HD6800, HD68A0O0O, HD68BOO

MPU (Micro Processing Unit)

The HD6800 is a monolithic 8-bit microprocessor forming HD6800, HD68A00, HD68B0O
the central control function for Hitachi’'s HMCS6800 family.
Compatible with TTL, the HD6800 as with all HMCS6800
system parts, requires only one 5V power supply, and no ex-
ternal TTL devices for bus interface. The HD68A00 and
HD68BO0O0 are high speed versions.

The HD6800 is capable of addressing 65k bytes of mem-
ory with its 16-bit address lines. The 8-bit data bus is bi-direc-
tional as well as 3-state, making direct memory addressing and
multiprocessing applications realizable.

m FEATURES
« Versatile 72 Instruction - Variable Length (1~3 Byte)
*« Seven Addressing Modes — Direct, Relative, Immediate,

Indexed, Extended, Implied and Accumulator
* Variable Length Stack
¢ Vectored Restart
« Maskable Interrupt
* Separate Non-Maskable Interrupt — Internal Registers Saved

in Stack
¢ Six Internal Registers —Two Accumulators, Index Register,

Program Counter, Stack Pointer and Condition Code Register
+ Direct Memory Accessing (DMA) and Multiple Processor

Capability
+« Clock Rates as High as 2.0 MHz (HD6800 = 1 MHz,

HD68A00 - 1.5 MHz, HD68B00 - 2.0 MHz)

+ Halt and Single Instruction Execution Capability

+ Compatible with MC6800, MC68A00 and MC68B00
m PIN ARRANGEMENT

= BLOCK DIAGRAM

vss res

A. A4 A, AT A, Ao At A, A At A A4 A A A A0 HALT (T TsC

25 24 23 22 20 19 18 17 6 15 14 13 12 1 10 9 0i [T U ne
IRQ (T 002
WA (T 3 DEE
NV 1 NC
BA(T 13 RW
vce Lit 3 D0
A (l 3 o,
A [To HD6800 0D
A, (i 30
ai (n 3
A<Ei 3 D
A, [m 3
A6QL 3 o
A (H AA,
a>m 234 <
A i 3 Au
A,.(H 23 A,
A.d O vss

(Top View)

26 27 28 29 30 31 32 33

HD6800, HD68AOO, HD68B0OO

s ABSOLUTE MAXIMUM RATINGS

Item Symbol Value Unit
Supply Voltage Vece* -0.3 ~ +7.0 \%
Input Voltage Vin* -0.3 ~ +7.0 A%
Operating Temperature Topr - 20~ +75 °C
Storage Temperature "Fstg —55 — +150 °C

* With respectto Vss (SYSTEM GND)
(NOTE) Permanent LSI damage may occur if maximum rating are exceeded. Normal operation should be under recommended operating conditions.
If these conditions are exceeded, it could affect reliability of LSI.

s RECOMMENDED OPERATING CONDITION

Item Symbol min typ max Unit
Supply Voltage vV Cc* 4.75 5.0 5.25 \Y
-0.3 - 0.8 \
Input Voltage V’L:
v _ 2.0 - Ve v
Operating Temperature ""Fppr -20 25 75 °C

* With respectto Vss (SYSTEM GND)

m ELECTRICAL CHARACTERISTICS
« DC CHARACTERISTICS (Vcc =5V *+ 5%, Vss = OV, Ta « -20~+75°C, unless otherwise noted.)

Item Symbol Test Condition min typ* max Unit
Input "High" Voltage Logic** V.H 2.0 VCc \
Input "Low" Voltage Logic** V,L -0.3 — 0.8 \
Clock Input "High" Voltage 01,02 V,HC Vcc-0.6 - Vcc+0.3 \
Clock Input "Low" Voltage (01.02 V|LC -0.3 - 0.4 \%
DO~D7 lgh =-205/iA 2.4 - - \
Output "High" Voltage C,f’,fAA s RW U0H lon = -145/1A 2.4 - . v
BA lgh = - 100/tA 2.4 - - \%
Output”Low" Voltage VoL g1 = 1.6mA - - 0.4 \
Logic*** Vin = 0~5.25V, 2.5 - 2.5 ma
Input Leakage Current un All other pins are connected
01.02 to GND -100 - 100 IxA
- s d0~d7 -10 - 10 liA
Three-State (Off-state) lsi Vin =04~ 2.4V
Input Current AO0~A 1S, RIW -100 - 100 MA
Power Dissipation Pd - 0.5 1.0 w
Logic*** - 6.5 10 pF
DO~D7 in = = ° - 10 12.5 PF
Input Capacitance cin Vin =0V, Ta = 25°C,
0i f=1MHz - 25 35 PF
02 - 45 70 PF
. AO~A 1S R/W Vin = 0V, Ta = 25°C,
Output Capacitance VMA. BA Oput f= 1 MH2 - - 12 PF

* Ta = 25°C, Vcc =5V
** All inputs except O, and 02
*** All inputs except 0j <2 and DO~D 7

HD6800, HD68A0OO, HD68BOO

« AC CHARACTERISTICS (VCC =5V + 5%, V/SS= 0V, Ta = -20~+75°C, unles* otherwise noted.)
1. TIMING CHARACTERISTICS OF cLOCK PULSE Qi and 02

Test HD6800 HD68A00 HD68B00)
Item Symbol L i i i Unit
Condition min typ max min typ max min typ max
Frequency of Operation f 0.1 - 1.0 0.1 - 15 0.1 - 2.0 MHz
Cycle Time toye Fig. 10 1.000 - 10 0.666 - 10 0.500 - 10 Us
Clock Pulse Width 01,02 PWOhiPWeh2 Fig. 10 400 - 4,500 230 - 4,500 180 - 4,500 ns
Rise and Fall Times (01.02 tr.tf Fig. 10 - - 100 - - 100 - - 100 ns
Delay Time (Clock Internal) td Fig. 10 0 - 4,500 0 - 4,500 0 - 4,500 ns
Clock "High" Level Time T Fig. 10 900 - - 600 ~ - 440 - - ns
2. READ/WRITE CHARACTERISTICS
Test HD6800 HD68A00 HD68B00)
Item Symbol L . . . Unit
Condition min typ max min typ mMax min typ max
_ Fig. 11
C=90pF i . ! - - 270 - - 180 - - 150 ns
Address Delay P ladi Fig. 12
Time ;
- Fig. 11, B ; ns
C=30pF fAD2 Fig. 12 - N 250 - 165 ; 135
Data Setup Time (Read) ldsr Fig. 11 100 - . 60 . - 40 ns
Peripheral Read Access Time face Fig. 11 _ 7 530)) 360) . 250
face = tIJT " (tAD + *DSR)
Input Data Hold Time tH Fig. 11 10 - - 10 - - 10 - - ns
Output Data Hold Time tH Fig. 12 20 - - 20 - - 20 - - ns
Address Hold Time Fig. 11,
(Address, RIW, VMA) fAH Fig. 12 0 - - 0 - - 0 - -
Enable "High" Time for DBE {EH Fig. 12 50 .) 280 . } 220 . . s
Input
Data Delay Time (Write) fDDW Fig. 12 . - 225 - - 200 - - 160 ns
Data Bus Enable Down Time .
(During 0t Up Time) tDBE Fig. 12 150 . - 120 . - 7% . - ns
Data Bus Enable Delay Time fDBED Fig. 12 300 - - 250 - - 180 ns
Data Bus Enable fQBET . 25 25
Rise and Fall Times DBEf Fig. 12)) 25 . i) i ns
Processor Control Setup Time fpcs 200 - - 140 . - 110 ns
Processor Control tpCr
. B N - 100 ns
Rise and Fall Times fpcf 100 100
Bus Available Delay Time (BA) (ga - - 250 - . 165 . . 135 ns
Three-State Delay Time fTSD - - 270 - - 270 - - 220 ns
5.0V

C = 130pF for DO~D 7
- 90pF for AO~A, s,R/W,and VMA
= 30pF for BA

R = 11kSl for DO~D7
= 16kfi for AO~A,5, R/W and VMA
= 24kfl for BA

C includes Stray Capacitance.

All diodes are 1S2074 0 o r equivalent.

Figure 1 Bus Timing Test Load

HD6800 HDG68A00, HD68BOO

The Last Instruction Cycle

! Vce - 0.6V

*

SN

Halt Cycle

VCC-0.6 V"

Figure 2 Timing of HALT and BA

YA yce- 0.6v\

tBA J

r-.0.4v

Figure 3 Timing of HALT and BA

/IPCS
tpCf-»
2.0V
HALT 0.8v
BA
Halt Cycle
3 vcec—0.6v
cm. r o~
0j \
/PCS
IPCr
X" 2.0V
HALT X8V
BA
MPU Reset

Figure 4 RES and MPU Restart Sequence

“Vcec - 0.6V\»

I BA

iLZFZ\/I

Instruction Cycle

MPU Restart Sequence

WAIT Cycle or
The Last Instruction Cycle

The last execution cycle of
WAI instruction (#9)

\

hl

HD6800, HD68A0O0O, HD68B0OO

Interrupt Sequence

WAIT Cycle

HD6800 HDG68A00, HD68BOO

m MPU REGISTERS

The MPU provides several registers in Fig. 8, which is avail-
able for use by the programmer.

Each register is described below.

* Program Counter (PC)

The program counter is a two byte (16-bit) register that
points to the current program address.
« Stack Pointer (SP)

The stack pointer is a two byte register that contains the
address of the next available location in an external push-down/
pop-up stack. This stack is normally a random access Read/
Write memory that may have any location (address) that is con-
venient. In those applications that require storage of informa-
tion in the stack when power is lost, the stack must be non-
volatile.

* Index Register (1X)

The index register is a two byte register that is used to store
data or a sixteen bit memory address for the Indexed mode of
memory addressing.
¢ Accumulators (ACCA, ACCB)

The MPU contains two 8-bit accumulators that are used to
hold operands and results from an arithmetic logic unit (ALU).

Figure 8 Programming Model of the Microprocessing
Unit

+ Condition Code Register (CCR)

The condition code register indicates the results of an Arith-
metic Logic Unit operation: Negative (N)> Zero (Z), Overflow
(V), Carry from bit 7 (C), and half carry from bit 3(H). These
bits of the Condition Code Register are used as testable condi-
tions for the conditional branch instructions. Bit 4 is the
interrupt mask bit (I). The unused bits of the Condition Code
Register (b6 and b7) are “ 1”. The detail block diagram of the
microprossing unit is shown in Fig. 9.

Addrass Bus Addrass Bus
(H A, <A (L) A~A,

sr~sr
Figure 9 Internal Block Diagram of MPU

m MPU SIGNAL DESCRIPTION

Proper operations of the MPU requires that certain control
and timing signals (Fig. 9) be provided to accomplish specific
functions. The functions of pins are explained in this section.
« Clock (02,02)

Two pins are used to provide the clock signals. A two-phase
non-overlapping clock is provided as shown in Fig. 10.

Vov = Vss+

Figure 10 Clock Timing Waveform

* Address Bus (AO~AiYS)

Sixteen pins are used for the address bus. The outputs are
three-state bus drivers capable of driving one standard TTL load
and 90pF. When the output is turned off, it is essentially an
open circuit. This permits the MPU to be used in DMA applica-
tions. Putting TSC in its high state forces the Address bus to go
into the three-state mode.

« Data Bus (DO~D7)

Eight pins are used for the data bus. It is bidirectional,
transferring data to and from the memory and peripheral
devices. It also has three-state output buffers capable of driving
one standard TTL load and 130pF. Data Bus is placed in the
three-state mode when DBE is “ Low.”

HD6800, HD68A0O0O, HD68B0OO

Indeterminate period

Figure 11 Read from Memory or Peripherals

Figure 12 Write to Memory or Peripherals

HD6800, HD68A0O0O, HD68BOO

« Data Bus Enable (DBE)

This input is the three-state control signal for the MPU data
bus and will enable the bus drivers when in the “High” state;will
make the bus driver off when in the “Low” state. This input is
TTL compatible; however in normal operation, it would be
driven by 42 clock. During an MPU read cycle, the data bus
drivers will be disabled internally. When it is desired that an-
other device control the data bus such as in Direct Memory
Access (DMA) applications, DBE should be held “Low.”

If additional data setup or hold time is required on an MPU
write, the DBE down time can be decreased as shown in Fig. 13
(DBE The minimum down time for DBE is Idbe as
shown and must occur within <t up time. As for the charac-
teristical values in Fig. 12, refer to the table of electrical charac-
teristics.

* Bus Available (BA)

The BA signal will normally be in the “Low” state. When
activated, it will go to the “High” state indicating that the
microprocessor has stopped and that the address bus is avail-
able. This will occur if the HALT line is in the “Low” state
or the processor is in the WAIT state as a result of the execution
of a WAIT instruction. At such time, all three-state output
drivers will go to their off state and other outputs to their
normally inactive level. The processor is removed from the
WAIT state by the occurrence of a maskable (mask bit | = 0) or
nonmaskable interrupt. This output is capable of driving one
standard TTL load and 30pF. If TSC is in the “High” state, Bus
Available will be “Low”.

* Read/Write (R/W)

This TTL compatible output signals the peripherals and

memory devices whether the MPU is in a Read (“High”) or

L3N 1IJJiMgnMJdipgnLnL

Switch

Power
Supply

Address
Bus

R/IW
VMA

Data
Bus

Y 1A = Indeterminate period

Figure 13 RES Timing

Write (“Low”) state. The normal standby state of this signal is
Read (“High”). Three-State Control going “High” will turn R/W
to the off (high impedance) state. Also, when the processor is
halted, it will be in the off state. This output is capable of
driving one standard TTL load and 90pF.

* Reset (RES)

The RES input is used to reset and start the MPU from a
power down condition resulting from a power failure or initial
start-up of the processor. This input can also be used to re-
initialize the machine at any time after start-up.

If a “High” level is detected in this input, this will signal the
MPU to begin the reset sequence. During the reset sequence, the
contents of the last two locations (FFFE, FFFF) in memory
will be loaded into the Program Counter to point to the begin-
ning of the reset routine. During the reset routine, the interrupt
mask bit is set and must be cleared under program control
before the MPU can be interrupted by IRQ. While RES is
“Low” (assuming a minimum of 8 clock cycles have occured)
the MPU output signals will be in the following states; VMA =
“Low”, BA = “Low”, Data Bus = high impedance, R/W = “ High”
(read state), and the Address Bus will contain the reset address
FFFE. Fig. 13 illustrates a power up sequence using the Reset
control line. After the power supply reaches 4.75V, a minimum
of eight clock cycles are required for the processor to stabilize
in preparation for restarting. During these eight cycles, VMA will
be in an indeterminate state so any devices that are enabled by
VMA which could accept a false write during this time (such as
a battery-backed RAM) must be disabled until VMA is forced
“Low” after eight cycles. RES can go “High” asynchronously
with the system clock any time after the eighth cycle.

+2 n+3 n+4 n+5

LrL

n+

The Reset control line may also be used to reinitialize the
MPU system at any time during its operation. This is accomp-
lished by pulsing RES “Low” for the duration of a minimum of
three complete 2 cycles. The RES pulse can be completely
asynchronous with the MPU system clock and will be recog-
nized during <F2 if setup time tpcs is met.

* Interrupt Request (IRQ)

This level sensitive input requests that an interrupt sequence
be generated within the machine. The processor will wait until
it completes the current instruction that is being executed
before it recognizes the request. If the interrupt mask bit in the
Condition Code Register is not set, the machine will begin an
interrupt sequence. The Index Register, Program Counter,
Accumulators, and Condition Code Register are stored away on
the stack.

Next the MPU will respond to the interrupt request by
setting the interrupt mask bit “1” so that no further inter-
rupts may occur. At the end of the cycle, a 16-bit address will
be loaded that points to a vectoring address which is located in
memory locations FFF8 and FFF9. An address loaded at these
locations causes the MPU to branch to an interrupt routine in
memory. Interrupt timing is shown in Fig. 14.

The HALT line must be in the “High” state for interrupts
to be serviced. Interrupts will be latched internally while HALT
is “Low” . The IRQ has ahigh impedance pullup device internal
to the chip; however a 3kf2 external resistor to v cc should be
used for wire-OR and optimum control o f interrupts.

I Cycle | Cycle j Cycle | Cycle |Cycle | Cycle | Cycle | Cycle
| #1 | #2 | #3 | #4 | #5 | #6 | #7

&
Address
Bus

IRQ or
NMI

IM

Cove XZDCZDC

Inst(x) PCO-PC7 PC8~
RIW PC15

VMA

IX0-1X7 IX8~
1X15

HD6800, HD68A0OO, HD68BOO

* Non-Maskable Interrupt (NMI) and Wait for Interrupt (WAI)

The MPU is capable of handling two types of interrupts:
maskable (IRQ) as described earlier, and non-maskable (NMI).
IRQ is maskable by the interrupt mask in the Condition Code
Register while NM1 is not maskable. The handling of these inter-
rupts by the MPU is the same except that each has its own
vector address. The behavior of the MPU when interrupted is
shown in Fig. 14 which details the MPU response to an interrupt
while the MPU is executing the control program. The interrupt
shown could be either |RQ or NMI and can be asynchronous
with respect to <F2 The interrupt is shown going “Low” at
time tpcs in cycle #1 which precedes the first cycle of an in-
struction (OP code fetch). This instruction is not executed but
instead the Program Counter (PC), Index Register (IX),
Accumulators (ACCX), and the Condition Code Register (CCR)
are pushed onto the stack.

The Interrupt Mask bit is set to prevent further interrupts.
The address of the interrupt service routine is then fetched from
FFFC, FFFD for an NMI interrupt and from FFF8, FFF9 for
an IRQ interrupt. Upon completion of the interrupt service
routine, the execution of RTI will pull the PC, IX, ACCX, and
CCR off of the stack; the Interrupt Mask bit is restored to its
condition prior to interrupts. Fig. 15 is a similar interrupt se-
quence, except in this case, a WAIT instruction has been ex-
ecuted in preparation for the interrupt. This technique speeds
up the MPU'’s response to the interrupt because the stacking of

Cycle
| #8 | #9

Cycle iCycle | Cycle I Cycle | Cycle |
| #10 1#11 | #12 | #13 | #14 |

New PC8-PC15 Newpco~PC7 First Inst of
Address Address interrupt Routine

ACCA ACCB CCR
r

Figure 14 Interrupt Tinning

ICycle ICycleICycle ICycle ICycle |[Cycle [Cycle | Cyclel Cycle i Wait Cycle

| #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9

(NOTE) Midrange waveform indicates high impedance state.

|CycleICycle [Cycle | Cycle |Cycle |Cycle|
I #n l#n+1[#n+2]|#n+3[#n+4[#n+5]

Figure 15 WAI Instruction Timing

HD6800, HD68A0O0O, HD68BOO

the PC, EX, ACCX, and the CCR is already done.

While the MPU is waiting for the interrupt, Bus Available will
go “High” indicating the following states_of the control lines:
VMA is “Low”, and the Address Bus, R/W and Data Bus are all
in the high impedance state. After the interrupt occurs, it is
serviced as previously described.

Table 1 Memory Map for Interrupt Vectors

Vector
Description
MS LS
FFFE FFFF Restart
FFFC FFFD Non-maskable Interrupt
FFFA FFFB Software Interrupt
FFF8 FFF9 Interrupt Request

Refer to Figure 18 for program flow for Interrupts.

* Three State Control (TSC)

When the Three State_Control (TSC) line is “High” level, the
Address Bus and the R/W line are placed in a high impedance
State. VMA and BA are forced "Low” when TSC = “High” to
prevent false reads or writes on any device enabled by VMA.
It is necessary to delay program execution while TSC is held
“High” . This is done by insuring that no transitions of 0! (or
02) occur during this period. (Logic levels of the clocks are
irrelevant so long as they do not change.)

Since the MPU is a dynamic device, the Ot clock can be
stopped for a maximum time PWchi without destroying data
within the MPU. TSC then can be used in a short Direct Me-
mory Access (DM A) application.

Fig. 16 shows the effect of TSC on the MPU. The Address
Bus and R/W line will reach the high impedance state at tTSD
(three-state delay), with VMA being forced “Low”. In this
example, the Data Bus is also in the high impedance state while
02 is being held “Low” since DBE=02 *At this point in time, a
DMA transfer could occur on cycles #3 and M. When TSC is
returned “Low,” the MPU address and R/W lines return to the
bus. Because it is too late in cycle #5 to access memory, this
cycle is dead and used for synchronization. Program execution
resumes in cycle #6.

| #1 | #2 | #3 | #4 |

System
0.

#5

« Valid Memory Address (VMA)

This output indicates to peripheral devices that there is a
valid address on the address bus. In normal operation, this signal
should be utilized for enabling peripheral interfaces such as the
PIA and ACIA. This signal is not three-state. One standard TTL
load and 90pF may be directly driven by this active “High”
signal.
¢ Halt (HALT)

When this input is in the “Low” state, all activity in the
machine will be halted. This input is level sensitive.

The HALT line provides an input to the MPU to allow con-
trol or program execution by an outside source. If HALT is
“High”, the MPU will execute the instructions; if it is “Low”,
the MPU will go to a halted or idle mode. A response signal,
Bus Available (BA) provides an indication of the current MPU
status. When BA is “Low”, the MPU is in the process of execut-
ing the control program; if BA is “High” , the MPU has halted
and all internal activity has stopped.

When BA is “High” , the Address Bus, Data Bus, and R/W line
will be in a high impedance state, effectively removing the
MPU from the system bus. VMA is forced “Low” so that the
floating system bus will not activate any device on the bus that
is enabled by VMA.

While the MPU is halted, all program activity is stopped, and
if either an NMI or IRQ interrupt occurs, it will be latched into
the MPU and acted on as soon as the MPU is taken out of the
halted mode. If a RES command occurs while the MPU is
halted, the following states occurj_VMA = “Low”,BA = “Low”,
Data Bus = high impedance, R/W = “High” (read state), and
the Address Bus will contain address FFFE as long as RES is
“Low”. As soon as the HALT line goes “High”, the MPU will
go to locations FFFE and FFFF for the address of the reset
routine.

Fig. 18 shows the timing relationships involved when halting
the MPU. The instruction illustrated is a one byte, 2 cycle in-
struction such as CLRA. When HALT goes “Low”, the MPU
will halt after completing execution of the current instruction.
The transition of HALT must occur tpcs before the trailing edge
of Oi of the last cycle of an instruction (point A of Fig. 18).
HALT must not go “Low” any time later than the minimum
tpcs specified.

#7 | #8 | #9 |

Figure 16 TSC Control Timing

<Cycle>

#1 - 2

#3 ~ 9

#10

#11

#12

#13

Figure 17 MPU Interrupt Flow Chart

HD6800, HD68AOO, HD68BOO

HD6800, HD68A0OO, HD68BO0OO

(NOTE 1)
~C=DoOC m .
RAV (NOTE 2)
Address Execute
Bus 2»
Data
Bus ~

Example: M=100016, X=CLRA(OP 4F)

-m 72>

M+1=10011S Y=CLRB(OP 5F)

(NOTE) 1. Oblique lines indicate indeterminate range of data.
2. Midrange waveform indicates high impedance state.

Figure 18 HALT and Single Instruction Execution for System Dubug

Table 2 Operation States of MPU and Signal Outputs (Except the Execution of Instruction)

Signals Halt state Reset state
BA "HT "Lt
VMA "L L
R/W T "H"
Ao~ AXS "y <FFFE)16
Do D7 T T

"T" indicates high impedance state.

The fetch of the OP code by the MPU is the first cycle of the
instruction. If HALT had not been “Low” at Point A but went
“Low” during 02 of the cycle, the MPU would have halted after
completion of the following instruciton. BA will go “High” by
time tgA (bus available delay time) after the last instruction
cycle. At this point in time, VMA is “Low” and R/W, Address
Bus, and the Data Bus are in the high impedance state.

To debug programs it is advantageous to step through pro-
grams instruction by instruction. To do this, HALT must be
brought “High” for one MPU cycle and then returned “Low” as
shown at point B of Fig. 18. Again, the transitions of HALT
must occur tpcs before the trailing edge of <Pi BA will go
“Low” at tBA after the leading edge of the next 0!, indicating
that the Address Bus, Data Bus, VMA and R/W lines are back
on the bus. A single byte, 2 cycle instruction such as LSR is
used for this example also. During the first cycle, the instruction
Y is fetched from address M+I. BA returns “High” at tBA on
the last cycle of the instruction indicating the MPU is off the
bus, if instruction Y had been three cycles, the width of the BA
“Low” time would have been increased by one cycle.

Table 2 shows the relation between the state of MPU and
signal outputs.

;ez:tasntgte WAI state TSC state
"Lt e o
e e o
e - -

(FFFE)I6 e -
T e ;

= MPU INSTRUCTION SET

This Section will provide a brief introduction and discuss
their use in developing HD6800 MPU control programs. The
HD6800 MPU has a set of 72 different executable source
instructions. Included are binary and decimal arithmetic, logical,
shift, rotate, load, store, conditional or unconditional branch,
interrupt and stack manipulation instructions.

Each of the 72 executable instructions o f the source language
assembles into 1 to 3 bytes of machine code. The number of
bytes depends on the particular instruction and on the address-
ing mode. (The addressing modes which are available for use
with the various executive instructions are discussed later.)

The coding of the first (or only) byte corresponding to an
executable instruction is sufficient to identify the instruction
and the. addressing mode. The hexadecimal equivalents of the
binary codes, which result from the translation of the 72 in-
structions in all valid modes of addressing, are shown in Table 3.
There are 197 valid machine codes, 59 of the 256 possible codes
being unassigned.

When an instruction translates into two or three bytes of
code, the second byte, or second and third bytes contain(s) an
operand, an address, or information from which an address is
obtained during execution.

Microprocessor instructions are often devided into three
general classifications; (1) memory reference, so called because
they operate on specific memory locations; (2) operating in-
structions that function without needing a memory reference;
(3) 1/0 instructions for transferring data between the micro-
processor and peripheral devices.

In many instances, the HD6800 MPU performs the same
operation on both its internal accumulators and the external

HD6800 HDG68A00, HD68BOO

memory locations. In addition, the HD6800 MPU allow the
MPU to treat peripheral devices exactly like other memory
locations, hence, no I/0 instructions as such are required. Be-
cause of these features, other classifications are more suitable
for introducing the HD6800’s instruction set: (1) Accumu-
lator and memory operations; (2) Program control operations;
(3) Condition Code Register operations.

For Accumulator and Memory Operations, refer to Table 4.

Table 3 Hexadecimal Values of Machine Codes

\“LSB

WS B N 0 1 2 3 4 5 6 7 8 9 A B c D E F
NOP TAP TPA INX DEX cLv SEV cLc SEC cl SEI
0 ¢ (IMP) * ¢ * * (IMP) (IMP) (IMP) (IMP) (MP) (IMP) (IMP) (IMP) (IMP) (IMP)
. SBA CBA TAB TBA DAA ABA
(A,B) (A.B) * * * * (IMP) (IMP) * (IMP) * (IMP) 4 . * *
, BRA BHI BLS BCC BCS BNE BEO BVC BVS BPL BMI BGE BLT BGT BLE
(REL) * (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL)
3 TSX INS PUL PUL DES XS PSH PSH RTS RTI WAI swi
(IMP) (IMP) (A) (8) (IMP) (IMP) (A) (8) . (IMP) " (IMP) . * (IMP) (IMP)
B NEG X . com LSR . ROR ASR ASL ROL DEC) INC TST CLR
(A) (A) (A) (A) (A) (A) (A) (A) A) (A) (A)
s NEG com LSR ROR ASR ASL ROL DEC INC TST CLR
(B) (B) (B) : (8) <B) (B) (B) <B) " (8) (8) : (B)
o NEG com LSR ROR ASR ASL ROL DEC INC TST mp CLR
(IND) * " (IND) (IND) * (IND) (IND) (IND) (IND) (IND) * (IND) (IND) (IND) (IND)
S NEG com LSR ROR ASR ASL ROL DEC INC TST IMP CLR
(EXT) ¢ ’ (EXT) (EXT) . (EXT) (EXT) (EXT) (EXT) (EXT) " (EXT) (EXT) (EXT) (EXT)
SBC BSR LDS
8 AR AY GMR AL (umyai ﬁm)"*’ i@ A . ﬁr?ArfA)(A) ﬁﬁﬁ)w ‘850)(“ ﬁnDA?A)(A) ™ Rewy amm) *
SUB (. CMP LDS STs
SBC (A AND (A LOA (A EOR (A) ADC_ (A 1 ADD (A) EPX (A R
° (DIR) * (DIR)' (DIR)'(. (DIR)() tBDIITR)*(A) (DIR)&) (SDT@e)(A) (DIR)() (DIR)(’?&Q)(A' (DIR)'() (DIR)() (DIR) (DIR)
A SUB . . cmP SBC (A) . AND (A) BIT_ (A) LDA (A) STA (A) EOR (A) A"C (Al ° RA (a) ADD_(A) cPx (A) SR LDS STS
(IND) (IND) (IND) A (IND) " (IND) "7 (IND) A" (IND) ~ (IND)' ' (IND) A (IND) ~ (IND) ~ (IND) ~ (IND) (IND) (IND)
B SUB (M) cmp (a) sBC_(A) AND (A) B,T k|, LDA (A) STA (A) EOR (A) ADC (A) ORA (A) ADD (A) CPX_ (A) 2SR LDS STS
(EXT) (EXT) " (EXT)" " (EXT) ~ (EXT) " (EXT) ~ (EXT) = (EXT) 1(EXT) ~ (EXT)" (EXT) ~ (EXT) (EXT) (EXT) (EXT)
c SUS () CMP sgc (8) . AND (8) BIT (B) LDA (B) . EOR (8) ADC (B) ORA (8) ADD (B) o .
(IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM)
SUB (B) cmP SBC (B AMD (-, EOR (B) ADC (B) ORA (B) ADD (B STX (B
b (DIR) (DIR) (DIR)'()« (DIR) (B[>1|TR)(B) }'D%)(B) ?J@e)(s) (DIR)'() (DIR ® (DIR)() (DIR)(U * E_DD\é)'(B) (DIR)()
SUB (B) AND LDX STX
E CMP (B) SBC (B N) ORA (B) ADD (B . .
(IND) (IND)() (IND)() (IND) (B\NTD)(B) h%)(a) ﬁL‘B)‘B) ESS)(B) fiﬁg)(B) (IND)() (IND)() (IND) (IND)
SUB (®) CMp SBC_ (B AND (B) EOR (B) ADC (B) ORA (B) ADD (B LDX STX
F (EXT) (EXT) (EXT)() (EXT)"” (BE|;T)(B) (LEDxAU'(B) (ngr)(ﬁ) (EXT)() (EXT)‘) (EXT)'() (EXT)'(). " (EXT) (EXT)
DIR = Direct Addressing Mode IND = Index Addressing Mode A = Accumulator A
EXT= Extended Addressing Mode IMP = Implied Addressing Mode B = Accumulator B

IMM= Immediate Addressing Mode REL

Relative Addressing Mode

HD6800, HD68A00O, HD68B0OO

Table 4 Accumulator and Memory Operations

Addressing Modes

Operation Mnemonic IMMED DIRECT INDEX
oOP # OP # OP §
Add ADDA 8B 2 2 9B 3 2 AB 5 2
ADDB CB 2 2 OB 3 2 EB 5 2
Add Acmltrs ABA
Add with Carry ADCA 89 2 2 99 3 2 A9 5 2
ADCB Cc9 2 2 09 3 2 E9 5 2
And ANDA 84 2 2 94 3 2 A4 5 2
ANDB C4 2 2 D4 3 2 E4 5 2
Bit Test BITA 85 2 2 95 3 2 A5 5 2
BITB C5 2 2 D5 3 2 E5 5 2
Clear CLR 6F 7 2
CLRA
CLRB
Compare CMPA 8 2 2 91 3 2 Al 5 2
CMPB Ccl 2 2 b1 3 2 EI 5 2
Compare Acmltrs CBA
Complement, 1's coM 63 7 2
COMA
CcomMB
Complement, 2’s NEG 60 7 2
(Negate) NEGA
NEGB
Decimal Adjust, A DAA
Decrement DEC 6A 7 2
DECA
DECB
Exclusive OR EORA 88 2 2 98 3 2 A8 5 2
EORS8 C8 2 2 D8 3 2 E8 5 2
Increment INC 6C 7 2
INCA
INCB
Load Acmltr LDAA 86 2 2 96 3 2 A6 5 2
LDAB Cé6 2 2 D6 3 2 E6 5 2
Or, Inclusive ORAA 8BA 2 2 9A 3 2 AA 5 2
ORAB CA 2 2 DA 3 2 EA 5 2
Push Data PSHA
PSHB
Pull Data PULA
PULB
Rotate Left ROL 69 7 2
ROLA
ROLB
Rotate Right ROR 66 7 2
RORA
RORB
Shift Left, Arithmetic ASL 68 7 2
ASLA
ASLB
Shift Right, Arithmetic ASR 67 7 2
ASRA
ASRB
Shift Right, Logic LSR 64 7 2
LSRA
LSRB
Store Acmltr STAA 97 4 2 A7 6 2
STAB D7 4 2 E7 6 2
Subtract SUBA 80 2 2 90 3 2 AO 5 2
SUBB CO 2 2 DO 3 2 EO 5 2
Subtract Acmltrs SBA
Subtr with Carry SBCA 82 2 2 92 3 2 A2 5 2
SBCB C2 2 2 D2 3 2 E2 5 2
Transfer Acmltrs TAB
TBA
Test Zero or Minus TST 6D 7 2
TSTA
TSTB
LEGEND:
0P oOperation Code (Hexadecimal) + Boolean Inclusive OR

Number of MPU Cycles
Number of Program Bytes
+ Arithmetic Pius
Arithmetic Minus
Boolean AND
Contents of memory location

Msp
pointed to be Stack Pointer

© Boolean Exclusive OR
Complement of M
Transfer Into

0 Bit - Zero

00 Byte * Zero

EXTND IMPLIED
OP~# OP- #
BB 4 3
FB 4 3
B 2 1
B9 4 3
F9 4 3
B4 4 3
F4 4 3
B5 4 3
F5 4 3
7F 6 3
4F 2 1
5F 2 1
Bl 4 3
F1 4 3
1m 2 1
73 6 3
43 2 1
53 2 1
70 6 3
40 2 1
50 2 1
19 2 1
7A 6 3
aA 2 1
5A 2 1
B8 4 3
F8 4 3
7C 6 3
4 2 1
sc 2 1
B6 4 3
F6 4 3
BA 4 3
FA 4 3
36 4 1
37 4 1
32 4 1
33 4 1
79 6 3
49 2 1
50 2 1
76 6 3
46 2 1
56 2 1
78 6 3
48 2 1
58 2 1
77 6 3
47 2 1
57 2 1
74 6 3
44 2 1
54 2 1
B7 5 3
F7 5 3
BO 4 3
FO 4 3
10 2 1
B2 4 3
F2 4 3
16 2 1
17 2 1
7D 6 3
4D 2 1
sD 2 1

Boolean/
Arithmetic Operation

A+M—A
B+M-B
a+b- a
A+M+C-A
B+M+C—B
A* M—A
BeM-B
A* M
Be+M
00-M

00 —A
00-B

A -M
B-M
A-B
M - M
A-A
st- b
00-M -M
00-A-A
00-B-B

Converts Binary Add of BCD
Characters into BCD Format

M- 1- M

A- 1- A

8-1-B

A© M- A

B©® M—B

M+1- M

A+1- A

B+1- B

M- A

M - B

A+M- A

B+M - B

A- Msp,SP- 1- SP

B- Msp,SP- 1- SP

SP+ 1- SP,Msp- A

SP+1- SP,Msp- B

M j

Af 10¢- 111111 m I
C b7 - bO
Ua-fr irm m i—I
C b7 -* bO

o-thnmm —o

C b7 bO
FlilLLLLU-*U
b7 bo C

0 *111111111* D

TOP>POPP>PIPO>BP>IDP>IO>IOPZI O

b7 bo C

-M

- M
-M - A

- M-B
-B-A
-M-C-A
-M-C-B
-B

A

-00
A —00
B-00

CONDITION CODE SYMBOLS:

Interrupt mask
Negative (sign bit)
Zero (byte)

o =rz_T

Carry from bit 7

Half-carry from bit 3 R

Reset Always
Set Always

Cond. Code Reg.

5
H

4
1

3
N

P T e S I I« e

e me m m m —iee e T T e >k < < < > > < >< <

2

e e e e D GG = = N
)

e s e ms e e < e e <

1
v

® DV D=~==~DVDDVDDD=

B I RCRCRCRP B NONC)

DDV DO ~=~p ~PVOOOOO0OOO0OOO6O6O6

1 Test and set if true, cleared otherwise

* Not Affected

Overflow, 2's complement

(Note) Accumulator addressing mode instructions are included in the column for IMPLI ED addressing.

CONDITION CODE REGISTER NOTES:
(Bit set if test is true and cleared otherwise)

Operand 11 10000000 prior to execution?
Operand >01111111 prior to execution?

© (BitV) Test: Result=10000000?
© (BitC) Test: Result¥ 00000000?
@ (BitC) Test:
(Not cleared if previously set.)
(BitV) Test:
(BitV) Test:
(BiitV) Test:

Set equal to result of N© C after shift has occurred.

Decimal value of most significant BCD Character greater than nine?

0

@000 worppre DOD *

et e e e e e e

Bl I

m PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two cate-
gories: (1) Index Register/Stack Pointer instructions: (2) Jump
and Branch operations.

* Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU’s Index
Register and Stack Pointer are summarized in Table 5. Decre-
ment (DEX, DES), increment (INX, INS), load (LDX, LDS),
and store (STX, STS) instructions are provided for both. The
Compare instruction, CPX, can be used to compare the Index
Register to a 16-bit value and update the Condition Code
Register accordingly.

The TSX instruction causes the Index Register to be loaded
with the address of the last data byte put onto the “stack”.
The TXS instruction loads the Stack Pointer with a value equal
to one less than the current contents of the Index Register. This
causes the next byte to be pulled from the “stack” to come
from the location indicated by the Index Register. The utility of
these two instructions can be clarified by describing the “ stack”
concept relative to the HMCS 6800 system.

The “stack” can be thought of as a sequential list of data
stored in the MPU'’s read/write memory. The Stack Pointer
contains a 16-bit memory address that is used to access the list
from one end on a last-in-first-out (LIFO) basis in contrast to
the random access mode used by the MPU'’s other addressing
modes.

The HD6800 MPU instruction set and interrupt structure
allow extensive use of the stack concept for efficient handling
of data movement, subroutines and interrupts. The instructions
can be used to establish one or more “stacks” anywhere in read/
write memory. Stack length is limited only by the amount of
memory that is made available.

Operation of the Stack Pointer with the Push and Pull in-
structions is illustrated in Figs. 19 and 20. The Push instruction
(PSHA) causes the contents.of the indicated accumulator (Ain

Table 5

Addressing Modes

HD6800 HD68A00, HD68BOO

this example) to be stored in memory at the location indicated
by the Stack Pointer. The Stack Pointer is automatically de-
cremented by one following the storage operation and is “point-
ing” to the next empty stack location.

The Pull instruction (PULA or PULB) causes the last byte
stacked to be loaded into the appropriate accumulator. The
Stack Pointer is automatically incremented by one just prior to
the data transfer so that it will point to the last byte stacked
rather than the next empty location. Note that the PULL
instruction does not “remove” the data from memory; in the
example, 1A is still in location (m+1) following execution of
PULA. A subsequent PUSH instruction would overwrite than
location with the new “pushed” data.

Execution of the Branch to Subroutine (BSR) and Jump to
Subroutine (JSR) instructions cause a return address to be
save on the stack as shown in Figs. 21 through 23. The stack is
decremented after each byte of the return address is pushed
onto the stack. For both of the these instructions, the return
address is the memory location following the bytes of code that
correspond to the BSR and JSR instruction. The code required
for BSR or JSR may be either two or three bytes, depending on
whether the JSR is in the indexed (two bytes) or the extended
(three bytes) addressing mode. Before it is stacked, the Program
Counter is automatically incremented the correct number of
times to be pointing at the location of the next instruction. The
Return from Subroutine instruction, RTS, causes the return
address to be retrieved and loaded into the Program Counter as
shown in Fig. 24.

There are several operations that cause the status of the MPU
to be saved on the stack. The Software Interrupt (SWI) and Wait
for Interrupt (WAI) instructions as well as the maskable (IRQ)
and non-maskable (NMI) hardware interrupts all cause the
MPU’s internal registers (except for the Stack Pointer itself) to
be stacked as shown in Fig. 25. MPU status is restored by the
Return from interrupt, RTI, as shown in Fig. 26.

Index Register and Stack Pointer Instructions

Cond. Code Reg.
Boolean/

Operation Mnemonic 'MMED DIRECT INDEX EXTND IMPLIED Arithmetic Operation 54 3 2 10
OP ~ # OP ~ # OP ~ # OP ~ # OP ~ # H I N ZzZ VvV C
Compare Index Reg CPX 8C 3 3 9C 4 2 AC 6 2 BC 5 3 (XH) - (M>, (XL) - (M+1) @ 1 ©
Decrement Index Reg DEX 09 4 1 X-1-X L
Decrement Stack Pntr DES 34 4 1 SP- 1->SP
Increment Index Reg INX 08 4 1 X+1->X L
Increment Stack Pntr INS 31 4 1 SP+1-* SP *
Load Index Reg LDX CE 3 DE 4 2 EE 6 2 FE 5 3 M-> XH, (M+1)-* XL **® t R
Load Stack Pntr LDS 8E 3 3 9E 4 2 AE 6 2 BE 5 3 M - SPH, (M+1)*SPL b t R
Store Index Reg STX DF 5 2 EF 7 2 FF 6 3 Xh->M,X|_-<-(M + 1) . t R *
Store Stack Pntr STS 9F 5 2 AF 7 2 BF 6 3 SPh -M ,SP1-+(M+ 1) c *« ® t R *
Index Reg = Stack Pntr TXS 35 4 1 X—1- SP
Stack Pntr -» Index Reg TSX 30 4 1 SP+1-mX
® (Bit N) Test: Sign bit of most significant (MS) byte of result = 1?
© (Bit V) Test: 2's complement overflow from subtraction of ms bytes?

® (Bit N) Test:

Result less than zero? (Bit 15=1)

HD6800, HD68A0OO, HD68B0OO

MPU MPU

PSHA

PC Next Instr.

(b) After PSHA

Figure 19 Stack Operation (Push Instruction)

MPU MPU
PULA
Next Instr.
(a) Before PULA (b) After PULA

Figure 20 Stack Operation (Pull Instruction)

HD6800, HD68A0OO, HD68B0OO

(a) Before Execution

Figure 21 Program Flow for BSR

m-2

m-1
SP-

m+1

m+2 7A
PC- —n JSR = BD

n+l Sh = Subr. Addr.

n+2 S[_= Subr. Addr.

n+3 Next Main Instr.

(a) Before Execution (b) After Execution

Figure 22 Program Flow for JSR (Extended)

HD6800,

HD68A00, HD68B0OO

m-2 SP-——- -m -2
m-1 m-1 (n+2)H
sp- m (n+2) L
7E m+1 7E
TA
n
n+1
n+2
PC— -X ** +K
*'Contents of Index Register
(a) Before Execution (b) After Execution
Figure 23 Program Flow for JSR (Indexed)
SP—- —m-2 m-2
m-1 (n+3)H m-1 (n+3)H
m (n+3) L Sl L1} (n+3) L
m+1 7E m+1 7E
TA
n JSR = BD n JSR = BD
n+l Sh = Subr. Addr. n+l SH = Subr. Addr.
n+2 S(_ = Subr. Addr. n+2 S[_ = Subr. Addr.
n+3 Next Main Instr. PC---— »-n+3 Next Main Instr.
Last Subr. Instr. Last Subr. Instr.
PC-mmeneee- sn RTS Sn RTS

(a) Before Execution

Figure 24 Program Flow for RTS

(b) After Execution

HD6800 HD68A00, HD68BOO

Wait for Hardware Interrupt or
Software Interrupt Interrupt Non-Maskable Interrupt (NMI)
Main Program Main Program Main Program
n 3F = swi N 3E = WAI
n+l Next Main Instr. n+l Next Main Instr. N Last Prog. Byte
Stack
SP- m-7
ip
m-6 Condition Code
Stack MPU 5
Register Contents m-> Acmitr. B
m-4 Acmltr. A
m-3 Index Register (XH)
m-2 Index Register (XL)
m-1 PC(n+1)H

m PC(n+1)L

ir
CRestart

FFFC FFFE

FFF8
FFF9

FFFA
~ FFFB

r

Interrupt Memory Assignment
Set Interrupt

FFF8 Hardware Int. Ms Mask (CCR 4)
FFF9 Hardware Int. LS
First Instr.
FFFA MS
Software Addr. Formed ir
FFFB Software Ls By Fetching Load Interrupt
2-Bytes From Vector Into
FFFC Non-Maskable Int. MS Per. Merm. Program Counter
FFFO Non-Maskable Int. LS Assign.
Restart
FFFE MS jf
FFFF Restart LS \Y
1st Interrupt Instr.
(NOTE) MS = Most Significant Address Byte

LS = Least Significant Address Byte

Figure 25 Program Flow for Interrupts

HD6800, HD68A0OO, HD68BO0OO

SPece - m -7
m-6 OCR
m-5 ACCB
m-4 ACCA
m-3 Xh (Index Reg)
m-2 XL (Index Reg)
m-1 PC(n+1)H
m PC(n+1)L
7E —-
n+l Next Main Instr.
Last Inter. Instr.
PC—-— - Sn RTI

(a) Before Execution

m-7
m-6 CCR
m-5 ACCB
m-4 ACCA
m-3 X H
m-2 XL
m-1 PCH
SP————m PCL
yp ——
J—
PC-----n+1 Next Main Instr.
_____ A
Last Inter. Inst.
Sp RTI

(b) After Execution

Figure 26 Program Flow for RTI

« Jump and Branch Operation

The Jump and Branch instructions are summarized in Table
6. These instructions are used to control the transfer of opera-
tion from one point to another in the control program.

The No Operation instruction, NOP, while included here,
is ajump operation in a very limited sense. Its only effect is to
increment the Program Counter by one. It is useful during
program development as a “stand-in” for some other instruc-
tion that is to be determined during debug. It is also used for
equalizing the execution time through alternate paths in a con-
trol program.

Execution of the Jump Instruction, JMP, and Branch Always,
BRA, affects program flow as shown in Fig. 27. When the MPU
encounters the Jump (Index) instruction, it adds the offset to
the value in the Index Register and uses the result as the address
of the next instruction to be executed. In the extended address-
ing mode, the address of the next instruction to be executed is
fetched from the two locations immediately following the JMP
instruction. The Branch Always (BRA) instruction is similar to
the JMP (extended) instruction except that the relative address-
ing mode applies and the branch is limited to the range within
-125 or +127 bytes of the branch instruction itself. The opcode
for the BRA instruction requires one less byte than JMP (ex-
tended) but takes one more cycle to execute.

The effect on program flow for the Jump to Subroutine
(JSR) and Branch to Subroutine (BSR) is shown in Figs. 21
through 23. Note that the Program Counter is properly in-

cremented to be pointing at the correct return address before
it is stacked. Operation of the Branch to Subroutine and Jump
to Subroutine (extended) instruction is similar except for the
range. The BSR instruction requires less opcode than JSR (2
bytes versus 3 bytes) and also executes one cycle faster than
JSR. The Return from Subroutine, RTS, is used at the end of
a subroutine to return to the main program as indicated in Fig.
24.

The effect of executing the Software Interrupt, SWI, and the
Wait for Interrupt, WAI, and their relationship to the hardware
interrupts is shown in Fig. 25. SWI causes the MPU contents to
be stacked and then fetches the starting address of the interrupt
routine from the memory locations that respond to the ad-
dresses FFFA and FFFB. Note that as in the case of the sub-
routine instructions, the Program Counter is incremented to
point at the correct return address before being stacked. The
Return from Interrupt instruction, RTI, (Fig. 26) is used at the
end of an interrupt routine to restore control to the main
program. The SWI instruction is useful for inserting break points
in the control program, that is, it can be used to stop operation
and put the MPU registers in memory where they can be ex-
amined. The WAI instruction is used to decrease the time
required to service a hardware interrupt; it stacks the MPU
contents and then waits for the interrupt to occur, effectively
removing the stacking time from a hardware interrupt sequence.

HD6800, HD68AOO, HD68BOO

Table 6 JUMP/BRANCH Instruction

Addressing Modes Cond. Code Reg.

Operation Mnemonic RELATIVE INDEX EXTND IMPLIED Branch Test 5 4 3 2 1 0
oP ~ # OP ~ # OP ~ # OP -~ # H 1 N zZ V ¢
Branch Always BRA 20 4 2 None .« e o . P
Branch If Carry Clear BCC 24 4 2 cC=0 . . o . o e
Branch If Carry Set BCS 25 4 2 C=
Branch If = Zero BEQ 27 4 2 Z=
Branch If Zero BGE 2C 4 2 N©®© V=0 o . .« . . .
Branch If > Zero BGT 2E 4 2 Z+(NO V) =0 o e . . o .
Branch If Higher BHI 22 4 2 C+Z2=0 o . e e e
Branch If ~ Zero BLE 2F 4 2 Z+(N© V) =1 o«« .
Branch If Lower Or Same BLS 23 4 2 cC+z=1
Branch If < Zero BLT 2D 4 2 N© V=1 o . e e e .
Branch If Minus BMI 2B 4 2 N=1 LR LI o e
Branch If Not Equal Zero BNE 26 4 2 Z =0 o e o . . .
Branch If Overflow Clear BVC 28 4 2 V =0 . ¢ e . .
Branch If Overflow Set BVS 29 4 2 V=1 LY o . . .
Branch If Plus BPL 2A 4 2 N=0 .« e . e .« .
Branch To Subroutine BSR 8D 8 2 LI LI o .
Jump IMP 6E 4 2 T7E 3 3 L T
Jump To Subroutine JSR AD 8 2 BD 9 3 o . o« . o .
No Operation NOP 0L 2 1 Advances Prog Cntr Only ¢ LI L
Return From Interrupt RTI 3B 10 1 - ® -
Return From Subroutine RTS 39 5 1 o . e e e e
Software Interrupt Swi 3F 12 1 * S e+ ¢ e
Wait for Interrupt WAI 3E 9 1 O

@D (Al Load Condition Code Register from Stack. (See Special Operations)
© (Bit 1) Setwhen interrupt occurs. If previously set, a Non-Maskable interrupt is required to exit
the wait state.
Main Program PC Main Program Main Program
r
rOPG se-ump N 7€ = JMP n 20= BRA
n+l K = Offset n*tl Kh = Next Address ntl K* = Offset
INDXD < : EXTND J n+2 K|_= Next Address .
X+K Next Instruction : (n+2) + K Next Instruction
Next Instruction
v K *K = Signed 7-bit value
(@ Jump (b) Branch
Figure 27 Program Flow for JUMP/BRANCH Instructions
The conditional branch instructions, Fig. 28, consists of
BMI N=1; BEQ Z=1; seven pairs of complementary instructions. They are used to
BPL N=0; BNE Z2=0, test the results of the preceding operation and either continue
BVC : V=0; BCC : C=0; with the next instruction in sequence (test fails) or cause a
BVvS : V=1 BCS : C=1; branch to another point in the program (test succeeds).
BHI C+2=0; BLT NO© v=1; Four of the pairs are used for simple tests of status bits N,
BLS c+z=1; BGE N© V=0; Z,V, and C:
BLE Z+(N©O V)=1; 1. Branch on Minus (BMI) and Branch On Plus (BPL) tests the
BGT Z+(N©e Vv)=0; sign bit, N, to determine if the previous result was negative or

Figure 28 Conditional Branch Instructions

positive, respectively.

2. Branch On Equal (BEQ) and Branch On Not Equal (BNE)
are used to test the zero status bit, Z, to determine whether
or not the result of the previous operation was equal to “0” .
These two instructions are useful following a Compare (CMP)
instruction to test for equality between an accumulator and
the operand. They are also used following the Bit Test (BIT)
to determine whether or not the same bit positions are set in
an accumulator and the operand.

HD6800, HD68A0O0O, HD68BOO

3. Branch On Overflow Clear (BVC) and Branch On Overflow
Set (BVS) tests the state of the V bit to determine if the
previous operation caused an arithmetic overflow.

4. Branch On Carry Clear (BCC) and Branch On Carry Set
(BCS) tests the state of the C bit to determine if the previous
operation caused a carry to occur. BCC and BCS are useful
for testing relative magnitude when the values being tested
are regarded as unsigned binary numbers, that is, the values
are in the range “00” (lowest) of “FF” (highest). BCC
following a comparison (CMP) will cause a branch if the
(unsigned) value in the accumulator is higher than or the
same as the value of the operand. Conversely, BCS will cause
a branch if the accumulator value is lower than the operand.
The Fifth complementary pair, Branch On Higher (BHI)

and Branch On Lower or Same (BLS) are in a sense comple-
ments to BCC and BCS. BHI tests for both C and Z = “0”, if
used following a CMP, it will cause a branch if the value in the
accumulator is higher than the operand. Conversely, BLS will
cause a branch if the unsigned binary value in the accumulator
is lower than or the same as the operand.

The remaining two pairs are useful in testing results of opera-
tions in which the values are regarded as signed two’s comple-
ment numbers. This differs from the unsigned binary case in the
following sense: In unsigned, the orientation is higher or lower;
in signed two’s complement, the comparison is between larger
or smaller where the range of values is between -128 and +127.

Branch On Less Than Zero (BLT) and Branch On Greater
Than Or Equal Zero (BGE) test the status bits for NOV = “1”
and N © V = “0”, respectively. BLT will always cause a branch
following an operation in which two negative numbers were
added. In addition, it will cause a branch following a CMP in
which the value in the accumulator was negative and the oper-
and was positive. BLT will never cause a branch following a
CMP in which the accumulator value was positive and the
operand negative. BGE, the complement to BLT, will cause a
branch following operations in which two positive values
were added or in which the result was “0”.

The last pair, Branch On Less Than Or Equal Zero (BLE) and
Branch On Greater Than Zero (BGT) test the status bits for
Z© (N +V)="“1and Z ®(N + V) = “0", respectively,
The action of BLE is identical to that for BLT except that a
branch will also occur if the result of the previous result was
“0”. Conversely, BGT is similar to BGE except that no branch
will occur following a “0” result.

m CONDITION CODE REGISTER OPERATIONS

The Condition Code Register (CCR) is a 6-bit register within
the MPU that is useful in controlling program flow during sys-
tem operation. The bits are defined in Fig. 29.

The instructions shown in Table 7 are available to the user
for direct manipulation of the CCR. In addition, the MPU auto-
matically sets or clears the appropriate status bits as many of
the other instructions on the condition code register was in-
dicated as they were introduced.

Systems which require an interrupt window to be opened
under program control should use a CLI-NOP-SEI sequence
rather than CLI-SEI.

b5 b4 b3 b2 bl bOo

H 1 N z \ C

H = Half-carry; set whenever a carry from b3 to b4 of the result is
generated by ADD, ABA, ADC; cleared if no b3 to b4
carry; not affected by other instructions.

I = Interrupt Mask; set by hardware of software interrupt or SEI
instruction; cleared by CL! instruction. (Normally not used
in arithmetic operations.) Restored to a "0" as a result of an
RTI instruction if IM stored on the stacked is"0 "

N = Negative; set if high order bit (b7) of result is set; cleared
otherwise.

Z = Zero; set if result ="0"; cleared otherwise.
V = Overflow; set if there was arithmetic overflow as a result of
the operation; cleared otherwise.

C = Carry; set if there was a carry from the most significant bit
(b7) of the result; cleared otherwise.

Figure 29 Condition Code Register Bit Definition

m ADDRESSING MODES

The MPU operates on 8-bit binary numbers presented to it
via the Data Bus. A given number (byte) may represent either
data or an instruction to be executed, depending on where it is
encountered in the control program. The HD6800 MPU has
72 unique instructions, however, it recognizes and takes action
on 197 of the 256 possibilities that can occur using an 8-bit
word length. This larger number of instructions results from the
fact that many of the executive instructions have more than
one addressing mode.

Table 7 Condition Code Register Instructions

Addressing
Mode
Operations Mnemonic IMPLIED

OoP ~ #
Clear Carry CLC ocC 2 1
Clear Interrupt Mask CLI OE 2 1
Clear Overflow CLv 0A 2 1
Set Carry SEC oD 2 1
Set Interrupt Mask SEI OF 2 1
Set Overflow SEV 0B 2 1
Acmltr A “mCCR TAP 06 2 1
CCR -> Acmltr A TPA 07 2 1
R = Reset

S = Set
* = Not affected
® (ALL) Setaccording to the contents of Accumulator A.

Cond. Code Reg.

Boolean Operation 5 4 3 2 1 0

H | N z \" C

0- ¢ « o+« + .« R

0- 1 . R

0 < V R

1- C s

1- 1 . S

1 v e e e e s .

*CccR ® —

CCR-*- A

These addressing modes refer to the manner in which the
program causes the MPU to obtain its instructions and data.
The programmer must have a method for addressing the MPU's
internal registers and all of the external memory locations.

Selection of the desired addressing mode is made by the user
as the source statements are written. Translation into appropri-
ate opcode then depends on the method used. If manual trans-
lation is used, the addressing mode is inherent in the opcode.
For example, the Immediate, Direct, Indexed, and Extended
modes may all be used with the ADD instruction. The proper
mode is determined by selecting (hexidecimal notation) 8B,
9B, AB, or BB, respectively.

The source statement format includes adequate information
for the selection if an assembler program is used to generate the
opcode. For instance, the Immediate mode is selected by the

Direct: n DO Instruction
Example: SUBB Z n+l Z =Operand Address
Addr. Range = 0~255

n+2 Next Instr.
(K = One-Byte Operand) K = Operand

(K = Two-Byte Operand) A Kh = Operand

Z+1 K1 = Operand

A If Z S 255, Assembler Select Direct Mode
If Z > 255, Extended Mode is selected

Extended: n FO Instruction
Example: CMPA Z n+l Zhnh = Operand Address
Addr. Range: n+2 ZL = Operand Address
/'\ 256-65535

n+3 Next Instr.
(K = One-Byte Operand) A K = Operand
(K = Two-Byte Operand) z Kh = Operand

Z+1 K[_ = Operand

HD6800, HD68A0O0O, HD68BOO

Assembler whenever it encounters the “#” symbol in the
operand field. Similarly, an “X” in the operand field causes the
Indexed mode to be selected. Only the Relative mode applies
to the branch instructions, therefore, the mnemonic instruc-
tion itself is enough for the Assembler to determine addressing
mode.

For the instructions that use both Direct and Extended
modes, the Assembler selects the Direct mode if the operand
value is in the range 0~255 and Extended otherwise. There are
a number of instructions for which the Extended mode is
valid but the Direct is not. For these instructions, the Assembler
automatically selects the Extended mode even if the operand is
in the 0~255 range. The addressing modes are summarized in
Fig. 30.

Immediate: n Instruction
Example: LDAA #K n+l K = Operand
(K = One-Byte Operand)
n+2 Next Inst.
OR
(K = Two-Byte Operand)
(CPX, LDX and LDS)
n+l Kh = Operand
2 KL = Operand
n+3 Next Instr.
Relative: n Instruction
Example: BNE K n+l fcK = Branch Offset

(K = Signed 7-Bit Value)

n+2 Next InstrA

Addr. Range:
-125 to +129
Relative to n.

Next Instr .A

(n+2)+K

A If Branch Test False, If Branch Test True.
Indexed: Instruction
Example: ADDA Z, X n+l Z = Offset
Addr. Range: n+2 Next Instr.
0~255 Relative to

Index Register, X

(Z = 8-Bit Unsigned Value) X+Z K = Operand

Figure 30 Addressing Mode Summary

HD6800, HD68A0OO, HD68BO0OO

* Inherent (Includes "Accumulator Addressing" Mode)

The successive fields in a statement are normally separated
by one or more spaces. An exception to this rule occurs for in-
structions that use dual addressing in the operand field and for
instructions that must distinguish between the two accumu-
lators. In these cases, A and B are “operands” but the space
between them and the operator may be omitted. This is com-
monly done, resulting in apparent four character mnemonics
for those instructions.

The addition instruction, ADD, provides an example of dual
addressing in the operand fields;

Operator Operand

ADDA MEM12
or ADDB MEM12

Comment

ADD CONTENTS OF MEM12 TO ACCA
ADD CONTENTS OF MEM12 TO ACCB

The example used earlier for the test instruction, TST, also
applies to the accumulators and uses the “accumulator address-
ing mode” to designate which of the two accumulators is being
tested:

Operator Comment
TSTB TEST CONTENTS OF ACCB
or TSTA TEST CONTENTS OF ACCA

A number of the instructions either alone or together with
an accumulator operand contain all of the address information
that is required, that is, “inherent” in the instruction, itself.
For instance, the instruction ABA causes the MPU to add the
contents of accumulators A and B together and place the result
in accumulator A. The instruction INCB, another example of
“accumulator addressing” , causes the contents of accumulator
B to be increased by one. Similarly, INX, increment the Index
Register, causes the contents of the Index Register to be in-
creased by one.

Program flow for instructions of this type is illustrated in
Figures 31 and 32. In these figures, the general case is shown
on the left and a specific example is shown on the right.
Numerical examples are in decimal notation. Instructions of this
type require only one byte of opcode. Cycle-by-cycle operation
of the inherent mode is shown in Table 8.

MPU MPU

General Flow Example

Figure 31 Inherent Addressing

MPU MPU

General Flow Example

Figure 32 Accumulator Addressing

+ Immediate Addressing Mode
In the Immediate addressing mode, the operand is the value
that is to be operated on. For instance, the instruction

Operator
LDAA #25

Operand Comment

LOAD 25 INTO ACCA

causes the MPU to “immediately load accumulator A with the
value 25”; no further address reference is required. The im-
mediate mode is selected by preceding the operand value with
the “#” symbol. Program flow for this addressing mode is
illustrated in Fig. 33.

The operand format allows either properly defined symbols
or numerical values. Except for the instructions CPX, LDX, and
LDS, the operand may be any value in the range O ~ 255. Since
Compare Index Register (CPX), Load Index Register (LDX),
Load Stack Pointer (LDS), require 16-bit values, the immediate
mode for these three instructions requie two-byte operands.

Table 9 shows the cycle-by-cycle operation for the im-
mediate addressing mode.

MPU MPU
ACCA -
25
RAM RAM
Program Program
Memory Memory

General Flow Example

Figure 33 Immediate Addressing Mode

HD6800, HD68A0OO, HD68BOO

Table 8 Inherent Mode Cycle by Cycle Operation

Address Mode Cycle VMA
and Instructions Cycle y# Line Address Bus ’Ei/ryg Data Bus
ABA DAA SEC 1 1 Op Code Address 1 Op Code
ASL DEC SEI 2
ASR INC SEV 2 1 Op Code Address + 1 T Op Code of Next Instruction
CBA LSR TAB
CLC NEG TAP
CLI NOP TBA
CLR ROL TPA
CLv ROR TST
COM SBA
DES 1 1 Op Code Address 1 Op Code
DEX 2 1 Op Code Address + 1 1 Op Code of Next Instruction
INS 3 0 Previous Register Contents 1 Irrelevant Data (NOTE 1)
INX 4 0 New Register Contents 1 Irrelevant Data (NOTE 1)
PSH 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code of Next Instruction
4 3 1 Stack Pointer 0 Accumulator Data
4 0 Stack Pointer —1 1 Accumulator Data
PUL 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer + 1 1 Operand Data from Stack
TSX 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data (NOTE 1)
4 0 New Index Register 1 Irrelevant Data (NOTE 1)
TXS 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Index Register 1 Irrelevant Data
4 0 New Stack Pointer 1 Irrelevant Data
RTS 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Irrelevant Data (NOTE 2)
5 3 0 Stack Pointer 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer + 1 1 Address of Next Instruction (High Order Byte)
5 1 Stack Pointer + 2 1 Address of Next Instruction (Low Order Byte)
WAI 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 1 Stack Pointer 0 Return Address (Low Order Byte)
4 1 Stack Pointer —1 0 Return Address (High Order Byte)
9 5 1 Stack Pointer —2 0 Index Register (Low Order Byte)
6 1 Stack Pointer —3 0 Index Register (High Order Byte)
7 1 Stack Pointer —4 0 Contents of Accumulator A
8 1 Stack Pointer —5 0 Contents of Accumulator B
9 1 Stack Pointer —6 (NOTE 3) 1 Contents of Cond. Code Register
RTI 1 1 Op Code Address f Op Code
2 1 Op Code Address + 1 1 Irrelevant Data (NOTE 2)
3 0 Stack Pointer 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer + 1 1 Contents of Cond. Code Register from Stack
10 5 1 Stack Pointer + 2 1 Contents of Accumulator B from Stack
6 1 Stack Pointer + 3 1 Contents of Accumulator A from Stack
7 1 Stack Pointer + 4 1 Index Register from Stack (High Order Byte)
8 1 Stack Pointer + 5 1 Index Register from Stack (Low Order Byte)
9 1 Stack Pointer + 6 1 Next Instruction Address from Stack
(High Order Byte)
10 1 Stack Pointer + 7 1 Next Instruction Address from Stack
(Low Order Byte)
Swi 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Irrelevant Data (NOTE 1)
3 1 Stack Pointer 0 Return Address (Low Order Byte)
4 1 Stack Pointer —1 0 Return Address (High Order Byte)
5 1 Stack Pointer —2 0 Index Register (Low Order Byte)
6 1 Stack Pointer —3 0 Index Register (High Order Byte)
12 7 1 Stack Pointer —4 0 Contents of Accumulator A
8 1 Stack Pointer —5 0 Contents of Accumulator B
9 1 Stack Pointer —6 0 Contents of Cond. Code Register
10 0 Stack Pointer —7 1 Irrelevant Data (NOTE 1)
11 1 Vector Address FFFA (Hex) 1 Address of Subroutine (High Order Byte)
12 1 Vector Address FFFB (Hex) 1 Address of Subroutine (Low Order Byte)
NOTE 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
NOTE 2. Data is ignored by the MPU.
NOTE 3. While tite MPU is waiting for the interrupt. Bus Available will go "High" indicating the following states of the control lines: VMA is"Low"; Address

Bus,R/W, and Data Busare all in the high impedance state-.

HD6800, HD68A0O0O, HD68BOO

Table 9 Immediate Mode Cycle by Cycle Operation

Address Mode Cycle VMA R/W

and Instructions Cycle #e Line Address Bus Line Data Bus
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 Op Code Address + 1 1 Operand Data
AND ORA 2
BIT SBC
CMP SuB
CPX 1 1 Op Code Address 1 Op Code
LDS 3 2 1 Op Code Address + 1 1 Operand Data (High Order Byte)
LDX 3 1 Op Code Address + 2 1 Operand Data (Low Order Byte)

* Direct and Extended Addressing Modes

In the Direct and Extended modes of addressing, the operand
field of the source statement is the address of the value that is
to be operated on. The Direct and Extended modes differ only
in the range of memory locations to which they can direct the
MPU. Direct addressing generates a single 8-bit operand and,
hence, can address only memory locations 0 ~ 255; a two byte
operand is generated for Extended addressing, enabling the MPU
to reach the remaining memory locations, 256 ~ 65535. An
example of Direct addressing and its effect on program flow is
illustrated in Fig. 34.

Table 10 shows the cycle-by-cycle operations of this mode.

The MPU, after encountering the opcode for the instrution
LDAA (Direct) at memory location 5004 (Program Counter =
5004), looks in the next location, 5005, for the address of the
operand. It then sets the program counter equal to the value
found there (100 in the example) and fetches the operand, in

this case a value to be loaded into accumulator A, from that
location. For instructions requiring a two-byte operand such as
LDX (Load the Index Register), the operand bytes would be
retrieved from locations 100 and 101.

Extended addressing, Fig. 35, is similar except that a two-
byte address is obtained from locations 5007 and 5008 after the
LDAB (Extended) opcode shows up in location 5006. Extended
addressing can be thought of as the “standard” addressing
mode, that is, it is a method of reaching anyplace in memory.
Direct addressing, since only one address byte is required,
provides a faster method of processing data and generates fewer
bytes of control code. In most applications, the direct address-
ing range, memory locations 0 ~ 255, are reserved for RAM.
They are used for data buffering and temporary storage of
system variables, the area in which faster addressing is of most
value, Cycle-by-cycle operation is shown in Table 11 for Ex-
tended Addressing.

Table 10 Direct Mode Cycle by Cycle Operation

Address Mode Cycle VMA R/W
and Instructions Cycle Line Address Bus Line Data Bus
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 Op Code Address + 1 1 Address of Operand
AND ORA 3 3 1 Address of Operand 1 Operand Data
BIT SBC
CMP suB
CPX 1 1 Op Code Address 1 Op Code
LDS 2 1 Op Code Address + 1 1 Address of Operand
LDX 3 1 Address of Operand 1 Operand Data (High Order Byte)
4 1 Operand Address + 1 1 Operand Data (Low Order Byte)
STA 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Destination Address
3 0 Destination Address 1 Irrelevant Data (NOTE 1)
4 1 Destination Address 0 Data from Accumulator
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Address of Operand
5 3 0 Address of Operand 1 Irrelevant Data (NOTE 1)
4 1 Address of Operand 0 Register Data (High Order Byte)
5 1 Address of Operand + 1 0 Register Data (Low Order Byte)
NOTE 1. Itdevice which is address during this cycle uses VM A, then the Data Bus will go to the high impedance three-state condition.

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

Address Mode
and Instructions

STS

STX

JSR

JMP

ADC EOR

ADD LDA

AND ORA

BIT SBC

CMP SUB

CPX

LDS

LDX

STA A

STA B

ASL LSR

ASR NEG

CLR ROL

COM ROR

DEC TST

INC
NOTE 1.
NOTE 2.

General Flow

Figure 34

Table 11 Extended Mode Cycle by Cycle

Cycle VMA
Cycle y# Line
1 1
2 1
3 1
4 0
5 1
6 1
1 1
2 1
3 1
4 1
9 5 1
6 1
7 0
8 0
9 1
1 1
3 2 1
3 1
1 1
2 1
4 3 1
4 1
1 1
2 1
5 3 1
4 1
5 1
1 1
2 1
5 3 1
4 0
5 1
1 1
2 1
3 1
6 4 1
5 0
6 1/0
(NOTE
2)

MPU
ADDR = 100
PC = 5004
5005
Example

Direct Addressing Mode

Address Bus

Op Code Address

Op Code Address + 1
Op Code Address + 2
Address of Operand
Address of Operand
Address of Operand + 1

Op Code Address

Op Code Address + 1

Op Code Address + 2
Subroutine Starting Address
Stack Pointer

Stack Pointer — 1

Stack Pointer —2

Op Code Address + 2

Op Code Address + 2

Op Code Address
Op Code Address + 1
Op Code Address + 2

Op Code Address

Op Code Address + 1
Op Code Address + 2
Address of Operand

Op Code Address

Op Code Address + 1
Op Code Address + 2
Address of Operand
Address of Operand + 1

Op Code Address

Op Code Address + 1

Op Code Address + 2
Operand Destination Address
Operand Destination Address

Op Code Address

Op Code Address + 1
Op Code Address + 2
Address of Operand
Address of Operand
Address of Operand

ADDR

PC

R/W
Line

PRPRPR PR PRPPOORRRE OORRPR R

ORrpRrRPRPEPRPR OpRrPRPEP RPPRPREPR

Figure 35

HD6800 HDG68A00, HD68BOO

Data Bus

Op Code

Address of Operand (High Order Byte)
Address of Operand (Low Order Byte)
Irrelevant Data (NOTE 1)

Operand Data (High Order Byte)
Operand Data (Low Order Byte)

Op Code

Address of Subroutine (High Order Byte)
Address of Subroutine (Low Order Byte)
Op Code of Next Instruction

Return Address (Low Order Byte)
Return Address (High Order Byte)
Irrelevant Data (NOTE 1)

Irrelevant Data (NOTE 1)

Address of Subroutine (Low Order Byte)

Op Code
Jump Address (High Order Byte)
Jump Address (Low Order Byte)

Op Code

Address of Operand (High Order Byte)
Address of Operand (Low Order Byte)
Operand Data

Op Code

Address of Operand (High Order Byte)
Address of Operand (Low Order Byte)
Operand Data (High Order Byte)
Operand Data (Low Order Byte)

Op Code

Destination Address (High Order Byte)
Destination Address (Low Order Byte)
Irrelevant Data (NOTE 1)

Data from Accumulator

Op Code

Address of Operand (High Order Byte)
Address of Operand (Low Order Byte)
Current Operand Data

Irrelevant Data (NOTE 1)

New Operand Data (NOTE 2)

If device which is addressed during this cycle uses VM A, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
For TST, VMA = 0 and Operand data does not change.

MPU
ADDR = 300
PC = 5006
5007
5008
5009
Example

Extended Addressing Mode

HD6800, HD68AO0O0O, HD68BOO

¢ Relative Address Mode

In both the Direct and Extended modes, the address ob-
tained by the MPU is an absolute numerical address. The Re-
lative addressing mode, implemented for the MPU’'s branch
instructions, specifies a memory location relative to the Program
Counter’'s current location. Branch instructions generate two
bytes of machine code, one for the instruction opcode and one
for the “relative” address (see Fig. 36). Since it is desirable to be
able to branch in either direction, the 8-bit address byte is inter-
preted as a signed 7-bit value; the 8th bit of the operand is
treated as a sign bit, “0” = plus and “ 1” = minus. The remaining
seven bits represent the numerical value. This result in a relative
addressing range of +127 with respect to the location of the
branch instruction itself. However, the branch range is com-
puted with respect to the next instruction that would be ex-
ecuted if the branch conditions are not satisfied. Since two
byte are generated, the next instruction is located at PC+2.
If, D is defined as the address of the branch destination, the
range is then;

(PC+2) -1287 (PC+2) + 127

or PC-126 g D ~ PC+ 129

MPU

(PC+2) + (Offset)

that is, the destination of the branch instruction must be
within -126 to +129 memory locations of the branch instruc-
tion itself. For transferring control beyond this range, the un-
conditional jump (JMP), jump to subroutine (JSR), and return
from subroutine (RTS) are used.

In Fig. 36, when the MPU encounters the opcode for BEQ
(Branch if result of last instruction was zero), it tests the Zero
bit in the Condition Code Register. If that bit is “0”, indicating
a non-zero result, the MPU continues execution with the next
instruction (in location 5010 in Fig. 36). If the previous result
was zero, the branch condition is satisfied and the MPU adds the
offset, 15 in this case, to PC+2 and branches to location 5025
for the next instruction.

The branch instructions allow the programmer to efficiently
direct the MPU to one point or another in the control program
depending on the outcome of test results. Since the control
program is normally in read-only memory and cannot be
changed, the relative address used in execution of branch in-
structions is a constant numerical value. Cycle-by-cycle opera-
tion is shown in Table 12 for relative addressing.

MPU

Figure 36 Relative Addressing Mode

Table 12 Relative Mode Cycle-by-Cycle Operation

HD6800, HD68A0O0O, HD68BOO

Address Mode Cycle VMA
and Instructions Cycle y# Line Address Bus Flfllnvg Data Bus

BCC BHI BNE 1 1 Op Code Address 1 Op Code

BCS BLE BPL 2 1 Op Code Address + 1 1 Branch Offset

BEQ BLS BRA 3 0 Op Code Address + 2 1 Irrelevant Data (NOTE 1)

BGE BLT BVC 4 0 Branch Address 1 Irrelevant Data (NOTE 1}

BGT BMI BVS

BSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Branch Offset
3 0 Return Address of Main Program 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer 0 Return Address (Low Order Byte)
5 1 Stack Pointer — 1 0 Return Address (High Order Byte)
6 0 Stack Pointer —2 1 Irrelevant Data (NOTE 1)
7 0 Return Address of Main Program 1 Irrelevant Data (NOTE 1)
8 0 Subroutine Address 1 Irrelevant Data (NOTE 1)

NOTE 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

¢ Indexed Addressing Mode

With Indexed addressing the numerical address is variable and
depend on the current contents of the Index Register. A source
statement such as

Comment

PUT A IN INDEXED LOCATION

Operator
STAA X

Operand

causes the MPU to store the contents of accumulator A in the
memory location specified by the contents of the Index Re-
gister (recall that the label X is reserved to designate the Index
Register). Since there are instructions for manipulating X
during program execution (LDX, INX, DEX, etc.), the Indexed
addressing mode provides a dynamic “on the fly” way to
modify program activity.

MPU

ADDR=INDX
+ OFFSET

PC

OFFSET g 255
General Flow

Figure 37

The operand field can also contain a numerical value that will
be automatically added to X during execution. This format is
illustrated in Fig. 37.

When the MPU encounters the LDAB (Indexed) opcode in
location 5006, it looks in the next memory location for the
value to be added to X (5 in the example) and calculates the
required address by adding 5 to the present Index Register value
of 400. In the operand format, the offset may be represented
by a label or a numerical value in the range 0 ~ 255 as in the
example. In the earlier example, STAA X, the operand is
equivalent to 0, X , that is, the “0” may be omitted when the
desired address is equal to X. Table 13 shows the cycle-by-cycle
operation for the Indexed Mode o f Addressing.

MPU
ACCB

Example

Indexed Addressing Mode

HD6800, HD68A0O0O, HD68B0OO

Address Mode
and Instructions

JMP

ADC
ADD
AND
BIT

CMP

CPX
LDS
LDX

STA

ASL

ASR

CLR

coMm
DEC
INC

STS
STX

JSR

NOTE 1.

NOTE 2.

EOR
LDA
ORA
SBC
SuB

LSR
NEG
ROL
ROR
TST

Cycle

Cycle
#

NOURAWNE OUBRWNE OUORWNE ORWNE DWON PR

ONOOURAWNRE NOUODWN R

Table 13 Indexed Mode Cycle by Cycle

VMA
Line

O+ 0O0ORrRkr ROOORRLR PROORRKR ROORRKR OO0k

2
3

(NOTE

e D

CORr RLRORRER RPROOOR

o

Address Bus

Op Code Address

Op Code Address + 1

Index Register

Index Register Plus Offset (w/o Carry)

Op Code Address

Op Code Address + 1

Index Register

Index Register Plus Offset (w/o Carry)
Index Register Plus Offset

Op Code Address

Op Code Address + 1

Index Register

Index Register Plus Offset (w/o Carry)
Index Register Plus Offset

Index Register Plus Offset + 1

Op Code Address

Op Code Address + 1

Index Register

Index Register Plus Offset (w/o Carry)
index Register Plus Offset

Index Register Plus Offset

Op Code Address *

Op Code Address + 1

Index Register

Index Register Plus Offset (w/o Carry)
Index Register Plus Offset

Index Register Plus Offset

Index Register Plus Offset

Op Code Address

Op Code Address + 1

Index Register

Index Register Plus Offset (w/o Carry)
Index Register Plus Offset

Index Register Plus Offset

Index Register Plus Offset + 1

Op Code Address

Op Code Address + 1

Index Register

Stack Pointer

Stack Pointer —1

Stack Pointer —2

Index Register

Index Register Plus Offset (w/o Carry)

R/W
Line

[

OpRp mRERPRR ORPRPRRPRER PRPRREPR RPREPRPRP RPEPPR

PR RPOORR R OO0k RERREPE

Data Bus

Op Code

Offset

Irrelevant Data (NOTE 1)
Irrelevant Data (NOTE 1)

Op Code

Offset

Irrelevant Data (NOTE 1)
Irrelevant Data (NOTE 1)
Operand Data

Op Code

Offset

Irrelevant Data (NOTE 1)
Irrelevant Data (NOTE 1)
Operand Data (High Order Byte)
Operand Data (Low Order Byte)

Op Code

Offset

Irrelevant Data (NOTE 1)
Irrelevant Data (NOTE 1)
Irrelevant Data (NOTE 1)
Operand Data

Op Code

Offset

Irrelevant Data (NOTE 1)
Irrelevant Data (NOTE 1!
Current Operand Data
Irrelevant Data (NOTE 1)
New Operand Data (NOTE 2)

Op Code

Offset

Irrelevant Data (NOTE 1)
Irrelevant Data (NOTE 1)
Irrelevant Data (NOTE 1)
Operand Data (High Order Byte)
Operand Data (Low Oder Byte)

Op Code

Offset

Irrelevant Data (NOTE 1!

Return Address (Low Order Byte)
Return Address (High Order Byte)
Irrelevant Data (NOTE 1)
Irrelevant Data (NOTE 1)
Irrelevant Data (NOTE 1)

if Device which is addressed during this cycle uses VM A, then the Data Bus will go to the high impedance three-state condition.

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

For TST, VMA =0 and Operand data does not change.

HD6800, HD68A0O0O, HD68BOO

Inst. Offset Inst.

Figure 38 Example of Excution Timing in Each Addressing Mode

