPMS_FLASH_ERASE will be permanently
disabled.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
36 / 46

3.2.40 void TPMS_MULT_SIGN_INT16(INT16 i16Mult1, INT16 i16Mult2, INT32*
pi32Result)
• Description: This function will multiply two signed 16-bit numbers together.
• Stack size: 17 bytes
• Approx. Duration: 68.1 μs
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function does not await any interrupts. It should not be

affected by interrupts.
• Resources: N/A
• Input Parameters:

– INT16 i16Mult1: First multiplier
– INT16 i16Mult2: Second multiplier
– INT32* pi32Result: Pointer to a 32-bit variable where the result will be stored.

• Returns:
– void.

3.2.41 UINT8 TPMS_VREG_CHECK(UINT8 u8WaitTime, UINT16 u16LimitDelta)
• Description: This function will verify if the part has a capacitor properly connected on

the VREG pin. This is done by starting an RF transmission; taking an ADC reading of
the VREG pin 3 ms after; ending the transmission, awaiting a pre-established amount of
time; taking a second ADC reading of the VREG pin; and comparing both values.

• Stack size: 29 bytes
• Approx. Duration: 29,300 μs using default values; time will vary depending on user

input.
• Power Management: This function requires the core to be configured for STOP4 mode

and running at full bus speed.
• Interrupt Management: This function utilizes an ADC interrupt to wake-up from STOP

mode.
• Resources: TPM, RFM, SPMSC2.
• Input Parameters:

– UINT8 u8WaitTime: Amount of time to wait between the end of an RF transmission
and the second ADC reading (in ms). If zero, it is assumed that a 470 nF capacitor is
being used and the default wait time for this capacitor is used.

– UINT8 u8LimitDelta: This value (in ADC counts) will determine whether the VREG pin
passes the test or it doesn't. It is dependant on the capacitor value and on the value
of u8WaitTime, and must be obtained through characterization. If zero, it is assumed
that a 470 nF capacitor is being used and the default limit is used.

• Returns:
– UINT8 u8Status: If clear, the function has detected good contact with the capacitor; if

one, the capacitor has failed the test.

Warning: Write-once register SPMSC2 will be used. Also note that calling this function
will start an RF transmission for ~3 ms. Previously set RF settings, such as carrier
frequency and PLL dividers, are respected in this short RF burst. Before exiting this
function, the RF module will be shut down.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
37 / 46

3.2.42 UINT8 TPMS_PRECHARGE_VREG(UINT8 u8TPMWaitUnits, UINT8
u8PTAMask)
• Description: This function allows to pre-charge the cap connected to the external VREG

pin assuming a PTA pin is connected to it. It will make PTA high and continuously take
ADC readings on VREG, while simultaneously running the TPM. As soon as VDD / 2 is
reached or the timer expires, PTA will be made into an input and the function will exit.

• Stack size: 25 bytes
• Approx. Duration: ~360 μs when u8TPMWaitUnits = 1 and the cap connected to VREG

is not successfully charged before this time.
• Power Management: This function requires the core to be configured for STOP4 mode

and running at full bus speed.
• Interrupt Management: This function utilizes an ADC interrupt to wake-up from STOP

mode.
• Resources: TPM, ADC, PTA, VREG
• Input Parameters:

– UINT8 u8TPMWaitUnits: Amount of time that TPM should allow to pass before
timing-out. Each unit is ~300 μs. (i.e., if u8TPMWaitUnits = 2, ~580 μs will pass
before the function exits in case the capacitor on VREG is not fully charged. TPM will
be stopped while the part goes into STOP4; therefore, timing used in this argument is
used for an approximation value only).

– UINT8 u8PTAMask: analogous to the PTAD mask, this variable selects which pin(s)
will be driven high to charge VREG (i.e. if PTAD = 1, PTA0 will be used; if PTAD = 4,
PTA2 will be used).

• Returns: UINT8 u8Status: Status flags as described in Table 28.

Table 28. u8Status valid values for TPMS_PRECHARGE_VREG
u8TestMask Bit Description

BIT0 If set, there was a problem with the internal ADC conversion.

BIT1 Always clear.

BIT2 Always clear.

BIT3 If set, timer overflowed before reaching VDD / 2 on VREG.

BIT4 Always clear.

BIT5:6 Always clear.

BIT7 Always clear.

3.2.43 UINT8 TPMS_RDE_ADJUST_PRESSURE(UINT16* pu16UUMA, T_RDE*
ptRDEValues)
• Description: This routine's functionality has been removed, but its prototype is still

callable for backward compatibility. It always returns CLEAR, and doesn't affect any
passed argument.

• Stack size: 7 bytes.
• Approx. Duration: 85 μs
• Power Management: Interrupt Management: This function does not await any

interrupts. It should not be affected by interrupts.
• Resources: Core
• Input Parameters:

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
38 / 46

– UINT16 *pu16UUMA: Pointer to Universal Uncompensated Measurement Array (as
described in Section 2.3). No values are affected.

– T_RDE* ptRDEValues: Pointer to an array of elements. For more information on the
RDE structure, refer to Section 2.5.

• Returns: UINT8 u8Status: Always CLEAR.

3.2.44 UINT8 TPMS_READ_ACCEL_CONT_START(UINT8 u8Filter, UINT8
u8DynamicOffset, UINT8 u8SampleSpeed)
• Description: This function configures the accelerometer to start

taking continuous measurements until instructed to stopped by a
call to TPMS_READ_ACCEL_CONT_STOP. At least one call to
TPMS_READ_ACCEL_CONT is required to read back the measurement. Global
variable TPMS_CONT_ACCEL_GLOBAL_VARIABLE is used to keep track of the
sampling rate.

• Stack size: Up to 18 bytes
• Approx. Duration: 116 μs with 500-Hz filter; 1490 μs with 250-Hz filter. Approximately

439 bus clock cycles (and overlapping 1 MFO cycle at bus clock = 4 MHz) for 500 Hz.
Approximately 492 bus clock cycles and 156 MFO cycles for 250 Hz.

• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function configures the ADC to interrupt the MCU

periodically after an acceleration measurement. It does not expect any interrupts.
• Resources: ADC, SMI, internal bond wires. After calling this routine, and before calling

TPMS_READ_ACCEL_CONT_STOP, the following functions shall not be used:
– TPMS_READ_VOLTAGE
– TPMS_READ_TEMPERATURE
– TPMS_READ_PRESSURE
– TPMS_READ_ACCELERATION
– TPMS_READ_V0
– TPMS_READ_V1

• Input Parameters:
– UINT8 u8Filter: If zero, a low-pass 500-Hz filter is used. Else, a low-pass 250-Hz filter

is used.
– UINT8 u8DynamicOffset: Selects the offset setting for the appropriate acceleration

reading. Default index is 6.
– UINT8 u8SampleSpeed: A value which establishes the accelerometer sample rate

after an initial filter-settling period of 312 MFO clock cycles.
• Returns:

– UINT8 u8Status: Clear if normal execution of the function occurs, set to a value in
case a 250-Hz filter setting has been requested and the settling period has failed.

Warning: This function starts an acceleration measurement, but does not await its
completion. In order to guarantee an in-spec reading, the user must ensure that
conversion(s) at the end of the filter-settling period take place with the MCU in STOP4
mode.

3.2.45 UINT8 TPMS_READ_ACCEL_CONT(UINT16* pu16Measurement)
• Description: This function assumes that TPMS_READ_ACCEL_CONT_START has

been called and that the SMI is producing periodic acceleration readings. By calling this

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
39 / 46

function, the ADC will be polled and the latest result, if available, will be placed into the
location pointed by pu16Measurement.

• Stack size: 14 bytes
• Approx. Duration: 66 μs when data is ready. Approximately 268 bus clock cycles (and

overlapping 8 MFO clocks at bus clock = 4 MHz) when data is ready. Approximately 69
bus clock cycles (and overlapping 3 MFO cycles at bus clock = 4 MHz) when data is
not ready.

• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function performs entirely in RUN mode. It does not

expect any interrupts.
• Resources: ADC, SMI, internal bond wires.
• Input Parameters:

– UINT16* pu16Measurement: Pointer to where the measurement, if available, should
be placed.

• Returns: Clear if an updated acceleration measurement is available, set if there hasn't
been an update or if the measurement is outside the expected range.

Table 29. Valid u8SampleSpeed values and their corresponding sampling rate
u8SampleSpeed Nominal waiting time Number of MFO clock cycles

FXTH87 FXTH87E FXTH87 FXTH87E
0

64 μs 312 μs 8 39

1 625 μs 78

2 1.25 ms 156

3 2.5 ms 312

Warning: This function takes approximately as long to execute as the fastest sampling
rate set in TPMS_READ_ACCEL_CONT_START. Avoid this setting if possible.

Warning: In order to guarantee an in-spec reading, the user must ensure that
conversion(s) at the end of the filter-settling period take place with the MCU in STOP4
mode.

3.2.46 UINT8 TPMS_READ_ACCEL_CONT_STOP(void)
• Description: This function shall be called after TPMS_READ_ACCEL_CONT_START

has been called and no further acceleration measurements are required.
• Stack size: 4 bytes
• Approx. Duration: 12 μs. Approximately 39 bus clock cycles.
• Power Management: This function executes entirely in RUN mode.
• Interrupt Management: This function performs entirely in RUN mode. It does not

expect any interrupts.
• Resources: ADC, SMI, internal bond wires.
• Input Parameters:

– None
• Returns: Always clear.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
40 / 46

4 Revision history
Revision history
Revision
number

Date Description

2.2 2017-04-05 • The format of this data sheet has been redesigned to comply with the new identity
guidelines of NXP Semiconductors. Legal texts have been adapted to the new
company name where appropriate.

• Changed "usec" to "μs" throughout document.
• Changed "VReg" to "VREG" throughout document.
• Added "If an LFR interrupt occurs while a firmware function is under execution,

the LFR User Interrupt Vector will not be accessed, and the bit 2 (Table 2) will be
the only indication available. Users should check this bit, either prior to entering
the firmware function or after the firmware function, to assure LF interrupts are not
missed. Also, a number of firmware functions utilize the Stop1 or Stop4 modes,
which disable the hardware Watch-dog block. In order to provide a back-up
recovery, users should utilize either the RTI or PWU which can be programmed
for interrupt if a software or firmware routine has consumed too much time. The
Watch-dog is automatically restarted when the program goes back in RUN mode."
after the second sentence in the first paragraph of Section 2.1.1.

• Added a fourth column identifying the section and creating hyperlinks to each
section within Table 7 of Section 3.1.

• Changed references to "WDIV" and "WDIV register" to "WDIV0:5 bits" at three
locations within the description item of Section 3.2.12.

• Removed "and configured for OOK transmission" from the Warnings located in
Section 3.2.12 and Section 3.2.13.

• Added new item under the description item "When BIT5 of u8PowerManagement is
set, find the best RF power setting (RFCFR2_PWR) dynamically based on voltage,
temperature, and current carrier frequency in order to target 3 dBm as actual output
power. This value of 3 dBm can be increased or decreased in given temperature
ranges using the offsets (0.5 dBm/count) in the pu8PowerManagement array." in
Section 3.2.22.

• Movied the descriptions for index values 1 to 7, 7 to 1, 2 to 6, 6 to 2, 3 to 5 and 5 to
3 respectively in Table 22 of Section 3.2.22.

• Added "Be careful to call the function upon reception of the first data byte (LFDRF
flag) and not upon detection of the ID (LFIDF flag) in case the LFIDIE is enabled."
after "... and place it in RAM." in the description item of Section 3.2.32.

• Added "In order to leave the routine as soon as possible after reception of all
the data bytes it is recommended to enable the LF error interrupt (LFERIE). In
summary, the two necessary interrupts to be enabled are LFDRIE and LFERIE." to
the end of the description item of Section 3.2.32.

• Removed "as shown in Figure 3-10" and "as shown in Figure 3-21" from the input
parameters items of Section 3.2.44.

• Added values for FXTH87E in the Nominal waiting time and Number of MFO clock
cycle columns of U8SampleSpeed 0 with values of 312 μs and 39 respectively in
Table 29 of Section 3.2.45.

2.1 2014-10 • Changed Bit 4 and Bit 3 value for register LFCTRLD from 0 to 1 in Table 5 of
Section 2.6.

• Changed Bit 4 and Bit 3 value for register LFCTRLD from 0 to 1 in Table 6 of
Section 2.6.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
41 / 46

Revision
number

Date Description

2.0 2014-10 • Removed "Xtrinsic" from document title.
• Removed sentence "Some functionality may not be present in all derivatives." from

the first paragraph of Section 1.
• Changed the reference for TPMS_CONT_ACCEL_GLOBAL_VARIABLE from

Section 2.2.1 to Section 2.1.2 in Table 1 of Section 2.1.
• Added Section 2.1.2.
• Changed incorrect reference from "Table 1" to "Figure 1" in Section 2.2.1.
• Updated references from "G-Cell" and "G-cell" to "g-cell" throughout document.
• Added Section 2.6.
• Revised Table 15 in Section 3.2.8.
• Revised second item of input parameters from "UINT8* u8Offset: Pointer to initial

offset level to load into SMI according to Table 15. An updated offset value is
returned at the end of the function" to "UINT8* u8Offset: Pointer to initial offset step
to load. Valid offset steps range from 0 - 15 and are described in the device's data
sheet. An updated offset value is returned at the end of the function. In case the
acceleration is too high or too low and function has run out of offset steps, a value
of 255 ("0 - 1") or 16 ("15 + 1") shall be returned." in Section 3.2.37.

1.0 2014-07 Initial release.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
42 / 46

5 Legal information

5.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

5.2 Disclaimers
Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves
the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP assume

any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/ or specifications can and do vary in
different applications, and actual performance may vary over time. All
operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not
convey any license under its patent rights nor the rights of others. NXP sells
products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/salestermsandconditions.

5.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are the property of their respective owners.

NXP — is a trademark of NXP B.V.
the NXP logo — is a trademark of NXP B.V.
Freescale — is a trademark of NXP B.V.
the Freescale logo — is a trademark of NXP B.V.

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
43 / 46

Tables
Tab. 1. Global variable and their locations 2
Tab. 2. TPMS_INTERRUPT_FLAG format and

trigger conditions ...2
Tab. 3. Error status fields .. 4
Tab. 4. Universal uncompensated measurement

array .. 5
Tab. 5. Customer-configurable TMPS7 and LF

Register with SENS = 1 7
Tab. 6. Customer-configurable TMPS and LF

Register with SENS = 2 8
Tab. 7. FXTH87xx02's firmware function jump table 9
Tab. 8. Valid output conditions for

TPMS_READ_VOLTAGE11
Tab. 9. Valid output conditions for

TPMS_COMP_VOLTAGE12
Tab. 10. Valid output conditions for

TPMS_READ_TEMPERATURE13
Tab. 11. Valid output conditions for

TPMS_COMP_TEMPERATURE14
Tab. 12. Approximate duration for

TPMS_READ_PRESSURE14
Tab. 13. Valid output conditions for

TPMS_READ_PRESSURE15
Tab. 14. Valid output conditions for

TPMS_COMP_PRESSURE 16

Tab. 15. Approximate duration for
TPMS_READ_ACCELERATION17

Tab. 16. u8ModeSelect options19
Tab. 17. Valid output conditions for

TPMS_READ_ACCELERATION19
Tab. 18. Valid output conditions for

TPMS_COMP_ACCELERATION20
Tab. 19. Valid output conditions for TPMS_READ_V0

and TPMS_READ_V1 21
Tab. 20. u16RFParam array format 25
Tab. 21. Description of element 0 in the u16RFParam

array .. 25
Tab. 22. *pu8PowerManagement format27
Tab. 23. pu8PowerManagement[0] format 27
Tab. 24. u8Code format .. 30
Tab. 25. u8TestMask format ..32
Tab. 26. u8Status valid values for

TPMS_WIRE_AND_ADC_CHECK32
Tab. 27. Possible status values for

TPMS_FLASH_PROTECTION35
Tab. 28. u8Status valid values for

TPMS_PRECHARGE_VREG37
Tab. 29. Valid u8SampleSpeed values and their

corresponding sampling rate39

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
44 / 46

Figures
Fig. 1. Measurement signal range definitions4 Fig. 2. Description of the physical layer on the

FXTH87xx02 simulated SPI interface 6

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

FXTH87xx02FWUG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved.

User guide Rev. 2.2 — 5 April 2017
45 / 46

Contents
1 Introduction ... 1
2 Globals and formats ... 2
2.1 Global variables ...2
2.1.1 TPMS_INTERRUPT_FLAG 2
2.1.2 TPMS_CONT_ACCEL_GLOBAL_VARIABLE

.. 3
2.2 Measurement error format3
2.2.1 Definition of signal ranges 3
2.2.2 Error status format ...4
2.3 Universal uncompensated measurement

array (UUMA) format ... 5
2.4 Simulated SPI interface signal format6
2.5 Rapid decompression event array (T_RDE)

format ...7
2.6 LFR registers initialized by firmware7
3 Firmware functions ... 9
3.1 Firmware jump table ..9
3.2 Function description ...10
3.2.1 void TPMS_RESET(void) 10
3.2.2 UINT8 TPMS_READ_VOLTAGE(UINT16

*u16UUMA) ..11
3.2.3 UINT8 TPMS_COMP_VOLTAGE(UINT8

*u8CompVoltage, *UINT16 u16UUMA) 12
3.2.4 UINT8

TPMS_READ_TEMPERATURE(UINT16
*u16UUMA) ..12

3.2.5 UINT8
TPMS_COMP_TEMPERATURE(UINT8
*u8Temp, UINT16 *u16UUMA)13

3.2.6 UINT8 TPMS_READ_PRESSURE(UINT16
*u16UUMA, UINT8 u8Avg)14

3.2.7 UINT8 TPMS_COMP_PRESSURE(UINT16
*u16CompPressure, UINT16 *u16UUMA) 16

3.2.8 UINT8
TPMS_READ_ACCELERATION(UINT16
*u16UUMA, UINT8 u8Avg, UINT8
u8ModeSelect, UINT8 u8DynamicOffset)17

3.2.9 UINT8
TPMS_COMP_ACCELERATION(UINT16
u16CompAccel, UINT16 u16UUMA)19

3.2.10 UINT8 TPMS_READ_V0(UINT16
*u16Result, UINT8 u8Avg) 20

3.2.11 UINT8 TPMS_READ_V1(UINT16
*u16Result, UINT8 u8Avg) 21

3.2.12 UINT8 TPMS_LFOCAL(void)21
3.2.13 UINT8 TPMS_MFOCAL(void)22
3.2.14 UINT16 TPMS_WAVG(UINT8 u8PNew,

UINT16 u16POld, UINT8 u8PAvg) 22
3.2.15 void TPMS_RF_RESET(void)23
3.2.16 void TPMS_RF_READ_DATA(UINT8

u8Size, UINT8 *u8RAMBuffer, UINT8
u8RFMBuffer) .. 23

3.2.17 void
TPMS_RF_READ_DATA_REVERSE(UINT8
u8Size, UINT8 *u8RAMBuffer, UINT8
u8RFMBuffer) .. 24

3.2.18 void TPMS_RF_WRITE_DATA(UINT8
u8Size, UINT8 *u8RAMBuffer, UINT8
u8RFMBuffer) .. 24

3.2.19 void
TPMS_RF_WRITE_DATA_REVERSE(UINT8
u8Size, UINT8 *u8RAMBuffer, UINT8
u8RFMBuffer) .. 25

3.2.20 void TPMS_RF_CONFIG_DATA(UINT16
*u16RFParam) ... 25

3.2.21 void TPMS_RF_SET_TX(UINT8
u8BufferSize) ... 26

3.2.22 void TPMS_RF_DYNAMIC_POWER(UINT8
u8CompT, UINT8 u8CompV, UINT8*
pu8PowerManagement)26

3.2.23 void TPMS_MSG_INIT(void) 28
3.2.24 UINT8 TPMS_MSG_READ(void) 28
3.2.25 UINT8 TPMS_MSG_WRITE(UINT8

u8SendByte) .. 28
3.2.26 UINT8 TPMS_CHECKSUM_XOR(UINT8

*u8Buffer, UINT8 u8Size, UINT8
u8Checksum) ...29

3.2.27 UINT8 TPMS_CRC8(UINT8 *u8Buffer,
UINT8 u8Poly, UINT8 u8MBitSize, UINT8
u8Remainder) .. 29

3.2.28 UINT16 TPMS_CRC16(UINT8 *u8Buffer,
UINT16 u16MByteSize, UINT16
u16Remainder) .. 29

3.2.29 UINT16 TPMS_SQUARE_ROOT(UINT16
u16Process) ...30

3.2.30 void TPMS_READ_ID(UINT8 *u8Code) 30
3.2.31 void TPMS_LF_ENABLE(UINT8 u8Switch)31
3.2.32 UINT8 TPMS_LF_READ_DATA(UINT8

*u8Buffer, UINT8 u8Count)31
3.2.33 UINT8

TPMS_WIRE_AND_ADC_CHECK(UINT8
u8TestMask) .. 32

3.2.34 void TPMS_FLASH_WRITE(UINT16
u16Address, UINT8* u8Buffer, UINT8
u8Size) ...33

3.2.35 UINT16 TPMS_FLASH_CHECK(void)33
3.2.36 UINT8 TPMS_FLASH_ERASE(UINT16

u16Address) ...33
3.2.37 UINT8

TPMS_READ_DYNAMIC_ACCEL(UINT8
u8Filter, UINT8* u8Offset, UINT16*
u16UUMA) ... 34

3.2.38 void TPMS_RF_ENABLE(UINT8 u8Switch) 34
3.2.39 UINT8

TPMS_FLASH_PROTECTION(UINT16
u16Key) ..35

3.2.40 void TPMS_MULT_SIGN_INT16(INT16
i16Mult1, INT16 i16Mult2, INT32*
pi32Result) ...36

3.2.41 UINT8 TPMS_VREG_CHECK(UINT8
u8WaitTime, UINT16 u16LimitDelta) 36

NXP Semiconductors FXTH87xx02FWUG
FXTH87xx02 Embedded Firmware User Guide

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© NXP B.V. 2017. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 5 April 2017

3.2.42 UINT8 TPMS_PRECHARGE_VREG(UINT8
u8TPMWaitUnits, UINT8 u8PTAMask)37

3.2.43 UINT8
TPMS_RDE_ADJUST_PRESSURE(UINT16*
pu16UUMA, T_RDE* ptRDEValues) 37

3.2.44 UINT8
TPMS_READ_ACCEL_CONT_START(UINT8
u8Filter, UINT8 u8DynamicOffset, UINT8
u8SampleSpeed) ... 38

3.2.45 UINT8
TPMS_READ_ACCEL_CONT(UINT16*
pu16Measurement) ..38

3.2.46 UINT8
TPMS_READ_ACCEL_CONT_STOP(void) 39

4 Revision history .. 40
5 Legal information ..42

	1 Introduction
	2 Globals and formats
	2.1 Global variables
	2.1.1 TPMS_INTERRUPT_FLAG
	2.1.2 TPMS_CONT_ACCEL_GLOBAL_VARIABLE

	2.2 Measurement error format
	2.2.1 Definition of signal ranges
	2.2.2 Error status format

	2.3 Universal uncompensated measurement array (UUMA) format
	2.4 Simulated SPI interface signal format
	2.5 Rapid decompression event array (T_RDE) format
	2.6 LFR registers initialized by firmware

	3 Firmware functions
	3.1 Firmware jump table
	3.2 Function description
	3.2.1 void TPMS_RESET(void)
	3.2.2 UINT8 TPMS_READ_VOLTAGE(UINT16 *u16UUMA)
	3.2.3 UINT8 TPMS_COMP_VOLTAGE(UINT8 *u8CompVoltage, *UINT16 u16UUMA)
	3.2.4 UINT8 TPMS_READ_TEMPERATURE(UINT16 *u16UUMA)
	3.2.5 UINT8 TPMS_COMP_TEMPERATURE(UINT8 *u8Temp, UINT16 *u16UUMA)
	3.2.6 UINT8 TPMS_READ_PRESSURE(UINT16 *u16UUMA, UINT8 u8Avg)
	3.2.7 UINT8 TPMS_COMP_PRESSURE(UINT16 *u16CompPressure, UINT16 *u16UUMA)
	3.2.8 UINT8 TPMS_READ_ACCELERATION(UINT16 *u16UUMA, UINT8 u8Avg, UINT8 u8ModeSelect, UINT8 u8DynamicOffset)
	3.2.9 UINT8 TPMS_COMP_ACCELERATION(UINT16 *u16CompAccel, UINT16* u16UUMA)
	3.2.10 UINT8 TPMS_READ_V0(UINT16 *u16Result, UINT8 u8Avg)
	3.2.11 UINT8 TPMS_READ_V1(UINT16 *u16Result, UINT8 u8Avg)
	3.2.12 UINT8 TPMS_LFOCAL(void)
	3.2.13 UINT8 TPMS_MFOCAL(void)
	3.2.14 UINT16 TPMS_WAVG(UINT8 u8PNew, UINT16 u16POld, UINT8 u8PAvg)
	3.2.15 void TPMS_RF_RESET(void)
	3.2.16 void TPMS_RF_READ_DATA(UINT8 u8Size, UINT8 *u8RAMBuffer, UINT8 u8RFMBuffer)
	3.2.17 void TPMS_RF_READ_DATA_REVERSE(UINT8 u8Size, UINT8 *u8RAMBuffer, UINT8 u8RFMBuffer)
	3.2.18 void TPMS_RF_WRITE_DATA(UINT8 u8Size, UINT8 *u8RAMBuffer, UINT8 u8RFMBuffer)
	3.2.19 void TPMS_RF_WRITE_DATA_REVERSE(UINT8 u8Size, UINT8 *u8RAMBuffer, UINT8 u8RFMBuffer)
	3.2.20 void TPMS_RF_CONFIG_DATA(UINT16 *u16RFParam)
	3.2.21 void TPMS_RF_SET_TX(UINT8 u8BufferSize)
	3.2.22 void TPMS_RF_DYNAMIC_POWER(UINT8 u8CompT, UINT8 u8CompV, UINT8* pu8PowerManagement)
	3.2.23 void TPMS_MSG_INIT(void)
	3.2.24 UINT8 TPMS_MSG_READ(void)
	3.2.25 UINT8 TPMS_MSG_WRITE(UINT8 u8SendByte)
	3.2.26 UINT8 TPMS_CHECKSUM_XOR(UINT8 *u8Buffer, UINT8 u8Size, UINT8 u8Checksum)
	3.2.27 UINT8 TPMS_CRC8(UINT8 *u8Buffer, UINT8 u8Poly, UINT8 u8MBitSize, UINT8 u8Remainder)
	3.2.28 UINT16 TPMS_CRC16(UINT8 *u8Buffer, UINT16 u16MByteSize, UINT16 u16Remainder)
	3.2.29 UINT16 TPMS_SQUARE_ROOT(UINT16 u16Process)
	3.2.30 void TPMS_READ_ID(UINT8 *u8Code)
	3.2.31 void TPMS_LF_ENABLE(UINT8 u8Switch)
	3.2.32 UINT8 TPMS_LF_READ_DATA(UINT8 *u8Buffer, UINT8 u8Count)
	3.2.33 UINT8 TPMS_WIRE_AND_ADC_CHECK(UINT8 u8TestMask)
	3.2.34 void TPMS_FLASH_WRITE(UINT16 u16Address, UINT8* u8Buffer, UINT8 u8Size)
	3.2.35 UINT16 TPMS_FLASH_CHECK(void)
	3.2.36 UINT8 TPMS_FLASH_ERASE(UINT16 u16Address)
	3.2.37 UINT8 TPMS_READ_DYNAMIC_ACCEL(UINT8 u8Filter, UINT8* u8Offset, UINT16* u16UUMA)
	3.2.38 void TPMS_RF_ENABLE(UINT8 u8Switch)
	3.2.39 UINT8 TPMS_FLASH_PROTECTION(UINT16 u16Key)
	3.2.40 void TPMS_MULT_SIGN_INT16(INT16 i16Mult1, INT16 i16Mult2, INT32* pi32Result)
	3.2.41 UINT8 TPMS_VREG_CHECK(UINT8 u8WaitTime, UINT16 u16LimitDelta)
	3.2.42 UINT8 TPMS_PRECHARGE_VREG(UINT8 u8TPMWaitUnits, UINT8 u8PTAMask)
	3.2.43 UINT8 TPMS_RDE_ADJUST_PRESSURE(UINT16* pu16UUMA, T_RDE* ptRDEValues)
	3.2.44 UINT8 TPMS_READ_ACCEL_CONT_START(UINT8 u8Filter, UINT8 u8DynamicOffset, UINT8 u8SampleSpeed)
	3.2.45 UINT8 TPMS_READ_ACCEL_CONT(UINT16* pu16Measurement)
	3.2.46 UINT8 TPMS_READ_ACCEL_CONT_STOP(void)

	4 Revision history
	5 Legal information
	Tables
	Figures
	Contents

