
HD6809E,HD68A09E, HD68B09E
M P U (M icro Processing Unit) - preliminary

The HD6809E is a revolutionary high performance 8-bit
microprocessor which supports modern programming techniques
such as position independence, reentrancy, and modular
programming.

This third-generation addition to the HMCS6800 family has
major architectural improvements which include additional
registers, instructions and addressing modes.

The basic instructions of any computer are greatly enhanced
by the presence of powerful addressing modes. The HD6809E
has the most complete set of addressing modes available on any
8-bit microprocessor today.

The HD6809E has hardware and software features which
make it an ideal processor for higher level language execution
or standard controller applications. External clock inputs are
provided to allow synchronization with peripherals, systems or
other MPUs.
HD6800 COMPATIBLE
• Hardware — Interfaces with All HMCS6800 Peripherals
• Software — Upward Source Code Compatible Instruction Set

and Addressing Modes
■ ARCHITECTURAL FEATURES
• Two 16-bit Index Registers
• Two 16-bit Indexable Stack Pointers
• Two 8-bit Accumulators can be Concatenated to Form One

16-Bit Accumulator
• Direct Page Register Allows Direct Addressing Throughout

Memory
■ HARDWARE FEATURES
• External Clock Inputs, E and Q, Allow Synchronization
• TSC Input Controls Internal Bus Buffers
• LIC Indicates Opcode Fetch
• AVM A Allows Efficient Use of Common Resources in A

Multiprocessor System
• BUSY is a Status Line for Multiprocessing
• Fast Interrupt Request Input Stacks Only Condition Code

Register and Program Counter
• Interrupt Acknowledge Output Allows Vectoring By Devices
• SYNC Acknowledge Output Allows for Synchronization to

External Event
• Single Bus-Cycle RESET
• Single 5-Volt Supply Operation
• NMI Blocked After RESET Until After First Load of Stack

Pointer
• Early Address Valid Allows Use With Slower Memories
• Early Write-Data for Dynamic Memories
■ SOFTWARE FEATURES
• 10 Addressing Modes

- HMCS6800 Upward Compatible Addressing Modes
• Direct Addressing Anywhere in Memory Map
• Long Relative Branches
• Program Counter Relative
• True Indirect Addressing
• Expanded Indexed Addressing:

0, 5, 8, or 16-bit Constant Offsets
8, or 16-bit Accumulator Offsets
Auto-Increment/Decrement by 1 or 2

• Improved Stack Manipulation
• 1464 Instruction with Unique Addressing Modes
• 8 x 8 Unsigned Multiply
• 16-bit Arithmetic

• Transfer/Exchange All Registers
• Push/Pull Any Registers or Any Set of Registers
• Load Effective Address

■ PIN ARRANGEMENT

v s s P ~
------------------- --------------------------- 4^ HALT

n m 1 (T 3 ^ TSC

I r q | T 3 | LIC

f Tr q (T 37| RES

b s (T 3§ A VM A
BA [6 H Q

v c c (T E z
A« Q [H BUSY
A * G [S R/TO
a 2 Qo HD6809E E °o
a , (jT 3Cj D,

A‘ U ! S Dj

A . I S I d ,

A . (14 27|D«
a 7 (h 2 l D s

A . (?6 2 |D «

a * Glz 2 4 |d ,

A io [Ts | a ,s

An (T9 22| A m

A n (20 21) A m

(Top View)

HD6809E, HD68A09E, HD68B09E

■ ABSOLUTE M AXIM UM RATINGS

Item Symbol Value Unit

Supply Voltage Vcc* -0 .3 ~ +7.0 V

Input Voltage Vin* -0 .3 ~ +7.0 V

Operating Temperature Range Topr -2 0 ~ +75 °C

Storage Temperature Range Tstg -5 5 ~ +150 °c
* With respect to Vss (SYSTEM GND)
(NOTE) Permanent LSI damage may occur if maximum ratings are exceeded. Normal operation should be under recommended

operating conditions. If these conditions are exceeded, it could affect reliability of LSI.

■ RECOMMENDED OPERATING CONDITIONS

Item Symbol min typ max unit

Supply Voltage Vcc* 4.75 5.0 5.25 V

Logic, Q, RES VlL* -0 .3 - 0.8 V

E VlLC * -0 .3 - 0.4 V

Input Voltage Logic
V lH *

2.0 - Vcc* V

RES 4.0 - Vcc* V

E VlHC * Vcc* —0.75 - Vcc* +0.3 V

Operating Temperatu re Topr -2 0 25 75 °c
* With respect to Vss (SYSTEM GND)

■ ELECTRICAL CHARACTERISTICS

• DC CHARACTERISTICS (VCc = 5.0V ±5%, Vss = 0V , Ta = -20 ~ +70°C, unless otherwise noted.)

Item Symbol Test Condition
HD6809E HD68A09E HD68B09E

Unit
min typ* max min typ* max min typ* max

Logic, Q VlH 2.0 - Vcc 2.0 - Vcc 2.0 - Vcc V

Input "High" Voltage RE§ Vi h r 4.0 - Vcc 4.0 - Vcc 4.0 - Vcc V

E VlHC Vcc
-0 .7 5 -

Vcc
+0.3

Vcc
-0 .75

Vcc
+0.3

Vcc
-0 .7 5 -

Vcc
+0.3 V

Input "Low” Voltage
Logic, Q, RES VlL -0 .3 - 0.8 -0 .3 - 0.8 -0 .3 - 0.8 V

E VlLC -0 .3 - 0.4 -0 .3 - 0.4 -0 .3 - 0.4 V

Input Leakage Current
Logic, Q, RES Vin - 0 ~ 5.25V, -2 .5 - 2.5 -2 .5 - 2.5 -2 .5 - 2.5 HA

E Vcc = max -1 0 0 - 100 -1 0 0 - 100 -1 0 0 - 100 HA

Do ~ D7 •Load = -205JUA,
Vcc = min 2.4 - - 2.4 - - 2.4 - - V

Output "High" Voltage a 0 ~ a 15, r /W VOH •Load = ™-145jUA,
Vcc = min 2.4 - - 2.4 - - 2.4 - - V

dA, BS, LIC,
AVMA, BUSY

■Load * —100/iA,
Vcc * min 2.4 - - 2.4 - - 2.4 - - V

Output Low Voltage Vo l
•Load = 2mA,
Vcc = min - - 0.5 - - 0.5 - - 0.5 V

Power Dissipation Pd - - 1.0 - - 1.0 - - 1.0 W

Input Capacitance

D0 ~ D7, Logic
Input, Q, RES Cin

Vin = 0V,
Ta = 25° C,

- 10 15 - 10 15 - 10 15 pF

E
f = 1MHz

- 30 50 - 30 50 - 30 50 pF

Output Capacitance
a 0 ~ a ,5, r /W,
BA, BS, LIC,
AVMA, BUSY

Cout
Vin = 0V,
Ta = 25° C,
f = 1MHz

- 10 15 - 10 15 - 10 15 p F -

Frequency of Operation E, Q f 0.1 - 1.0 0.1 - 1.5 0.1 - 2.0 MHz

Three-State (Off State) Do ~ D7
It s i

Vin - 0.4 ~ 2.4V, -1 0 - 10 -1 0 - 10 -1 0 - 10 HA
Input Current A0 ~ A n , R/W Vcc = max -1 0 0 - 100 -1 0 0 - 100 -1 0 0 - 100 HA

Ta = 25°C, V Cc = 5V

HD6809E, HD68A09E, HD68B09E

• AC CHARACTERISTICS (Vcc = 5.0V +5%, Vss = 0V , Ta = -20 ~ +75°C, unless otherwise noted.)
READ/W RITE TIM ING

Item Symbol Test
Condition

HD6809E HD68A09E HD68B09E
Unit

min typ max min typ max min typ max

Cycle Time tcyc

Fig. 1, 2 ,
7 ~ 11,
13, 14 and
17

1000 - 10000 667 - 10000 500 - 10000 ns

Peripheral Read Access Times
<cyc - *Ef - »AD - tDSR = *ACC tACC 695 - - 440 - - 330 - - ns

Data Setup Time (Read) l DSR 80 - - 60 - - 40 - - ns

Input Data Hold Time tDHR 10 - - 10 - - 10 - - ns

Output Data Hold Time l DHW 30 - - 30 - - 30 - - ns

Address Hold Time (Address, R/W) *AH 20 - - 20 - - 20 - - ns

Address Delay *AD - - 200 - - 140 - - 110 ns

Data Delay Time (Write) l DDW - - 200 - - 140 - - 110 ns

E Clock "Low" tPWEL 450 - 9500 295 - 9500 210 - 9500 ns

E Clock "High" (Measured at VlH) tPWEH 450 - 9500 280 - 9500 220 - 9500 ns

E Rise and Fall Time tEr, l Ef - - 25 - - 25 - - 20 ns

Q Clock "High" tPWQH 450 - 9500 280 - 9500 220 - 9500 ns

Q Rise and Fall Time lQr, tQf - - 25 - - 25 - - 20 ns

E "Low" to Q Rising fEQ1 200 - - 130 - - 100 - - ns

Q "High" to E Rising tEQ2 200 - - 130 - - 100 - - ns

E "High" to Q Falling tEQ3 200 - - 130 - - 100 - - ns

Q "Low" to E Falling tEQ4 200 - - 130 - - 100 - - ns

Interrupts HALT, RES and TSC Setup Time tpcs 200 - - 140 - - 110 - - ns

TSC Drive to Valid Logic Levels fTSA - - 210 - - 150 - - 120 ns

TSC Release MOS Buffers to High Impedance lTSR - - 200 - - 140 - - 110 ns

TSC Three-State Delay 'TSD - - 120 - - 85 - - 80 ns

Control Delay (BUSY, LIC, AVMA) tCD - - 300 - - 250 - - 200 ns

Processor Control Rise/Fall tpcr. tRCf - - 100 - - 100 - - 100 ns

HD6809E, HD68A09E, HD68B09E

* Hold time for BA, BS not specified

(NOTE) Waveform measurements for all inputs and outputs are specified at logic "High" = V | Hmin anc* logic "Low" ** V | i_max unless otherwise specified.

Figure 1 Read Data from Memory or Peripherals

(NOTE) Waveform measurements for all inputs and outputs are specified at logic "High" = V |Hrn(n and logic "Low" « V||_max unless otherwise specified.

Figure 2 Write Data to Memory or Peripherals

HD6809E, HD68A09E, HD68B09E

Figure 3 HD6809E Expanded Block Diagram

5.0 v

C = 30 pF for BA, BS, LIC, AVMA, BUSY
130 pF for D0 ~ D 7
90 pF for A0 ~ A ,5 , R/W

R =11.7 kf2for Do ~ D ,
16.5 kf2 for A0 ~ A 1S, R/W
24 kJ2 for BA, BS
LIC, AVMA, BUSY

All diodes are 1S2074 (h) or equivalent.
C includes stray capacitance.

Figure 4 Bus Timing Test Load

■ PROGRAMMING MODEL
As shown in Figure 5, the HD6809E adds three registers to

the set available in the HD6800. The added registers include a
Direct Page Register, the User Stack pointer and a second
Index Register.

• Accumulators (A, B, D)
The A and B registers are general purpose accumulators

which are used for arithmetic calculations and manipulation
of data.

Certain instructions concatenate the A and B registers to
form a single 16-bit accumulator, This is referred to as the D
Register, and is formed with the A Register as the most
significant byte.

• Direct Page Register (DP)
The Direct Page Register of the HD6809E serves to enhance

the Direct Addressing Mode. The content of this register
appears at the higher address outputs (A8 ~ A15) during direct
addressing instruction execution. This allows the direct mode
to be used at any place in memory, under program control.
To ensure HMCS6800 compatibility, all bits of this register
are cleared during Processor Reset,

HD6809E, HD68A09E, HD68B09E

15 0

■ Pointer Registers

Program Counter

Accumulators

D

Direct Page Register

CC — Condition Code Register

Figure 5 Programming Model of The Microprocessing Unit

7_________________________ o
DP

7 0
E F H 1 N Z V c

X — Index Register

Y — Index Register

U — User Stack Pointer

S — Hardware Stack Pointer
—

A B

• Index Registers (X, Y)
The Index Registers are used in indexed mode of addressing.

The 16-bit address in this register takes part in the calculation
of effective addresses. This address may be used to point to
data directly or may be modified by an optional constant or
register offset. During some indexed modes, the contents of
the index register are incremented and decremented to point to
the next item of tabular type data. All four pointer registers
(X, Y, U, S) may be used as index registers.

E F H 1 N Z V c
TL Carry

Overflow
Zero
Negative
IRQ Mask
Half Carry
FIRQ Mask
Entire Flag

• Stack Pointer (U , S)
The Hardware Stack Pointer (S) is used automatically by

the processor during subroutine calls and interrupts. The User
Stack Pointer (U) is controlled exclusively by the programmer
thus allowing arguments to be passed to and from subroutines
with ease. The U-register is frequently used as a stack marker.
Both Stack Pointers have the same indexed mode addressing
capabilities as the X and Y registers, but also support Push and
Pull instructions. This allows the HD6809E to be used effi­
ciently as a stack processor, greatly enhancing its ability to
support higher level languages and modular programming.

Figure 6 Condition Code Register Format

■ CONDITION CODE REGISTER DESCRIPTION

• Bit 0 (C)
Bit 0 is the carry flag, and is usually the carry from the

binary ALU. C is also used to represent a ‘borrow’ from
subtract like instructions (CMP, NEC, SUB, SBC) and is the
complement of the carry from the binary ALU.

(NOTE) The stack pointers of the HD6809E point to the top
of the stack, in contrast to the HD6800 stack pointer,
which pointed to the next free location on stack.

• Program Counter (PC)
The Program Counter is used by the processor to point to

the address of the next instruction to be executed by the
processor. Relative Addressing is provided allowing the Program
Counter to be used like an index register in some situations. •

• Condition Code Register (CC)
The Condition Code Register defines the state of the

processor at any given time. See Figure 6.

• Bit 1 (V)
Bit 1 is the overflow flag, and is set to a one by an operation

which causes a signed two’s complement arithmetic overflow.
This overflow is detected in an operation in which the carry
from the MSB in the ALU does not match the carry from the
MSB-1.

• Bit 2 (Z)
Bit 2 is the zero flag, and is set to a one if the result of the

previous operation was identically zero.

• Bit 3 (N)
Bit 3 is the negative flag, which contains exactly the value

of the MSB of the result of the preceding operation. Thus, a
negative two’s-complement result will leave N set to a one.

HD6809E, HD68A09E, HD68B09E

• Bit 4 (I) ___
Bit 4 is the IRQ mask bit. The processor will not recognize

interrupts from the IRQ line if this bit is set to a one. NMI,
FIRQ, IRQ, RES and SWI all set I to a one; SWI2 and SWI3
do not affect I.

• Bit 5 (H)
Bit 5 is the half-carry bit, and is used to indicate a carry

from bit 3 in the ALU as a result of an 8-bit addition only
(ADC or ADD). This bit is used by the DAA instruction to
perform a BCD decimal add adjust operation. The state of this
flag is undefined in all subtract-like instructions.

• Bit 6 (F) _____
Bit 6 is the FIRQ mask bit. The processor will not recognize

interrupts from the FIRQ line if this bit is a one. NMI, FIRQ,
SWI, and RES all set F to a one. IRQ, SWI2 and SWI3 do not
affect F.

• Bit 7 (E)
Bit 7 is the entire flag, and when set to a one indicates that

the complete machine state (all the registers) was stacked, as
opposed to the subset state (PC and CC). The E bit of the
stacked CC is used on a return from interrupt (RTI) to deter­
mine the extent of the unstacking. Therefore, the current E
left in the Condition Code Register represents past action.

■ HD6809E MPU SIGNAL DESCRIPTION

• Power (Vss, Vcc)
Two pins are used to supply power to the part: Vss is

ground or 0 volts, while Vcc is +5.0 V ±5%.

• Address Bus (A0 ~ A iS)
Sixteen pins are used to output address information from

the MPU onto the Address Bus. When the processor does not
require the _bus for a data transfer, it will output address
FFFF i6, R/W = “High” , and BS = “Low” ; this is a “dummy
access” or VMA cycle. All address bus drivers are made high-
impedance when output Bus Available (BA) is “High” or when
TSC is asserted. Each pin will drive one Schottky TTL load or
four LS TTL loads, and 90 pF. Refer to Figures 1 and 2.

• Data Bus (D 0 ~ D 7)
These eight pins provide communication with the system

bi-directional data bus. Each pin will drive one Schottky TTL
load or four LS TTL loads, and 130 pF.

• Read/Write (R/W)
This signal indicates the direction of data transfer on the

data bus. A “Low]’ indicates that the MPU is writing data onto
the data bus. R/W is made high impedance when BA is “High”
or when TSC is asserted. Refer to Figures 1 and 2. •

• RES
A “Low” level on this Schmitt-trigger input for greater than

one bus cycle will reset the MPU, as shown in Figure 7. The
Reset vectors are fetched from locations FFFE16 and FFFF16
(Table 1) when Interrupt Acknowledge is true, (BA • BS = 1).
During initial power-on, the Reset line should be held “Low”
until the clock input signals are fully operational.

Because the HD6809E Reset pin has a Schmitt-trigger input
with a threshold voltage higher than that of standard peripherals,
a simple R/C network may be used to reset the entire system.

This higher threshold voltage ensures that all peripherals are
out of the reset state before the Processor.

Table 1 Memory Map for Interrupt Vectors

Memory Map for Vector
Locations Interrupt Vector

Description
MS LS

FFFE FFFF RES
FFFC FFFD NM I
FFFA FFFB SWI
FFF8 FFF9 IRQ

FFF6 FFF7 FIRQ
FFF4 FFF5 SWI2

FFF2 FFF3 SWI3
FFFO FFF1 Reserved

• HALT
A “Low” level on this input pin will cause the MPU to stop

running at the end of the present instruction and remain halted
indefinitely without loss of data. When halted, the BA output
is driven “High” indicating the buses are high impedance. BS
is also “High” which indicates the processor is in the Halt state.
While halted, the MPU will not respond to external real-time
requests (FIRQ, IRQ) although NMI or RES will be latched
for later response. During the Halt state Q and E should
continue to run normally. A halted state (BA • BS = 1) can be
achieved by pulling HALT “Low” while RES is still “Low” . See
Figure 8.

• Bus Available, Bus Status (BA, BS)
The Bus Available output is an indication of an internal

control signal which makes the MOS buses of the MPU high
impedance. When BA goes “Low” , a dead cycle will elapse before
the MPU acquires the bus. BA will not be asserted when TSC
is active, thus allowing dead cycle consistency.

The Bus Status output signal, when decoded with BA,
represents the MPU state (valid with leading edge of Q).

MPU State
MPU State Definition

BA BS

0 0 Normal (Running)

0 1 Interrupt or RESET Acknowledge

1 0 SYNC Acknowledge

1 1 HALT Acknowledge

Interrupt Acknowledge is indicated during both cycles of a
hardware-vector-fetch (RES, NMI, FIRQ, IRQ, SWI, SWI2,
SWI3). This signal, plus decoding of the lower four address
lines, can provide the user with an indication of which interrupt
level is being serviced and allow vectoring by device. See Table
1.

Sync Acknowledge is indicated while the MPU is waiting
for external synchronization on an interrupt line.

Halt Acknowledge is indicated when the HD6809E is in a
Halt condition.

m m t 1 m + 2 l m + 3 m + 4 l m + 5 l m + 6 . m + 7 l
I— -f—— *+*— •+•— H— - r - h — 4 - — H

n n t1 n + 2 n + 3 . n+4 . n + 5 . n+6 . n + 7 . n + 8 n+9 . n + 10
- 4 - — 4 - — 4 - — 4 - — f - 4 ------- +-— K - h — 4 -------1

BS uwwww
avma ssr
BUSY

LIC S S L

~x — f t — x— x— x— r
jC=&=IX=ZXZDC=X.

J— _^CZ5XIZ)CZXZZ)CZX.

(NOTE) Waveform measurements for all inputs and outputs are specified at logic "High" = Vmmin and logic "Low" = V |Lmax unless otherwise specified.

Figure 7 RES Timing

H
D

6809E, H
D

68A09E, H
D

68B09E

2nd to Last Last Cycle
Cycle of
Current

Inst. |

of
Current

| Inst. |
Dead
Cycle || . Halted 1

Dead
| Cycle |

Instruction Instruction Dead . .
| Fetch | Execute j Cycle | Ma,Tecl

r n *
! i l I

«• IZXZZXZDCZ)-------n-------------------------- ' O
» ___________________ /---------- N----------------------------------_______________f
BS ___________________ / ̂ _______________f

Data \
Bus) (~ > l_______ > --------------------V

AVMA) \ ___________ .

LIC ________ /

T

-------------------------------------V

Instruction
Opcode

X

a_ _ r
(NOTE) Waveform measurements for all inputs and outputs are specified at logic “High" = Vmmin and lo9ic "Low" = V|Lmax unless otherwise specified.

Figure 8 HALT and Single Instruction Execution for System Debug

H
D

6809E, H
D

68A09E, H
D

68B09E

HD6809E, HD68A09E, HD68B09E

• Non Maskable Interrupt (NM D*
A negative transition on this input requests that a non­

maskable interrupt sequence be generated. A non-maskable
interrupt cannot be inhibited by the program, and also has a
higher priority than FIRQ, IRQ or software interrupts. During
recognition of an NMI, the entire machine state is saved on
the hardware stack. After reset, an NMI will not be recognized
until the first program load of the Hardware Stack Pointer (S).
The pulse width of NMI low must be at least one E cycle. If
the NMI input does not meet the minimum set up with respect
to Q, the interrupt will not be recognized until the next cycle.
See Figure 9.

• Fast-Interrupt Request (F IR Q)*
A “Low” level on this input pin will initiate a fast interrupt

sequence, provided its mask bit (F) in the CC is clear. This
sequence has priority over the standard Interrupt Request
(IRQ), and is fast in the sense that it stacks only the contents
of the condition code register and the program counter. The
interrupt service routine should clear the source of the interrupt
before doing an RTI. See Figure 10.

• Interrupt Request (IR Q)*
A “Low” level input on this pin will initiate an Interrupt

Request sequence provided the mask bit (I) in the CC is clear.
Since IRQ stacks the entire machine state it provides a slower
response to interrupts than FIRQ. IRQ also has a lower priority
than FIRQ. Again, the interrupt service routine should clear
the source of the interrupt before doing an RTI. See Figure 9.

• NMI, FIRQ, and IRQ requests are sampled on the falling edge of Q.
One cycle is required for synchronization before these interrupts are
recognized. The pending interrupt(s) will not be serviced until
completion of the current instruction unless a SYNC or CWAI
condition is present. If IRQ and FIRQ do not remain “Low” until
completion of the current instruction they may not be recognized.
However, NMl is latched and need only remain “Low” for one cycle.

• Clock Inputs E, Q
E and Q are the clock signals required by the HD6809E.

Q must lead E; that is, a transition on Q must be followed by a
similar transition on E after a minimum delay. Addresses will
be valid from the MPU, tAD after the falling edge of E, and
data will be latched from the bus by the falling edge of E.
While the Q input is fully TTL compatible, the E input directly
drives internal MOS circuitry and, thus, requires levels above
normal TTL levels. This approach minimizes clock skew
inherent with an internal buffer. Timing and waveforms for E
and Q are shown in Figures 1 and 2 while Figure 11 shows a
simple clock generator for the HD6809E. Proper operation of
the MPU is not guaranteed unless tcyc, tpvvEL> tpwEH timings
are met.

• BUSY
Busy will be “High” for the read and modify cycles of a read-

modify-write instruction and during the access of the first byte

of a double-byte operation (e.g., LDX, STD, ADDD). Busy is
also “High” during the first byte of any indirect or other vector
fetch (e.g., jump extended, SWI indirect etc.).

In a multi-processor system, busy indicates the need to
defer the rearbitration of the next bus cycle to insure the
integrity of the above operations. This difference provides the
indivisible memory access required for a “ test-and-set” primi­
tive, using any one of several read-modify-write instructions.

Busy does not become active during PSH or PUL operations.
A typical read-modify-write instruction (ASL) is shown in
Figure 12. Timing information is given in Figure 13. Busy is
valid tCD after the rising edge of Q.

• AVM A
AVMA is the Advanced VMA signal and indicates that the

MPU will use the bus in the following bus cycle. The predictive
nature of the AVMA signal allows efficient shared-bus multi­
processor systems. AVMA is “ Low” when the MPU is in either a
HALT or SYNC state. AVMA is valid tcD after the rising edge
of Q.

• LIC
LIC (Last Instruction Cycle) is “High” during the last cycle

o f every instruction, and its transition from “High” to “Low”
will indicate that the first byte o f an opcode will be latched at
the end of the present bus cycle. LIC will be “High” when the
MPU is Halted at the end of an instruction, (i.e., not in CWAI or
RESET) in SYNC state or while stacking during interrupts.
LIC is valid tCD after the rising edge of Q.

• TSC
TSC__(Three-State Control) will cause MOS address, data,

and R/W buffers to assume a high-impedance state. The control
signals (BA, BS, BUSY, AVMA and LIC) will not go to the
high-impedance state. TSC is intended to allow a single bus to
be shared with other bus masters (processors or DMA con­
trollers). _

While E is “Low” , TSC controls the address buffers and R/W
directly. The data bus buffers during a write operation are in a
high-impedance state until Q rises at which time, if TSC is
true, they will remain in a high-impedance state. If TSC is held
beyond the rising edge of E, then it will be internally latched,
keeping the bus drivers in a high-impedance state for the
remainder of the bus cycle. See Figure 14.

• MPU Operation
During normal operation, the MPU fetches an instruction

from memory and then executes the requested function. This
sequence begins after RES and is repeated indefinitely unless
altered by a special instruction or hardware occurrence. Soft­
ware instructions that alter normal MPU operation are: SWI,
SWI2, SWI3, CWAI, RTI and SYNC. An interrupt or HALT
input can also alter the normal execution of instructions.
Figure 15 illustrates the flow chart for the HD6809E.

Address —y — p y -----V---------y— ~ v " v ------- * v ~ V "V---------v y ------- y-------- y -------Y '~ — y ----- V " — ~ V --------y y — — y -------- y --------- y --------y --------y
Bus “ 1 ” A—_ _ A _ — A A - A . - A A— —A — * A -A -A. A A_ A_ A A A A A A A

PC PC FFFF SP — 1 SP —2 SP —3 SP —4 SP — 5 SP —6 SP — 7 SP —8 SP — 9 SP — 10SP — 11SP — 12 FFFF FFFC FFFD FFFF New New
- t p c s (NMD (NMI) PC PC + 1

____a , w FFF8 FFF9
IRQor V ,h ! ,V il (TrQ) (TrQ)
NMI

tpcd H .

XZDCZXZDCZXIDCZXZZXIZXZZXZIXZZXIZ^CZIXZZXZIXIZXZIX^XZZXZZXZIXZZXIZX
7M A PCL PCH USL USH IYL IYH IXL IXH DP ACCB ACCA CCR VMA New New TWA

PCH PCL

R/wDCDCZy
baX=DCZ3l

DCO dX
a v m a X K Y
BUSY z > ___________

l,c _ _ _ _ r
E

J- - - - - - - - - - -
------------- \ — f

(NOTE) Waveform measurements for all inputs and outputs are specified at logic "High" = V |Hmjn and logic "Low" = Vn_max unless otherwise specified.
E clock shown for reference only.

Figure 9 IRQ and NMI Interrupt Timing

H
D

6809E, H
D

68A09E, H
D

68B09E

Last Cycle
of Current
Instruction

h -------- ■+ Interrupt Stacking and Vector Fetch Sequence

instruction
Fetch

f ----- H

H -
m +1 m + 2 m + 3 m + 4 m +5 m +6 m + 7 m + 8

Address
Bus D C Z D C

tp c f—f s—
—tPCS

FIRQ V,H U
V,L7 -

x ~ ~ x x ~ ~ x x x x x r n x x x~
PC PC FFFF S P -1 SP — 2 S P -3 $FFFF $FFF6 $FFF7 $FFFF New PC New PC+1

~~x— x— x— x— x— x— x ~ y — i r n t — x— x ~ ~ x — r
VMS PCL PCH CCR VMA New PCH New PCL VMA

^DCZXZD'--------------_________ /--------------------------
“ D d D d X _____________________________________
-DCIDCDi______________________ /---------_______

— — x x y \ / ____ /---------------- ____ /------------ i
eusv I Z X _ / \ _ _ _ _ _ _ _ _ _ L

, (NOTE) Waveform measurements for all inputs and outputs are specified at logic "High" = Vii-imin an<̂ l°9'c "Low" = V|Umax unless otherwise specified.
E clock shown for reference only.

Figure 10 FIRQ Interrupt Timing

H
D

6809E, H
D

68A09E, H
D

68B09E

HD6809E, HD68A09E, HD68B09E

R =-
v CCmin~ v OL

■OL

Start of End of
Cycle 54 Cycle V4 Cycle % Cycle Cycle

Memory Memory
Location Contents

PC - + $0200

$0201
$0202
$0203

$0204

Contents Description

ASL Indexed Opcode

Extended Indirect Postbyte

Indirect Address Hi-Byte

Indirect Address Lo-Byte

Next Main Instruction

$6300

$6301

Effective Address Hi-Byte

Effective Address Lo-Byte

Figure 12 Read Modify Write Instruction Example (ASL Extended Indirect)

X x X a r n- - - - - - - X” X X 7 - - - - - - 7

XX IT
$0200 $0201 $0202 $0203 $FFFF $6300 $6301 $FFFF $E3D6 $FFFF $E3D6 $0203

X T~_ x _ X J L . __ X_ _ _ _______ __ X_ _ _ x _ _ _ x _ _ _ X_ _ _ J (_ _ _ _
$68 $9F $63 $00 VMA $E3 $06 VMA $5C VMA $88

-- ■■ I

______________________________ /----------____________ / ---------------------____

R/W ~ X T
BUSY \ _______

J--------V J ------------------

(NOTE) Waveform measurements for all inputs and outputs are specified at logic "High" = V m min and logic "Low" = V |Lmax unless otherwise specified.

Figure 13 BUSY Timing

(NOTES) Data will be asserted by the MPU only during the interval while R/W is "Low" and E or Q is "High".
Waveform measurements for all inputs and outputs are specified at logic "High" = V |Hmin and logic "Low" = V||_max unless otherwise specified.

Figure 14 TSC Timing

H
D

6809E, H
D

68A09E, H
D

68B09E

A FIBO*T

(NOTES) 1

CWAI

Bus State BA BS
Running 0 0
Interrupt or Reset Acknowledge 0 1
Sync Acknowledge 1 0
Halt Acknowledge 1 1

©
Figure 15 Flowchart for HD6809E Instruction

H
D

6809E, H
D

68A09E, H
D

68B09E

HD6809E, HD68A09E, HD68B09E

■ ADDRESSING MODES
The basic instructions of any computer are greatly enhanced

by the presence of powerful addressing modes. The HD6809E
has the most complete set of addressing modes available on
any microcomputer today. For example, the HD6809E has 59
basic instructions; however, it recognizes 1464 different varia­
tions of instructions and addressing modes. The addressing
modes support modern programming techniques. The following
addressing modes are available on the HD6809E:
(1) Implied (Includes Accumulator)
(2) Immediate
(3) Extended
(4) Extended Indirect
(5) Direct
(6) Register
(7) Indexed

Zero-Offset
Constant Offset
Accumulator Offset
Auto Increment/Decrement

(8) Indexed Indirect
(9) Relative

(10) Program Counter Relative

• Implied (Includes Accumulator)
In this addressing mode, the opcode of the instruction

contains all the address information necessary. Examples of
Implied Addressing are: ABX, DAA, SWI, ASRA, and CLRB.

• Immediate Addressing
In Immediate Addressing, the effective address of the data

is the location immediately following the opcode (i.e., the data
to be used in the instruction immediately follows the opcode
of the instruction). The HD6809E uses both 8 and 16-bit
immediate values depending on the size of argument specified
by the opcode. Examples of instructions with immediate
Addressing are:

LDA #$20
LDX #$F000
LDY #CAT

(NOTE) # signifies immediate addressing, $ signifies hexa­
decimal value.

• Extended Addressing
In Extended Addressing, the contents of the two bytes im­

mediately following the opcode fully specify the 16-bit effective
address used by the instruction. Note that the address generated
by an extended instruction defines an absolute address and is
not position independent. Examples of Extended Addressing
include:

LDA CAT
STX MOUSE
LDD $2000

• Extended Indirect
As a special case of indexed addressing (discussed below),

one level of indirection may be added to Extended Addressing.
In Extended Indirect, the two bytes following the postbyte of
an Indexed instruction contain the address of the data.

LDA [CAT]
LDX [$FFFE]
STU [DOG]

• Direct Addressing
Direct addressing is similar to extended addressing except

that only one byte of address follows the opcode. This byte
specifies the lower 8 bits of the address to be used. The upper
8 bits of the address are supplied by the direct page register.
Since only one byte of address is required in direct addressing,
this mode requires less memory and executes faster than
extended addressing. Of course, only 256 locations (one page)
can be accessed without redefining the contents of the DP
register. Since the DP register is set to $00 on Reset, direct
addressing on the HD6809E is compatible with direct addressing
on the HMCS6800. Indirection is not allowed in direct
addressing. Some examples of direct addressing are:

LDA $30
SETDP $10 (Assembler directive)
LDB $1030
LDD <CAT

(NOTE) < is an assembler directive which forces direct
addressing.

• Register Addressing
Some opcodes are followed by a byte that defines a register

or set of registers to be used by the instruction. This is called a
postbyte. Some examples of register addressing are:

TFR X, Y Transfer X into Y
EXG A, B Exchanges A with B
PSHS A, B, X, Y Push Y, X, B and A onto S
PULU X, Y, D Pull D, X, and Y from U

• Indexed Addressing
In all indexed addressing, one of the pointer registers (X, Y,

U, S, and sometimes PC) is used in a calculation of the effective
address of the operand to be used by the instruction. Five
basic types of indexing are available and are discussed below.
The postbyte of an indexed instruction specifies the basic type
and variation of the addressing mode as well as the pointer
register to be used. Figure 16 lists the legal formats for the
postbyte. Table 2 gives the assembler form and the number of
cycles and bytes added to the basic values for indexed
addressing for each variation.

Post-Byte Register B it Indexed
Addressing

Mode7 6 5 4 3 2 1 0

0 R R d d d d d EA = ,R + 5 B it Offset
1 R R 0 0 0 0 0 ,R +
1 R R 0 0 0 1 ,R + +

1 R R 0 0 0 1 0 , -R
1 R R 0 0 1 1 R

1 R R 0 1 0 0 EA = ,R + 0 O ffset

1 R R 0 1 0 1 EA = ,R + ACCB O ffset
1 R R 0 1 1 0 EA = ,R + ACC A O ffset

1 R R 1 0 0 0 EA * , R + 8 B it O ffset
1 R R 1 0 0 1 E A = ,R + 16 B it O ffset
1 R R 1 0 1 1 EA = ,R + D O ffset
1 x x 1 1 0 0 EA = .PC + 8 B it O ffse t
1 x x 1 1 0 1 EA * ,PC + 16 B it O ffset
1 R R 1 1 1 1 EA * [, Address]

Addressing Mode Field

Ind irect Field
(Sigh b it when b7 = O)

x = D on 't Care
d = O ffse t B it

(0 = Non Ind irect
1 - Ind irect

Figure 16 Index Addressing Postbyte Register Bit Assignments

— Register F ie ld : RR
00 = X
01 = V
10 = U
11 = S

HD6809E, HD68A09E, HD68B09E

Table 2 Indexed Addressing Mode

Type Forms

Non Indirect Indirect
Assembler

Form
Post byte
OP Code

+ +
#

Assembler
Form

Postbyte
OP Code

+ +
#

Constant Offset From R
(2's Complement Offsets)

No Offset ,R 1RR00100 0 0 [,R] 1 RR10100 3 0
5 Bit Offset n, R ORRnnnnn 1 0 defaults to 8-bit
8 Bit Offset n, R 1 RR01000 1 1 [n .R] 1RR11000 4 1
16 Bit Offset n, R 1 RR01001 4 2 [n, R] 1RR11001 7 2

Accumulator Offset From R
(2's Complement Offsets)

A Register Offset A, R 1RR00110 1 0 [A, R] 1RR10110 4 0
B Register Offset B, R 1RR00101 1 0 [B, R] 1RR10101 4 0
D Register Offset D, R 1RR01011 4 0 [D, R] 1RR11011 7 0

Auto Increment/Decrement R Increment By 1 ,R + 1RR00000 2 0 not allowed
Increment By 2 ,R + + 1RR00001 3 0 [,R + +1 1RR10001 6 0
Decrement By 1 , -R 1 RR00010 2 0 not allowed
Decrement By 2 R 1RR00011 3 0 R] 1RR10011 6 0

Constant Offset From PC
(2's Complement Offsets)

8 Bit Offset n, PCR 1xx01100 1 1 [n, PCR] 1xx11100 4 1
16 Bit Offset n, PCR 1xx01101 5 2 [n, PCR] 1xx11101 8 2

Extended Indirect 16 Bit Address - - - - [n] 10011111 5 2

R = X, Y , U or S r r :
x = Don't Care 00 = X

01 = Y
10 = 11
11 = S

ia n d ^ indicate the number of additional cycles and bytes for the particular variation.

Zero-Offset Indexed
In this mode, the selected pointer register contains the

effective address of the data to be used by the instruction.
This is the fastest indexing mode.

Examples are:
LDD 0, X
LDA S

Constant Offset Indexed
In this mode, a two’s-complement offset and the contents

of one of the pointer registers are added to form the effective
address of the operand. The pointer register’s initial content is
unchanged by the addition.

Three sizes of offsets are available:
5-bit (-1 6 to +15)
8-bit (-1 2 8 t o +127)

16-bit (-32768 to +32767)

The two’s complement 5-bit offset is included in the post­
byte and, therefore, is most efficient in use of bytes and cycles.
The two’s complement 8-bit offset is contained in a single byte
following the postbyte. The two’s complement 16-bit offset is
in the two bytes following the postbyte. In most cases the
programmer need not be concerned with the size of this offset
since the assembler will select the optimal size automatically.

Examples of constant-offset indexing are:
LDA 23, X
LDX - 2 , S

LDY 300, X
LDU CAT, Y

Accumulator-Offset Indexed
This mode is similar to constant offset indexed except that

the two’s-complement value in one of the accumulators (A, B
or D) and the contents of one of the pointer registers are added
to form the effective address of the operand. The contents of
both the accumulator and the pointer register are unchanged
by the addition. The postbyte specifies which accumulator to
use as an offset and no additional bytes are required. The
advantage of an accumulator offset is that the value of the
offset can be calculated by a program at run-time.

Some examples are:
LDA B, Y
LDX D, Y
LEAX B, X

Auto Increment/Decrement Indexed
In the auto increment addressing mode, the pointer register

contains the address of the operand. Then, after the pointer
register is used it is incremented by one or two. This addressing
mode is useful in stepping through tables, moving data, or
for the creation of software stacks. In auto decrement, the
pointer register is decremented prior to use as the address of
the data. The use of auto decrement is similar to that of auto
increment; but the tables, etc,, are scanned from the high to
low addresses. The size of the increment/decrement can be
either one or two to allow for tables of either 8- or 16-bit data
to be accessed and is selectable by the programmer. The pre-

HD6809E, HD68A09E, HD68B09E

decrement, post-increment nature of these modes allow them
to be used to create additional software stacks that behave
identically to the U and S stacks.

Some examples of the auto increment/decrement addressing
modes are:

LDA ,X +
STD , Y + +
LDB , —Y
LDX , - - S

Care should be taken in performing operations on 16-bit
pointer registers (X, Y, U, S) where the same register is used
to calculate the effective address.

Consider the following instruction:
STX 0, X + + (X initialized to 0)

The desired result is to store a 0 in locations $0000 and $0001
then increment X to point to $0002. In reality, the following
occurs:

0 -*■ temp calculate the EA; temp is a holding register
X + 2 -► X perform autoincrement
X ->■ (temp) do store operation

• Indexed Indirect
All of the indexing modes with the exception of auto

increment/decrement by one, or a ±4-bit offset may have an
additional level of indirection specified. In indirect addressing,
the effective address is contained at the location specified by
the contents of the Index Register plus any offset. In the
example below, the A accumulator is loaded indirectly using an
effective address calculated from the Index Register and an
offset.

Before Execution
A = XX (don’t care)
X = $F000

$0100 LDA [$10, X] EA is now $F010
$F010 $F1 $F150 is now the
$F011 $50 new EA
$F150 $AA

After Execution
A = $AA (Actual Data Loaded)
X = $F000

All modes of indexed indirect are included except those
which are meaningless (e.g., auto increment/decrement by 1
indirect). Some examples of indexed indirect are:

LDA l, X]
LDD [10, S]
LDA [B, Y]
LDD [, X + +]

• Relative Addressing
The byte(s) following the branch opcode is (are) treated as

a signed offset which may be added to the program counter.
If the branch condition is true then the calculated address
(PC + signed offset) is loaded into the program counter.
Program execution continues at the new location as indicated
by the PC; short (1 byte offset) and long (2 bytes offset)
relative addressing modes are available. All o f memory can be
reached in long relative addressing as an effective address is
interpreted modulo 216. Some examples of relative addressing
are:

BEQ CAT (short)
BGT DOG (short)

CAT LBEQ RAT (long)
DOG LBGT RABBIT (long)

RAT NOP
RABBIT NOP

• Program Counter Relative
The PC can be used as the pointer register with 8 or 16-bit

signed offsets. As in relative addressing, the offset is added to
the current PC to create the effective address. The effective
address is then used as the address of the operand or data.
Program Counter Relative Addressing is used for writing
position independent programs. Tables related to a particular
routine will maintain the same relationship after the routine is
moved, if referenced relative to the Program Counter. Examples
are:

LDA CAT, PCR
LEAX TABLE, PCR

Since program counter relative is a type of indexing, an
additional level of indirection is available.

LDA [CAT, PCR]
LDU [DOG, PCR]

■ HD6809E INSTRUCTION SET
The instruction set of the HD6809E is similar to that of the

HD6800 and is upward compatible at the source code level.
The number of opcodes has been reduced from 72 to 59, but
because of the expanded architecture and additional addressing
modes, the number of available opcodes (with different
addressing modes) has risen from 197 to 1464.

Some of the new instructions are described in detail below:

• PSHU/PSHS
The push instructions have the capability of pushing onto

either the hardware stack (S) or user stack (U) any single
register, or set of registers with a single instruction.

• PULU/PULS
The pull instructions have the same capability of the push

instruction, in reverse order. The byte immediately following
the push or pull opcode determines which register or registers
are to be pushed or pulled. The actual PUSH/PULL sequence
is fixed; each bit defines a unique register to push or pull, as
shown in below.

PUSH/PULL POST BYTE

+- Pull Order Push Order -►
PC U Y X DP B A • CC
FFFF increasing memory address....... 0000
PC S Y X DP B A CC

MD6809E, HD68A09E, HD68B09E

• TFR/EXG
Within the HD6809E, any register may be transferred to or

exchanged with another of like-size; i.e., 8-bit to 8-bit or 16-bit
to 16-bit. Bits 4 ~ 7 of postbyte define the source register, while
bits 0 ~ 3 represent the destination register. These are denoted
as follows:

0 0 0 0 - D 0 1 0 1 -P C
0001 - X 1000- A
0010 - Y 1001- B
0 0 1 1 - U 1010-C C
0 1 0 0 - S 1011- D P

Table 3 LEA Examples

Instruction Operation Comment
LEAX 10, X X + 10 -* X Adds 5-bit constant 10 to X
LEAX 500, X X + 500 ^ X Adds 16-bit constant 500 to X
LEAY A, Y Y + A -»■ Y Adds 8-bit A accumulator to Y
LEAY D, Y Y + D -» Y Adds 16-bit D accumulator to Y
LEAU -1 0 , U U - 10 -*• U Subtracts 10 from U
LEAS -1 0 , S S - 10 -*■ S Used to reserve area on stack
LEAS 10, S S + 10 - > s Used to 'clean up' stack
LEAX 5, S S + 5 -*■ X Transfers as well as adds

(NOTE) All other combinations are undefined and INVALID.

TRANSFER/EXCHANGE POST BYTE
i i i
SOURCE

3 I I
DESTINATIONl

• MUL
Multiplies the unsigned binary numbers in the A and B

accumulator and places the unsigned result into the 16-bit D
accumulator. This unsigned multiply also allows multiple-
precision multiplications.

« LEAX/LEAY/LEAU/LEAS
The LEA (Load Effective Address) works by calculating the

effective address used in an indexed instruction and stores that
address value, rather than the data at that address, in a pointer
register. This makes all the features of the internal addressing
hardware available to the programmer. Some of the implications
of this instruction are illustrated in Table 3.

The LEA instruction also allows the user to access data in
a position independent manner. For example:

LEAX MSG1, PCR
LBSR PDATA (Print message routine)

MSG1 FCC ‘MESSAGE’

This sample program prints: ‘MESSAGE’. By writing MSG1,
PCR, the assembler computes the distance between the present
address and MSG1. This result is placed as a constant into the
LEAX instruction which will be indexed from the PC value at
the time of execution. No matter where the code is located,
when it is executed, the computed offset from the PC will put
the absolute address of MSG1 into the X pointer register. This
code is totally position independent.

The LEA instructions are very powerful and use an internal
holding register (temp). Care must be exercised when using the
LEA instructions with the autoincrement and autodecrement
addressing modes due to the sequence of internal operations.
The LEA internal sequence is outlined as follows:

LEAa, b+ (any of the 16-bit pointer registers X, Y, U
or S may be substituted for a and b.)

1. b -* temp (calculate the EA)
2. b + 1 -*■ b (modify b, postincrement)
3. temp -> a (load a)

LEAa, - b
1. b — 1 -*■ temp (calculate EA with predecrement)
2. b — 1 ->-b (modify b, predecrement)
3. temp a (load a)

Autoincrement-by-two and autodecrement-by-two instruc­
tions work similarly. Note that LEAX, X+ does not change X,
however LEAX, —X does decrement X. LEAX 1, X should be
used to increment X by one.

Long and Short Relative Branches
The HD6809E has the capability of program counter

relative branching throughout the entire memory map. In this
mode, if the branch is to be taken, the 8 or 16-bit signed offset
is added to the value of the program counter to be used as the
effective address. This allows the program to branch anywhere
in the 64k memory map. Position independent code can be
easily generated through the use of relative branching. Both
short (8-bit) and long (16-bit) branches are available.

• SYNC
After encountering a Sync instruction, the MPU enters a

Sync state, stops processing instructions and waits for an
interrupt. If the pending interrupt is non-maskable (NMI) or
maskable (FIRQ, IRQ) with its mask bit (F or I) clear, the
processor will clear the Sync state and perform the normal
interrupt stacking and service routine. Since FIRQ and IRQ
are not edge-triggered, a low level with a minimum duration of
three bus cycles is required to assure that the interrupt will
be taken. If the pending interrupt is maskable (FIRQ, IRQ)
with its mask bit (F or I) set, the processor will clear the Sync
state and continue processing by executing the next inline
instruction. Figure 17 depicts Sync timing.

Software Interrupts
A Software Interrupt is an instruction which will cause an

interrupt, and its associated vector fetch. These Software
Interrupts are useful in operating system calls, software
debugging, trace operations, memory mapping, and software
development systems. Three levels of SWI are available on this
HD6809E, and are prioritized in the following order: SWI,
SWI2, SWI3.

16-Bit Operation
The HD6809E has the capability of processing 16-bit data.

These instructions include loads, stores, compares, adds,
subtracts, transfers, exchanges, pushes and pulls.

■ CYCLE-BY-CYCLE OPERATION
The address bus cycle-by-cycle performance chart illustrates

the memory-access sequence corresponding to each possible
instruction and addressing mode in the HD6809E. Each
instruction begins with an opcode fetch. While that opcode is
being internally decoded, the next program byte is always
fetched. (Most instructions will use the next byte, so this

HD6809E, HD68A09E, HD68B09E

technique considerably speeds throughput.) Next, the operation
of each opcode will follow the flowchart. VMA is an indication
of FFFF16 on the address bus, R/W = “High” and BS = “Low” .
The following examples illustrate the use of the chart; see
Figure 18.
Example 1: LBSR (Branch Taken)

Before Execution SP = F000

$8000 LBSR CAT

$A000 CAT

CYCLE-BY-CYCLE FLOW
Cycle # Address Date R/W Description

1 8000 17 1 Opcode Fetch
2 8001 20 1 Offset High Byte
3 8002 00 1 Offset Low Byte
4 FFFF * 1 VMA Cycle
5 FFFF * 1 VMA Cycle
6 FFFF * 1 VMA Cycle
7 FFFF * 1 VMA Cycle
8 EFFF 80 0 Stack High Order

Byte of Return
Address

9 EFFE 03 0 Stack Low Order
Byte of Return
Address

Example 2: DEC (Extended)
$8000 DEC $A000
$A000 FCB $80

CYCLE-BY-CYCLE FLOW
Cycle # Address Date R/W Description

1 8000 7A 1 Opcode Fetch
2 8001 A0 1 Operand Address,

High Byte
3 8002 00 1 Operand Address,

Low Byte
4 FFFF * 1 VMA Cycle
5 A000 80 1 Read the Data
6 FFFF * 1 VMA Cycle
7 A000 7F 0 Store the Deere-

mented Data
* The data bus has the data at that particular address.

■ HD6809E INSTRUCTION SET TABLES
The instructions of the HD6809E have been broken down

into five different categories. They are as follows:
8-Bit operation (Table 4)
16-Bit operation (Table 5)
Index register/stack pointer instructions (Table 6)
Relative branches (long or short) (Table 7)
Miscellaneous instructions (Table 8)

HD6809E instruction set tables and Hexadecimal Values of
instructions are shown in Table 9 and Table 10.

Last Cycle Sync
of Previous Opcode
.Instruction. Fetch Execute Sync Acknowledge

------------ \ --------------

Last Cycle
of Sync

, Instruction.

E

B S ______X__ V

(NOTES) 1. If the associated mask bit is set when the interrupt is requested. LIC will go "Low" and this cycle will be an instruction fetch from address
location PC + 1. However, if the interrupt is accepted (NMI or an unmasked FIRQ or IRQ) LIC will remain "High" and interrupt processing
will start with this cycle as (m) on Figure 9 and 10 (Interrupt Timing).

2. If mask bits are clear; IRQ and FIRQ must be held "Low" for three cycles to guarantee that interrupt will be taken, although only one cycle
is necessary to bring the processor out of SYNC.

3. Waveform measurements for all inputs and outputs are specified at logic "High" = V |Hrnjn and logic "Low" = V |Lmax unless otherwise
specified.

Figure 17 SYNC Timing

H
D

6809E, H
D

68A09E, H
D

68B09E

f Fetch J

V------1----- ^
Opcode (Fetch)

h
Opcode +

(Note 1)

Long Short
Branch Branch Indexed

(NOTE)
1. Busy = "High" during access of first byte of double byte immediate load.
2. Write operation during store instruction. Busy = "High" during first two cycles of a double-byte access and the first cycle of read-modify-write access.
3. AVMA is asserted on the cycle before a VMA cycle.

No
Offset

Figure 18 Address Bus Cycle-by-Cycle Performance

H
D

6809E, H
D

68A09E, H
D

68B09E

Implied Page

AS LA
ASLB
ASRA
ASRB
CLRA
CLRB
COMA
COMB
DAA
DECA
DECB
INCA
INCB
LSLA
LSLB
LSRA
LSRB
NEGA
NEGB
NOP
ROLA
ROLB
RORA
RORB
SEX
TSTA
TSTB

RTS

VMA

EXG

STACK (R)
STACK (R)

VMA

MUL
PSHU
PSHS

PULU
PULS

SWI
SWI2
SWI3

ADDR STACK (R)

VMA

VMA

VMA

STACK (W)
STACK (W)

ADDR t-SP STACK (W)
STACK (W)

ADDR SP VMA

VECTOR (H), VECTOR (H),
BUSY -<-1 BUSY «-1

VECTOR (L), VECTOR (L),
BUSY < - 0 BUSY <-0

VMA

i_i
(NOTES) _

1. Stack (W) refers to the following sequence: SP •<- SP — 1, then ADDR <- SP with R/W = "Low"
Stack (R) refers to the following sequence: ADDR <- SP with R/W = "High", then SP <-SP + 1.
PSHU, PULU instructions use the user stack pointer (i.e., SP = U) and PSHS, PULS use the hardware stack pointer (i.e., SP = S).

2. Vector refers to the address of an interrupt or reset vector (see Table 1).
3. The number of stack accesses will vary according to the number of bytes saved.
4. VMA cycles will occur until an interrupt occurs.

Figure 18 Address Bus Cycle-by-Cycle Performance (Continued)

H
D

6809E, H
D

68A09E, H
D

68B09E

Non-lmplied

AOCA
AOCB
ADDA
ADDB
AN DA
ANDB
BITA
BITB
CMPA
CMPB
FORA
FORB
LDA
LOB
ORA
ORB
SBCA
SBCB
STA
STB
SUBA
SUBB

LDD
LDS
LDU
LDX
LDY

ANDCC
ORCC

ASL
ASR
CLR
COM
DEC
INC
LSL
LSR
NEG
ROL
ROR

TST

VMA. BUSY <-1
ADDR +

BUSY «-0

ADDR +

ADDD
CMPD
CM PS
CMPU
CMPX
CMPY
SUBD

JSR STD
STS
STU
STX
STY

VMa
VMA

VMA ADDR + (W)

(NOTES) _
1. Stack (W) refers to the following sequence: SP * - SP — 1, then ADDR ■*- SP with R/W = "Low"

Stack (R) refers to the following sequence: ADDR ■«- SP with R/W = "High", then SP ■«- SP + 1.
PSHU, PULU instructions use the user stack pointer (i.e., SP = U) and PSHS, PULS use the hardware stack pointer (i.e., SP = S).

2. Vector refers to the address of an interrupt or reset vector (see Table 1),
3. The number of stack accesses will vary according to the number of bytes saved.
4. VMA cycles will occur until an interrupt occurs.

Figure 18 Address Bus Cycle-by-Cycle Performance (Continued)

H
D

6809E, H
D

68A09E, H
D

68B09E

HD6809E, HD68A09E, HD68B09E

Table 4 8-Bit Accumulator and Memory Instructions

Mnemonic! s) Operation
ADCA, ADCB Add memory to accumulator with carry
ADDA, ADDB Add memory to accumulator
ANDA, ANDB And memory with accumulator
ASL, ASLA, AS LB Arithmetic shift of accumulator or memory left
ASR, ASRA, ASRB Arithmetic shift of accumulator or memory right
BITA, BITB Bit test memory with accumulator
CLR .C LRA , CLRB Clear accumulator or memory location
CMPA, CMPB Compare memory from accumulator
COM, COMA, COMB Complement accumultor or memory location
DAA Decimal adjust A accumulator
DEC, DECA, DECB Decrement accumulator or memory location
EORA, EORB Exclusive or memory with accumulator
EXG R1, R2 Exchange R1 with R2 (R1, R2 = A, B, CC, DP)
INC, INCA, INCB Increment accumulator or memory location
LDA, LDB Load accumulator from memory
LSL, LSLA,LSLB Logical shift left accumulator or memory location
LSR, LSRA, LSRB Logical shift right accumulator or memory location
MUL Unsigned multiply (A x B -*• D)
NEG, NEGA, NEGB Negate accumulator or memory

ORA, ORB Or memory with accumulator
ROL, ROLA, ROLB Rotate accumulator or memory left

ROR, RORA, RORB Rotate accumulator or memory right
SBCA, SBCB Subtract memory from accumulator with borrow

STA, STB Store accumulator to memory
SUBA, SUBB Subtract memory from accumulator
TST, TSTA, TSTB Test accumulator or memory location

TFR R1, R2 Transfer R1 to R2 (R1, R2 = A, B, CC, DP)

(NOTE) A, B, CC or DP may be pushed to (pulled from) either stack with PSHS, PSHU
(PULS, PULU) instructions.

Table 5 16-Bit Accumulator and Memory Instructions

Mnemonic! s) Operation

ADDD Add memory to D accumulator
CMPD Compare memory from D accumulator

EXG D, R Exchange D with X, Y, S, U or PC
LDD Load D accumulator from memory
SEX Sign Extend B accumulator into A accumulator
STD Store D accumulator to memory
SUBD Subtract memory from D accumulator

TFR D, R Transfer D to X, Y , S, U or PC
TFR R, D Transfer X, Y , S, U or PC to D

(NOTE) D may be pushed (pulled) to either stack with PSHS, PSHU (PULS, PULU)
instructions.

HD6809E, HD68A09E, HD68B09E

Table 6 Index Register Stack Pointer Instructions

Mnemonic! s) Operation
CMPS, CMPU Compare memory from stack pointer
CMPX, CMPY Compare memory from index register
EXG R1, R2 Exchange D, X, Y , S, U or PC with D, X, Y , S. U or PC
LEAS, LEAU Load effective address into stack pointer
LEAX, LEAY Load effective address into index register
LDS, LDU Load stack pointer from memory
LDX, LDY Load index register from memory
PSHS Push A, B, CC, DP, D, X, Y , U, or PC onto hardware stack
PSHU Push A, B, CC, DP, D, X, Y , S, or PC onto user stack
PULS Pull A, B, CC, DP, D, X, Y , U or PC from hardware stack
PULU Pull A, B, CC, DP, D, X, Y , S or PC from user stack
STS, STU Store stack pointer to memory
STX, STY Store index register to memory
TFR R 1,R 2 Transfer D, X, Y , S, U or PC to D, X, Y . S. U or PC
ABX Add B accumulator to X (unsigned)

Table 7 Branch Instructions

Mnemonic(s) Operation
SIMPLE BRANCHES

BEQ,LBEQ Branch if equal
BNE, LBNE Branch if not equal
BMI, LBMI Branch if minus
BPL, LBPL Branch if plus
BCS, LBCS Branch if carry set
BCC, LBCC Branch if carry clear
BVS, LBVS Branch if overflow set
BVC, LBVC Branch if overflow clear

SIGNED BRANCHES
BGT, LBGT Branch if greater (signed)
BGE, LBGE Branch if greater than or equal (signed)
BEQ, LBEQ Branch if equal
BLE, LBLE Branch if less than or equal (signed)
BLT, LBLT Branch if less than (signed)

UNSIGNED BRANCHES
BHI, LBHI Branch if higher (unsigned)
BH3, LBriS Branch if higher or same (unsigned)
BEQ, LBEQ Branch if equal
BLS, LBLS Branch if lower or same (unsigned)
BLO, LBLO Branch if lower (unsigned)

OTHER BRANCHES
BSR,LBSR Branch to subroutine
BRA,LBRA Branch always
BRN, LBRN Branch never

HD6809E, HD68A09E, HD68B09E

Table 8 Miscellaneous Instructions

Mnemonic(s) Operation
ANDCC AND condition code register
CWAI AND condition code register, then wait for interrupt
NOP No operation
ORCC OR condition code register
JMP Jump
JSR Jump to subroutine
RTI Return from interrupt
RTS Return from subroutine

SWI, SWI2, SWI3 Software interrupt (absolute indirect)
SYNC Synchronize with interrupt line

HD6809E, H068A09E, HD68B09E

Table 9 HD6809E Instruction Set Table

HD6809E ADDRESSING MODES
irsid i i iuin /

FORMS IMPLIED DIRECT EXTENDED IMMEDIATE INDEXED® RELATIVE DESCRIPTION 5 3 2 1 0
OP ~ # OP ~ # OP ~ # OP ~ # OP ~ # OP # H N Z V c

ABX 3A 3 1 B + X - X
ADC ADCA 99 4 2 B9 5 3 89 2 2 A9 4+ 2+ i w w w - P i i t t t t t

ADCB D9 4 2 F9 5 3 C9 2 2 E9 4+ 2+ B + M + C - B t t t t t
ADD ADDA 9B 4 2 BB 5 3 8B 2 2 AB 4+ 2+ A + M - A t t t t t

ADDB DB 4 2 PB 5 3 CB 2 2 EB 4+ 2+ B + M - B 1 t t t t
ADDD D3 6 2 F3 7 3 C3 4 3 E3 6+ 2+ D + M:M + 1 -*• D • t t t t

AND ANDA 94 4 2 B4 5 3 84 2 2 A4 4+ 2+ A AM -* A • t t 0 •
ANDB D4 4 2 F4 5 3 C4 2 2 E4 4+ 2+ B AM - B • t 1 0 •

ASL
ANDCC 1C 3 2 CCA IMM - cc (- i t) -)
AS LA 48 2 1 A r <,# t t t i
AS LB 58 2 1 B L * I tfi> i t i i
ASL 08 6 2 78 7 3 68 6+ 2+ m) r ' 1.0 C® t t t t

ASR ASR A 47 2 1 A) r ? 1® t t •
ASRB 57 2 1

07 6 77 2+ II II HI L® t t • t
ASR 2 7 3 67 6+ M) * 10 1 t • i

BCC BCC 24 3 2 Branch C = 0
LBCC 10 5(6) 4 Long Branch

24 C)“ 0
BCS BCS 25 3 2 Branch c = 1

LBCS 10 5(6) 4 Long Branch
25 C - 1

BEQ BEQ 27 3 2 Branch z = 1
LBEQ 10 5(6) 4 Long Branch

27 2=1
BGE BGE 2C 3 2 Branch N ©V=0

LBGE 10 5(6) 4 Long Branch
2C N© V= 0

BGT BGT 2E 3 2 Branch ZV(N©VI=0
LBGT 10 5(6) 4 Long Branch

2E ZV(N © V) =0
BHI BHI 22 3 2 Branch cvz==0

LBHI 10 5(6) 4 Long Branch
22 CVZ=0

BHS BHS 24 3 2 Branch
C=(

LBHS 10 5(6) 4 Long Branch
24 C=0

BIT BITA 95 4 2 B5 5 3 85 2 2 A5 4+ 2+ Bit Test A IM A A) • 1 t 0 •
BITB D5 4 2 F5 5 3 C5 2 2 E5 4+ 2+ Bit Test B (M AB) • 1 t 0 •

BLE BLE 2F 3 2 Branch ZVlN©v)=1
LBLE 10 5(6) 4 Long Branch

2F ZV(N © V) =1
BLO BLO 25 3 2 Branch c=1

LBLO 10 5(6) 4 Long Branch
25 C=1

BLS BLS 23 3 2 Branch
CVZ=1

LBLS 10 5(6) 4 Long Branch
23 CVZ=1

BLT BLT 2D 3 2 Branch N © V =1
LBLT 10 5(6) 4 Long Branch

2D N © V=1
Bmi Bfvii 2B 3 2 Branch N=1

LBMI 10 5(6) 4 Long Branch
2B N=1

BNE BNE 26 3 2 Branch z = c
LBNE 10 5(6) 4 Long Branch

26 Z =0
BPL BPL 2A 3 2 Branch N = 0

LBPL 10 5(6) 4 Long Branch
2A N - 0

BRA BRA 20 3 2 Branch Always
LBRA 16 5 3 Long Branch/

Always
BRN BRN 21 3 2 Branch Never

LBRN 10 5 4 Long Branch Never • • k • •
21

(to be continued)

HD6809E, HD68A09E, HD68B09E

HD6809E ADDRESSING MODES
IN S IM U tirU N /

FORMS IMPLIED DIRECT EXTENDED IMMEDIATE INDEXED® RELATIVE 5 3 2 1 0
OP ~ # OP ~ # OP ~ # OP ~ # OP ~ # OP ~© # H N z V c

BSR BSR 8D 7 2 Branch to • • • •
Subroutine

LBSR 17 9 3 Long Branch to • • • •
Subroutine

BVC BVC 28 3 2 Branch V = 0 • • • •
LBVC 10 5(6) 4 Long Branch • • • •

28 V = 0
BVS BVS 29 3 2 Branch V = 1 • • • •

LBVS 10 5(6) 4 Long Branch • • • •
29 V = 1

CLR CLRA 4F 2 1 0 — A 0 1 0 0
CLRB 5F 2 1 0 — B 0 1 0 0
CLR OF 6 2 7F 7 3 6F 6+ 2+ 0 - M 0 1 0 0

CMP CM PA 91 4 2 B1 5 3 81 2 2 A1 4+ 2+ Compare M from A ® t t t 1
CMPB D1 4 2 F1 5 3 C1 2 2 E1 4+ 2+ Compare M from B ® t t t t
CMPD 10 7 3 10 8 4 10 5 4 10 7+ 3+ Compare M: M + 1 t 1 t t

93 B3 83 A3 from D
CMPS 11 7 3 11 8 4 11 5 4 11 7+ 3+ Compare M: M + 1 t t t t

9C BC 8C AC from S
CMPU 11 7 3 11 8 4 11 5 4 11 7+ 3+ Compare M: M + 1 1 t t t

93 B3 83 A3 from U
CMPX 9C 6 2 BC 7 3 8C 4 3 AC 6+ 2+ Compare M: M + 1 I t t t

from X
CMPY 10 7 3 10 8 4 10 5 4 10 7+ 3+ Compare M: M + 1 t t t t

9C BC 8C AC from Y

COM COMA 43 2 1 A — A 1 t 0 1
COMB 53 2 1 5 — B t t 0 1
COM 03 6 2 73 7 3 63 6+ 2+ M — M I t 0 1

CWAI 3C 20 2 CC A IM M - CC c- @ -)
(except 1—*-E)
Wait for Interrupt

(1)DAA 19 2 1 Decimal Adjust A t t 1
DEC DECA 4A 2 1 A - 1 - A 1 t J •

DECB 5A 2 1 B — 1 - B t t t •
DEC OA 6 2 7A 7 3 6A 6+ 2+ M - 1 - M t 1 t •

EOR EORA 98 4 2 B8 5 3 88 2 2 A8 4+ 2+ A © M - A 1 t 0 •
EORB D8 4 2 F8 5 3 C8 2 2 E8 4+ 2+ B ©M - B t t 0 •

EXG R1, R2 1 E 7 2 R1 - R2® (- ®)
INC INCA 4C 2 1 A + 1 - A l 1 t •

INCB 5C 2 1 B + 1 - B t 1 t •
INC OC 6 2 7C 7 3 6C 6+ 2+ M + 1 - M t t i •

JMP OE 3 2 7E 4 3 6E 3+ 2+ E A ® - PC
JSR 9D 7 2 BD 8 3 AD 7+ 2+ Jump to Subroutine
LD LDA 96 4 2 B6 5 3 86 2 2 A6 4+ 2+ M — A t t 0 •

LDB D6 4 2 F6 5 3 C6 2 2 E6 4+ 2+ M — B t l 0 •
LDD DC 5 2 FC 6 3 CC 3 3 EC 5+ 2+ M: M+ 1 - D t t 0 •
LDS 10 6 3 10 7 4 10 4 4 10 6+ 3+ M: M + 1 - S t t 0 •

DE FE CE EE
LDU DE 5 2 FE 6 3 CE 3 3 EE 5+ 2+ M: M + 1 - U t t 0 •
LDX 9E 5 2 BE 6 3 8E 3 3 AE 5+ 2+ M: M + 1 - X 1 1 0 •
LDY 10 6 3 10 7 4 10 4 4 10 6+ 3+ M: M + 1 - Y t t 0 •

9E BE 8E AE
LEA LEAS 32 4+ 2+ EA® — S

LEAU 33 4+ 2+ EA ®- U
LEAX 30 4+ 2+ EA ®- X • t • •

LSL
LEAY
LSLA
LSLB

48
58

31 4+ 2+ E A ® -
A \

Y • t

t
t

•
t
t

•
t
t2 1

08 2 78 68 6+ 2+ i W H i l l ! - t
tLSL t

LSR LSR A
LSRB
LSR

44
54

2 1 0 t t

2 1
04 6 2 74 7 3 64 6+ 2+ & H m m - D

0 t
t

• t
tc

MUL 3D 11 1 A X B — D • • 1 • ®
(Unsigned)

NEG NEGA 40 2 1 A + 1 — A t t t t
NEGB 50 2 1 B + 1 - B ® t t t t

NEG 00 6 2 70 7 3 60 6+ 2+ 101 + 1 - M t t t t

NOP 12 2 1 No Operation

(to be continued)

HD6809E, HD68A09E, HD68B09E

INSTRUCTION/
FORMS

HD6809E ADDRESSING MODES

DESCRIPTIONIMPLIED DIRECT EXTENDED IMMEDIATE INDEXED® RELATIVE 5 3 2 1 0
OP - # OP ~ # OP ~ # OP ~ # OP ~ # OP # H N Z V c

OR ORA 9A 4 2 BA 5 3 8A 2 2 AA 4+ 2+ A V M - A • X t 0 •
ORB DA 4 2 FA 5 3 CA 2 2 EA 4+ 2+ B v M - * B • X X 0 •
ORCC 1A 3 2 CC v IMM -» CC (- (7) -)

PSH PSHS 34 5+® 2 Push Registers on
S Stack

PSHU 36 5+® 2 Push Registers on
U Stack

PUL PULS 35 5+® 2 Pull Registers from (- do))
S Stack

PULU 37 5+® 2 Pull Registers from (- ® ■)
U Stack

ROL ROLA 49 2 1 Al Lfl 1 11 1 1 1 1 • i X t X
ROLB 59 2 1 B i r MILL • t X I X

ROR
ROL 09 6 2 79 7 3 69 6+ 2+ M ' • l X 1 X

RORA 2 1 A 1 _ • t i • t
RORB 56 2 1 B L n .

m m J • 1 i • X
ROR 06 6 2 76 7 3 66 6+ 2+ M u t I l

RTI 3B 6/15 1 Return From (- i7) ■)
Interrupt

RTS 39 5 1 Return From
Subroutine

SBC SBCA 92 4 2 B2 5 3 82 2 2 A2 4+ 2+ A - M - C - A © t X X l
SBCB D2 4 2 F2 5 3 C2 2 2 E2 4+ 2+ B - M - C — B © t: X X J

SEX 1D 2 1 Sign Extend B • I X • •
into A

ST STA 97 4 2 B7 5 3 A7 4+ 2+ A - M • t X 0 •
STB 07 4 2 F7 5 3 E7 4+ 2+ B M • X X 0 •
STD DD 5 2 FD 6 3 ED 5+ 2+ D - M: M+ 1 • t t 0 •
STS 10 6 3 10 7 4 10 6+ 3+ S — M: M + 1 • t 1 0 •

DF FF EF
STU DF 5 2 FF 6 3 EF 5+ 2+ U - M: M + 1 • t I 0 •
STX 9F 5 2 BF 6 3 AF 5+ 2+ X - M: M + 1 • t t 0 •
STY 10 6 3 10 7 4 10 6+ 3 + Y - M: M + 1 • t I 0 •

9F BF AF
SUB SUBA 90 4 2 BO 5 3 80 2 2 AO 4+ 2+ A - M - A 8 t t 1 1

SUBB DO 4 2 FO 5 3 CO 2 2 EO 4+ 2+ B - M -- B '-8j t 1 I X
SUBD 93 6 2 B3 7 3 83 4 3 A3 6+ 2+ D - M: M + 1 - D • t 1 t X

SWI SWI® 3F 19 1 Software Interrupt
SWI2® 10 20 2 Software Interrupt2

3F
SWI 3® 11 20 2 Software Interrupt3

3F
SYNC 13 > 2 1 Synchronize to

Interrupt
TFR R1.R2 1 F 6 2 R1 - R 2 % (- do) -)
TST TSTA 4D 2 1 Test A • t i 0 •

TSTB 5D 2 1 Test B • t i 0 •
TST OD 6 2 7D 7 3 6D 6+ 2+ Test M • X t 0 •

(NOTES)
© This column gives a base cycle and byte count. To obtain total count, and the values obtained from the INDEXED ADDRESSING MODES table.
© R1 and R2 may be any pair of 8 bit or any pair of 16 bit registers.

The 8 bit registers are: A, B, CC, DP
The 16 bit registers are: X, Y, U, S, D, PC

(3) EA is the effective address.
© The PSH and PUL instructions require 5 cycle plus 1 cycle for each byte pushed or pulled.
© 5(6) means: 5 cycles if branch not taken, 6 cycles if taken.
© SWI sets 1 and F bits. SWI2 and SWI3 do not affect I and F.
© Conditions Codes set as a direct result of the instruction.
© Value of half-carry flag is undefined.
© Special Case — Carry set if b7 is SET.
® Condition Codes set as a direct result of the instruction if CC is specified, and not affected otherwise.

LEGEND:
OP Operation Code (Hexadecimal) Z Zero (byte)
~ Number of MPU Cycles V Overflow, 2's complement
Number of Program Bytes c Carry from bit 7
+ Arithmetic Plus) Test and set if true, cleared otherwise
— Arithmetic Minus • Not Affected
X Multiply CC Condition Code Registerra Complement of M Concatenation
Hi Transfer Into V Logical or
H Half-carry (from bit 3) A Logical and
N Negative (sign bit) © Logical Exclusive or

HD6809E, HD68A09E, HD68B09E

Table 10 Hexadecimal Values of Machine Codes

OP Mnem Mode ~ # OP Mnem Mode ~ # OP Mnem Mode #

00 NEG Direct 6 2 30 LEAX Indexed 4+ 2+ 60 NEG Indexed 6+ 2+
01 • t 31 LEAY 4+ 2+ 61 * i
02 * 32 LEAS r 4+ 2+ 62 *
03 COM 6 2 33 LEAU Indexed 4+ 2+ 63 COM 6+ 2+
04 LSR 6 2 34 PSHS Implied 5+ 2 64 LSR 6+ 2+
05 * 35 PULS i 5+ 2 65 *

06 ROR 6 2 36 PSHU 5+ 2 66 ROR 6+ 2+
07 ASR 6 2 37 PULU 5+ 2 67 ASR 6+ 2+
08 ASL, LSL 6 2 38 * 68 ASL, LSL 6+ 2+
09 ROL 6 2 39 RTS 5 1 69 ROL 6+ 2+
0A DEC 6 2 3A ABX 3 1 6A DEC 6+ 2+
0B * 3B RTI 6 ,15 1 6B *

OC INC 6 2 3C CWAI 20 2 6C INC 6+ 2+
0D TST 6 2 3D MUL 11 1 6D TST 6+ 2+
OE JMP 3 2 3E * 6E JMP 1’ 3+ 2+
OF CLR Direct 6 2 3F SWI Implied 19 1 6F CLR Indexed 6+ 2+

10 1 See _ _ 40 NEGA Implied 2 1 70 NEG Extended 7 3
11 / Next Page - - 41 * i 71 * L

12 NOP Implied 2 1 42 * 72 *
13 SYNC Implied 2 1 43 COMA 2 1 73 COM 7 3
14 * 44 LSR A 2 1 74 LSR 7 3
15 * 45 * 75 *

16 LBRA Relative 5 3 46 RORA 2 1 76 ROR 7 3
17 LBSR Relative 9 3 47 ASRA 2 1 77 ASR 7 3
18 * 48 AS LA, LSLA 2 1 78 ASL, LSL 7 3
19 DAA Implied 2 1 49 ROLA 2 1 79 ROL 7 3
1A ORCC Immed 3 2 4A DECA 2 1 7A DEC 7 3
1B * 4B * 7B *

1C ANDCC Immed 3 2 4C INCA 2 1 7C INC 7 3
1D SEX Implied 2 1 4D TSTA 2 1 7D TST 7 3
IE EXG l 8 2 4E * 7E JMP r 4 3
IF TFR Implied 6 2 4F CLRA Implied 2 1 7F CLR Extended 7 3

20 BRA Relative 3 2 50 NEGB Implied 2 1 80 SUBA Immed 2 2
21 BRN 3 2 51 * i , 81 CMPA , i 2 2
22 BHI 3 2 52 * 82 SBCA 2 2
23 BLS 3 2 53 COMB 2 1 83 SUBD 4 3
24 BHS, BCC 3 2 54 LSRB 2 1 84 AN DA 2 2
25 BLO,BCS 3 2 55 * 85 BITA 2 2
26 BNE 3 2 56 RORB 2 1 86 LDA 2 2
27 BEQ 3 2 57 ASRA 2 1 87 *

28 BVC 3 2 58 ASLB, LSLB 2 1 88 EORA 2 2
29 BVS 3 2 59 ROLB 2 1 89 ADCA 2 2
2A BPL 3 2 5A DECB 2 1 8A ORA 2 2
2B BMI 3 2 5B * 8B ADDA 2 2
2C BGE 3 2 5C INCB 2 1 8C CMPX Immed 4 3
2D BLT 3 2 5D TSTB 2 1 8D BSR Relative 7 2
2E BGT r 3 2 5E * ' ' 8E LDX Immed 3 3
2F BLE Relative 3 2 5F CLRB Implied 2 1 8F *

LEGEND:
~ Number of MPU cycles (less possible push pull or indexed-mode cycles)
Number of program bytes
* Denotes unused opcode

(to be continued)

HD6809E, HD68A09E, HD68B09E

OP Mnem Mode ~ # OP Mnem Mode ~ # OP Mnem Mode ~ #

90 SUBA Direct 4 2 C6 LDB Immed 2 2 FC LDD Extended 6 3
91 CMPA l 4 2 C7 * t FD STD 6 3
92 SBCA 4 2 C8 EORB 2 2 FE LDU r 6 3
93 SUBD 6 2 C9 ADCB 2 2 FF STU Extended 6 3
94 AN DA 4 2 CA ORB 2 2
95 BITA 4 2 CB ADDB 2 2
96 LDA 4 2 CC LDD 3 3 2 Bytes Opcode
97 STA 4 2 CD *

f
98 EORA 4 2 CE LDU Immed 3 3 1021 LBRN Relative 5 4
99 ADCA 4 2 CF » 1022 LBHI k 5(6) 4
9A ORA 4 2 1023 LBLS 5(6) 4
9B ADDA 4 2 DO SUBB Direct 4 2 1024 LBHS, L8CC 5(6) 4
9C CMPX 6 2 D1 CMPB i 4 2 1025 LBCS, LBLO 5(6) 4
90 JSR 7 2 D2 SBCB 4 2 1026 LBNE 5(6) 4
9E LDX 5 2 D3 ADDD 6 2 1027 LBEQ 5(6) 4
9F STX Direct 5 2 D4 ANDB 4 2 1028 LBVC 5(6) 4

D5 BITB 4 2 1029 LBVS 5(6) 4
AO SUBA Indexed 4+ 2+ D6 LDB 4 2 102 A LBPL 5(6) 4
A1 CMPA l 4+ 2+ D7 STB 4 2 102B LBMI 5(6) 4
A2 SBCA 4+ 2+ D8 EORB 4 2 102C LBGE 5(6) 4
A3 SUBO 6+ 2+ D9 ADCB 4 2 102D LBLT 5(6) 4
A4 AN DA 4+ 2+ DA ORB 4 2 102E LBGT 5(6) 4
A5 BITA 4+ 2+ DB ADDB 4 2 102F LBLE Relative 5(6) 4
A6 LDA 4+ 2+ DC LDD 5 2 103F SWI2 Implied 20 2
A7 STA 4+ 2+ DD STD 5 2 1083 CMPD Immed 5 4
A8 EORA 4+ 2+ DE LDU r 5 2 108C CMPY ; 5 4
A9 ADCA 4+ 2+ DF STU Dir a c t 5 2 108E LDY Immed 4 4
AA ORA 4+ 2+ 1093 CMPD Direct 7 3
AB ADDA 4+ 2+ EO SUBB Indexed 4+ 2+ 109C CMPY 7 3
AC CMPX 6+ 2+ E1 CMPB i k 4+ 2+ 109E LDY - 6 3
AD JSR 7+ 2+ E2 SBCB 4+ 2+ 109F STY Direct 6 3
AE LDX 5+ 2+ E3 ADDD 6+ 2+ 10A3 CMPD Indexed 7+ 3+
AF STX Indexed 5+ 2+ E4 ANDB 4+ 2+ 10 AC CMPY 7+ 3+

E5 BITB 4+ 2+ 10AE LDY r 6+ 3+
BO SUBA Ex ended 5 3 E6 LDB 4+ 2+ 10AF STY Indexed 6+ 3+
B1 CMPA i i 5 3 E7 STB 4+ 2+ 10B3 CMPD Extended 8 4
B2 SBCA 5 3 E8 EORB 4+ 2+ 10BC CMPY 8 4
B3 SUBD 7 3 E9 ADCB 4+ 2+ 10BE LDY r 7 4
B4 ANDA 5 3 EA ORB 4+ 2+ 10BF STY Extended 7 4
B5 BITA 5 3 EB ADDB 4+ 2+ 10CE LDS Immed 4 4
B6 LDA 5 3 EC LDD 5+ 2+ 10DE LDS Direct 6 3
B7 STA 5 3 ED STD 5+ 2+ 10DF STS Direct 6 3
B8 EORA 5 3 EE LDU ' t 5+ 2+ 10EE LDS Indexed 6+ 3+
B9 ADCA 5 3 EF STU Ind exed 5+ 2+ 10EF STS Indexed 6+ 3+
BA ORA 5 3 10FE LDS Extended 7 4
BB ADDA 5 3 FO SUBB Extended 5 3 10FF STS Extended 7 4
BC CMPX 7 3 F1 CMPB i k 5 3 113F SWI3 Implied 20 2
BD JSR 8 3 F2 SBCB 5 3 1183 CMPU Immed 5 4
BE LDX 6 3 F3 ADDD 7 3 118C CMPS Immed 5 4
BF STX Extended 6 3 F4 ANDB 5 3 1193 CMPU Direct 7 3

F5 BITB 5 3 119C CMPS Direct 7 3
CO SUBB Immed 2 2 F6 LDB 5 3 11 A3 CMPU Indexed 7+ 3+
C l C M P B 1 2 2 F7 STB 5 3 11 AC CMPS Indexed 7+ 3+
C2 SBCB 2 2 F8 EORB 5 3 11B3 CMPU Extended 8 4
C3 ADDD 4 3 F9 ADCB 5 3 11 BC CMPS Extended 8 4
C4 ANDB 1 2 2 FA ORB > 5 3
C5 BITB Immed 2 2 FB ADDB Extended 5 3

(NOTE): All unused opcodes are both undefined and illegal.

