Off-Line High Voltage EL Lamp Driver

Ordering Information

	Package Options					
Device	8-Lead SO 8-Lead SO + Slug 7-Pin TO-220 Die					
HV809	HV809LG	HV809SG	HV809K2	HV809X		

Features

- □ Processed with HVCMOS[®] technology
- ☐ Input voltage up to 200V DC
- 400V peak-to-peak output voltage
- ☐ Output load up to 350nF (100 in² for 3.5nF/in² lamp)
- □ Adjustable output lamp frequency
- Adjustable On/Off pulsing frequency

Applications

- □ Electronic Organizers
- ☐ Handheld Portable Computers
- Display Signs
- □ Portable Instrumentation Equipment

Absolute Maximum Ratings

HV _{IN} , Input Voltage	+210V		
V _{DD} , Internal Logic Volt	+15V		
Operating Temperature	Range	-25°C to +85°C	
Storage Temperature F	Range	-55°C to +150°C	
Power Dissipation	SO-8	500mW	
	SO-8 + Slug	1.5 Watts	
	7 Pin TO-220	15 Watts	

Note:

General Description

The Supertex HV809 is an off-line high voltage EL lamp driver integrated circuit designed for driving EL lamps of up to 350nF at 400Hz. The input supply voltage can be a rectified nominal 120V AC source or any other DC source up to 200V. The HV809 will supply the EL lamp with an AC square wave with a peak-to-peak voltage of two times the input DC voltage.

The HV809 has two internal oscillators, a low output voltage linear regulator, and a high voltage output H-bridge. The high voltage output H-bridge frequency is set by an external resistor connected between the $R_{\text{EL-osc}}$ and GND pins. The EL lamp is connected between V_{A} and $V_{\text{B}}.$ For the HV809 in the 8-pin package, an external RC network can be connected between the oscillator's osc1 and osc2 pins to pulse the EL lamp on and off.

Pin Configurations

For detailed circuit and application information, please refer to Application Note AN-H36.

^{*}All voltages are referenced to GND.

Electrical Characteristics

DC Characteristics (Over recommended operating conditions unless otherwise specified, $T_A = 25^{\circ}C$)

Symbol	Parameter	Min	Тур	Max	Units	Conditions
	I _{IN} High voltage supply current			70	mA	$\begin{aligned} &HV_{IN}=170V, \ R_{EL}=1.0M\Omega, \\ &C_{L}=350nF \end{aligned}$
'IN				9	mA	$\begin{aligned} &HV_{IN}=170V,\ R_{EL}=1.0M\Omega,\\ &C_{L}=50nF \end{aligned}$
I _{INQ}	Quiescent supply current			400	μА	$HV_{IN} = 170V$, $R_{EL\text{-osc}} = 1.0M\Omega$, osc1 = GND, No Load
				100	μА	$HV_{IN} = 170V$, $R_{EL-osc} = 1.0M\Omega$ osc1 = V_{DD} , No Load
I _{SINK}	osc2 sink current		300		μА	$V_{osc2} = 1.0V$
I _{SOURCE}	osc2 source current		100		μА	$V_{osc2} = V_{DD} - 1.0V$
I _{osc1}	osc1 logic input leakage current		±10		μА	$V_{osc1} = 0V$ and V_{DD}
V _H	osc1 hysteresis voltage		2.5		V	
V _{A-B}	Min differential output voltage across lamp			400	V	HV _{IN} = 200V
V _{DD}	Internal supply voltage	8	10	12	V	No load on V _{DD}
I _{DD (OUT)}	Maximum output V _{DD} current			4	mA	For HV809K2, $\Delta V_{DD} = 1.0V$

AC Characteristics (Over recommended operating conditions unless otherwise specified, $T_A = 25^{\circ}C$)

Symbol	Parameter	Min	Тур	Max	Units	Conditions
f _{EL}	V _{A-B} output drive frequency	320	400	480	Hz	$R_{EL\text{-}osc} = 1.0M\Omega$, osc1 = GND, $C_L = 350$ nF
		0.8	1.0	1.2	KHz	$R_{EL\text{-}osc} = 390 \text{K}\Omega$, osc1 = GND, $C_L = 150 \text{nF}$
t _r	Output rise time		180	250	μs	CL = 150nF, HV _{IN} = 170V
t _f	Output fall time		50	100	μs	CL = 150nF, HV _{IN} = 170V

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units	Conditions
HV _{IN}	High voltage input	50		200	V	
C _L	Load capacitance			350	nF	$R_{EL\text{-}osc} = 1.0M\Omega, HV_{IN} = 170V$
				150	nF	$R_{EL\text{-osc}} = 390 \text{K}\Omega, \text{ HV}_{\text{IN}} = 170 \text{V}$
T _A	Operating temperature	-25		85	°C	

Function Table

osc1	Outputs V_A and V_B		
GND	Enabled		
V_{DD}	Disabled		

Block Diagram

Typical Applications

Typical Application

