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8.1 Introduction

When an analogue signal is sampled in time, the sampled signal is referred to as a discrete-time signal. If 
each sample in this discrete-time signal is also quantised in amplitude, (e.g. represented by an arbitrary n-bit 
number), then it is usually referred to as a digital signal. In the subject of digital filtering it is these types of 
signals which are processed and operated on. The fact that the digital signals are quantised both in time and 
amplitude gives one greater control over the processing as compared to analogue signal processing.

In these application notes the concept of the digital filtering is first introduced. This is done by starting from 
a simple RC analogue filter and deriving a corresponding digital filter. The classification of digital filters is 
then summarized, followed by giving a summary of techniques applicable to filter design using the IMS A100 
device.

8.2 From analogue to digital

Figure 8.1a shows a simple first-order RC filter. The simple differential equation describing this circuit in 
terms of its input and output voltages is:

voM + RC dvo(t)
= Vi(t) (1)

where vo(t) and Vi(t) are analogue output and input voltage waveforms. In the analogue world both input and 
output voltages are continuous-time waveforms and the complexity of the solution would depend on the input 
voltage function t/*(f). Given an input waveform «<(t), the solution can be obtained using:

(i) Standard mathematical techniques which solve the differential equation and obtain the output wave­
form in closed form.

(ii) Numerical techniques which calculate the approximate output waveform in a digital computer. This 
would necessitate the sampling of the input and output waveforms.

The second method above provides the basis for digital filtering techniques. Consider that the input and the 
output voltages are sampled with a sampling interval T such that Vi(nT) and v0{nT) represent the values of 
Vi(t) and u0(i) at time t = nT.

If T is sufficiently small then the derivative at time t = NT can be approximated by:

dvg(nT) "  v0(nT) — v0((n — 1 )T)
dt ~ T K 1

substituting this in equation (1) we obtain:

PC PC
»o(nT) + y « o (» 2 1  -  ~ v 0((n -  1 )D  -  t*(»T) (3a)

Equation (3a) is a linear difference equation that approximates the differential equation (1). Equation (3a) 
can be rewritten as:

■ T T m r n * " 7  ̂*  7^ 5 ^ ) M (”  ~ 1 ,T) (3 i|
This is now a recursion formula in which the present input sample and the previous output sample are used 
to calculate the present output sample. The notation can be simplified to:

vQ(n) = boVi(n) + â vQ(n) (4a)

where &o -  u (rc/t) anc* a1 ~ u-{rg]t)'

The signal-flow diagram for this filter is shown in figure 8.1b. The block labelled ’D’ represents a delay equal 
to one sampling period T. In digital filter notations a delay of n sampling periods is usually denoted by z - n. 
Therefore a delay of one sampling period can be represented by 2“ 1.



It is important to note that a common element in all filter structures is the concept of storage. In the analogue 
RC filter (figure 8.1a) the storage is present in the form of a capacitor and in its digital equivalent (figure 8.1b) 
the storage takes the form of a delay stage. In fact the storage element is the essential ingredient for any 
filter whether analogue or a digital. This is because filters are used to operate on the signal 'changes’ and as 
such they need to have some knowledge of the history of the signal to allow them to perform their function.

(a) Analogue RC filter

(b) Discrete-time version of (a)

Figure 8.1 Analogue RC filter and its discrete-time equivalent

An important characteristic feature of any filters is its so called ‘impulse response’. This is defined as the 
output waveform of the filter when a unity impulse is applied to the input. Using equation (4a) and assuming 
a unity impulse as the input waveform i.e.

0) =1
Vi (n) = 0 for n > 0

then the output sequence would be:

60, ai&o, o%bo,....... , a?6o,

or in short
vo(n) = a” bo

It should be noted that the above impulse response has, in theory, infinite length. This is due to the recursive 
nature of this particular filter structure. This types of filters are often referred to as infinite-impulse-response 
(HR) filters.

An alternative way of looking at the filter in this example is to use equation (4a) in successive substitutions 
i.e.

v0(n) -  boVi{n) + 01 vQ{n — 1)
= &ov* (n) + ai [6ou* (n — 1) + 01 v0(n — 2)]
= boVi(n) +a-\boVi(n — 1) + a%\boVi(n — 2) + a-\v0(n — 3)]

m

= boVi(n) + ai boV{(n — 1) + of 6ov*(n — 2) + af&ot;*(n — 3) +



Equation (4b) expresses the output waveform as a linear combination of input samples only, but this involves 
infinite number of input samples. Notice also that the coefficients 60 and â  have positive values less than unity 
(i? and C are assumed to be finite and non-zero). This means that in equation (4b) the coefficients decrease 
for older input samples. It may therefore be reasonable to assume that these coefficients approximate to zero 
beyond a certain point. In this way only a finite number of terms would be involved in equation (4b), or in other 
words, the infinite impulse response is approximated by a finite impulse response since it decays rapidly to 
zero. This modified filter with its finite duration impulse response falls in the category of FIR (Finite-Impulse 
Response) filters. In the next section these concepts are generalized.

8.3 Digital filter classifications

Linear difference equations, similar to equation (4a & 4b) are the basis for the theory of digital filters. The 
general difference equation can be expressed as:

M  N
y(n) + *my(n -  m) = bkx(n -  k) (5)

m=1 fc=0

Where the x and y sequences are the input and the output of the filter and am’s and bk's are the coefficients 
of the filter.

As mentioned earlier the notation z“ 1 is often used to denote a delay equal to one sampling period. In 
the theory of the dicrete-time signals, the concept of 2? has been developed further and is referred to as the 
^-transform. This is a discrete-time version of the well known Laplace transform (sometimes referred to as the 
s-transform) which is mainly used for dealing with continuous signals. In the 5-domain a delay of T seconds 
corresponds to e~*T. Therefore the two variables s and z are related by:

z~1 = e-*T (6)

where T is the sampling period.

In the 5-domain the spectrum of a signal with a bandwidth B and sampled at a frequency / , ,  is periodic with 
a period equal to / , .  This is depicted in figure 8.2. This periodicity in the spectrum of a sampled signal is the 
basic reason behind the Nyquist criterion which requires a minimum sampling frequency of twice the signal 
bandwidth (i.e. f9mtn = 2 x 5 ) ,  in order to avoid aliasing effects.
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B is the bandwidth of the signal and f9 is the sampling frequency.

Figure 8.2 Spectrum of a sampled signal



Equation (6) allows a mapping between the two domains. Part of the imaginary axis between to +4?-, in 
the 3-plane, is mapped into a unit circle in the 2-domain as shown in figure 8.3. The fact that the imaginary 
axis in the s-plane is mapped onto a circle is a consequence of the periodic nature of the spectrum. As 
shown in figure 8.3, the left-hand half of the 3-plane (between and +fy) is mapped onto the inside of the 
unit circle, while the right-hand half is mapped onto the outside of the circle.

s-plane z-plane

Figure 8.3 Relationship between the s-domain and the 2-domain

As in the analogue design (3-domain) where a pole in the wrong place, i.e. in the right-half plane, indicates 
instability, in the case of discrete-time signals (2-domain) a pole outside the unit circle causes instabilities. In 
both cases zeroes can be anywhere.

Using the 2-transform notation, the general linear equation (5) can be expressed as:

M  N

Y(z)( 1 + Y .  = X(z) Y  hz~k (7)
m=1 k=o

Where X(z) and Y(z) are the 2-transforms of the input and output waveforms. The discrete-time (or digital) 
transfer function of the general filter is thus given by:

H(z) = Y(z)
X(z)

S L A * - *
1 + Em=1 < W

(8)

In terms of realization, digital filters are classified into nonrecursive and recursive types. The nonrecursive 
structure contains only feed-forward paths and as such all the am terms (equation (8)) are zero. This means 
that for the nonrecursive filters the output is a sum of linearly weighted present and a number of past samples 
of the input signal as shown in figure 8.4. Referring to equation (8), for the nonrecursive filters the transfer 
function has only zeroes and as such is always stable.



Figure 8.4 Nonrecursive digital filter structure

In the recursive filters on the other hand some or all of the am terms are non-zero resulting in the presence 
of both poles and zeroes in the transfer function. Figure 8.5 shows the general recursive filter structure. 
Figure 8.6 shows an alternative structure for the same transfer function with a reduced number of delay 
stages.

output

Figure 8.5 Recursive (HR) digital filter structure
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Figure 8.6 Alternative recursive (HR) digital filter structure with reduced number of delay stages

Digital filters are also classified in terms of their impulse responses. In this classification those filters with 
a finite duration impulse response are referred to as FIR filters and those with an infinite duration impulse 
response are called HR filters. The simplest FIR filter realization is in the nonrecursive form. For example in 
figure 8.4, if a unit impulse is clocked through the filter, the sequence,

bo, 61 > &2, —fejNT, 0 ,0 ,0 ,0 ,0 ,.... 0,0,0 (9)

will be output. Notice that the response consists of a sequence of samples corresponding to the filter 
coefficients followed by zeroes, i.e. the nonrecursive structure is an FIR filter. On the other hand the impulse 
response of the recursive structure (figures 8.5 & 8.6), because of the feedback paths, is infinite in duration, 
making the configuration an HR filter.

8.4 Digital filter design

Digital filter design methods can be divided into two categories:

(a) Design techniques suitable for FIR filters.

(b) Design techniques suitable for HR filters.

In both cases the requirement is simply the choice of filter coefficients in such a way that the specification 
for the required transfer function is met. The IMS A100 can be used to implement high performance FIR 
filters directly. It can also be used to implement HR filters, although the general problems associated with HR 
filter design are then introduced. In this section a brief comparison between FIR and HR filters is given and 
some of their associated design techniques are summarized. Where necessary the IMS A100 implementation 
issues are also discussed.

8.4.1 Comparison between FIR and HR filters

FIR filters, because of their finite-impulse response have no counterparts among analogue filters and as 
such can implement transfer functions which cannot be realized in the analogue world. One such property



is the excellent linear-phase characteristic which can easily be realized with FIR filters. Since a linear-phase 
response corresponds to only a fixed delay, attention can be focussed on approximating the desired magnitude 
response without concern for the phase. The design techniques for FIR filters are generally simpler than those 
for HR filters, and as there are no feedback paths in an FIR filter, the stability of the filter is guaranteed. Also 
FIR filters have been employed, and algorithms have been developed, for adaptive processing while the use 
of HR filters in these types of systems is not common.

HR filters on the other hand have infinite impulse responses and thus their design can be closely related to 
analogue filter design. HR filters in general require fewer stages compared to FIR filters but their stability is 
not unconditional and great care should be taken to insure stability. Furthermore HR filters do not generally 
result in linear-phase characteristics which is important in many applications.

8.4.2 Basic design parameters

In digital filter design, for the reason of convenience, the frequency axis is usually normalised with respect to 
the sampling frequency / , .  For example for a filter with an actual pass-band cut-off frequency of 20kHz, a 
stop-band cut-off frequency of 30kHz and a sampling frequency of 100kHz we have:

The normalised pass-band cut-off frequency / p6 = = 0.2

The normalised stop-band cut-off frequency f9b = ^  *  0.3

As shown in figure 8.7 the useful frequency axis (normalised) extends from 0.0 to 0.5, because the Nyquist 
sampling theorem requires a signal to be sampled at more than twice its highest frequency. This means that 
the ratio of the frequency of any component in the signal to the sampling frequency must always be less than 
0.5.

Figure 8.7 Specification parameters for a low pass filter.
Similar parameters exist for high pass and band pass filters.

Referring to figure 8.7, the pass-band and the stop-band ripples are usually expressed in dBs i.e:

pass-band ripple (<*£)= 20 logi0(1 + £1)

stop-band ripple (d,B)= -2 0 lo g 10(̂ 2)-



The parameters fpb, f9bt Su S2 and the sampling frequency define the basic specification of a filter prior to its 
design.

8.4.3 Design techniques suitable for FIR filters

As mentioned earlier one of the major advantages of FIR filters is the ease with which linear-phase behaviour 
can be obtained from these types of filters. Before summarizing the design techniques for FIR filters let us 
briefly consider the necessary conditions for linear-phase behaviour. It can readily be shown that in order to 
obtain an FIR filter with a linear-phase characteristic, the following condition has to be met (references 1 & 
2) :

h(z) -  ±h(N -  i) for 0 < i  < N
= 0 otherwise '

This condition requires that the the impulse response of the FIR filter, h(i), to have either positive or negative 
symmetry.

In the case of positive symmetry the frequency response will be of the form

H(e3uT) = A(wT)e-}'u™ /z (11 a)

where A(wT) is a real function of w. Notice that the phase is a linear function of frequency. These types of 
filters are appropriate for frequency selective filters.

In the case of negative symmetry the filter transfer function will have the following form:

H{e3uT) = jB(wT(11 b)

Again B(wT) is a real function of w. Note that the phase is again linear with frequency, but we also have 
a j  term which indicates an extra phase shift of f . These types of frequency responses are required to 
realise approximate differentiators and Hilbert transforms which implement a f  phase shift over a specified 
frequency range.

There are essentially three well-established classes of design methods for (linear phase) FIR filters which 
are:

(i) window method

(ii) frequency sampling

(iii) optimal design (Remez Exchange Algorithm)

Each one of these techniques has its own merits and the choice of which would depend on the application 
requirements and the design time involved.

Window method

This is the most straight-forward approach to the design of FIR filters. In this method having defined an 
ideal frequency-response function, the corresponding ideal impulse response is determined by evaluating the 
inverse Fourier transform of the ideal frequency response. In the selection of the ideal frequency response, 
the linear phase condition may or may not be applied depending on the application.



As mentioned earlier because digital filters deal with signals sampled at a frequency f9,\t therefore follows 
that this frequency response is periodic in frequency with a period equal to f0 (Nyquist theorm). It is therefore 
possible to relate the impulse response and the frequency response of a digital filter via the following Fourier 
pairs: +oo

* ( « ) -  E  M »)*-,n" r  (12)
ns—oo 

1 /-T*-
h(n) = —  /  (13)U)9

where u>9, is the sampling frequency in radians/s and T is the sampling period. Having defined an ideal 
frequency response, H(w), equation (13) can be used to obtain the impulse response, h(n), of the filter. 
As an example consider the ideal low-pass frequency response characteristics with a cut-off frequency wc 
as shown in figure 8.8a. Using equation (13), and equating H(w) to 1.0 for -w c < a) < +wc and to zero 
elsewhere, we can calculate the impulse response h(n) which is given by:

^ s i n M  
n (nu)cT)

(14)

where - oo < n < +oo. This impulse response is shown in figure 8.8b. There are two problems associated 
with this impulse response obtained in this way:

(i) The filter impulse response is infinite in duration and as such an FIR filter of infinite length is required 
(remember as discussed earlier for FIR filter the impulse response sample values are effectively the 
filter coefficients).

(ii) The filter is unrealizable since the impulse response begins at - oo,  indicating that no finite amount 
of delay can make the impulse response realizable.

One way to obtain an FIR filter which approximates the required frequency response is to truncate the infinite 
impulse response at n = ± £ ,  (see figure 8.8c), and shift the impulse response to the right to avoid negative 
time (figure 8.8d). This would result in a realizable FIR filter with N  +1 coefficients which are equal to the 
impulse response samples.

The problem with this direct truncation of the impulse response is that it results in a fixed amount of overshoot 
(approximately 9%) before and after the discontinuity in the frequency response. In the literature this problem 
is referred to as the Gibbs phenomenon. For this reason, direct truncation is not often a reasonable way of 
designing FIR filters.

The frequency response of a truncated time series can be improved considerably by using a window function, 
w(n), which modifies the impulse response to u/(n) x h(n). In the previous example the window was simply a 
rectangular window. Figure 8.9 shows the application of a different window function to the example of the ideal 
low-pass filter. Figure 8.9a shows the ideal infinite duration impulse response. Figure 8.9b shows the window 
function and figure 8.9c shows the impulse response after the application of the window function. Figure 8.9d 
shows the shifted impulse response which avoids unrealizable negative delays. The filter coefficients (6fc’s) 
correspond to the sample values of this modified impulse response which is now finite and realizable. Several 
window functions have been suggested in the literature some of which are:

(i) Hamming window

(ii) Hanning window

(iii) Kaiser window

(iv) Dolph-Chebyshev window

(v) Blackman window



The generalized Hamming window function is given by:

Wff(n) = a + (1 -  a ) c o s ( ^ )  for -  ( ^^- )  < n <  — / ^v 
= 0 otherwise

where 0 < a < 1. If a = 0.54 the window is called a Hamming window, and if a = 0.50 it is called a Hanning 
window.

For the Hamming window the main lobe of the frequency response is twice the width of that of the simple 
rectangular window. The amplitudes of the ripples of the Hamming window frequency response are consid­
erably smaller than those of the rectangular window. For the rectangular window the peak side lobe (in the 
stop band) is only 14dB below the main-lobe (pass-band) peak. For the Hamming window the peak side 
lobe ripple is about 40dB below the pass band peak. Furthermore for the Hamming window 99.96% of the 
spectral energy is in the main-lobe peak.

Another family of windows are those proposed by Kaiser:

Wjr(n) = W , - y - 1)E> -  ( * f l )  <  » < (16)
= 0 otherwise

Where J0 is the modified Bessel function of the first kind. The parameters p is used to specify the main-lobe 
width and the side-lobe level of the frequency response, p is usually specified to have a value between 4



and 9. This range of p corresponds to a range of side-lobe peaks of 3.1% to 0.047% of the main-lobe peak. 
The Kaiser window is essentially an optimum window in the sense that it is a finite duration sequence that 
has the minimum spectral energy beyond some specified frequency. For the Kaiser window the width of main 
lobe is almost three times that of the rectangular window, while the peak side lobe in the stop band is 57dB 
below the pass-band peak. The side-lobe ripple envelope decays to 94dB below the pass-band peak at half 
the sampling frequency.

The Dolph-Chebyshev window function has the minimum width of the main lobe in its frequency response for 
a given peak value of side-lobe ripple. For this window the stop-band ripples all have the same amptitude. 
Recursive equations exist which allow this window function to be evaluated.

References 1 and 2 contain further information on this design method and the associated window functions.
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(a) impulse response for an ideal low pass filter.
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(b) window function w(n).
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(c) impulse response after the application of the window function.
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(d) time-shifted impulse response.

Figure 8.9

Frequency sampling technique

This technique is less common than the other two design methods, however for the sake of completeness it 
is briefly mentioned here.

The basic idea behind this technique is that the given (desired) frequency response is approximated by 
sampling it at N equally-spaced points along the frequency axis between 0 and f9 (corresponding to N 
samples on the unit circle in the z-plane). An N-point inverse DFT is then performed on these N frequency



samples to give N  samples of the impulse response h(n) which corresponds to the filter coefficients. The 
^-transform of the filter impulse response is then given by

N - 1

H(z)  =  h(n)z~n
k=0

Substituting eju)T for z, the resulting frequency response of the filter may be evaluated which would be an 
approximation of the desired frequency response. The approximation error would be exactly zero at points 
where the desired frequency response was sampled and would be finite between them. This process is 
depicted in figure 8.10.

To reduce these approximation errors a number of frequency samples (particularly those in the transition 
band between band-pass and band-stop regions, i.e. points T-i, T2, X3 and r 4 in figure 8.10) can be made 
unconstrained variables. The values of these unconstrained variables are then optimised using computer 
optimisation techniques involving linear-programming methods. This involves the solution of a set of linear 
unequalities in the unconstrained frequency samples. In this way, by adjusting the frequency sample values 
at 2 i, r 2, X3 and r 4, considerable ripple cancellation, both in the pass-band and stop-band, can be achieved 
resulting in very good filter characteristics. The detail of these techniques are beyond the objectives of this 
application note, however interested readers can refer to reference 1 for further information.

Figure 8.10



Optimal filter design -  (Remez exchange algorithm)

In the frequency sampling technique, discussed in the previous section, some degree of improvement in 
the filter characteristics is obtained by allowing only a few of the frequency samples to be adjusted via a 
linear-programming technique.

An even more powerful technique which results in truly optimal filters, in the sense of having the sharpest 
transition between pass bands and stop bands (for a given filter length and a given approximation error) 
has been formulated based on the so-called Chebyshev approximations. Computer optimisation techniques 
based on linear programming have been developed (references 3, 4, 5 & 6) which allowed engineers to 
design optimal FIR filters with a minimum amount of knowledge about the actual optimisation algorithm. 
These iterative algorithms are based upon the principles of the Remez exchange algorithm. This algorithm 
yields optimal filters that satisfy the so-called minimax error criterion (reference 1), where for a given number 
of coefficients, the filter minimizes the maximum ripple amplitude in the pass band. The implications of this 
optimal design are:

(a) The Remez exchange algorithm results in an FIR filter with the smallest number of coefficients 
satisfying the required specification.

(b) The pass-band ripple components all have the same magnitude and need not be equal to the stop- 
band ripples, but their ratio must be specified.

The input to the Remez exchange program usually includes the type of filter (frequency selective filters, 
differentiators and Hilbert transform filters), normalised stop-band and pass-band edges, the desired minimum 
stop-band attenuations, the maximum pass-band ripple and the ratio of the pass-band to stop-band ripples.

The output of the program include estimated filter length, and impulse response (filter coefficients). It also 
includes first pass computed values for design parameters, such as pass-band ripple, stop-band attenuation. 
If the computed values do not satisfy the design requirements, the filter length may be increased slightly and 
the program is run again. Interested readers can find copies of this program in references 1, 2 & 4.

Implementing FIR filters with the IMS A100

The coefficient word size in the IMS A100 can be programmed to be 4, 8, 12 or 16 bits. Having calculated 
the filter coefficients using one of the techniques described earlier, these coefficients are then expressed in a 
4, 8,12 or 16-bit format, depending on the required accuracy. The filter can then be implemented by simply 
loading these coefficients into the IMS A100 coefficient memories. If the number of coefficients (filter stages) 
required is less than or equal to 32, a single IMS A100 would be sufficient, any unused coefficient locations 
being set to zero. If however, more than 32 coefficients are involved a number of IMS A100 devices can be 
cascaded to obtain the required filter order. Alternatively it is possible to partition a long FIR transfer function 
into product terms where each term has an order equal or less than 32. Then, using a single IMS A100, the 
data can be recirculated through the same device with different coefficients (associated with each term in 
the transfer function) for each circulation. In this way a very long FIR filter can be implemented with a single 
device at the expense of a reduction in the data rate.

The IMS A100 can be cascaded very easily, without the need for any external components, to obtain high 
order filters with a high degree of accuracy. The device has a versatile architecture which allows it to be used 
in various system configurations. The coefficients can be programmed via a standard memory interface, 
while the input and output data can be communicated either via the memory interface or dedicated I/O 
ports. Figure 8.11 shows some of the possible system configurations for the IMS A100. In this diagram 
the interface between the host and the IMS A100 consists of data and address buses of the processor plus 
standard memory-type control signals such as R/W, CE and CS. In figure 8.11a the host processor controls 
the filter coefficients, while the actual data to be processed is supplied directly from an A/D to IMS A100. In 
this example the filtered output is fed directly to a D/A. Using the IMS A100 and a host processor it is possible 
to supply the input data to the device and also to collect the filtered samples via the memory interface. This 
allows system configuration such as those shown in figures 8.11b&c. In figure 8.11b the host processor 
receives the input data from a peripheral such as an A/D and writes it (may be after some preprocessing) 
into the data-input register (DIR) of the IMS A1Q0. The filtered output sample is also collected by the host via 
the memory interface and output (possibly after post processing) to a peripheral such as a D/A. Figure 8.11c 
shows a configuration where the IMS A100 is used purely as a signal processing accelerator to the host. 
Numerous other configurations are possible including integrating an IMS A100 into existing microprogrammed 
systems in order to improve the overall system performance.



(a)

data, address & 
control buses

(b)

data, address & 
control buses

(C) Host processor

data, address & 
control buses

IMS A100

Figure 8.11 Possible system configurations using the IMS A100 in digital filtering applications

As mentioned earlier large numbers of the IMS A100 devices can be cascaded to construct FIR filters of a 
high order. The cascading does not involve any external components and is simply a matter of connecting the 
output of the previous device to the cascade input of the next chip and joining the data input ports together 
(if they are being used rather than the memory interface). In normal operation the cascade input of the first 
device should be grounded. Figure 8.12a shows this cascading arrangement for two IMS A100 devices and 
figure 8.12b depicts the block diagram of a system consisting of a host processor and two cascaded devices. 
In the latter case the data-input register (DIR) of both devices should be associated with the same address in 
the host’s address space; and one of the devices should be selected as a master to generate the GO signal 
(see product data sheet for further detail).

Another important feature of the IMS A100 is a selector that is incorporated after the multiply-accumulator 
array. As discussed in the data sheet, the 32 multiply and accumulation in the array are performed to a 
precision of 36 bits which ensures that no intermediate overflows occur. The output selector can then be 
used to select and round a 24-bit word from this 36 bit result. This selection and rounding can be programmed 
to start from bits 7, 11, 15 or 20 and the selected word is sign extended if needed. One particularly useful 
selection is available when the input data and coefficients are in the form of 16 bit two’s complement numbers 
normalised to between +1 and -1 . In this case, if the selection is taken to start from bit 15, the output will 
have the same format as the input data (i.e. normalised to between +1 and -1 ).



(a) cascading of IMS A100 devices using a dedicated input port

(b) cascading of IMS AlOO devices when a host processor is used

Figure 8.12 Cascading IMS A100 devices

8.4.4 The IMS A100 and HR filters

Although the IMS A100 is designed primarily for FIR type filter implementations, it can also be used in realizing 
HR filters. Referring to figure 8.5 it can be seen that two IMS A100 devices can be used to implement an 
HR filter of order 32 or less in the direct form. One Chip performing the calculation in the feed-forward path 
while the other does the feed-back path. Note that in figure 8.5 the Output of the feed-back filter has to be 
combined with the input sequence in a subtractor and fed into the input of the second chip. This subtraction 
can be performed either by the host processor controlling the two IMS AlOOs Or by an external adder.

Mode set to: 
‘Continous Bank Swap’

31___________  7 6 5 4 3 2 1 0

0 bs 0 b2 0 bi 0 C7
 

o

0 &3 0 a2 0 31

Memory bank 
B

Memory bank 
A

Figure 8.13 Coefficient memory allocation for HR filter implementation



A simpler and more elegant technique to implement HR filters using IMS A100 is to make use of the continuous 
bank swap feature on the IMS A100 coefficient memories. This allows a single IMS A100 to be sufficient 
for the implementation of HR filters whose order is less than or equal to 16. (Before describing how this 
can be achieved it is worth noting that HR filters generally require considerably fewer stages than their FIR 
counterparts, and as such a 16th order HR filter implementable on a single IMS A100 can be considered as 
having quite a high order). Figure 8.13 shows the coefficient memory allocations in this approach, where a’s 
and 6’s are the feedback and feedforward coefficients of the HR filter respectively (see figures 8.5 & 8.6) and 
are loaded by the host processor. Note that in figure 8.13 alternate coefficients are set to zero in the two 
memory banks. The chip is also set to the continuous bank swap mode so that in one cycle the feedback 
coefficients (a’s) and in the next cycle the feedforward coefficients (6’s) are used in the calculation. It will be 
shown in the following paragraphs that if the difference between data samples and alternate output samples 
are written to the data input register of the IMS A100, then the remaining output samples would correspond 
to the correct filter output. The sequence of operations is as follows:

The host starts the filter operation by writing the first data value, xo, to the data input register of the IMS 
A100. Remembering that the coefficient allocation is as shown in figure 8.13, the first output of the device 
would be a-iXo- Referring to figure 8.6, it can readily be seen that this is indeed the feed back contribution 
needed to be subtracted from the next data sample x̂ . The host reads this value (aixo) from the data output 
registers (DOH and/or DOL) and stores it and then writes xo, for a second time, to the IMS A100 input. This 
time the coefficient memory banks would have been swapped and the output would correspond to 60x0 which 
can readily be confirmed to be the first correct filter output (see figure 8.6). The host then reads this result 
as the first valid sample of the filtered output.

Next the host subtracts the feedback factor, read in earlier (aoxo), from the second data sample x^, and writes 
the difference to the input register of the IMS A100. Remembering that the memory banks are automatically 
swapped every cycle, the corresponding ouput of the IMS A100 will be:

Q>2%0 +  01 (£1 “  CM Xo)

Referring to figure 8.6 you should be able to confirm that this value corresponds to the feedback contribution 
needed for the third input sample. The host reads this value and stores it and as before writes the input value 
(xi -  a ix0) to the IMS A100 input register for a second time. This will yield the second valid filtered sample 
i.e:

61x0 + 6o(xi — a-ixo) (17)

The process is then continued in the same manner. The output of the IMS A100 will alternate between the 
feedback contribution and the filtered output samples. It should be emphasized that although the host is 
performing a single subtraction for every output value, it is the IMS A100 device which is performing the bulk 
of the processing. Having established how the IMS A100 can be configured to implement HR filters, the next 
section deals with some of the design techniques that are used for determining the HR filter coefficients.

8.4.5 Summary of the UR filter design techniques

The problem of designing recursive filters is one of determining the feedforward and feedback coefficients 
(i.e. 6n’s and am’s in equation (8). The design techniques for HR filters can be categorised into two basic 
groups:

(i) Indirect approaches.

(ii) Direct approaches.

Indirect approaches for the design of HR filters

As mentioned earlier digital recursive filters are closely related to conventional analogue filters. In the indirect 
method this similarity is exploited and the digital filter coefficients are determined from a suitable analogue 
filter, using some form of transformation technique. In other words the indirect approach uses the wealth 
of knowledge already available on analogue filters (such as Butterworth, Chebyshev and Elliptic filters) and 
develops a corresponding recursive digital filter. This method involves the following two steps:

(1) the determination of a suitable analogue filter transfer function H(s)

(2) transformation and digitization of this analogue filter



Some of the most popular design techniques falling Into the indirect category are:

(a) Impulse-invariant transformation.

(b) Bilinear ^-transform.

(c) Matched ^-transform.

These three techniques can be employed to derive recursive digital filters from conventional analogue filter 
structures. Before discussing these three techniques the basic characteristics of the common analogue 
filters, from which HR filters are derived, will be briefly reviewed. The starting point in the indirect HR design 
techniques is often one of the following analogue filter types.

1 Butterworth filters: These filters are characterised by the property that their magnitude character­
istic is maximally flat at the origin of the s-plane. Butterworth filters are specified by their magnitude- 
square functions i.e:

\H(,)\2 ---- -------  (18)

S C

The pole locations in the s-plane are equally spaced around a circle of radius wc (ac = jwc). 
These filters have a monotonically decreasing amplitude function with a roll-off of approximately 
6n dB/decade. Figure 8.14 shows the overall amplitude response of this type of filter.

amplitude

Figure 8.14 Frequency response of the Butterworth filter



2 Chebyshev filters: In these types of filters the peak magnitude of the approximation error is mini­
mized over a prescribed band of frequencies and is also equiripple over the band. Chebyshev filters 
are specified by the magnitude-square function:

l / r ( s ) l2 --------------------  (19)
1 + e2C£( f )

Sc

where CN(s) is a Chebyshev polynomial of order N. The parameter e is used to specify a magnitude 
function with equal ripple in the pass band and monotonic decay in the stop band. Figure 8.15 shows 
the magnitude-square transfer function for the Chebyshev filter (type I) where the amplitude of the 
ripple is given by:

* = (20)

The poles of the Chebyshev filter lie on an ellipse determined from the parameters e, N  and sc. 
Chebyshev filters of type II on the other hand have monotonic behaviour in the pass band (maximally 
flat around w0) and exhibit equiripple behaviour in the stop band. For further details refer to references 
1 & 2 .

Figure 8.15 Frequency response of the Chebyshev filter (type I)



3 Elliptic filters: These filters exhibit a magnitude response that is equiripple in both the pass band 
and the stop band. These filters are optimum in the sense that for a given order and for a given 
ripple specification the transition band is the shortest possible. Elliptic filters are specified by the 
magnitude-square transfer function:

\H(}oj)\2
1

1 +ezCfr{w)
(21)

Where Cy(uj) is a rational Chebyshev function involving elliptical functions. Figure 8.16 illustrates 
the magnitude-square response for an elliptic filter.

Figure 8.16 Frequency response for an elliptic filter

It is not possible to discuss all analogue filter types in this applications note as the main objective here is to 
summarize the basic design technique which allow transformation of analogue filters to digital realizations. 
Interested readers can refer to numerous books available on analogue filters.

Having decided the type and the specification of the analogue filter that satisfies the requirement, the next 
step in the indirect design method is to use one of the three following techniques to obtain the corresponding 
digital filter.

Impulse Invariant Transformation

One of the most common techniques for deriving a digital filter from a given analogue filter is the impulse- 
invariant transformation. As the name suggests this technique consists of using a sampled version of the 
impulse response of the analogue filter as the impulse response of the digital filter, i.e. the transformation 
does not change the impulse response of the analogue filter. Figure 8.17 illustrates the relationship between 
the analogue and the resulting digital responses of a typical low-pass filter obtained via the impulse-invariant 
method. The important point to note here is that sampling the analogue impulse response results in the 
frequency response of the resulting digital filter being periodic with a period equal to the sampling frequency 
f9. This means that the digital filter will have a frequency response similar to a repetitive version of that of the 
analogue filter. If the frequency response of the analogue filter does not decay to near zero beyond ^  then 
serious aliasing would occur and the digital filter response would be corrupted. This aliasing problem means 
that this design technique is not suitable for high pass filters. However for low-pass and band-pass filters the



problem can be avoided by choosing the sampling frequency high enough to ensure that the magnitude of 
the analogue filter response is negligible beyond (Note that the IMS A100 is capable of a sampling rate 
of 2.5MHz for 16-bit data and coefficients).

(a) analogue impulse response

Figure 8.17 The impulsive invariance transformation relationship between 
analogue and digital impulse and frequency responses

To demonstrate how the impulse-invariant transformation is used to digitize an analogue filter, consider the 
simple case of an analogue filter with an impulse response ha{t) = Ae~at i.e. a simple RC filter (the s-domain 
transfer function of this filter is ^ ) .  We start by sampling the impulse response of this analogue filter with a 
sampling interval T to obtain the corresponding impulse response for the digital filter, i.e.

ha(kT) = Ae~akT (22)

The z-transform of equation (22) is

Hd(z) = Y l Ae~akT z~k (23)
k=0

Noting that as equation (23) is a geometric series the result of the summation would be

(24)
Equation (24) provides the ^-domain transfer function of the resulting digital filter. To determine the filter 
coefficient (bk’s and om’s), equation (24) can be compared with equation (8). For this simple example it can 
be seen that we have

ai  = —e~aT and bo = A.



In this example, for the sake of clarity, the impulse responses were used to arrive at the z-domain transfer 
function. As analogue filters are often specified in the s-domain, it is more convenient to perform the impulse- 
invariant transformation directly from the s-domain to the z-domain. It should be obvious to the reader from 
the previous example that the required mapping is of the form

- 1 -  => (25)

It can be shown that this is indeed a general mapping (reference 1), applicable to the impulse-invariant method 
for both real and complex s-plane poles.

As a second example consider the two-pole analogue filter specified by:

Ha(s) = 2
(a + 3)(« + 1)

expanding using partial fraction yields
Ha(s) =

3 + 1
1

8+ 3
Using equation (25) the digital transfer function would be:

Hd{z) = “  T_e—31T"*-f
(e-T__e-ZT)z-i

Again by comparing equation (27) with (8) we obtain the filter coefficients,

6o = 0 &i = e~T — e~3T

(26)

(27)

and
ai  = —(e~T + e~3T) az = e~AT.

As described earlier the sampling period T is chosen to ensure negligible aliasing in the filter transfer function. 

The bilinear ^-transformation

Another indirect design method commonly used for recursive filters is the bilinear ^-transformation. The major 
characteristic of this transformation is that it avoids the aliasing problem which was inherent in the impulse- 
invariant transformation. Given an analogue transfer function # ( 3 ) ,  let us rename the variable a to sa to 
indicate the reference to the analogue world i.e. H(s) = H(sa). Now let us define a new variable sd related 
to 8a by the following mapping:

, 0 = y | tan(f )  (28)

where T is the sampling period.

Since the analogue frequency variable wa is related to the 3-plane variable by sa 
the above mapping as:

2 .tan( —̂ —)

where wd is defined as sd = jwd.

Starting from an analogue transfer function H(jwa), figure 8.18 illustrates the effect of this mapping on this 
transfer function. It can be seen from this diagram that the bilinear transformation compresses the entire 
analogue frequency range (wa = 0 -► oo) into a finite range equal to half the sampling frequency. This means 
that the spectral folding problem is completely eliminated and aliasing is therefore avoided. This compression 
of analogue frequency axis is usually referred to as frequency warping.

The price that is paid for this advantage is a distorted digital frequency scale resulting from this frequency 
warping. It can be seen from figure 8.18 that due to the non-linear mapping the specification of the resulting 
filter, such as the cut-off frequency, would be somewhat different from the starting analogue filter. This 
distortion can be taken into account in the course of digital filter design. For example the cut-off frequency of 
the original analogue filters are modified slightly so as after the mapping the resulting filter has the desired 
cut-off frequencies.

= joja, we can also express 

(29)



Returning to the transformation equation (28), we can rewrite it as:

2 /1 -  e“ *aT\
Sa"

and remembering that z“ 1 = e~*dT we can write

2 /1 - * " 1 
Sa ~ T V 1 +z~1)

(30)

(31)

Equation (31) provides the means for bilinear transformation directly from the s-domain to the sr-domain 
suitable for digital filter implementation. To illustrate how the bilinear transformation technique is used consider 
the following example:

Filter specification

Low pass: 0 10kHz pass band
Sampling rate: 100kHz
Transition band: 10kHz to 20kHz
Stop-band attenuation: -1 0 dB (starting at 20kHz)
Filter must be monotonic in pass and stop band.



Design

The monotonicity requirement indicates a Butterworth filter (see previous sections).We have:

digital filter cut-off fre q u e n cy*^  = 2ir x 10000 
start of digital filter stop b a n d e d  = 2n x 20000.

Since the sampling rate is 100kHz, the sampling period would be

T  = 1 (T 5

therefore
wCdT = 0.2tt and = OAtt

Using equation (29) we can calculate the corresponding analogue filter frequencies i.e.

analogue filter cut-off frequency=wco *  ^tan(0.1?r) *  0.6498 x 105

Start of analogue filter stop band=o;,a *  £tan(0.2ir) « 1,4531 x 105 .

The required order of the Butterworth filter can be determined by using equation(18) and ensuring 
at least 10dBs attenuation at w = wsa = 1.4531 x 105 i.e.

10 log[1 + (
1.4531 x 105 
0.6498 x 105

)2n] = 10

or
1.4531 x 10* 

'0.6498 x 105'
This gives n = 1.367, therefore we choose n = 2.

10

A second order butterworth filter with a cut-off at wca = 0.650 x 105 has two equally-spaced poles 
on a circle of radius wca (reference 1 ) given by

si, s2 — -0.6498 x 105(0.7071 ±  0.7071 = -0.4595(1.0 ±  j) x 10s

and the transfer function is given by:
8182 4.223 x 109

s2 + 0.919 x 105 + 4.223 x 109(s -  si)(s -  s2)
Now we apply the bilinear-* transformation by substituting for $ in the above transfer function from 
equation (31). This gives the following digital filter transfer function:

rr/ , 0.0675 + 0.1349*"1 + 0.0675*~2
~ ! _  1.1430*” 1 +0.4128*” 2 (32)

The digital filter coefficients can be obtained by comparing equation (32) with (8) giving:
b0 = 0.0675 --------
61 =0.1349 o i=  -1.1430
62 = 0.0675 02 = 0.4128

These coefficient values are then expressed in binary with the number of bits governed by the 
required accuracy. The factors affecting the necessary accuracy are discussed in section 5 of this 
application note.

Matched ^-transform

This transformation is a direct mapping from the poles and zeroes in the a-plane to the poles and zeroes in 
the *-plane.

In general the two previous method i.e. the impulse invariant and the bilinear transformations are preferred to 
the matched ^-transform as there are many cases where the matched ^-transformation is not applicable. For 
this reason this technique is not detailed here. It would be sufficient to point out that the mapping is defined 
by the replacement relationship:

s + fc = 1 — z~^e~kT. (33)



The direct design techniques for HR filters

The HR design techniques described so far were based on transforming a known analogue transfer function 
into the required digital filter transfer function. It is however possible to design digital HR filters directly without 
reference to an analogue filter. Direct design methods fall into two categories namely direct closed form 
designs and optimisation techniques.

The direct closed form design techniques begin with the desired response of the filter from which one can 
often decide where to place poles and zeroes to approximate this response. These techniques are not very 
common and as such will not be discussed here.

The second classes of direct HR filter design techniques are based on computer optimisation. In these 
approaches the set of design equations cannot be solved explicitly, instead mathematical optimization tech­
niques are employed to determine the filter coefficients that minimize some error criterion, subject to a set of 
design equations. The algorithms involved in these optimisation techniques are of an iterative nature and are 
terminated when the error reaches a minimum or the number of iterations exceeds a specified limit.

Among the most commonly used optimisation technique is one which minimizes the pass-band ripples in 
filters exhibiting a given stop-band attenuation. This technique is sometimes referred to as the minimax 
method and the optimization algorithm involved has been developed by Fletcher and Powell (reference 7). 
The Fletcher-Powell optimization algorithm generates the filter coefficients by using a convergent descent 
method.

The spectral flatness approach is another optimisation technique and is based on the fact that multiplying 
the desired frequency response by its inverse should result in unity throughout the frequency spectrum (i.e. 
a flat spectral line). Any deviations from the ideal response would result in ripples in this flat spectral line. 
Optimisation techniques have been developed which attempt to minimize these ripples (reference 8). The 
difficulty with this technique is the modeling of the desired frequency response.

Mean-square-error optimization techniques have also been developed for HR filter design. One such technique 
has been described by Steiglitz (reference 9) which involves minimizing the square of the difference between 
actual filter behaviour and the desired performance. This algorithm searches an error .vs. design-parameter 
curve for a local minimum.

The details of the above optimisation techniques are beyond the objectives of this application note. However 
the references given should prove adequate for interested readers.

8.5 Finite word-length considerations and problems

In implementing digital filters both the input samples and the filter coefficients have to be quantised and 
expressed in a limited number of bits. In the IMS A100 chip both the coefficients and data samples can be 
quantized up to 16-bits of accuracy, although smaller word-lengths can be used if desired.

The problems of finite word length in digital filters apply to both FIR and HR filters but their implications are 
much more severe for the HR filters, due to their inherent feedback nature. In the fixed-point implementations 
of digital filters it is usual to normalize the numbers so as to make their absolute values less than one i.e. in 
the form of

-------------------------- dsdArd‘3td2d-\ do
where dn represents the nth bit in the word and (.) indicates the binary point. Using this format (and two’s 
complement notation) the number

0.1111 ...1111
would represent a vlaue very nearly equal to +1, while the number

1.0000... 0000

would represent a value equal to -1 .0 .

If purely integer numbers were to be used the process of truncation or rounding after multiplications would 
become meaningless. However using the above fractional-number representation, where the numbers are



normalized to be less than one, the problems would not arise as the product of two numbers which are less 
than one would also be less than one.

In general there are three sources of error arising in the implementation of digital filters these are:

(i) Finite precision of the filter coefficients

(ii) Limited word length of the input data

(iii) Round-off and truncation errors in the multiplication and addition operations.

The finite precision in the representation of the filter coefficients will obviously cause the frequency response 
of the filter to depart to some extent from that desired for both FIR and HR filters.

Furthermore in the case of the recursive HR implementation, because of the existence of feedback paths, this 
finite precision may cause instabilities in the filter behaviour. This happens because the inaccuracies may 
move the 2?-plane poles outside the unit circle hence causing instabilities. The chances of this happening 
depends on how close the poles are to the unit circle in the first place. If multiplication and addition operations 
are followed by truncation and rounding (in order to contain word growth) further difficulties may arise. These 
problems may manifest themselves in undesirable oscillations in the form of ‘limit cycle’ or ‘overflow’ oscillations 
(discussed later). It is therefore absolutely essential for the filter behaviour to be simulated using the precision 
and roundings involved in the intended implementation. This is particularly relevant to recursive HR filter where 
a risk of instability exists.

One of the consequences of rounding and quantisation in the digital recursive(IIR) filters is the limit-cycle 
phenomenon, which takes the form of a stable periodic non-zero output for zero or constant input. The limit 
cycle behaviour of a digital filter in general is complex and difficult to analyse. However for simple first order 
filters, it is possible to illustrate the effect by way of an example. Consider the first order recursive filter with 
the following equation:

y(n) = 0.09rc(n) + 0.91 y(n — 1)

Assume that each output y(n) gets rounded to the nearest integer, also assume that the input is constant at 
100 and the previous output is 90.

The following table shows the resulting rounded output sequence for each iteration.The last column shows 
the perfect output (without rounding) for comparison.

n x(n) y(n) rounded y(n) perfect y(n)
0 100 - 90 -
1 100 90.9 91 90.9
2 100 91.81 92 91.72
3 100 92.72 93 92.46
4 100 93.63 94 93.14
5 100 94.54 95 93.76
6 100 95.45 95 94.32
7 100 95.45 95 94.83
8 100 95.45 95 95.30
9 100 95.45 95 95.72
10 100 95.45 95 96.11

100 95.45 95 100.0

It is observed that the output sticks at a value of 95. However if the same filter is implemented with very high 
precision and no rounding the filter output would closely approach 100 (last column in the table).



If we approach the limit from the opposite side by starting with a value of y(n) of say 110, the output would 
arrive at a limit of 105. You can see from this example that the system has a dead zone of ±5 units around 
the ideal output of 100.

In fact it can mathematically be shown that for a first-order recursive filter of the form

y(n) = bx(n) + ay(n — 1)

The dead zone is given by

where q is the quantisation step, 
gives a dead zone of ±5 too.

For second-order systems similar

i|dead zone | < -——
M

In the above example a quantised step of 1 was used and

results to (34) have been derived in the literature (reference

(34)

equation (34)

1) .

Overflow oscillation is another problem associated with digital recursive filters. In the IMS A100 chip the 
full internal precision ensures that no overflow occurs in the multiply-accumulator array. The only source 
of possible overflow is the external addition which is performed in combining the feedback terms with the 
input samples (see section 4.4). A simple but effective way to eliminate these oscillations is to perform this 
addition in a saturating manner (similar to analogue adders). This operation can easily be taken care of by 
the controlling host processor.

In the IMS A100 device the data and coefficients can be expressed to a precision as high as 16 bits. The 
32 multiplications and additions are carried out to 36-bit precision. This ensures that no overflow occurs in 
the multiply-accumulation array (unless all the coefficients and 32 consecutive data items have values equal 
to the most negative 16-bit number i.e. 1000000000000000 in binary, which is of course highly unlikely). 
The selector at the output of the multiply and accumulate array allows the rounding and selection of 24 bits 
out of this 36 bits. The combination of full internal accuracy, the selector functionality and the fact that the 
IMS A100 devices can easily be cascaded allows high quality FIR filters to be readily implemented. As 
described earlier the device can also be used to implement efficient MR filters only in direct forms. It is well 
known that for high order filters direct implementations of HR filters are more prone to instabilities compared 
to cascade or parallel arrangements. However the full internal precision of the IMS A100 combined with 
comprehensive filter simulations should minimize these instabilities. It should however be emphasized that 
it is possible to implement a high order high precision HR filter in the cascade form on the IMS A100 at the 
expense of processing speed. In this case the IMS A100 should be used to implement low order (2nd or 4th 
order) sections of a cascade arrangement in turn by reloading suitable coefficients. The functionality of the 
whole filter is obtained by recirculating the first output batch through the chip with its coefficients modified to 
implement the 2nd section in the cascade array and so on.

For the MR filter implementations figure 8.11c & 8.11b can be considered as possible system configurations.

8.6 Adaptive filters

So far we have discussed digital filters with fixed characteristics. Fixed filters are used in many practical 
situations to combat noise or interfering signals (e.g. a matched filter) or to select a desired frequency band 
(e.g. a band-pass filter). In digital signal processing the parameters of such fixed filters are determined once 
and remain unchanged during processing. Adaptive filters on the other hand automatically adjust their own 
parameters and seek to optimize their performance according to a specific criterion. The adaptive nature of 
such filters makes them particularly suitable for situations where signal properties are unknown or variable 
with time.

Figure 8.19 illustrates the basic structure of an adaptive filter. The input signal x(t) is filtered or weighted 
in a programmable filter to yield an output y(t). The filter output y(t) is then compared with a reference 
(sometimes called a training signal) waveform to yield an error signal e(t). This error is then used to update 
the filter coefficients in such a way that the error is progressively minimized. Several algorithms for updating 
the filter coefficients have been developed and can be found in references 10, 11 & 12.



Figure 8.19 Basic structure of an adaptive filter

One example of adaptive filtering is echo cancellation in telephony. Echoes are the result of impedance 
mismatches in the communication circuits. The hybrid couplers which are used at the interface between 
two-wire and four-wire circuits are a major source of echoes. Figure 8.20 shows how an adaptive filter 
arrangement can be used to cancel these echoes at the hybrid interface. Notice that in this case the training 
signal contains the echo, while the input to the adaptive filter is the signal arriving at the hybrid. Effectively 
the filter adaptively models the echo path and produces a synthetic antiphase echo return which cancels the 
echo in the 4-wire path returning from the hybrid.

Figure 8.20 Application of adaptive filtering techniques to echo cancellation

Adaptive filters have application in low-bit rate speech coding based on linear prediction where the filter 
coefficients, after adaption, are transmitted instead of the speech signal itself.

The programmability of the IMS A100 can be exploited in the implementation of adaptive filters as well as 
fixed filters discussed earlier.
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