HCTS273MS ## Radiation Hardened Octal D Flip-Flop September 1995 #### Features - 3 Micron Radiation Hardened CMOS SOS - Total Dose 200K RAD (Si) - SEP Effective LET No Upsets: >100 MEV-cm²/mg - Single Event Upset (SEU) Immunity < 2 x 10⁻⁹ Errors/Bit-Day (Typ) - Dose Rate Survivability: >1 x 10¹² RAD (Si)/s - Dose Rate Upset >10¹⁰ RAD (Si)/s. 20ns Pulse - Latch-Up Free Under Any Conditions - Fanout (Over Temperature Range) - Bus Driver Outputs 15 LSTTL Loads - Military Temperature Range: -55°C to +125°C - Significant Power Reduction Compared to LSTTL ICs - DC Operating Voltage Range: 4.5V to 5.5V - LSTTL Input Compatibility - VIL = 0.8V Max - VIH = VCC/2 Min - Input Current Levels Ii ≤ 5μA at VOL, VOH #### Description The Intersil HCTS273MS is a Radiation Hardened octal D flip-flop, positive edge triggered, with reset. The HCTS273MS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of radiation hardened, high-speed, CMOS/SOS Logic Family. The HCTS273MS is supplied in a 20 lead Ceramic flatpack (K suffix) or a SBDIP Package (D suffix). #### **Pinouts** 20 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE (SBDIP) MIL-STD-1835 CDIP2-T20, LEAD FINISH C TOP VIEW 20 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE (FLATPACK) MIL-STD-1835 CDFP4-F20, LEAD FINISH C TOP VIEW ## Ordering Information | PART NUMBER | TEMPERATURE RANGE | SCREENING LEVEL | PACKAGE | |-----------------|-------------------|-----------------------------|--------------------------| | HCTS273DMSR | -55°C to +125°C | Intersil Class S Equivalent | 20 Lead SBDIP | | HCTS273KMSR | -55°C to +125°C | Intersil Class S Equivalent | 20 Lead Ceramic Flatpack | | HCTS273D/Sample | +25°C | Sample | 20 Lead SBDIP | | HCTS273K/Sample | +25°C | Sample | 20 Lead Ceramic Flatpack | | HCTS273HMSR | +25°C | Die | Die | ## Functional Diagram #### TRUTH TABLE | | OUTPUT | | | |------------|------------------|---|----| | RESET (MR) | CLOCK CP DATA Dn | | Q | | L | Х | Х | L | | Н | | Н | Н | | Н | | L | L | | Н | L | Х | Q0 | NOTE: Q0 = The level of Q established by the last low to high transition of the clock H = High Level L = Low Level X = Immaterial = Transition from low to high #### **Absolute Maximum Ratings** # Supply Voltage (VCC)....-0.5V to +7.0V Input Voltage Range, All Inputs ...-0.5V to VCC +0.5V DC Input Current, Any One Input±10mA DC Drain Current, Any One Output......±25mA (All Voltage Reference to the VSS Terminal) Storage Temperature Range (TSTG) ... -65°C to +150°C Lead Temperature (Soldering 10sec) ... +265°C Junction Temperature (TJ) ... +175°C ESD Classification ... Class 1 #### **Reliability Information** $\begin{array}{cccc} Thermal \ Resistance & \theta_{JA} & \theta_{JC} \\ SBDIP \ Package & 72^{\circ}C/W & 24^{\circ}C/W \\ Ceramic \ Flatpack \ Package & 107^{\circ}C/W & 28^{\circ}C/W \\ Maximum \ Package \ Power \ Dissipation \ at \ +125^{\circ}C \ Ambient \end{array}$ If device power exceeds package dissipation capability, provide heat sinking or derate linearly at the following rate: CAUTION: As with all semiconductors, stress listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Performance Characteristics" are the only conditions recommended for satisfactory device operation. #### **Operating Conditions** | Supply Voltage (VCC) | . +4.5V to +5.5V | Input L | |--|------------------|---------| | Input Rise and Fall Times at VCC = 4.5V (TR, TF) | 500ns Max | Input H | | Operating Temperature Range (T _A) | -55°C to +125°C | | #### TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS | | | (NOTE 1) | GROUP
A SUB- | | LIMITS | | | |-----------------------------------|---------|---|-----------------|----------------------|-------------|------|-------| | PARAMETER | SYMBOL | CONDITIONS | GROUPS | TEMPERATURE | MIN | MAX | UNITS | | Quiescent Current | ICC | VCC = 5.5V,
VIN = VCC or GND | 1 | +25°C | - | 40 | μА | | | | VIIV = VCC OI GIND | 2, 3 | +125°C, -55°C | - | 750 | μА | | Output Current
(Sink) | IOL | VCC = 4.5V, VIH = 4.5V,
VOUT = 0.4V, VIL = 0V | 1 | +25°C | 7.2 | - | mA | | (Ollik) | | VOOT = 0.4V, VIL = 0V | 2, 3 | +125°C, -55°C | 6.0 | - | mA | | Output Current
(Source) | IOH | VCC = 4.5V, VIH = 4.5V,
VOUT = VCC -0.4V, | 1 | +25°C | -7.2 | - | mA | | (Source) | | VIL = 0V | 2, 3 | +125°C, -55°C | -6.0 | - | mA | | Output Voltage Low | VOL | VCC = 4.5V, VIH = 2.25V,
IOL = 50μA, VIL = 0.8V | 1, 2, 3 | +25°C, +125°C, -55°C | - | 0.1 | V | | | | VCC = 5.5V, VIH = 2.75V,
IOH = 50μA, VIL = 0.8V | 1, 2, 3 | +25°C, +125°C, -55°C | - | 0.1 | V | | Output Voltage High | VOH | VCC = 4.5V, VIH = 2.25V,
IOL = -50μA, VIL = 0.8V | 1, 2, 3 | +25°C, +125°C, -55°C | VCC
-0.1 | - | V | | | | VCC = 5.5V, VIH = 2.75V,
IOH = -50μA, VIL = 0.8V | 1, 2, 3 | +25°C, +125°C, -55°C | VCC
-0.1 | - | V | | Input Leakage
Current | IIN | IIN VCC = 5.5V, VIN = VCC or GND | | +25°C | - | ±0.5 | μΑ | | Current | Current | | 2, 3 | +125°C, -55°C | - | ±5.0 | μА | | Noise Immunity
Functional Test | FN | VCC = 4.5V, VIH =2.25V,
VIL =0.8V (Note 2) | 7, 8A, 8B | +25°C, +125°C, -55°C | - | - | - | #### NOTES: - 1. All voltages reference to device GND. - 2. For functional tests VO \geq 4.0V is recognized as a logic "1", and VO \leq 0.5V is recognized as a logic "0". TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS | | | (NOTEC 4. 2) | GROUP | | LIM | IITS | | |-----------|--------|----------------------------|------------------|---------------|-----|------|-------| | PARAMETER | SYMBOL | (NOTES 1, 2)
CONDITIONS | A SUB-
GROUPS | TEMPERATURE | MIN | MAX | UNITS | | CP to Q | TPLH | VCC = 4.5V | 9 | +25°C | 2 | 19 | ns | | | | | 10, 11 | +125°C, -55°C | 2 | 22 | ns | | | TPHL | VCC = 4.5V | 9 | +25°C | 2 | 23 | ns | | | | | 10, 11 | +125°C, -55°C | 2 | 27 | ns | | MR to Q | TPHL | VCC = 4.5V | 9 | +25°C | 2 | 25 | ns | | | | | 10, 11 | +125°C, -55°C | 2 | 29 | ns | #### NOTES: - 1. All voltages referenced to device GND. - 2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V. TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS | | | | | | LIN | IITS | | |-------------------------------|--------------|----------------------|-------|---------------|-----|------|-------| | PARAMETER | SYMBOL | CONDITIONS | NOTES | TEMPERATURE | MIN | MAX | UNITS | | Capacitance Power Dissipation | CPD | VCC = 5.0V, f = 1MHz | 1 | +25°C | - | 60 | pF | | Dissipation | | | 1 | +125°C, -55°C | - | 60 | pF | | Input Capacitance | CIN | VCC = 5.0V, f = 1MHz | 1 | +25°C | - | 10 | pF | | | | | 1 | +125°C, -55°C | - | 10 | pF | | Output Transition Time | TTHL
TTLH | VCC = 4.5V | 1 | +25°C | - | 15 | ns | | Time | I IILA | | 1 | +125°C, -55°C | - | 22 | ns | | Maximum Operating | FMAX | VCC = 4.5V | 1 | +25°C | | 25 | MHz | | Frequency (CPU, CPD) | | | 1 | +125°C, -55°C | | 16 | MHz | | Setup Time Data to Clock | TSU | VCC = 4.5V | 1 | +25°C | 12 | - | ns | | Clock | | | 1 | +125°C, -55°C | 18 | - | ns | | Hold Time Data to
Clock | TH | VCC = 4.5V | 1 | +25°C | 3 | - | ns | | Clock | | | 1 | +125°C, -55°C | 3 | - | ns | | Pulse Width MRN | TW | VCC = 4.5V | 1 | +25°C | 12 | - | ns | | | | | 1 | +125°C, -55°C | 18 | - | ns | | Pulse Width Clock | TW | VCC = 4.5V | 1 | +25°C | 20 | - | ns | | | | | 1 | +125°C, -55°C | 30 | - | ns | | Removal Time MR | TREM | VCC = 4.5V | 1 | +25°C | 10 | - | ns | | IO CIOCK | | | 1 | +125°C, -55°C | 15 | - | ns | #### NOTE: ^{1.} The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics. TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS | | | (NOTES 1, 2) | | 200K RAD
LIMITS | | | | |-----------------------------------|--------|--|-------------|--------------------|------|-------|--| | PARAMETER | SYMBOL | CONDITIONS | TEMPERATURE | MIN | MAX | UNITS | | | Quiescent Current | ICC | VCC = 5.5V, VIN = VCC or GND | +25°C | - | 0.75 | mA | | | Output Current (Sink) | IOL | VCC = 4.5V, VIN = VCC or GND,
VOUT = 0.4V | +25°C | 6.0 | - | mA | | | Output Current (Source) | IOH | VCC = 4.5V, VIN = VCC or GND,
VOUT = VCC -0.4V | +25°C | -6.0 | - | mA | | | Output Voltage Low | VOL | VCC = 4.5V and 5.5V, VIH = VCC/2,
VIL = 0.8V, IOL = 50µA | +25°C | - | 0.1 | V | | | Output Voltage High | VOH | VCC = 4.5V and 5.5V, VIH = VCC/2,
VIL = 0.8V, IOH = -50μA | +25°C | VCC
-0.1 | - | V | | | Input Leakage Current | IIN | VCC = 5.5V, VIN = VCC or GND | +25°C | - | ±5 | μА | | | Noise Immunity
Functional Test | FN | VCC = 4.5V, VIH = 2.25V, VIL = 0.8V, (Note 3) | +25°C | - | - | - | | | CP to Q | TPLH | VCC = 4.5V | +25°C | 2 | 22 | ns | | | | TPHL | VCC = 4.5V | +25°C | 2 | 27 | ns | | | MR to Q | TPHL | VCC = 4.5V | +25°C | 2 | 29 | ns | | #### NOTES: - 1. All voltages referenced to device GND. - 2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V. - 3. For functional tests $VO \ge 4.0V$ is recognized as a logic "1", and $VO \le 0.5V$ is recognized as a logic "0". TABLE 5. BURN-IN AND OPERATING LIFE TEST, DELTA PARAMETERS (+25°C) | PARAMETER | GROUP B
SUBGROUP | DELTA LIMIT | |-----------|---------------------|----------------| | ICC | 5 | 12μΑ | | IOL/IOH | 5 | -15% of 0 Hour | #### **TABLE 6. APPLICABLE SUBGROUPS** | CONFORMANCE GROUPS | | METHOD | GROUP A SUBGROUPS | READ AND RECORD | |---------------------------|--------------|-------------|---------------------------------------|------------------------------| | Initial Test (Preburn-In) | | 100%/5004 | 1, 7, 9 | ICC, IOL/H | | Interim Test I (Postburn- | ln) | 100%/5004 | 1, 7, 9 | ICC, IOL/H | | Interim Test II (Postburn | -ln) | 100%/5004 | 1, 7, 9 | ICC, IOL/H | | PDA | | 100%/5004 | 1, 7, 9, Deltas | | | Interim Test III (Postbur | n-ln) | 100%/5004 | 1, 7, 9 | ICC, IOL/H | | PDA | | 100%/5004 | 1, 7, 9, Deltas | | | Final Test | | 100%/5004 | 2, 3, 8A, 8B, 10, 11 | | | Group A (Note 1) | | Sample/5005 | 1, 2, 3, 7, 8A, 8B, 9, 10, 11 | | | Group B | Subgroup B-5 | Sample/5005 | 1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas | Subgroups 1, 2, 3, 9, 10, 11 | | | Subgroup B-6 | Sample/5005 | 1, 7, 9 | | | Group D | Group D | | 1, 7, 9 | | #### NOTE: 1. Alternate Group A testing in accordance with method 5005 of MIL-STD-883 may be exercised. #### **TABLE 7. TOTAL DOSE IRRADIATION** | CONFORMANCE | | TEST | | READ ANI | RECORD | |--------------------|--------|---------|----------|----------|------------------| | GROUPS | METHOD | PRE RAD | POST RAD | PRE RAD | POST RAD | | Group E Subgroup 2 | 5005 | 1, 7, 9 | Table 4 | 1, 9 | Table 4 (Note 1) | #### NOTE: 1. Except FN test which will be performed 100% Go/No-Go. #### TABLE 8. STATIC AND DYNAMIC BURN-IN TEST CONNECTIONS | | | | | OSCIL | LATOR | | |----------------------------------|--|-------------------------------|--|-------|-------------------------------|--| | OPEN | GROUND | 1/2 VCC = 3V ± 0.5V | $VCC = 6V \pm 0.5V$ | 50kHz | 25kHz | | | STATIC BURN-IN I TE | STATIC BURN-IN I TEST CONNECTIONS | | | | | | | 2, 5, 6, 9, 12, 15,
16, 19 | 1, 3, 4, 7, 8, 10, 11,
13, 14, 17, 18 | - | 20 | - | - | | | STATIC BURN-IN II T | EST CONNECTIONS | | | | | | | 2, 5, 6, 9, 12, 15,
16, 19 | 10 | - | 1, 3, 4, 7, 8, 11, 13,
14, 17, 18, 20 | - | - | | | DYNAMIC BURN-IN TEST CONNECTIONS | | | | | | | | - | 10 | 2, 5, 6, 9, 12, 15,
16, 19 | 1, 20 | 11 | 3, 4, 7, 8, 13,
14, 17, 18 | | #### NOTES: - 1. Each pin except VCC and GND will have a resistor of $10 k\Omega \pm 5\%$ for static burn-in - 2. Each pin except VCC and GND will have a resistor of $680\Omega\pm5\%$ for dynamic burn-in #### **TABLE 9. IRRADIATION TEST CONNECTIONS** | OPEN | GROUND | $\text{VCC} = 5\text{V} \pm 0.5\text{V}$ | |----------------------------|--------|--| | 2, 5, 6, 9, 12, 15, 16, 19 | 10 | 1, 3, 4, 7, 8 11, 13, 14, 17, 18, 20 | NOTE: Each pin except VCC and GND will have a resistor of 47K Ω \pm 5% for irradiation testing. Group E, Subgroup 2, sample size is 4 dice/wafer 0 failures. #### HCTS273MS #### Intersil Space Level Product Flow - 'MS' Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM) GAMMA Radiation Verification (Each Wafer) Method 1019, 4 Samples/Wafer, 0 Rejects 100% Nondestructive Bond Pull, Method 2023 Sample - Wire Bond Pull Monitor, Method 2011 Sample - Die Shear Monitor, Method 2019 or 2027 100% Internal Visual Inspection, Method 2010, Condition A 100% Temperature Cycle, Method 1010, Condition C, 10 Cycles 100% Constant Acceleration, Method 2001, Condition per Method 5004 100% PIND, Method 2020, Condition A 100% External Visual 100% Serialization 100% Initial Electrical Test (T0) 100% Static Burn-In 1, Condition A or B, 24 hrs. min., +125°C min., Method 1015 100% Interim Electrical Test 1 (T1) 100% Delta Calculation (T0-T1) 100% Static Burn-In 2, Condition A or B, 24 hrs. min., $+125^{\circ}$ C min., Method 1015 100% Interim Electrical Test 2 (T2) 100% Delta Calculation (T0-T2) 100% PDA 1, Method 5004 (Notes 1and 2) 100% Dynamic Burn-In, Condition D, 240 hrs., +125°C or Equivalent, Method 1015 100% Interim Electrical Test 3 (T3) 100% Delta Calculation (T0-T3) 100% PDA 2, Method 5004 (Note 2) 100% Final Electrical Test 100% Fine/Gross Leak, Method 1014 100% Radiographic, Method 2012 (Note 3) 100% External Visual, Method 2009 Sample - Group A, Method 5005 (Note 4) 100% Data Package Generation (Note 5) #### NOTES: - 1. Failures from Interim electrical test 1 and 2 are combined for determining PDA 1. - 2. Failures from subgroup 1, 7, 9 and deltas are used for calculating PDA. The maximum allowable PDA = 5% with no more than 3% of the failures from subgroup 7. - 3. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004. - 4. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005. - 5. Data Package Contents: - Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity). - Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage. - GAMMA Radiation Report. Contains Cover page, disposition, Rad Dose, Lot Number, Test Package used, Specification Numbers, Test equipment, etc. Radiation Read and Record data on file at Intersil. - X-Ray report and film. Includes penetrometer measurements. - Screening, Electrical, and Group A attributes (Screening attributes begin after package seal). - Lot Serial Number Sheet (Good units serial number and lot number). - Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test. - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative. ## AC Timing Diagrams and Load Circuit FIGURE 1. CLOCK TO OUTPUT DELAYS AND CLOCK PULSE WIDTH FIGURE 2. MASTER RESET PULSE WIDTH. MASTER RESET TO OUTPUT DELAY AND MASTER RESET TO CLOCK RECOVERY TIME FIGURE 3. DATA SET-UP AND HOLD TIMES FIGURE 4. OUTPUT TRANSITION TIME #### **AC VOLTAGE LEVELS** | PARAMETER | нстѕ | UNITS | |-----------|------|-------| | VCC | 4.50 | V | | VIH | 3.00 | V | | VS | 1.30 | V | | VIL | 0 | V | | GND | 0 | V | FIGURE 5. AC LOAD CIRCUIT #### Die Characteristics #### **DIE DIMENSIONS:** 108 x 106 mils #### **METALLIZATION:** Type: AISi Metal Thickness: 11kÅ ± 1kÅ ### **GLASSIVATION:** Type: SiO₂ Thickness: 13kÅ ± 2.6kÅ #### **WORST CASE CURRENT DENSITY:** $<2.0 \times 10^5 \text{A/cm}^2$ #### **BOND PAD SIZE:** $100\mu m\ x\ 100\mu m$ 4 x 4 mils ### Metallization Mask Layout #### HCTS273MS NOTE: The die diagram is a generic plot form a similar HCS device. It is intended to indicate approximate die size and bond pad location. The mask series for the HCTS273 is TA14407. #### HCTS273MS | All Intereil comiconductor product | s are manufactured, assembled and to | ested under ISO9000 quality systems certification. | |--|---|--| | | | changes in circuit design and/or specifications at any time without | | notice. Accordingly, the reader is cautioned to | verify that data sheets are current before placing | orders. Information furnished by Intersil is believed to be accurate for any infringements of patents or other rights of third parties which | | | by implication or otherwise under any patent or pa | , | | For information | n regarding Intersil Corporation and its products, se | e web site http://www.intersil.com | | Sales Office Headquarte | rs | | | NORTH AMERICA | EUROPE | ASIA | | Intersil Corporation P. O. Box 883, Mail Stop 53-204 | Intersil SA
Mercure Center | Intersil (Taiwan) Ltd.
Taiwan Limited | | P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902 | 100, Rue de la Fusee | 7F-6, No. 101 Fu Hsing North Road | | TEL: (407) 727-9207 | 1130 Brussels, Belgium | Taipei, Taiwan | | FAX: (407) 724-7240 | TEL: (32) 2.724.2111 | Republic of China | | | EAV. (22) 2 724 22 05 | TEL - (006) 2 2716 0210 | Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029 FAX: (32) 2.724.22.05