

40MHz, 32-Channel Serial to Parallel Converter with Push-Pull Outputs

Ordering Information

	Package Options						
Device	64 Pin Plastic Gullwing	80-Lead Ceramic Gullwing	Die in Wafer Form				
HV76	HV7620PG	HV7620DG	HV7620XW				

Features

- □ Processed with HVCMOS® technology
- ☐ 5V CMOS logic and 12V supply rail
- ☐ Output voltage up to 200V
- Low power level shifting
- Source/sink current minimum 50mA
- □ 40MHz equivalent data rate
- Chip select
- □ Polarity function
- ☐ Forward and reverse shifting options (DIR pin)
- Latched outputs

General Description

The HV76 is a low-voltage serial to high-voltage parallel converter with push-pull outputs. This device has been designed for use as a driver for color AC plasma displays.

The device has 4 parallel 8-bit shift registers permitting data rate 4 times the speed of one. The data are clocked in simultaneously on all four data inputs with a single clock. Data are shifted in on a low to high transition of the clock. The latches and control logic perform the output enable function.

The DIR pin causes clockwise (CW) shifting of the data when connected to $V_{\rm DD1}$, and counterclockwise (CCW) shifting when connected to GND. Operation of the shift register is not affected by the $\overline{\rm LE}$ (latch enable) input. Transfer of data from the shift registers to the latches occurs when the $\overline{\rm LE}$ input is high. Data is stored in the latches when $\overline{\rm LE}$ is low. The current source on the logic inputs provides active pull up when the input pins are open.

Absolute Maximum Ratings

Supply voltage ¹ , V _{DD1}		-0.5V to +15V
Supply voltage ¹ , V _{DD2}		-0.5V to +15V
Supply voltage ¹ , V _{PP}		-0.5V to +225V
Logic input levels ¹	-:	2.0V to V _{DD1} +2.0V
Continuous total power dissipation ²	Plastic Ceramic	1200mW 1900mW
Operating temperature range	Plastic Ceramic	-40°C to +85°C -55°C to 125°C
Storage temperature range		-65°C to +150°C

Notes:

- 1. All voltages are referenced to GND.
- For operation above 25°C ambient derate linearly to maximum operating temperature at 20mW/°C for plastic and at 19mW/°C for ceramic.

02/96/022

Electrical Characteristics (over recommended operating conditions unless noted) **DC Characteristics** ($V_{DD1} = 5V$, $V_{DD2} = 12V$, $V_{PP} = 200V$ and $T_A = 25^{\circ}C$)

Symbol	Parameters	Min	Max	Units	Condition
I _{DD1}	V _{DD1} supply current		5	mA	f _{CLK} =10MHz
I _{DD2}	V _{DD2} supply current		20	mA	$V_{DD2} = V_{DD2} \text{ max}$ $f_{CLK} = 10 \text{ MHz}$
I _{PP}	High voltage supply current		2	mA	All output high or low
I _{DD1Q}	Quiescent V _{DD1} supply current		100	μΑ	All input = V _{DD1}
I _{DD2Q}	Quiescent V _{DD2} supply current		100	μΑ	All input = V _{DD1}
V _{OH}	High-level output	185		V	I _O = -50mA
V_{OL}	Low-level output		20	V	I ₀ = 50mA
I _{IH}	High-level logic input current		1.0	μΑ	$V_{IN} = V_{DD1}$
I _{IL}	Low-level logic input current		-10	μΑ	$V_{IN} = 0V$
V_{GG}	HVGND to LVGND voltage difference	-1.0	1.0	V	

AC Characteristics (Logic signal inputs and data inputs have t_r , $t_f \le 5$ ns. $V_{DD1} = 5V$ or 12V, $V_{DD2} = 12V$, $V_{PP} = 200V$)

Symbol	Parameters	Min	Max	Units	Condition	
f _{CLK}	Clock frequency	Clock frequency $V_{DD1} = 5V$			MHz	Per register C _L = 15pF
CLK	, ,	V _{DD1} = 12V		5	MHz	Per register C _L = 15pF
t_{WL}, t_{WH}	Clock width high or	low	40		ns	
t _{su}	Data set-up time		20		ns	
t _H	Data hold time		20		ns	
t _{on} , t _{off}	Time from LE to HV	, OUT		275	ns	C _L = 15pF
t _{wLE}	Width of LE pulse		25		ns	
t _{DLE}	Delay time clock to	LE low to high	50		ns	
t _{SLE}	LE setup time befor	e clock rises	20		ns	
t _{DLF} , t _{DLN}	BL or CS low to hig	h to HV _{оυт}		250	ns	
t _{cof} , t _{con}	Clock to HV _{OUT}		275	ns		
t _{DLH}	Delay time clock to	data low to high		100	ns	C _L = 15pF
t _{DHL}	Delay time clock to	data high to low		100	ns	C _L = 15pF

Recommended Operating Conditions

Symbol	Parameters		Min	Max	Unit
V _{DD1}	Logic supply voltage		4.5	$V_{_{\mathrm{DD2}}}$	V
$V_{_{\mathrm{DD2}}}$	12V supply voltage		10.8	13.2	V
V _{PP}	High voltage supply voltage		50	200	V
V _{IH}	High-level input voltage		V _{DD1} -0.5V	$V_{_{\mathrm{DD1}}}$	V
V _{IL}	Low-level input voltage		0	0.5	V
f _{clk}	Clock frequency	$V_{DD1} = 5V$		10	MHz
		V _{DD1} = 12V		5	MHz
T _A	Operating free-air temperature	Plastic	-40	+85	°C
		Ceramic	-55	+125	°C
I _{OD}	Allowable pulsed current through ouptut diodes ¹			500	mA
 GND(Vpp)	Allowable pulsed V _{PP} or HVGND of	current ¹		16	Α
V _{PP(SLEW)} ²	Slew rate of V _{PP}			340	V/µs

Notes

^{1.} The current pulse width = 500ns, duty cycle = 5%.

^{2.}This device cannot be hot-switched for output frequency greater than 500Hz. For output frequency greater than 500Hz, V_{pp} must be ramped.

Input and Output Equivalent Circuits

Switching Waveforms

Functional Block Diagram

Function Table

	Inputs									HV Outputs							
Function	D _{IN} A	D _{IN} B	D _{IN} C	D _{IN} D	CLK	LE	DIR	BLA	BLB	BLC	BLD	cs	POL	Α	В	С	D
All O/P High	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L	L	Н	Н	Н	Н
All O/P Low	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L	Н	L	L	L	L
"A" Outputs Low	Х	Х	Х	Х	Х	Х	Х	L	Х	Х	Х	Х	Н	L	*	*	*
Normal Polarity	Х	Х	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	No Inversion			
Outputs Inverted	Х	Х	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	L		Inver	sion	
Transparent Mode	Н	L	L	L	1	Н	Х	Н	Н	Н	Н	Н	Н	Н	L	L	L
Data Stored	Х	Х	Х	Х	Х	L	Х	Н	Н	Н	Н	Н	Н		Stored	Data	
Shift CW	Х	Х	Х	Х	1	Н	Н	Н	Н	Н	Н	Н	Х	A _N	B _N	C _N	D _N
														A_{N+1}	B→ N+1	C→	D→ N+1
Shift CCW	Х	Х	Х	Х	1	Н	L	Н	Н	Н	Н	Н	Х	A _N	B _N	C _N	D _N
														A_{N-1}	B _{N-1}	C _{N-1}	$\overrightarrow{D_{N-1}}$

Notes

 $H = High level, L = Low level, X = Irrelevant, \uparrow = Low to high transition.$

Power-up sequence:

GND (HV, LV)

 $V_{DD2} \ V_{DD1}$

Logic Input Signals

 V_{PP}

To power down reverse the sequence above.

The V_{PP} should not drop below V_{DD} or float during operation.

^{* =} Dependent on previous stage's state before the last $\overrightarrow{CLK} \uparrow \text{ for last } \overrightarrow{LE} \text{ high.}$

Pin Configurations

HV76			
Pin	Function	Pin	Function
1	HVGND	33	CS
2	V_{pp}	34	$D_{OUT}B$
3	HV _{OUT} D8	35	D _{IN} B
4	HV _{OUT} C8	36	$D_{IN}A$
5	HV _{OUT} B8	37	$D_{OUT}^{m}A$
6	$HV_{OUT}A8$	38	CLK
7	HV _{OUT} D7	39	BLA
8	HV _{OUT} C7	40	BLB
9	$HV_{OUT}B7$	41	V _{DD1}
10	$HV_{OUT}A7$	42	LVGND
11	HV _{OUT} D6	43	N/C
12	HV _{OUT} C6	44	HVGND
13	HV _{OUT} B6	45	HVGND
14	HV _{OUT} A6	46	V_{pp}
15	HV _{OUT} D5	47	$HV_{OUT}D4$
16	HV _{OUT} C5	48	HV _{out} C4
17	HV _{OUT} B5	49	HV _{out} B4
18	HV _{out} A5	50	$HV_{OUT}A4$
19	V_{pp}	51	$HV_{OUT}D3$
20	HVGND	52	$HV_{OUT}C3$
21	HVGND	53	$HV_{OUT}B3$
22	V _{DD2}	54	$HV_{OUT}A3$
23	BLC	55	$HV_{OUT}D2$
24	BLD	56	HV _{OUT} C2
25	LE	57	$HV_{OUT}B2$
26	$D_{OUT}D$	58	$HV_{OUT}A2$
27	$D_{IN}D$	59	$HV_{OUT}D1$
28	$D_{IN}C$	60	HV _{out} C1
29	D _{OUT} C	61	$HV_{OUT}B1$
30	POL	62	$HV_{OUT}A1$
31	LVGND	63	V_{PP}
32	DIR	64	HVGND

^{*}Pins 65 to 80 are N/C (ceramic only)

Package Outline

3-sided Plastic 64-pin Gullwing Package

80-pin Ceramic Gullwing Package

Supertex inc.