

HI2304

NOT RECOMMENDED FOR NEW DESIGNS
See HI1178

August 1997

Triple 8-Bit, 20 MSPS, RGB, 3-Channel D/A Converter

Features

• ResolutionTriple 8-Bit
Maximum Conversion Speed 20MHz
RGB 3-Channel Input/Output
• Differential Linearity Error
• Low Power Consumption

- Low Glitch Noise
- Direct Replacement for Sony CXD2304

Applications

- Digital TV
- · Graphics Display
- · High Resolution Color Graphics
- Video Reconstruction
- Instrumentation
- · Image Processing
- I/Q Modulation

Description

The HI2304 is a triple 8-bit, high-speed, CMOS D/A converter designed for video band use. It has three separate, 8-bit, pixel inputs, one each for red, green, and blue video data. A single 3.3V power supply and pixel clock input can be controlled individually, or connected together as one. The HI2304 also has BLANK video control signal. For faster speed and 5.0V operation, refer to the HI1178.

Ordering Information

PART NUMBER	· '=''''		PKG. NO.
HI2304JCQ	-20 to 75	48 Ld MQFP	Q48.7x7-S

Pinout

HI2304 (MQFP) **TOP VIEW**

Functional Block Diagram 2 LSBs (47) DV_{DD} (LSB) R0 **CURRENT** CELLS (48) DV_{DD} R1 R2 6 MSBs (36) RO R3 DECODER CURRENT LATCHES (37) RO **CELLS** R4 (27) RCK R5 CLOCK (43) AV_{DD} R6 DECODER GENERATOR R7 (44) AV_{DD} 2 LSBs (LSB) G0 (45) AV_{DD} CURRENT **CELLS** G1 (46) AV_{DD} G2 (38) GO DECODER 6 MSBs G3 (12) CURRENT ③ GO LATCHES G4 (13 **CELLS** (28) GCK G5 G6 DECODER CLOCK 33 AV_{SS} GENERATOR G7 (16) (30) DV_{SS} (LSB) B0 2 LSBs CURRENT CELLS (31) DV_{SS} В1 B2 (19) (40) <u>BO</u> **DECODER** B3 (20) 6 MSBs LATCHES (41) BO CURRENT **CELLS** (29) BCK **B5** В6 DECODER (42) VG CLOCK GENERATOR **B7** (34) V_{REF} **CURRENT CELLS** 35) I_{REF} BLK (25) (FOR FULL SCALE) BIAS VOLTAGE (32) VB **CE** (26) **GENERATOR**

Pin Descriptions

PIN NO.	SYMBOL	EQUIVALENT CIRCUIT	DESCRIPTION
1 to 8	R0 to R7	φ DV _{DD}	Digital Input.
9 to 16	G0 to G7		
17 to 24	B0 to B7	①	

Pin Descriptions (Continued)

PIN NO.	SYMBOL	EQUIVALENT CIRCUIT	DESCRIPTION		
25	BLK	25 DV _{SS}	Blanking pin. No signal at "H" (Output 0V) Output condition at "L".		
32	VB	DV _{DD} DV	Connect a capacitor of about 0.1μF.		
27	RCK	φ DV _{DD}	Clock Pin.		
28	GCK				
29	ВСК	27) - W - DV _{SS}			
30, 31	DV _{SS}		Digital GND.		
33	AV _{SS}		Analog GND.		
26	CE	26 DV _{SS}	Chip Enable Pin. No signal (Output 0V) at "H" and minimizes power consumption.		

Pin Descriptions (Continued)

PIN NO.	SYMBOL	EQUIVALENT CIRCUIT	DESCRIPTION
35	I _{REF}	AV _{DD} ϕ ϕ AV _{DD}	Connect a resistance 16 times "16R" that of output resistance value "R".
34	V _{REF}		Set full scale output value.
42	VG	AV _{DD} 35 AV _{SS} AV _{SS} AV _{SS}	Connect a capacitor of about 0.1μF.
43 to 46	AV _{DD}		Analog V _{DD} .
37	RO	AV _{DD} φ	Current output pin. Voltage output can be obtained by
39	GO	 	connecting a resistance.
41	ВО	₃₃ Ы _, ₩	
36	RO	37) T	Inverted current output pin. Normally dropped to analogous
38	GO		GND.
40	BO	AV _{SS} AV _{DD} AV _{SS} AV _{SS}	
47, 48	DV _{DD}		Digital V _{DD} .

HI2304

Absolute Maximum Ratings $T_A = 25^{\circ}C$

Operating Conditions

Temperature Range (T _{OPR})	20°C to 75°C
Supply Voltage	
AV _{DD} , AV _{SS}	3.0V to 3.6\
DV _{DD} , DV _{SS}	3.0V to 3.6\
Reference Input Voltage (VREF)	1.2\
Clock Pulse Width	
t _{PW1}	25ns (Min
	OF (M)-

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (°C/W)
MQFP Package	104
Maximum Junction Temperature (Plastic Package)	150 ⁰ C
Maximum Storage Temperature (T _{STG})65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 10s)	
(Lead Tips Only)	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $f_{CLK} = 20 MHz$, $V_{DD} = 3.3 V$, $R_{OUT} = 330 \Omega$, $V_{REF} = 1.2 V$, $R_{IRF} = 5.1 k\Omega$, $T_A = 25^{\circ} C$

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Resolution		n		-	8	-	Bit
Maximum Conve	rsion Speed	f _{MAX}		20	-	-	MHz
Linearity Error		INL		-2.5	-	2.5	LSB
Differential Linea	rity Error	DNL		-0.5	-	0.5	LSB
Full Scale Output	t Voltage	V _{FS}		1.12	1.24	1.36	V
Full Scale Output	t Ratio (Note 1)	F _{SR}		0	1.5	3	%
Full Scale Output Current		I _{FS}		-	3.8	-	mA
Offset Output Voltage		Vos		-	-	1	mV
Power supply Current		I _{DD}	14.3MHz, at Color Bar Data input	-	15	-	mA
Digital Input	H Level	I _{IH}		-	-	5	μА
Current	L Level	I _{IL}		-5	-	-	μА
Set Up Time		t _S		7	-	-	ns
Hold Time		t _H		3	-	-	ns
Propagation Delay Time		t _{PD}		-	20	-	ns
Glitch Energy		GE		-	150	-	pV/s
Crosstalk		СТ	1MHz Sine Wave Output	-	53	-	dB

NOTE:

2. Full Scale Output Ratio = \begin{array}{c|cccc} Full scale voltage of channel & x 100(%). & x 100(

I/O Chart (When Full Scale Output Voltage at 2.00V)

		INPUT CODE OUTPUT VOLTAGE						
MSE	3						LSB	
1	1	1	1	1	1	1	1	1.2V
				•				
			,	•				
			,	•				
1	0	0	0	0	0	0	0	0.6V
				•			-	
			,					
10	0	0	0	0	0	0	0	0V
							0	0 0

Timing Diagram

Typical Application Circuit

Notes On Operation

· How to Select the Output Resistance

The HI2304 is a current output D/A converter. To obtain the output voltage, connect the resistance to IO pin (RO, GO, BO). For specifications we have:

Output Full Scale Voltage $V_{FS} = 1.2 [V]$.

Output Full Scale Current IFS = 3.8 [mA].

Calculate the output resistance value from the relation of $V_{FS} = I_{FS} \times R$. Also, 16 times resistance of the output resistance is connected to reference current pin I_{REF} . In some cases, however, this turns out to be a value that does not actually exist. In such a case a value close to it can be used as a substitute. Here, please note that V_{FS} becomes $V_{FS} = V_{REF} \times 16R/R$. R is the resistance connected to IO while R is connected to I_{REF} . Increasing the

resistance value can curb power consumption. On the other hand, glitch energy and data settling time will inversely increase. Set the most suitable value according to the desired application.

· Phase Relation Between Data and Clock

To obtain the expected performance as a D/A converter, it is necessary to set properly the phase relation between data and clock, applied from the exterior. Be sure to satisfy the provisions of the set up time (t_S) and hold time (t_H) as stipulated in the Electrical Characteristics.

V_{DD}, V_{SS}

To reduce noise effects, separate analog and digital systems in the device periphery. For $V_{\mbox{\scriptsize DD}}$ pins, both digital and analog, bypass respective GNDs by using a ceramic capacitor of about $0.1\mu F$, as close as possible to the pin.

Test Circuits

FIGURE 1. MAXIMUM CONVERSION RATE TEST CIRCUIT

FIGURE 2. SET-UP HOLD TIME GLITCH ENERGY TEST CIRCUIT

Test Circuits (Continued)

FIGURE 3. CROSSTALK TEST CIRCUIT (See Figure 7)

FIGURE 4. DC CHARACTERISTICS TEST CIRCUIT

Test Circuits (Continued)

FIGURE 5. PROPAGATION DELAY TIME TEST CIRCUIT

FIGURE 6. SNR TEST CIRCUIT (See Figure 8)

Typical Performance Curves

FIGURE 7. CROSSTALK

FIGURE 8. SNR (DIFFERENCE BETWEEN PRIMARY COMPONENT AND SECONDARY DISTORTION)

FIGURE 9. OUTPUT FULL SCALE VOLTAGE vs AMBIENT TEMPERATURE

FIGURE 10. OUTPUT FREQUENCY vs CURRENT CONSUMPTION

FIGURE 11. OUTPUT RESISTANCE vs GLITCH ENERGY

Reference Measurement Condition and Description
$AV_{DD} = 3.3V.$
DV _{DD} = 3.3V.
V _{REF} = 1.2V.
$R_{IRF} = 5.1k\Omega$.
$T_A = 25^{\circ}C.$
Figure 7 and Figure 8 refer to the measurement circuit.
Figure 9 is input data = all 1.
Figure 10 is input data = output of incremental counter, current consumption is total of 3ch.