
HD6800, HD68A00, HD68B00
MPU (Micro Processing Unit)

The HD6800 is a monolithic 8-bit microprocessor forming
the central control function for Hitachi’s HMCS6800 family.
Compatible with TTL, the HD6800 as with all HMCS6800
system parts, requires only one 5V power supply, and no ex­
ternal TTL devices for bus interface. The HD68A00 and
HD68B00 are high speed versions.

The HD6800 is capable o f addressing 65k bytes of mem­
ory with its 16-bit address lines. The 8-bit data bus is bi-direc­
tional as well as 3-state, making direct memory addressing and
multiprocessing applications realizable.
■ FEATURES
• Versatile 72 Instruction - Variable Length (1~3 Byte)
• Seven Addressing Modes — Direct, Relative, Immediate,

Indexed, Extended, Implied and Accumulator
• Variable Length Stack
• Vectored Restart
• Maskable Interrupt
• Separate Non-Maskable Interrupt — Internal Registers Saved

in Stack
• Six Internal Registers — Two Accumulators, Index Register,

Program Counter, Stack Pointer and Condition Code Register
• Direct Memory Accessing (DMA) and Multiple Processor

Capability
• Clock Rates as High as 2.0 MHz (HD6800 ••• 1 MHz,

HD68A00 - 1.5 MHz, HD68B00 - 2.0 MHz)
• Halt and Single Instruction Execution Capability
• Compatible with MC6800, MC68A00 and MC68B00

■ P IN A R R A N G E M E N T

HD6800, HD68A00, HD68B00

■ BLOCK DIAGRAM

A„ A i4 A,, A1} A,, Aio At A, A, At A, A4 A, A, A, A0
25 24 23 22 20 19 18 17 16 15 14 13 12 11 10 9

26 27 28 29 30 31 32 33

vss Cl -------------------------- res
HALT (T TSC

0i [T U nc
IRQ (T 002

VMA (T 3 DBE
NMI 1 NC
BA (T 13 R/W

V CC Lit 3 D0
A° (I 3 o,
A, [To HD6800 0 D,
A, (Ti 3 Di
ai (n 3
A< Ei 3 D,
A, [m 3
A6 Q1 3 °i
A, (H 25l A,,
a> m 23 A ,<
A, [Ti 3 Au
A,.(H 23 A,,
A„ d O vss

(Top View)

HD6800, HD68A00, HD68B00

■ ABSOLUTE MAXIMUM RATINGS
Item Symbol Value Unit

Supply Voltage Vcc* -0 .3 ~ +7.0 V
Input Voltage V in* -0 .3 ~ +7.0 V
Operating Temperature Topr - 20 ~ + 75 °C
Storage Temperature "Fstg — 55 — +150 °C

* W ith respect to V ss (SYSTEM GND)
(N O TE) Permanent LSI damage may occur i f m axim um rating are exceeded. Normal operation should be under recommended operating conditions.

I f these conditions are exceeded, it could a ffect re liab ility o f LSI.

■ RECOMMENDED OPERATING CONDITION
Item Symbol min typ max Unit

Supply Voltage V Cc * 4.75 5.0 5.25 V

Input Voltage V ,L * -0 .3 - 0.8 V

< I
* 2.0 - V Cc V

Operating Temperature "Fppr -20 25 75 °C
* W ith respect to V ss (SYSTEM GND)

■ ELECTRICAL CHARACTERISTICS
• DC CHARACTERISTICS (Vcc = 5V ± 5%, Vss = OV, Ta « -20~+75°C , unless otherwise noted.)

Item Symbol Test Condition min typ* max Unit
Input "High" Voltage Logic** V,H 2.0 V Cc V
Input "Low" Voltage Logic** V ,L -0 .3 — 0.8 V

Clock Input "High" Voltage 01,02 V,HC V c c -0 .6 - Vc c + 0 .3 V
Clock Input "Low" Voltage 01.02 V|LC -0.3 - 0.4 V

Output "High" Voltage

D0~ D 7

VOH

Iqh = -205/i A 2.4 - - V
A o~ A is , R/W
VMA Ioh = -145/1A 2.4 - - V

BA Iqh = - 100/tA 2.4 - - V

Output "Low " Voltage V 0 L Iql = 1.6mA - - 0.4 V

Input Leakage Current
Logic***

■in
V in = 0~5 .25V ,
All other pins are connected
to GND

-2.5 - 2.5 m a

01.02 -100 - 100 /xA

Three-State (Off-state)
Input Current

d 0~ d 7
Itsi V in = 0.4 ~ 2.4V

-10 - 10 /iA
A0~ A 1S, R/W -100 - 100 MA

Power Dissipation Pd - 0.5 1.0 W

Input Capacitance

Logic***

cin Vin = 0V, Ta = 25°C,
f = 1 MHz

- 6.5 10 pF
D0~ D 7 - 10 12.5 PF

0 i - 25 35 PF

02 - 45 70 PF

Output Capacitance A0~ A 1S, R/W
VMA. BA Oput

V in = 0V, Ta = 25° C,
f = 1 MHz - - 12 PF

* T a = 25°C, Vc c = 5V
* * A ll inputs except 0, and 02

* * * A ll inputs except 0 j ,<t>2 and D0~ D 7

HD6800, HD68A00, HD68B00

• AC CHARACTERISTICS (Vcc = 5V ± 5%, Vss = OV, Ta = -20~+75°C , unles* otherwise noted.)

1. T IM IN G CHARACTERISTICS OF CLOCK PULSE 0i and 02

Item Symbol Test HD6800 HD68A00 HD68B00
UnitCondition min typ max min typ max min typ max

Frequency of Operation f 0.1 - 1.0 0.1 - 1.5 0.1 - 2.0 MHz

Cycle Time t Cy c Fig. 10 1.000 - 10 0.666 - 10 0.500 - 10 Us

Clock Pulse Width 01,02 PWChi.PWch2 Fig. 10 400 - 4,500 230 - 4,500 180 - 4,500 ns

Rise and Fall Times 01.02 tr .t f Fig. 10 - - 100 - - 100 - - 100 ns

Delay Time (Clock Internal) td Fig. 10 0 - 4,500 0 - 4,500 0 - 4,500 ns

Clock "High" Level Time t | J T Fig. 10 900 - - 600 ~ - 440 - - ns

2. READ/W RITE CHARACTERISTICS

Item Symbol Test
Condition

HD6800 HD68A00 HD68B00
Unit

min typ max min typ max min typ max

Address Delay
Time

C=90pF I a d i
Fig. 11,
Fig. 12 - - 270 - - 180 - - 150 ns

C=30pF f AD2
Fig. 11,
Fig. 12 - - 250 - - 165 - - 135 ns

Data Setup Time (Read) I dsr Fig. 11 100 - - 60 - - 40 - - ns

Peripheral Read Access Time
face = tlJT " (tAD + *DSR) face Fig. 11 - - 530 - - 360 - - 250 ns

Input Data Hold Time tH Fig. 11 10 - - 10 - - 10 - - ns

Output Data Hold Time tH Fig. 12 20 - - 20 - - 20 - - ns

Address Hold Time
(Address, R/W, VMA) fAH

Fig. 11,
Fig. 12 10 - - 10 - - 10 - - ns

Enable "High" Time for DBE
Input tEH Fig. 12 450 - - 280 - - 220 - - ns

Data Delay Time (Write) f D D W Fig. 12 - - 225 - - 200 - - 160 ns

Data Bus Enable Down Time
(During 0t Up Time) tD B E Fig. 12 150 - - 120 - - 75 - - ns

Data Bus Enable Delay Time fD B E D Fig. 12 300 - - 250 - - 180 - - ns

Data Bus Enable
Rise and Fall Times

fQ B E r
f D B E f

Fig. 12 - - 25 - - 25 - - 25 ns

Processor Control Setup Time fpcs 200 - - 140 - - 110 - - ns

Processor Control
Rise and Fall Times

tp C r

fpcf
- - 100 - - 100 - - 100 ns

Bus Available Delay Time (BA) fB A - - 250 - - 165 - • - 135 ns

Three-State Delay Time f T S D - - 270 - - 270 - - 220 ns

5.0V

C = 130pF fo r D 0 ~ D 7
- 90pF fo r A 0 ~ A , s , R /W , and V M A
= 30pF fo r BA

R = 11 kSl fo r D0~ D 7
= 16 k f i fo r A 0 ~ A , 5, R/W and V M A
= 2 4 k f l fo r BA

C includes Stray Capacitance.
A ll diodes are 1S2O74 0 o r equivalent.

Figure 1 Bus Timing Test Load

HD6800 HD68A00, HD68B00

The Last Instruction Cycle . Halt Cycle

*' /
— ! V c c - 0 .6V - j ^ V CC- 0 . 6 V ^ y

i\ J V -
'“ V c c - 0 .6 V \^

tp C f - »

/P C S

2.0V
0.8VH A L T

_ l BA

BA \LZF2M
Figure 2 Timing of HALT and BA

Halt Cycle | Instruction Cycle

* ■ . _ r ~
-3 V CC — 0.6V -y ^ v Cc - o .6 v \ y ~

0 j \
~ v _ _____ / \

l PCr

H A LT

/P C S

X " 2.0V
- /X 8 V t B A J

r - . 0 .4VBA

Figure 3 Timing of HALT and BA

MPU Reset_________________ | ______________ MPU Restart Sequence

Figure 4 RES and MPU Restart Sequence

HD6800, HD68A00, HD68B00

W A IT Cycle or
The Last Instruction Cycle I In terrupt Sequence

The last execution cycle of
W AI instruction (#9) W A IT Cycle

j \ / _______ r

HD6800 HD68A00, HD68B00

■ MPU REGISTERS
The MPU provides several registers in Fig. 8, which is avail­

able for use by the programmer.
Each register is described below.

• Program Counter (PC)
The program counter is a two byte (16-bit) register that

points to the current program address.
• Stack Pointer (SP)

The stack pointer is a two byte register that contains the
address o f the next available location in an external push-down/
pop-up stack. This stack is normally a random access Read/
Write memory that may have any location (address) that is con­
venient. In those applications that require storage o f informa­
tion in the stack when power is lost, the stack must be non­
volatile.
• Index Register (IX)

The index register is a two byte register that is used to store
data or a sixteen bit memory address for the Indexed mode o f
memory addressing.
• Accumulators (ACCA, ACCB)

The MPU contains two 8-bit accumulators that are used to
hold operands and results from an arithmetic logic unit (ALU).

Figure 8 Programming Model of the Microprocessing
Unit

• Condition Code Register (CCR)
The condition code register indicates the results o f an Arith­

metic Logic Unit operation: Negative (N)> Zero (Z), Overflow
(V), Carry from bit 7 (C), and half carry from bit 3(H). These
bits o f the Condition Code Register are used as testable condi­
tions for the conditional branch instructions. Bit 4 is the
interrupt mask bit (I). The unused bits o f the Condition Code
Register (b6 and b7) are “ 1” . The detail block diagram o f the
microprossing unit is shown in Fig. 9.

Addrass Bus Addrass Bus
(H) A, «*AI((L) A ,~A ,

sr~sr

Figure 9 Internal Block Diagram of MPU

■ MPU SIGNAL DESCRIPTION
Proper operations o f the MPU requires that certain control

and timing signals (Fig. 9) be provided to accomplish specific
functions. The functions o f pins are explained in this section.
• Clock (02,02)

Two pins are used to provide the clock signals. A two-phase
non-overlapping clock is provided as shown in Fig. 10.

Vov = Vss +

Figure 10 Clock Timing Waveform

• Address Bus (A0~ A iS)
Sixteen pins are used for the address bus. The outputs are

three-state bus drivers capable o f driving one standard TTL load
and 90pF. When the output is turned o ff, it is essentially an
open circuit. This permits the MPU to be used in DMA applica­
tions. Putting TSC in its high state forces the Address bus to go
into the three-state mode.
• Data Bus (D0 ~ D 7)

Eight pins are used for the data bus. It is bidirectional,
transferring data to and from the memory and peripheral
devices. It also has three-state output buffers capable o f driving
one standard TTL load and 130pF. Data Bus is placed in the
three-state mode when DBE is “ Low.”

HD6800, HD68A00, HD68B00

Indeterm inate period

Figure 11 Read from Memory or Peripherals

Figure 12 Write to Memory or Peripherals

HD6800, HD68A00, HD68B00

• Data Bus Enable (DBE)
This input is the three-state control signal for the MPU data

bus and will enable the bus drivers when in the “ High” state;will
make the bus driver o ff when in the “ Low” state. This input is
TTL compatible; however in normal operation, it would be
driven by <t>2 clock. During an MPU read cycle, the data bus
drivers will be disabled internally. When it is desired that an­
other device control the data bus such as in Direct Memory
Access (DMA) applications, DBE should be held “ Low.”

I f additional data setup or hold time is required on an MPU
write, the DBE down time can be decreased as shown in Fig. 13
(DBE The minimum down time for DBE is Idbe as
shown and must occur within <f>i up time. As for the charac-
teristical values in Fig. 12, refer to the table o f electrical charac­
teristics.
• Bus Available (BA)

The BA signal will normally be in the “ Low” state. When
activated, it will go to the “ High” state indicating that the
microprocessor has stopped and that the address bus is avail­
able. This will occur if the HALT line is in the “ Low” state
or the processor is in the W AIT state as a result o f the execution
o f a WAIT instruction. A t such time, all three-state output
drivers will go to their o ff state and other outputs to their
normally inactive level. The processor is removed from the
W AIT state by the occurrence o f a maskable (mask bit I = 0) or
nonmaskable interrupt. This output is capable o f driving one
standard TTL load and 30pF. I f TSC is in the “ High” state, Bus
Available will be “ Low” .

• Read/Write (R/W)
This TTL compatible output signals the peripherals and

memory devices whether the MPU is in a Read (“ High”) or

Write (“ Low”) state. The normal standby state o f this signal is
Read (“ High”). Three-State Control going “ High” will turn R/W
to the o ff (high impedance) state. Also, when the processor is
halted, it will be in the o ff state. This output is capable o f
driving one standard TTL load and 90pF.
• Reset (RES)

The RES input is used to reset and start the MPU from a
power down condition resulting from a power failure or initial
start-up o f the processor. This input can also be used to re­
initialize the machine at any time after start-up.

I f a “ High” level is detected in this input, this will signal the
MPU to begin the reset sequence. During the reset sequence, the
contents o f the last two locations (FFFE, FFFF) in memory
will be loaded into the Program Counter to point to the begin­
ning o f the reset routine. During the reset routine, the interrupt
mask bit is set and must be cleared under program control
before the MPU can be interrupted by IRQ. While RES is
“ Low” (assuming a minimum o f 8 clock cycles have occured)
the MPU output signals will be in the following states; VMA =
“ Low” , BA = “ Low” , Data Bus = high impedance, R/W = “ High”
(read state), and the Address Bus will contain the reset address
FFFE. Fig. 13 illustrates a power up sequence using the Reset
control line. After the power supply reaches 4.75V, a minimum
o f eight clock cycles are required for the processor to stabilize
in preparation for restarting. During these eight cycles, VMA will
be in an indeterminate state so any devices that are enabled by
VMA which could accept a false write during this time (such as
a battery-backed RAM) must be disabled until VMA is forced
“ Low” after eight cycles. RES can go “ High” asynchronously
with the system clock any time after the eighth cycle.

n + I n + 2 n + 3 n + 4 n + 5

Switch

Power
Supply

Address
Bus

R/W
VMA

Data
Bus

,r iJ n j"lJ iJ i^ ijn j^ lJ ijn L n L rL rL

Y ////////A = Indeterm inate period

Figure 13 RES Timing

HD6800, HD68A00, HD68B00

The Reset control line may also be used to reinitialize the
MPU system at any time during its operation. This is accomp­
lished by pulsing RES “ Low” for the duration o f a minimum o f
three complete <t>2 cycles. The RES pulse can be completely
asynchronous with the MPU system clock and will be recog­
nized during <p2 i f setup time tpcs is met.
• Interrupt Request (IRQ)

This level sensitive input requests that an interrupt sequence
be generated within the machine. The processor will wait until
it completes the current instruction that is being executed
before it recognizes the request. I f the interrupt mask bit in the
Condition Code Register is not set, the machine will begin an
interrupt sequence. The Index Register, Program Counter,
Accumulators, and Condition Code Register are stored away on
the stack.

Next the MPU will respond to the interrupt request by
setting the interrupt mask bit “ 1” so that no further inter­
rupts may occur. At the end o f the cycle, a 16-bit address will
be loaded that points to a vectoring address which is located in
memory locations FFF8 and FFF9. An address loaded at these
locations causes the MPU to branch to an interrupt routine in
memory. Interrupt timing is shown in Fig. 14.

The HALT line must be in the “ High” state for interrupts
to be serviced. Interrupts will be latched internally while HALT
is “ Low” . The IRQ has a high impedance pullup device internal
to the chip; however a 3kf2 external resistor to v cc should be
used for wire-OR and optimum control o f interrupts.

• Non-Maskable Interrupt (NM I) and Wait for Interrupt (WAI)
The MPU is capable o f handling two types o f interrupts:

maskable (IRQ) as described earlier, and non-maskable (NMI).
IRQ is maskable by the interrupt mask in the Condition Code
Register while NMI is not maskable. The handling o f these inter­
rupts by the MPU is the same except that each has its own
vector address. The behavior o f the MPU when interrupted is
shown in Fig. 14 which details the MPU response to an interrupt
while the MPU is executing the control program. The interrupt
shown could be either IRQ or NMI and can be asynchronous
with respect to <p2. The interrupt is shown going “ Low” at
time tpcs in cycle #1 which precedes the first cycle o f an in­
struction (OP code fetch). This instruction is not executed but
instead the Program Counter (PC), Index Register (IX),
Accumulators (ACCX), and the Condition Code Register (CCR)
are pushed onto the stack.

The Interrupt Mask bit is set to prevent further interrupts.
The address o f the interrupt service routine is then fetched from
FFFC, FFFD for an NMI interrupt and from FFF8, FFF9 for
an IRQ interrupt. Upon completion o f the interrupt service
routine, the execution o f RTI will pull the PC, IX, ACCX, and
CCR o ff o f the stack; the Interrupt Mask bit is restored to its
condition prior to interrupts. Fig. 15 is a similar interrupt se­
quence, except in this case, a WAIT instruction has been ex­
ecuted in preparation for the interrupt. This technique speeds
up the MPU’s response to the interrupt because the stacking o f

I Cycle I Cycle jI Cycle I Cycle I Cycle I Cycle I Cycle I Cycle Cycle Cycle i1 Cycle I Cycle II Cycle I Cycle I
I #1 I # 2 | #3 I # 4 I # 5 I # 6 I # 7 I # 8 I # 9 I #10 11 #11 I # 1 2 !I # 1 3 | # 1 4 I

<t> i

Address
Bus

IR Q or
NMI

IM
Data

Bus

R/W

V M A

XZDCZDC
In s t (x) PC0-PC7 PC8~ IX 0 - IX 7 IX 8 ~ ACCA ACCB

PC15 1X15
CCR

_ r
New PC8-PC15 Newpco~PC7 First Inst of

_______ Address Address interrupt Routine

Figure 14 Interrupt Tinning

I Cycle I Cycle I Cycle I Cycle I Cycle | Cycle [Cycle | Cyclel Cycle i
I #1 I # 2 I # 3 I # 4 I # 5 I # 6 I # 7 | # 8 I # 9 ! W ait Cycle

| Cycle I Cycle [Cycle | Cycle | Cycle | Cycle |
I # n l# n + 1 |# n + 2 |# n + 3 |# n + 4 |# n + 5 l

(NO TE) Midrange waveform indicates high impedance state.

Figure 15 WAI Instruction Timing

HD6800, HD68A00, HD68B00

the PC, EX, ACCX, and the CCR is already done.
While the MPU is waiting for the interrupt, Bus Available will

go “ High” indicating the following states_of the control lines:
VMA is “ Low” , and the Address Bus, R/W and Data Bus are all
in the high impedance state. After the interrupt occurs, it is
serviced as previously described.

Table 1 Memory Map for Interrupt Vectors

Vector
Description

MS LS
FFFE FFFF Restart
FFFC FFFD Non-maskable Interrupt
FFFA FFFB Software Interrupt
FFF8 FFF9 Interrupt Request

Refer to Figure 18 for program flow for Interrupts.

• Three State Control (TSC)
When the Three State_Control (TSC) line is “ High” level, the

Address Bus and the R/W line are placed in a high impedance
State. VMA and BA are forced "Low ” when TSC = “ High” to
prevent false reads or writes on any device enabled by VMA.
It is necessary to delay program execution while TSC is held
“ High” . This is done by insuring that no transitions o f 0! (or
02) occur during this period. (Logic levels o f the clocks are
irrelevant so long as they do not change.)

Since the MPU is a dynamic device, the 0t clock can be
stopped for a maximum time PWc h i without destroying data
within the MPU. TSC then can be used in a short Direct Me­
mory Access (DMA) application.

Fig. 16 shows the effect o f TSC on the MPU. The Address
Bus and R/W line will reach the high impedance state at tTSD
(three-state delay), with VMA being forced “ Low” . In this
example, the Data Bus is also in the high impedance state while
02 is being held “ Low” since DBE=02 • A t this point in time, a
DMA transfer could occur on cycles #3 and m . When TSC is
returned “ Low,” the MPU address and R/W lines return to the
bus. Because it is too late in cycle #5 to access memory, this
cycle is dead and used for synchronization. Program execution
resumes in cycle #6.

• Valid Memory Address (VMA)
This output indicates to peripheral devices that there is a

valid address on the address bus. In normal operation, this signal
should be utilized for enabling peripheral interfaces such as the
PIA and ACIA. This signal is not three-state. One standard TTL
load and 90pF may be directly driven by this active “ High”
signal.
• Halt (HALT)

When this input is in the “ Low” state, all activity in the
machine will be halted. This input is level sensitive.

The HALT line provides an input to the MPU to allow con-
trol or program execution by an outside source. I f HALT is
“ High” , the MPU will execute the instructions; i f it is “ Low” ,
the MPU will go to a halted or idle mode. A response signal,
Bus Available (BA) provides an indication o f the current MPU
status. When BA is “ Low” , the MPU is in the process o f execut­
ing the control program; i f BA is “ High” , the MPU has halted
and all internal activity has stopped.

When BA is “ High” , the Address Bus, Data Bus, and R/W line
will be in a high impedance state, effectively removing the
MPU from the system bus. VMA is forced “ Low” so that the
floating system bus will not activate any device on the bus that
is enabled by VMA.

While the MPU is halted, all program activity is stopped, and
if either an NMI or IRQ interrupt occurs, it will be latched into
the MPU and acted on as soon as the MPU is taken out o f the
halted mode. I f a RES command occurs while the MPU is
halted, the following states occur j_VMA = “ Low” , BA = “ Low” ,
Data Bus = high impedance, R/W = “ High” (read state), and
the Address Bus will contain address FFFE as long as RES is
“ Low” . As soon as the HALT line goes “ High” , the MPU will
go to locations FFFE and FFFF for the address o f the reset
routine.

Fig. 18 shows the timing relationships involved when halting
the MPU. The instruction illustrated is a one byte, 2 cycle in­
struction such as CLRA. When HALT goes “ Low” , the MPU
will halt after completing execution o f the current instruction.
The transition o f HALT must occur tpcs before the trailing edge
o f 0i o f the last cycle o f an instruction (point A o f Fig. 18).
HALT must not go “ Low” any time later than the minimum
tpcs specified.

| #1 | #2 j #3 | #4 | #5 | #6 | #7 | #8 | #9 |

System
0.

Figure 16 TSC Control Timing

HD6800, HD68A00, HD68B00

<C yc le>

#1 ~ 2

3 ~ 9

#10

#11

#12

#13

Figure 17 MPU Interrupt Flow Chart

HD6800, HD68A00, HD68B00

(NOTE 1)
^ C = D 0 C m .

R/w
Execute

2 »

(NOTE 2)

Address
Bus

Data
Bus ^ ------

Example: M =1000l6 , X = C LR A (O P 4F)

m .

-m zz >

M +1=10011(S, Y=C LR B(O P 5F)

(NOTE) 1. Oblique lines indicate indeterm inate range o f data.
2. Midrange waveform indicates high impedance state.

Figure 18 HALT and Single Instruction Execution for System Dubug

Table 2 Operation States of MPU and Signal Outputs (Except the Execution of Instruction)

Signals Halt state Reset state Halt and
Reset state WAI state TSC state

BA "H " "L " "L" "H " "L"
VMA "L " "L" "L" "L" "L"
R/W "T" "H " "H " *T " "T"
Ao ~ A 1S "J " <FFFE) 16 (FFFE)16 "T" "T "
Do D 7 "T" "T" "T" "T" -

" T " indicates high impedance state.

The fetch of the OP code by the MPU is the first cycle o f the
instruction. I f HALT had not been “ Low” at Point A but went
“ Low” during 02 o f the cycle, the MPU would have halted after
completion o f the following instruciton. BA will go “ High” by
time tgA (bus available delay time) after the last instruction
cycle. At this point in time, VMA is “ Low” and R/W, Address
Bus, and the Data Bus are in the high impedance state.

To debug programs it is advantageous to step through pro­
grams instruction by instruction. To do this, HALT must be
brought “ High” for one MPU cycle and then returned “ Low” as
shown at point B o f Fig. 18. Again, the transitions o f HALT
must occur tpcs before the trailing edge o f <Pi. BA will go
“ Low” at tBA after the leading edge o f the next 0 !, indicating
that the Address Bus, Data Bus, VMA and R/W lines are back
on the bus. A single byte, 2 cycle instruction such as LSR is
used for this example also. During the first cycle, the instruction
Y is fetched from address M +l. BA returns “ High” at tBA on
the last cycle o f the instruction indicating the MPU is o ff the
bus, i f instruction Y had been three cycles, the width o f the BA
“ Low” time would have been increased by one cycle.

Table 2 shows the relation between the state o f MPU and
signal outputs.

■ MPU INSTRUCTION SET
This Section will provide a brief introduction and discuss

their use in developing HD6800 MPU control programs. The
HD6800 MPU has a set o f 72 different executable source
instructions. Included are binary and decimal arithmetic, logical,
shift, rotate, load, store, conditional or unconditional branch,
interrupt and stack manipulation instructions.

Each o f the 72 executable instructions o f the source language
assembles into 1 to 3 bytes o f machine code. The number o f
bytes depends on the particular instruction and on the address­
ing mode. (The addressing modes which are available for use
with the various executive instructions are discussed later.)

The coding o f the first (or only) byte corresponding to an
executable instruction is sufficient to identify the instruction
and the. addressing mode. The hexadecimal equivalents o f the
binary codes, which result from the translation o f the 72 in­
structions in all valid modes o f addressing, are shown in Table 3.
There are 197 valid machine codes, 59 o f the 256 possible codes
being unassigned.

When an instruction translates into two or three bytes o f
code, the second byte, or second and third bytes contain(s) an
operand, an address, or information from which an address is
obtained during execution.

HD6800 HD68A00, HD68B00

Microprocessor instructions are often devided into three
general classifications; (1) memory reference, so called because
they operate on specific memory locations; (2) operating in­
structions that function without needing a memory reference;
(3) I/O instructions for transferring data between the micro­
processor and peripheral devices.

In many instances, the HD6800 MPU performs the same
operation on both its internal accumulators and the external

memory locations. In addition, the HD6800 MPU allow the
MPU to treat peripheral devices exactly like other memory
locations, hence, no I/O instructions as such are required. Be­
cause o f these features, other classifications are more suitable
for introducing the HD6800’s instruction set: (1) Accumu­
lator and memory operations; (2) Program control operations;
(3) Condition Code Register operations.

For Accumulator and Memory Operations, refer to Table 4.

Table 3 Hexadecimal Values of Machine Codes

\ ^ L S B
M S B ' ' \ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 ♦
NOP
(IMP) * ♦ * *

TAP
(IM P)

TPA
(IMP)

IN X
(IMP)

D E X
(IM P)

C LV
(IM P)

SEV
(IM P)

CLC
(IMP)

SEC
(IMP)

CLI
(IM P)

SEI
(IM P)

1
SBA
(A , B)

CBA
(A . B) * * * *

TAB
(IM P)

TB A
(IM P) *

DAA
(IM P) *

ABA
(IMP) ♦ • * *

2
BRA
(R E L) *

BHI
(R E L)

BLS
(R E L)

BCC
(R E L)

BCS
(R E L)

BNE
(R EL)

BEO
(R EL)

BVC
(R E L)

BVS
(R EL)

BPL
(R EL)

BMI
(R EL)

BGE
(REL)

BLT
(R EL)

BGT
(R E L)

BLE
(REL)

3
TS X
(IM P)

INS
(IM P)

PUL
(A)

PUL
(B)

DES
(IM P)

TX S
(IM P)

PSH
(A)

PSH
(B) •

RTS
(IM P) *

R T I
(IM P) * *

W A I
(IM P)

SWI
(IMP)

4 NEG
(A) * *

COM
(A)

LSR
(A) *

ROR
(A)

ASR
(A)

ASL
(A)

R O L
(A)

DEC
(A) ‘

INC
(A)

TST
(A) *

CLR
(A)

5
NEG
(B) * *

COM
(B)

LSR
(B) •

ROR
(B)

ASR
<B)

ASL
(B)

R O L
(B)

DEC
<B) *

INC
(B)

TST
(B) •

CLR
(B)

6
NEG
(IN D) * *

COM
(IN D)

LSR
(IN D) *

ROR
(IN D)

ASR
(IN D)

ASL
(IN D)

R O L
(IN D)

DEC
(IN D) *

INC
(IN D)

TST
(IN D)

JMP
(IN D)

CLR
(IN D)

7
NEG
(E X T) ♦ *

COM
(E X T)

LSR
(E X T) •

ROR
(E X T)

ASR
(E X T)

ASL
(E X T)

R O L
(E X T)

DEC
(E X T) *

INC
(E X T)

TST
(E X T)

JMP
(E X T)

CLR
(E X T)

8 SUB (A) (IM M)' ' CMP (A) (IM M)' 1
SBC
(,M M)(A i * A N D (A)

(IM M)
B1T (A)
(IM M)

LDA (A)
(IM M) • E 0 R (A)

(IM M)
A D C (A)
(IM M)

O R A (A)
(IM M)

A D D (A)
(IM M)

CPX (A)
(IM M)

BSR
(R EL)

LDS
(IM M) *

9
SUB (.
(D IR) '

CMP
(D IR)'

SBC (A)
(D IR) ' ' • A N D (A)

(D IR)
B IT (A)
tD IR)*

L 0 A (A)
(D IR)1

STA (A)
(D IR)

E 0 R (A)
(D IR)

A D C (A)
(D IR)

0 R A (A!
(D IR)

A D D (A)
(D IR) '

E'PX (A)
(D IR) *

LDS
(D IR)

STS
(D IR)

A
SUB . .
(IN D)

CMP
(IN D)

SBC (A)
(IN D) A * A N D (A)

(IN D)
B IT (A)
(IN D)

LDA (A)
(IN D) A

STA (A)
(IN D)

E 0 R (A)
(IN D)

A ^ C (A!
(IN D) A

° RA (a)
(IN D)

A D D (A)
(IN D)

CPX (A)
(IN D)

JSR
(IN D)

LDS
(IN D)

STS
(IN D)

B SUB (A)
(E X T)

CMP (A)
(E X T)

SBC (A)
(E X T)' ' * A N D (A)

(E X T)
B ,T > A)
(E X T)' ’

LDA (A)
(E X T)

STA (A)
(E X T)

E 0 R (A)
(E X T) 1

A D C (A)
(E X T)

O R A (A)
(E X T)’

A D D (A)
(E X T)

CPX (A)
(E X T)

JSR
(E X T)

LDS
(E X T)

STS
(E X T)

C
SUB (B)
(IM M)

CMP
(IM M)

SBC (B)
(IM M) * A N D (B)

(IM M)
B IT (B)
(IM M)

LD A (B)
(IM M) * E 0 R (B)

(IM M)
A D C (B)
(IM M)

0 R A (B)
(IM M)

A D D (B)
(IM M) ♦ *

L D X
(IM M) *

D
SUB (B)
(D IR)

CMP
(D IR)

SBC (B)
(D IR) ' *

A MD (,
(D IR)

B1T (B)
(D IR)

LDA (B)
(D IR)

STA (B)
(D IR)

E 0 R (B)
(D IR)'

A D C (B)
(D IR)

0 R A (B)
(D IR)

A D D (B)
(D IR) * * L D X (B)

(D IR)'
STX (B)
(D IR)

E SUB (B)
(IN D)

CMP (B)
(IN D)

SBC (B)
(IN D) *

A N D
(IN D)

B ,T (B)
(IN D)

LDA (B)
(IN D)

STA (B)
(IN D)

EOR (B)
(IN D)

A D C (B)
(IN D)

0 R A (B)
(IN D)

A D D (B)
(IN D) * *

LD X
(IN D)

STX
(IN D)

F SUB (B)
(E X T)

C M p
(EXT)'

SBC (B)
(E X T) *

A ND (B)
(E X T)"”

B IT (B)
(E X T)

LD A (B)
(E X T)'

STA (B)
(E X T)

E 0 R (B)
(E X T)

A D C (B)
(E XT)'

0 R A (B)
(E X T)'

A D D (B)
(E XT)' * *

L D X
(E X T)

STX
(E X T)

D IR = Direct Addressing Mode IN D = Index Addressing Mode A = Accumulator A
E X T = Extended Addressing Mode IMP = Implied Addressing Mode B = Accumulator B
IM M = Im mediate Addressing Mode R E L = Relative Addressing Mode

HD6800, HD68A00, HD68B00

Table 4 Accumulator and Memory Operations

Addressing Modes Cond. Code Reg.

Operation Mnemonic IM M ED D IR EC T IN D E X E XTN D IM PLIED
Boolean/

Arithmetic Operation 5 4 3 2 1 0

OP # OP # OP Sr OP ~ # OP ~ # H 1 N z V c

Add A D D A 8B 2 2 9B 3 2 AB 5 2 BB 4 3 A + M — A t * t X - x
ADDB CB 2 2 OB 3 2 EB 5 2 FB 4 3 B + M - B 1 • 1 X X X

Add Acmltrs ABA IB 2 1 a + b - a t • 1 X X X
Add w ith Carry ADCA 89 2 2 99 3 2 A9 5 2 B9 4 3 A + M + C - A 1 • X X X X

ADCB C9 2 2 0 9 3 2 E9 5 2 F9 4 3 B + M + C — B 1 • t X X X
And A NDA 84 2 2 94 3 2 A4 5 2 B4 4 3 A * M — A • • 1 1 R •

ANDB C4 2 2 D4 3 2 E4 5 2 F4 4 3 B • M - B • • 1 t R •
Bit Test B ITA 85 2 2 95 3 2 A5 5 2 B5 4 3 A * M • • 1 1 R •

BITB C5 2 2 D5 3 2 E5 5 2 F5 4 3 B • M • • t X R •
Clear CLR 6F 7 2 7F 6 3 0 0 - M • • R s R R

CLRA 4F 2 1 0 0 — A • • R s R R
CLRB 5F 2 1 0 0 - B • • R s R R

Compare CMPA 81 2 2 91 3 2 A1 5 2 B1 4 3 A - M • • 1 X X ♦
CMPB C l 2 2 D1 3 2 El 5 2 F1 4 3 B - M • • t X X 1

Compare Acmltrs CBA 11 2 1 A - B • • t X X 1
Complement, 1 's COM 63 7 2 73 6 3 M - M • • X X R s

COMA 43 2 1 A - A • • 1 X R s
COMB 53 2 1 st- b • • 1 X R s

Complement, 2 ’s NEG 60 7 2 70 6 3 0 0 - M - M • • t 1 ® ©
(Negate) NEGA 40 2 1 0 0 - A - A • • 1 t ©

NEGB 50 2 1 0 0 - B - B • • t X ® ©
Decimal Adjust, A DAA 19 2 1 Converts Binary Add of BCD • • X X 1 ©

Characters into BCD Format
Decrement DEC 6A 7 2 7A 6 3 M - 1 - M • • X X •

DECA 4A 2 1 A - 1 - A • • X X © e
DECB 5A 2 1 8 - 1 - B • • X X © •

Exclusive OR EORA 88 2 2 98 3 2 A8 5 2 B8 4 3 A © M - A • • X X R #
EOR8 C8 2 2 D8 3 2 E8 5 2 F8 4 3 B © M — B • • X X R •

Increment INC 6C 7 2 7C 6 3 M + 1 - M • • X X © •
INCA 4C 2 1 A + 1 - A • • X X © •
INCB SC 2 1 B + 1 - B • • X X © •

Load Acmltr LDAA 86 2 2 9 6 3 2 A6 5 2 B6 4 3 M - A • • X 1 R •
LDAB C6 2 2 D6 3 2 E6 5 2 F6 4 3 M - B • • X 1 R •

O r, Inclusive ORAA 8A 2 2 9A 3 2 AA 5 2 BA 4 3 A + M - A • • X X R •
ORAB CA 2 2 DA 3 2 EA 5 2 FA 4 3 B + M - B • • X t R •

Push Data PSHA 36 4 1 A - Msp, SP - 1 - SP
PSHB 37 4 1 B - Msp, SP - 1 - SP

Pull Data PULA 32 4 1 SP + 1 - SP, Msp - A
PULB 33 4 1 SP + 1 - SP, Msp - B

Rotate Left ROL 69 7 2 79 6 3 M j • • X X © X
ROLA 49 2 1 A f 1—0 ♦- 111111 m —J • • X 1 © X
ROLB 59 2 1 B) C b7 - bO • • X X © X

Rotate Right ROR 66 7 2 76 6 3 M) • • X X © X
RORA 46 2 1 A l Ua-fr ir m m i —l • • X X © 1
RORB 56 2 1 B) C b7 -*• bO • • X X © t

Shift Left, Arithmetic ASL 68 7 2 78 6 3 M | • • X X © 1
ASLA 48 2 1 A [o - t n m m — o • • X X © t
ASLB 58 2 1 B) C b7 bO • • X 1 © 1

Shift Right, Arithmetic ASR 67 7 2 77 6 3 M) • * X t © 1
ASRA 47 2 1 A \ l*lilLLLLU -*U • • X X © X
ASRB 57 2 1 B) b7 bO C • • X t © X

Shift Right, Logic LSR 64 7 2 74 6 3 M) • • R » © X
LSRA 44 2 1 A f 0 *111111111 * D • • R X © X
LSRB 54 2 1 B) b7 bO C • • R » © X

Store Acmltr STAA 97 4 2 A7 6 2 B7 5 3 A - M • • 1 X R •
STAB D7 4 2 E7 6 2 F7 5 3 B - M • • 1 X R •

Subtract SUBA 80 2 2 90 3 2 AO 5 2 BO 4 3 A - M - A • • X X t X
SUBB CO 2 2 DO 3 2 EO 5 2 FO 4 3 B - M - B • • t 1 1 X

Subtract Acmltrs SBA 10 2 1 A - B - A • • i 1 X X
Subtr with Carry SBCA 82 2 2 92 3 2 A2 5 2 B2 4 3 A - M - C - A • • X X t X

SBCB C2 2 2 D2 3 2 E2 5 2 F2 4 3 B - M - C - B • • X X 1 X
Transfer Acmltrs TAB 16 2 1 A - B • • X 1 R •

TBA 17 2 1 B - A • • X 1 R •
Test Zero or Minus TST 6D 7 2 7D 6 3 M - 0 0 • • X t R R

TSTA 4D 2 1 A — 00 • • X t R R
TSTB 5D 2 1 B - 0 0 • • X 1 R R

LEGEND: C O N D IT IO N CODE SYMBOLS:
O P Operation Code (Hexadecimal) + Boolean Inclusive OR H Half-carry from bit 3 R

Number of MPU Cycles © Boolean Exclusive OR | Interrupt mask S
Number o f Program Bytes Complement of M N Negative (sign bit) 1
+ Arithmetic Pius Transfer Into Z Zero (byte) •
- Arithmetic Minus 0 Bit - Zero V Overflow, 2's complement

Msp
Boolean A N D
Contents of memory location
pointed to be Stack Pointer

00 Byte * Zero c Carry from bit 7

Reset Always
Set Always
Test and set if true, cleared otherwise
Not Affected

(Note) Accumulator addressing mode instructions are included in the column for IMPLI ED addressing.

C O N D IT IO N CODE REGISTER NOTES:
(Bit set if test is true and cleared otherwise)

Result = 10000000?
Result ¥ 00000000?

(Bit C) Test: Decimal value of most significant BCD Character greater than nine?
(Not cleared if previously set.)
Operand 11 10000000 prior to execution?
Operand >01111111 prior to execution?

(B itV) Test: Set equal to result of N © C after shift has occurred.

© (Bit V) Test:
© (Bit C) Test:
@ (Bit C) Test:

(Bit V) Test:
(Bit V) Test:
(Bit V) Test:

HD6800 HD68A00, HD68B00

■ PROGRAM CONTROL OPERATIONS
Program Control operation can be subdivided into two cate­

gories: (1) Index Register/Stack Pointer instructions: (2) Jump
and Branch operations.
• Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU’s Index
Register and Stack Pointer are summarized in Table 5. Decre­
ment (DEX, DES), increment (INX, INS), load (LDX, LDS),
and store (STX, STS) instructions are provided for both. The
Compare instruction, CPX, can be used to compare the Index
Register to a 16-bit value and update the Condition Code
Register accordingly.

The TSX instruction causes the Index Register to be loaded
with the address o f the last data byte put onto the “ stack” .
The TXS instruction loads the Stack Pointer with a value equal
to one less than the current contents o f the Index Register. This
causes the next byte to be pulled from the “ stack” to come
from the location indicated by the Index Register. The utility o f
these two instructions can be clarified by describing the “ stack”
concept relative to the HMCS 6800 system.

The “ stack” can be thought o f as a sequential list o f data
stored in the MPU’s read/write memory. The Stack Pointer
contains a 16-bit memory address that is used to access the list
from one end on a last-in-first-out (LIFO) basis in contrast to
the random access mode used by the MPU’s other addressing
modes.

The HD6800 MPU instruction set and interrupt structure
allow extensive use o f the stack concept for efficient handling
o f data movement, subroutines and interrupts. The instructions
can be used to establish one or more “ stacks” anywhere in read/
write memory. Stack length is limited only by the amount o f
memory that is made available.

Operation o f the Stack Pointer with the Push and Pull in­
structions is illustrated in Figs. 19 and 20. The Push instruction
(PSHA) causes the contents.of the indicated accumulator (A in

this example) to be stored in memory at the location indicated
by the Stack Pointer. The Stack Pointer is automatically de­
cremented by one following the storage operation and is “ point­
ing” to the next empty stack location.

The Pull instruction (PULA or PULB) causes the last byte
stacked to be loaded into the appropriate accumulator. The
Stack Pointer is automatically incremented by one just prior to
the data transfer so that it will point to the last byte stacked
rather than the next empty location. Note that the PULL
instruction does not “ remove” the data from memory; in the
example, 1A is still in location (m+1) following execution o f
PULA. A subsequent PUSH instruction would overwrite than
location with the new “ pushed” data.

Execution o f the Branch to Subroutine (BSR) and Jump to
Subroutine (JSR) instructions cause a return address to be
save on the stack as shown in Figs. 21 through 23. The stack is
decremented after each byte o f the return address is pushed
onto the stack. For both o f the these instructions, the return
address is the memory location following the bytes o f code that
correspond to the BSR and JSR instruction. The code required
for BSR or JSR may be either two or three bytes, depending on
whether the JSR is in the indexed (two bytes) or the extended
(three bytes) addressing mode. Before it is stacked, the Program
Counter is automatically incremented the correct number o f
times to be pointing at the location o f the next instruction. The
Return from Subroutine instruction, RTS, causes the return
address to be retrieved and loaded into the Program Counter as
shown in Fig. 24.

There are several operations that cause the status o f the MPU
to be saved on the stack. The Software Interrupt (SWI) and Wait
for Interrupt (W AI) instructions as well as the maskable (IRQ)
and non-maskable (NMI) hardware interrupts all cause the
MPU’s internal registers (except for the Stack Pointer itself) to
be stacked as shown in Fig. 25. MPU status is restored by the
Return from interrupt, RTI, as shown in Fig. 26.

Table 5 Index Register and Stack Pointer Instructions

Addressing Modes

Operation Mnem onic IMM ED DIRECT IN D E X EXTND IM PLIED Boolean/
A rithm e tic Operation 5 4 3 2 1 0

OP ~ # OP ~ # OP ~ # OP ~ # OP ~ # H I N Z V C

Compare Index Reg CPX 8C 3 3 9C 4 2 AC 6 2 BC 5 3 (X H) - (M>, (X L) - (M+1) • • ® t © •
Decrement Index Reg DEX 09 4 1 X - 1 - X • • • t • •
Decrement Stack Pntr DES 34 4 1 SP - 1 -> SP
Increment Index Reg IN X 08 4 1 X + 1 -> X • • • t • •
Increment Stack Pntr INS 31 4 1 SP + 1 -* SP •
Load Index Reg LD X CE 3 3 DE 4 2 EE 6 2 FE 5 3 M -> X H, (M + 1) -*• X L • • ® t R •
Load Stack Pntr LDS 8E 3 3 9E 4 2 AE 6 2 BE 5 3 M - SPH, (M + 1) ^ S P L • • t R •
Store Index Reg STX DF 5 2 EF 7 2 FF 6 3 X h -> M ,X |_ -< -(M + 1) • • t R •
Store Stack Pntr STS 9F 5 2 AF 7 2 BF 6 3 SPh - M , S P l -+ (M + 1) • • ® t R •
Index Reg ->• Stack Pntr TXS 35 4 1 X — 1 - SP
Stack Pntr -» Index Reg TSX 30 4 1 SP + 1 -*■ X

Cond. Code Reg.

® (B it N) Test: Sign b it o f most significant (MS) byte o f result = 1?
© (B it V) Test: 2's com plement overflow from subtraction o f ms bytes?
® (B it N) Test: Result less than zero? (B it 1 5 = 1)

HD6800, HD68A00, HD68B00

MPU MPU

PC

PSHA

Next Instr.

(b) A fte r PSHA

Figure 19 Stack Operation (Push Instruction)

MPU MPU

PULA

Next Instr.

(a) Before PULA
Figure 20 Stack Operation (Pull Instruction)

(b) A fte r PU LA

HD6800, HD68A00, HD68B00

(a) Before Execution

Figure 21 Program Flow for BSR

SP-

m -2

m -1

m+1

m+2 7A

PC- —— n

n+1

n+2

n+3

JSR = BD

Sh = Subr. Addr.

S[_ = Subr. Addr.

Next Main Instr.

(a) Before Execution (b) A fte r Execution

Figure 22 Program Flow for JSR (Extended)

HD6800, HD68A00, HD68B00

m -2

m -1

SP-

7E

(a) Before Execution

SP------ - m - 2

m -1

m

m+1

n

n+1

n+2

PC— - X * * + K

* 'C on ten ts o f Index Register

(b) A fte r Execution

(n+2)H

(n+2) L

7E

7A

Figure 23 Program Flow for JSR (Indexed)

SP----- — m -2 m -2

m-1 (n+3)H m -1 (n+3)H

m (n+3) L SP-------------- m (n+3) L

m+1 7E m+1 7E

7A__________

n JSR = BD n JSR = BD

n+1 Sh = Subr. Addr. n+1 SH = Subr. Addr.

n+2 S(_ = Subr. Addr. n+2 S[_ = Subr. Addr.

n+3 Next Main Instr. PC---------»-n+3 Next Main Instr.

_ _ _ ------

Last Subr. Instr. Last Subr. Instr.

PC--------- s n RTS Sn RTS

„________ ----------------------

(a) Before Execution (b) A fte r Execution

Figure 24 Program Flow for RTS

HD6800 HD68A00, HD68B00

Software In te rrup t
Main Program

Wait fo r Hardware In te rrup t or
In te rrup t Non-Maskable In te rrup t (NM I)

Main Program Main Program
n 3F = SWI n 3E = WAI

n+1 Next Main Instr. n+1 Next Main Instr. n Last Prog. Byte

1

1

r

P
Stack MPU

Register Contents

1 r

Stack
SP- m -7

m -6

m -5
m -4

m -3

m -2
m -1

m

C ondition Code
A cm ltr. B
A cm ltr. A
Index Register (X H)
Index Register (X L)
PC(n+1)H

PC(n+1)L

FFFA
^ FFFB

cRestart

FFF8
FFF9

FFFC FFFE

In te rrup t Memory Assignment

FFF8
FFF9

FFFA

FFFB

FFFC

FFFO
FFFE

FFFF

Hardware In t.

Hardware In t.
Software

Software

Non-Maskable In t.

Non-Maskable In t.
Restart
Restart

MS

LS
MS

LS

MS

LS
MS

LS

First Instr.
A ddr. Formed
By Fetching
2-Bytes From
Per. Mem.
Assign.

r
Set In te rrup t

Mask (CCR 4)

1 r
Load In terrupt

Vector In to
Program Counter

1J f
V

(NO TE) MS = Most S ignificant Address Byte
LS = Least S ignificant Address Byte

1st In terrupt Instr.

Figure 25 Program Flow for Interrupts

HD6800, HD68A00, HD68B00

SP------- »- m -7 m -7

m -6 OCR m -6 CCR

m -5 ACCB m -5 ACCB

m -4 ACCA m -4 ACCA

m -3 X h (Index Reg) m -3 x H

m -2 X L (Index Reg) m -2 X L

m-1 PC(n+1)H m-1 PCH

m PC(n+1) L SP------- — m PCL

7E — ----------- y p ___ —

---------------1

n+1 Next Main Instr. PC------n + 1 Next Main Instr.

_____ ________
----' ^

-------- ' ------

Last In ter. Instr. Last In ter. Inst.

PC--------- -- Sn RTI Sp RTI

(a) Before Execution (b) A fte r Execution

Figure 26 Program Flow for RTI

• Jump and Branch Operation
The Jump and Branch instructions are summarized in Table

6. These instructions are used to control the transfer o f opera­
tion from one point to another in the control program.

The No Operation instruction, NOP, while included here,
is a jump operation in a very limited sense. Its only effect is to
increment the Program Counter by one. It is useful during
program development as a “ stand-in” for some other instruc­
tion that is to be determined during debug. It is also used for
equalizing the execution time through alternate paths in a con­
trol program.

Execution o f the Jump Instruction, JMP, and Branch Always,
BRA, affects program flow as shown in Fig. 27. When the MPU
encounters the Jump (Index) instruction, it adds the offset to
the value in the Index Register and uses the result as the address
o f the next instruction to be executed. In the extended address­
ing mode, the address o f the next instruction to be executed is
fetched from the two locations immediately following the JMP
instruction. The Branch Always (BRA) instruction is similar to
the JMP (extended) instruction except that the relative address­
ing mode applies and the branch is limited to the range within
-125 or +127 bytes o f the branch instruction itself. The opcode
for the BRA instruction requires one less byte than JMP (ex­
tended) but takes one more cycle to execute.

The effect on program flow for the Jump to Subroutine
(JSR) and Branch to Subroutine (BSR) is shown in Figs. 21
through 23. Note that the Program Counter is properly in­

cremented to be pointing at the correct return address before
it is stacked. Operation o f the Branch to Subroutine and Jump
to Subroutine (extended) instruction is similar except for the
range. The BSR instruction requires less opcode than JSR (2
bytes versus 3 bytes) and also executes one cycle faster than
JSR. The Return from Subroutine, RTS, is used at the end o f
a subroutine to return to the main program as indicated in Fig.
24.

The effect o f executing the Software Interrupt, SWI, and the
Wait for Interrupt, WAI, and their relationship to the hardware
interrupts is shown in Fig. 25. SWI causes the MPU contents to
be stacked and then fetches the starting address o f the interrupt
routine from the memory locations that respond to the ad­
dresses FFFA and FFFB. Note that as in the case o f the sub­
routine instructions, the Program Counter is incremented to
point at the correct return address before being stacked. The
Return from Interrupt instruction, RTI, (Fig. 26) is used at the
end o f an interrupt routine to restore control to the main
program. The SWI instruction is useful for inserting break points
in the control program, that is, it can be used to stop operation
and put the MPU registers in memory where they can be ex­
amined. The WAI instruction is used to decrease the time
required to service a hardware interrupt; it stacks the MPU
contents and then waits for the interrupt to occur, effectively
removing the stacking time from a hardware interrupt sequence.

HD6800, HD68A00, HD68B00

Table 6 JUMP/BRANCH Instruction

Operation Mnem onic

Addressing Modes

Branch Test

Cond. Code Reg.

R E LA T IV E INDEX EXTND IM PLIED 5 4 3 2 1 0

OP ~ # OP ~ # OP ~ # OP ~ # H 1 N Z V c

Branch A lways BRA 20 4 2 None • • • • • •
Branch I f Carry Clear BCC 24 4 2 C = 0 • • • • • •
Branch I f Carry Set BCS 25 4 2 C = 1 • • • • • •
Branch I f = Zero BEQ 27 4 2 Z = 1 • • • • • •
Branch I f Zero BGE 2C 4 2 N © V = 0 • • • • • •
Branch I f > Zero BGT 2E 4 2 Z + (N © V) = 0 • • • • • •
Branch I f Higher BHI 22 4 2 C + Z = 0 • • • • • •
Branch If ^ Zero BLE 2F 4 2 Z + (N © V) = 1 • • • • • •
Branch I f Lower Or Same BLS 23 4 2 C + Z = 1 • • • • • •
Branch I f < Zero BLT 2D 4 2 N © V = 1 • • • • • •
Branch I f Minus BMI 2B 4 2 N = 1 • • • • • •
Branch I f Not Equal Zero BNE 26 4 2 Z = 0 • • • • • •
Branch I f O verflow Clear BVC 28 4 2 V = 0 • • • • • •
Branch I f O verflow Set BVS 29 4 2 V = 1 • • • • • •
Branch I f Plus BPL 2A 4 2 N = 0 • • • • • •
Branch To Subroutine BSR 8D 8 2 • • • • • •
Jump JMP 6E 4 2 7E 3 3 • • • • • •
Jum p T o Subroutine JSR AD 8 2 BD 9 3 • • • • • •
No O peration NOP 01 2 1 Advances Prog Cntr O n ly • • • • • •
Return From In te rrup t RTI 3B 10 1 - ® -
Return From Subroutine RTS 39 5 1 • • • • • •
Software In terrupt SWI 3F 12 1 • S • • • •
Wait fo r In te rrup t WAI 3E 9 1 • © • • • •

CD (A ll) Load C ond ition Code Register from Stack. (See Special Operations)
© (B it I) Set when in te rrup t occurs. I f previously set, a Non-Maskable in terrupt is required to exit

the w a it state.

r PC
Main Program PC

r
n

Main Program Main Program

n 6E = JMP 7E = JMP n 20= BR A

IN D X D <
n+1 K = Offset n+1 K h = Next Address n+1 K* = O ffset

•• EXTND J n+2 K|_ = Next Address •
•

X+K Next Instruction •• (n+2) ± K Next Instruction

v. K
Next Instruction

*K = Signed 7 -b it value

(a) Jump (b) Branch

Figure 27 Program Flow for JUMP/BRANCH Instructions

The conditional branch instructions, Fig. 28, consists o f
BMI : N = 1 ; BEQ : Z = 1 ; seven pairs o f complementary instructions. They are used to
BPL : N = 0 ; BNE : Z = 0 ; test the results o f the preceding operation and either continue
BVC : V = 0 ; BCC : C = 0 ; with the next instruction in sequence (test fails) or cause a
BVS : V = 1 ; BCS : C = 1 ; branch to another point in the program (test succeeds).
BHI C + Z = 0 ; BLT : N © V = 1 ; Four o f the pairs are used for simple tests o f status bits N,
BLS : C + Z = 1 ; BGE : N © V = 0 ; Z, V, and C:

BLE Z + (N © V) = 1 ; 1. Branch on Minus (BMI) and Branch On Plus (BPL) tests the
BGT Z + (N © V) = 0 ; sign bit, N, to determine if the previous result was negative or

Figure 28 Conditional Branch Instructions positive, respectively.
2. Branch On Equal (BEQ) and Branch On Not Equal (BNE)

are used to test the zero status bit, Z, to determine whether
or not the result o f the previous operation was equal to “ 0” .
These two instructions are useful following a Compare (CMP)
instruction to test for equality between an accumulator and
the operand. They are also used following the Bit Test (BIT)
to determine whether or not the same bit positions are set in
an accumulator and the operand.

HD6800, HD68A00, HD68B00

3. Branch On Overflow Clear (BVC) and Branch On Overflow
Set (BVS) tests the state o f the V bit to determine if the
previous operation caused an arithmetic overflow.

4. Branch On Carry Clear (BCC) and Branch On Carry Set
(BCS) tests the state o f the C bit to determine i f the previous
operation caused a carry to occur. BCC and BCS are useful
for testing relative magnitude when the values being tested
are regarded as unsigned binary numbers, that is, the values
are in the range “00” (lowest) o f “ FF” (highest). BCC
following a comparison (CMP) will cause a branch if the
(unsigned) value in the accumulator is higher than or the
same as the value o f the operand. Conversely, BCS will cause
a branch if the accumulator value is lower than the operand.
The Fifth complementary pair, Branch On Higher (BHI)

and Branch On Lower or Same (BLS) are in a sense comple­
ments to BCC and BCS. BHI tests for both C and Z = “ 0” , if
used following a CMP, it will cause a branch i f the value in the
accumulator is higher than the operand. Conversely, BLS will
cause a branch if the unsigned binary value in the accumulator
is lower than or the same as the operand.

The remaining two pairs are useful in testing results o f opera­
tions in which the values are regarded as signed two’s comple­
ment numbers. This differs from the unsigned binary case in the
following sense: In unsigned, the orientation is higher or lower;
in signed two’s complement, the comparison is between larger
or smaller where the range o f values is between -128 and +127.

Branch On Less Than Zero (BLT) and Branch On Greater
Than Or Equal Zero (BGE) test the status bits for N © V = “ 1”
and N © V = “ 0” , respectively. BLT will always cause a branch
following an operation in which two negative numbers were
added. In addition, it will cause a branch following a CMP in
which the value in the accumulator was negative and the oper­
and was positive. BLT will never cause a branch following a
CMP in which the accumulator value was positive and the
operand negative. BGE, the complement to BLT, will cause a
branch following operations in which two positive values
were added or in which the result was “ 0” .

The last pair, Branch On Less Than Or Equal Zero (BLE) and
Branch On Greater Than Zero (BGT) test the status bits for
Z © (N + V) = “ 1” and Z ® (N + V) = “ 0” , respectively,
The action o f BLE is identical to that for BLT except that a
branch will also occur if the result o f the previous result was
“ 0” . Conversely, BGT is similar to BGE except that no branch
will occur following a “0” result.

■ CONDITION CODE REGISTER OPERATIONS
The Condition Code Register (CCR) is a 6-bit register within

the MPU that is useful in controlling program flow during sys­
tem operation. The bits are defined in Fig. 29.

The instructions shown in Table 7 are available to the user
for direct manipulation o f the CCR. In addition, the MPU auto­
matically sets or clears the appropriate status bits as many o f
the other instructions on the condition code register was in­
dicated as they were introduced.

Systems which require an interrupt window to be opened
under program control should use a CLI-NOP-SEI sequence
rather than CLI-SEI.

b5 b4 b3 b2 b1 bO

H 1 N Z V C

H = Half-carry; set whenever a carry from b3 to b4 o f the result is
generated by A D D , A B A , A D C ; cleared if no b3 to b4
carry; not affected by other instructions.

I = In te rrup t Mask; set by hardware o f software in te rrup t or SEI
instruction ; cleared by CL! instruction . (N orm ally no t used
in arithm etic operations.) Restored to a " 0 " as a result o f an
RTI instruction if IM stored on the stacked is " 0 "

N = Negative; set if high order b it (b7) o f result is set; cleared
otherwise.

Z = Zero; set if result = " 0 " ; cleared otherwise.

V = O verflow ; set i f there was arithm etic overflow as a result o f
the operation; cleared otherwise.

C = Carry; set if there was a carry from the most s ignificant b it
(b7) o f the result; cleared otherwise.

Figure 29 Condition Code Register Bit Definition

■ ADDRESSING MODES
The MPU operates on 8-bit binary numbers presented to it

via the Data Bus. A given number (byte) may represent either
data or an instruction to be executed, depending on where it is
encountered in the control program. The HD6800 MPU has
72 unique instructions, however, it recognizes and takes action
on 197 o f the 256 possibilities that can occur using an 8-bit
word length. This larger number o f instructions results from the
fact that many o f the executive instructions have more than
one addressing mode.

Table 7 Condition Code Register Instructions

Operations Mnemonic

Addressing
Mode

Boolean Operation

Cond. Code Reg.

IM PLIED 5 4 3 2 1 0

OP ~ # H I N Z V c

Clear Carry CLC OC 2 1 0 - C • • • • • R
Clear In terrupt Mask CLI OE 2 1 0 - I • R • • • •
Clear O verflow CLV 0A 2 1 0 -<• V • • • • R •
Set Carry SEC 0D 2 1 1 - C • • • • • s
Set In te rru p t Mask SEI OF 2 1 1 - 1 • S • • • •
Set O verflow SEV 0B 2 1 1 V • • • • S •
A cm ltr A -*■ CCR TAP 06 2 1 A -* CCR ----- ® —
CCR -> A cm ltr A TPA 07 2 1 CCR-*- A • • • • •
R = Reset
S = Set
• = Not affected

® (A L L) Set according to the contents o f Accum ula tor A .

HD6800, HD68A00, HD68B00

These addressing modes refer to the manner in which the
program causes the MPU to obtain its instructions and data.
The programmer must have a method for addressing the MPU’s
internal registers and all o f the external memory locations.

Selection o f the desired addressing mode is made by the user
as the source statements are written. Translation into appropri­
ate opcode then depends on the method used. I f manual trans­
lation is used, the addressing mode is inherent in the opcode.
For example, the Immediate, Direct, Indexed, and Extended
modes may all be used with the ADD instruction. The proper
mode is determined by selecting (hexidecimal notation) 8B,
9B, AB, or BB, respectively.

The source statement format includes adequate information
for the selection if an assembler program is used to generate the
opcode. For instance, the Immediate mode is selected by the

Assembler whenever it encounters the “ # ” symbol in the
operand field. Similarly, an “X” in the operand field causes the
Indexed mode to be selected. Only the Relative mode applies
to the branch instructions, therefore, the mnemonic instruc­
tion itself is enough for the Assembler to determine addressing
mode.

For the instructions that use both Direct and Extended
modes, the Assembler selects the Direct mode if the operand
value is in the range 0~255 and Extended otherwise. There are
a number o f instructions for which the Extended mode is
valid but the Direct is not. For these instructions, the Assembler
automatically selects the Extended mode even i f the operand is
in the 0~255 range. The addressing modes are summarized in
Fig. 30.

(K = One-Byte Operand)

(K = Tw o-Byte Operand)

K = Operand

Z

Z+1

K h = Operand

K l = Operand

A If Z S 255, Assembler Select D irect Mode
I f Z > 255, Extended Mode is selected

Direct: n DO Instruction Immediate: n Instruction

Example: SUBB Z
A ddr. Range = 0~255A

n+1 Z = Operand Address Example: LD A A # K
(K = One-Byte Operand)

n+1 K = Operand

n+2 Next Instr. n+2 N ext Inst.

(K = Tw o-Byte Operand)
(CPX, LD X and LDS)

n+1

n+2

n+3

Relative: n

Example: BNE K n+1

(K = Signed 7-B it Value)

A ddr. Range:
-1 2 5 to +129
Relative to n.

n+2

OR

K h = Operand

K L = Operand

Next Instr.

Instruction

fcK = Branch O ffset

Next InstrA

Extended: n

Example: CMPA Z n+1

A ddr. Range:
/ \ 2 5 6 -6 5 5 3 5

n+2

n+3

(K = One-Byte Operand) Z

(K = Tw o-B yte Operand) Z

Z+1

F0 Instruction

Z h = Operand Address

Z L = Operand Address

Next Instr.

K = Operand

K h = Operand

K[_ = Operand

Next Instr(n+2)±K

A I f Branch Test False, If Branch Test True.

•A

Indexed:

Example: A D D A Z, X

A ddr. Range:
0~ 2 55 Relative to
Index Register, X

n+1

n+2

(Z = 8-B it Unsigned Value) X+Z

Instruction

Z = Offset

N ext Instr.

K = Operand

Figure 30 Addressing Mode Summary

HD6800, HD68A00, HD68B00

• Inherent (Includes "Accumulator Addressing" Mode)
The successive fields in a statement are normally separated

by one or more spaces. An exception to this rule occurs for in­
structions that use dual addressing in the operand field and for
instructions that must distinguish between the two accumu­
lators. In these cases, A and B are “ operands” but the space
between them and the operator may be omitted. This is com­
monly done, resulting in apparent four character mnemonics
for those instructions.

The addition instruction, ADD, provides an example o f dual
addressing in the operand fields;

Operator Operand Comment

A D D A MEM12 AD D CONTENTS OF MEM 12 TO ACCA
or AD D B MEM12 AD D CONTENTS OF MEM 12 TO ACCB

The example used earlier for the test instruction, TST, also
applies to the accumulators and uses the “ accumulator address­
ing mode” to designate which o f the two accumulators is being
tested:

Operator Comment

TSTB TEST CONTENTS OF ACCB
or TSTA TEST CONTENTS OF ACCA

A number o f the instructions either alone or together with
an accumulator operand contain all o f the address information
that is required, that is, “ inherent” in the instruction, itself.
For instance, the instruction ABA causes the MPU to add the
contents o f accumulators A and B together and place the result
in accumulator A. The instruction INCB, another example of
“ accumulator addressing” , causes the contents o f accumulator
B to be increased by one. Similarly, INX, increment the Index
Register, causes the contents o f the Index Register to be in­
creased by one.

Program flow for instructions o f this type is illustrated in
Figures 31 and 32. In these figures, the general case is shown
on the left and a specific example is shown on the right.
Numerical examples are in decimal notation. Instructions o f this
type require only one byte o f opcode. Cycle-by-cycle operation
o f the inherent mode is shown in Table 8.

MPU MPU

General F low Example

MPU MPU

General F low Example

Figure 32 Accumulator Addressing

• Immediate Addressing Mode
In the Immediate addressing mode, the operand is the value

that is to be operated on. For instance, the instruction

Operator Operand Comment

LD A A # 2 5 LO AD 25 INTO ACCA

causes the MPU to “ immediately load accumulator A with the
value 25” ; no further address reference is required. The im­
mediate mode is selected by preceding the operand value with
the “ #” symbol. Program flow for this addressing mode is
illustrated in Fig. 33.

The operand format allows either properly defined symbols
or numerical values. Except for the instructions CPX, LDX, and
LDS, the operand may be any value in the range 0 ~ 255. Since
Compare Index Register (CPX), Load Index Register (LDX),
Load Stack Pointer (LDS), require 16-bit values, the immediate
mode for these three instructions requie two-byte operands.

Table 9 shows the cycle-by-cycle operation for the im­
mediate addressing mode.

MPU MPU

ACCA
25 C=i

RAM

Program
M emory

RAM

Program
Memory

General F low Example

Figure 31 Inherent Addressing Figure 33 Immediate Addressing Mode

HD6800, HD68A00, HD68B00

Table 8 Inherent Mode Cycle by Cycle Operation

Address Mode
and Instructions Cycle Cycle

#
VM A
Line Address Bus R/W

Line Data Bus

ABA DAA SEC 1 1 Op Code Address 1 Op Code
ASL DEC SEI 2
ASR INC SEV 2 1 Op Code Address + 1 T Op Code o f Next Instruction
CBA LSR TAB
CLC NEG TAP
CLI NOP TBA
CLR ROL TPA
CLV ROR TST :
COM SBA

DES 1 1 Op Code Address 1 Op Code
DEX 2 1 Op Code Address + 1 1 Op Code o f Next Instruction
INS 3 0 Previous Register Contents 1 Irrelevant Data (NOTE 1)
INX 4 0 New Register Contents 1 Irrelevant Data (NOTE 1)

PSH 1 1 Op Code Address 1 Op Code

4
2 1 Op Code Address + 1 1 Op Code o f Next Instruction
3 1 Stack Pointer 0 Accumulator Data
4 0 Stack Pointer — 1 1 Accumulator Data

PUL 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer + 1 1 Operand Data from Stack

TSX 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code o f Next Instruction
3 0 Stack Pointer 1 Irrelevant Data (NOTE 1)
4 0 New Index Register 1 Irrelevant Data (NOTE 1)

TXS 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code o f Next Instruction
3 0 Index Register 1 Irrelevant Data
4 0 New Stack Pointer 1 Irrelevant Data

RTS 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Irrelevant Data (NOTE 2)

5 3 0 Stack Pointer 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer + 1 1 Address o f Next Instruction (High Order Byte)
5 1 Stack Pointer + 2 1 Address of Next Instruction (Low Order Byte)

WAI 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code o f Next Instruction
3 1 Stack Pointer 0 Return Address (Low Order Byte)
4 1 Stack Pointer — 1 0 Return Address (High Order Byte)

9 5 1 Stack Pointer — 2 0 Index Register (Low Order Byte)
6 1 Stack Pointer — 3 0 Index Register (High Order Byte)
7 1 Stack Pointer — 4 0 Contents o f Accumulator A
8 1 Stack Pointer — 5 0 Contents o f Accumulator B
9 1 Stack Pointer — 6 (NOTE 3) 1 Contents o f Cond. Code Register

RTI 1 1 Op Code Address - f 1 Op Code
2 1 Op Code Address + 1 1 Irrelevant Data (NOTE 2)
3 0 Stack Pointer 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer + 1 1 Contents o f Cond. Code Register from Stack

10 5 1 Stack Pointer + 2 1 Contents of Accumulator B from Stack
6 1 Stack Pointer + 3 1 Contents o f Accumulator A from Stack
7 1 Stack Pointer + 4 1 Index Register from Stack (High Order Byte)
8 1 Stack Pointer + 5 1 Index Register from Stack (Low Order Byte)
9 1 Stack Pointer + 6 1 Next Instruction Address from Stack

(High Order Byte)
10 1 Stack Pointer + 7 1 Next Instruction Address from Stack

(Low Order Byte)

SWI 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Irrelevant Data (NOTE 1)
3 1 Stack Pointer 0 Return Address (Low Order Byte)
4 1 Stack Pointer — 1 0 Return Address (High Order Byte)
5 1 Stack Pointer — 2 0 Index Register (Low Order Byte)

12 6 1 Stack Pointer — 3 0 Index Register (High Order Byte)
7 1 Stack Pointer — 4 0 Contents o f Accumulator A
8 1 Stack Pointer — 5 0 Contents o f Accumulator B
9 1 Stack Pointer — 6 0 Contents o f Cond. Code Register
10 0 Stack Pointer — 7 1 Irrelevant Data (NOTE 1)
11 1 Vector Address FFFA (Hex) 1 Address o f Subroutine (High Order Byte)
12 1 Vector Address FFFB (Hex) 1 Address o f Subroutine (Low Order Byte)

NOTE 1. If device which is addressed during this cycle uses VM A, then the Data Bus w ill go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

NOTE 2. Data is ignored by the MPU.
NOTE 3. While tjte MPU is waiting for the in terrupt. Bus Available w ill go "H igh" indicating the following states of the control lines: VMA is "L o w "; Address

Bus,R/W, and Data Bus are all in the high impedance state-.

HD6800, HD68A00, HD68B00

Table 9 Immediate Mode Cycle by Cycle Operation

Address Mode
and Instructions Cycle Cycle

#•
VM A
Line Address Bus R/W

Line Data Bus

ADC EOR 1 1 Op Code Address 1 Op Code
A D D LDA
A N D ORA
BIT SBC
CMP SUB

2
2 1 Op Code Address + 1 1 Operand Data

CPX 1 1 Op Code Address 1 Op Code
LDS 3 2 1 Op Code Address + 1 1 Operand Data (High Order Byte)
LD X 3 1 Op Code Address + 2 1 Operand Data (Low Order Byte)

* Direct and Extended Addressing Modes
In the Direct and Extended modes o f addressing, the operand

field o f the source statement is the address o f the value that is
to be operated on. The Direct and Extended modes differ only
in the range o f memory locations to which they can direct the
MPU. Direct addressing generates a single 8-bit operand and,
hence, can address only memory locations 0 ~ 255; a two byte
operand is generated for Extended addressing, enabling the MPU
to reach the remaining memory locations, 256 ~ 65535. An
example o f Direct addressing and its effect on program flow is
illustrated in Fig. 34.

Table 10 shows the cycle-by-cycle operations o f this mode.
The MPU, after encountering the opcode for the instrution

LDAA (Direct) at memory location 5004 (Program Counter =
5004), looks in the next location, 5005, for the address o f the
operand. It then sets the program counter equal to the value
found there (100 in the example) and fetches the operand, in

this case a value to be loaded into accumulator A, from that
location. For instructions requiring a two-byte operand such as
LDX (Load the Index Register), the operand bytes would be
retrieved from locations 100 and 101.

Extended addressing, Fig. 35, is similar except that a two-
byte address is obtained from locations 5007 and 5008 after the
LDAB (Extended) opcode shows up in location 5006. Extended
addressing can be thought o f as the “ standard” addressing
mode, that is, it is a method o f reaching anyplace in memory.
Direct addressing, since only one address byte is required,
provides a faster method o f processing data and generates fewer
bytes o f control code. In most applications, the direct address­
ing range, memory locations 0 ~ 255, are reserved for RAM.
They are used for data buffering and temporary storage o f
system variables, the area in which faster addressing is o f most
value, Cycle-by-cycle operation is shown in Table 11 for Ex­
tended Addressing.

Table 10 Direct Mode Cycle by Cycle Operation

Address Mode
and Instructions Cycle Cycle

#
VM A
Line Address Bus R/W

Line Data Bus

ADC EOR 1 1 Op Code Address 1 Op Code
A D D LDA 2 1 Op Code Address + 1 1 Address of Operand
A N D ORA 3 3 1 Address o f Operand 1 Operand Data
B IT SBC
CMP SUB

CPX 1 1 Op Code Address 1 Op Code
LDS 2 1 Op Code Address + 1 1 Address of Operand
LD X 3 1 Address of Operand 1 Operand Data (High Order Byte)

4 1 Operand Address + 1 1 Operand Data (Low Order Byte)

STA 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Destination Address
3 0 Destination Address 1 Irrelevant Data (NOTE 1)
4 1 Destination Address 0 Data from Accumulator

STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Address of Operand

5 3 0 Address of Operand 1 Irrelevant Data (NOTE 1)
4 1 Address of Operand 0 Register Data (High Order Byte)
5 1 Address of Operand + 1 0 Register Data (Low Order Byte)

NOTE 1. It device which is address during this cycle uses V M A , then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

HD6800 HD68A00, HD68B00

Table 11 Extended Mode Cycle by Cycle

Address Mode
and Instructions Cycle Cycle

#
V M A
Line Address Bus R/W

Line Data Bus

STS 1 1 Op Code Address 1 Op Code
S T X 2 1 Op Code Address + 1 1 Address o f Operand (High Order Byte)

3 1 Op Code Address + 2 1 Address o f Operand (Low Order Byte)
4 0 Address o f Operand 1 Irrelevant Data (NOTE 1)
5 1 Address o f Operand 0 Operand Data (High Order Byte)
6 1 Address o f Operand + 1 0 Operand Data (Low Order Byte)

JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Address o f Subroutine (High Order Byte)
3 1 Op Code Address + 2 1 Address o f Subroutine (Low Order Byte)
4 1 Subroutine Starting Address 1 Op Code o f Next Instruction

9 5 1 Stack Pointer 0 Return Address (Low Order Byte)
6 1 Stack Pointer — 1 0 Return Address (High Order Byte)
7 0 Stack Pointer — 2 1 Irrelevant Data (NOTE 1)
8 0 Op Code Address + 2 1 Irrelevant Data (NOTE 1)
9 1 Op Code Address + 2 1 Address o f Subroutine (Low Order Byte)

JMP 1 1 Op Code Address 1 Op Code
3 2 1 Op Code Address + 1 1 Jump Address (High Order Byte)

3 1 Op Code Address + 2 1 Jum p Address (Low Order Byte)

AD C EOR 1 1 Op Code Address 1 Op Code
A D D LD A 2 1 Op Code Address + 1 1 Address o f Operand (High Order Byte)
A N D O RA 4 3 1 Op Code Address + 2 1 Address o f Operand (Low Order Byte)
B IT SBC
CMP SUB

4 1 Address o f Operand 1 Operand Data

CPX 1 1 Op Code Address 1 Op Code
LDS 2 1 Op Code Address + 1 1 Address o f Operand (High Order Byte)
LD X 5 3 1 Op Code Address + 2 1 Address o f Operand (Low Order Byte)

4 1 Address o f Operand 1 Operand Data (High Order Byte)
5 1 Address o f Operand + 1 1 Operand Data (Low Order Byte)

STA A 1 1 Op Code Address 1 Op Code
STA B 2 1 Op Code Address + 1 1 Destination Address (High Order Byte)

5 3 1 Op Code Address + 2 1 Destination Address (Low Order Byte)
4 0 Operand Destination Address 1 Irrelevant Data (NOTE 1)
5 1 Operand Destination Address 0 Data from Accum ulator

ASL LSR 1 1 Op Code Address 1 Op Code
ASR NEG 2 1 Op Code Address + 1 1 Address o f Operand (High Order Byte)
CLR RO L 3 1 Op Code Address + 2 1 Address o f Operand (Low Order Byte)
COM ROR 6 4 1 Address o f Operand 1 Current Operand Data
DEC TST 5 0 Address o f Operand 1 Irrelevant Data (NOTE 1)
INC 6 1/0

(NOTE
2)

Address o f Operand 0 New Operand Data (NOTE 2)

NOTE 1. If device wh ich is addressed during th is cycle uses V M A , then the Data Bus w ill go to the high impedance three-state cond ition .
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

NOTE 2. For TST, V M A = 0 and Operand data does not change.

MPU MPU MPU

A D D R = 100

PC = 5004
5005

Example
General F low

Figure 34 Direct Addressing Mode

AD DR

PC

AD DR = 300

PC = 5006
5007
5008
5009

Example

Figure 35 Extended Addressing Mode

HD6800, HD68A00, HD68B00

• Relative Address Mode
In both the Direct and Extended modes, the address ob­

tained by the MPU is an absolute numerical address. The Re­
lative addressing mode, implemented for the MPU’s branch
instructions, specifies a memory location relative to the Program
Counter’s current location. Branch instructions generate two
bytes o f machine code, one for the instruction opcode and one
for the “ relative” address (see Fig. 36). Since it is desirable to be
able to branch in either direction, the 8-bit address byte is inter­
preted as a signed 7-bit value; the 8th bit o f the operand is
treated as a sign bit, “ 0” = plus and “ 1” = minus. The remaining
seven bits represent the numerical value. This result in a relative
addressing range o f ±127 with respect to the location o f the
branch instruction itself. However, the branch range is com­
puted with respect to the next instruction that would be ex­
ecuted if the branch conditions are not satisfied. Since two
byte are generated, the next instruction is located at PC+2.
If, D is defined as the address o f the branch destination, the
range is then;

(PC+2) - 1 2 8 ^ (PC+2) + 127
or PC -1 2 6 g D ^ PC + 129

that is, the destination o f the branch instruction must be
within -126 to +129 memory locations o f the branch instruc­
tion itself. For transferring control beyond this range, the un­
conditional jump (JMP), jump to subroutine (JSR), and return
from subroutine (RTS) are used.

In Fig. 36, when the MPU encounters the opcode for BEQ
(Branch if result o f last instruction was zero), it tests the Zero
bit in the Condition Code Register. I f that bit is “ 0” , indicating
a non-zero result, the MPU continues execution with the next
instruction (in location 5010 in Fig. 36). I f the previous result
was zero, the branch condition is satisfied and the MPU adds the
offset, 15 in this case, to PC+2 and branches to location 5025
for the next instruction.

The branch instructions allow the programmer to efficiently
direct the MPU to one point or another in the control program
depending on the outcome o f test results. Since the control
program is normally in read-only memory and cannot be
changed, the relative address used in execution o f branch in­
structions is a constant numerical value. Cycle-by-cycle opera­
tion is shown in Table 12 for relative addressing.

MPU

(PC+2) + (Offset)

MPU

Figure 36 Relative Addressing Mode

HD6800, HD68A00, HD68B00

Table 12 Relative Mode Cycle-by-Cycle Operation

Address Mode
and Instructions

Cycle Cycle
#

V M A
Line Address Bus R/W

Line Data Bus

BCC BHI BNE 1 1 Op Code Address 1 Op Code
BCS BLE BPL 2 1 Op Code Address + 1 1 Branch Offset
BEQ BLS BRA 3 0 Op Code Address + 2 1 Irrelevant Data (NOTE 1)
BGE BLT BVC 4 0 Branch Address 1 Irrelevant Data (NOTE 1}
BGT BMI BVS

BSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Branch Offset
3 0 Return Address o f Main Program 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer 0 Return Address (Low Order Byte)
5 1 Stack Pointer — 1 0 Return Address (High Order Byte)
6 0 Stack Pointer — 2 1 Irrelevant Data (NOTE 1)
7 0 Return Address o f Main Program 1 Irrelevant Data (NOTE 1)
8 0 Subroutine Address 1 Irrelevant Data (NOTE 1)

NOTE 1. If device which is addressed during this cycle uses V M A , then the Data Bus w ill go to the high impedance three-state cond ition .
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

• Indexed Addressing Mode
With Indexed addressing the numerical address is variable and

depend on the current contents o f the Index Register. A source
statement such as

O perator Operand Comment

STAA X PUT A IN IN D E XE D LO CATIO N

causes the MPU to store the contents o f accumulator A in the
memory location specified by the contents o f the Index Re­
gister (recall that the label X is reserved to designate the Index
Register). Since there are instructions for manipulating X
during program execution (LDX, INX, DEX, etc.), the Indexed
addressing mode provides a dynamic “ on the fly ” way to
modify program activity.

MPU

The operand field can also contain a numerical value that will
be automatically added to X during execution. This format is
illustrated in Fig. 37.

When the MPU encounters the LDAB (Indexed) opcode in
location 5006, it looks in the next memory location for the
value to be added to X (5 in the example) and calculates the
required address by adding 5 to the present Index Register value
o f 400. In the operand format, the offset may be represented
by a label or a numerical value in the range 0 ~ 255 as in the
example. In the earlier example, STAA X, the operand is
equivalent to 0, X , that is, the “ 0” may be omitted when the
desired address is equal to X. Table 13 shows the cycle-by-cycle
operation for the Indexed Mode o f Addressing.

MPU

ACCB

A D D R = IN D X
+ OFFSET

PC

ExampleOFFSET g 255
General F low

Figure 37 Indexed Addressing Mode

HD6800, HD68A00, HD68B00

Table 13 Indexed Mode Cycle by Cycle

Address Mode
and Instructions Cycle Cycle

#
VM A
Line Address Bus R/W

Line Data Bus

JMP 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
3 0 Index Register 1 Irrelevant Data (NOTE 1)
4 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (NOTE 1)

ADC EOR 1 1 Op Code Address 1 Op Code
A D D LDA 2 1 Op Code Address + 1 1 Offset
A N D ORA 5 3 0 Index Register 1 Irrelevant Data (NOTE 1)
BIT SBC 4 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (NOTE 1)
CMP SUB 5 1 Index Register Plus Offset 1 Operand Data
CPX 1 1 Op Code Address 1 Op Code
LDS 2 1 Op Code Address + 1 1 Offset
LDX

6
3 0 Index Register 1 Irrelevant Data (NOTE 1)
4 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (NOTE 1)
5 1 Index Register Plus Offset 1 Operand Data (High Order Byte)
6 1 Index Register Plus Offset + 1 1 Operand Data (Low Order Byte)

STA 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset

6 3 0 Index Register 1 Irrelevant Data (NOTE 1)
4 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (NOTE 1)
5 0 index Register Plus Offset 1 Irrelevant Data (NOTE 1)
6 1 Index Register Plus Offset 0 Operand Data

ASL LSR 1 1 Op Code Address ' 1 Op Code
ASR NEG 2 1 Op Code Address + 1 1 Offset
CLR ROL 3 0 Index Register 1 Irrelevant Data (NOTE 1)
COM ROR 7 4 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (NOTE 1!
DEC TST 5 t Index Register Plus Offset t Current Operand Data
INC 6 0 Index Register Plus Offset 1 Irrelevant Data (NOTE 1)

7 1/0
(NOTE

2)

Index Register Plus Offset 0 New Operand Data (NOTE 2)

STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Offset

3 0 Index Register 1 Irrelevant Data (NO TE 1)
7 4 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (NOTE 1)

5 0 Index Register Plus Offset 1 Irrelevant Data (NOTE 1)
6 1 Index Register Plus Offset 0 Operand Data (High Order Byte)
7 1 Index Register Plus Offset + 1 0 Operand Data (Low Oder Byte)

JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
3 0 Index Register 1 Irrelevant Data (NOTE 1!

8
4 1 Stack Pointer 0 Return Address (Low Order Byte)
5 1 Stack Pointer — 1 0 Return Address (High Order Byte)
6 0 Stack Pointer — 2 1 Irrelevant Data (NOTE 1)
7 0 Index Register 1 Irrelevant Data (NOTE 1)
8 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (NOTE 1)

NOTE 1. if Device which is addressed during this cycle uses V M A , then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

NOTE 2. For TST, VM A = 0 and Operand data does not change.

HD6800, HD68A00, HD68B00

1 f 2 | 3 4 | 5 | 6] 7 8 9 10 11 | 12 | 13

Inst. Offset Inst.

Figure 38 Example of Excution Timing in Each Addressing Mode

