
D n m o s

discrete
Fourier
transform
with the
IMS A100

9.1 Introduction

In the time-domain representation, signals are expressed as a function of time. For example x = Ae~at is
a time-domain description of a signal whose amplitude decays exponentially with time.

In the 18th century J.B. Fourier showed any signal that can be generated in a laboratory can be expressed as a
sum of sinusoids of various frequencies. In other words each signal can be said to have a frequency spectrum
represented by the amplitude and phases of various sinosoidal components. The frequency spectrum of a
signal completely specifies it and is referred to as frequency-domain description of the signal.

The Fourier integrals provide the means for obtaining the frequency-domain representation (the spectrum) of
a signal from its time-domain representation or vise-versa, i.e.

Fourier Transform:

where a;(t) is a time-domain signal, X(u>) is the frequency spectrum of x(t) and u> is the frequency
variable.

These transforms are fundamental to the description of many real world phenomena in the fields of sci
ence and engineering. In the area of signal processing the Fourier transform is an important mathematical
(and nowadays practical) tool in understanding, analysing and solving system-level problems. The Fourier
transform allows us to translate time serial information into the frequency domain in a reversible way. The
components of a signal, although dispersed in the time domain, may have restricted occupancy or a char
acteristic relationship in the frequency domain. In fact many physical processes can be categorised by the
frequencies they generate and their relative strength. This is one reason why the Fourier transform, with
its ability to segregate frequency components of a signal, has gained such an importance in many signal
processing environments.

Apart from the ability of the Fourier transform to provide spectral information, many signal processing functions
such as correlation, filtering and beamforming can be expressed in terms of the Fourier transform and its
inverse. For these reasons considerable effort has gone into the development of efficient algorithms for
evaluating the Fourier transform. The continuous-time Fourier transform, given by equation (1), can be made
suitable for digital computation by sampling the time and frequency variables and limiting the computation to
a finite set of data points. This modified version of the Fourier Transform is often referred to as the Discrete
Fourier Transform (DFT) and will be discussed in more detail in the next section.

Many algorithms have been developed for efficient digital computation of the DFT. Until recently the digital
multipliers needed to implement DFT’s were costly, large and relatively slow, and the general purpose micro
processors were extremely slow at performing multiplications. Consequently it was necessary to calculate
DFT’s using a minimum number of multiplications and to use data and coefficient storage economically and
this led to development of several Fast Fourier Transform (FFT) (references 1 & 2) algorithms. These FFT
algorithms make use of the redundancies, that occur in the DFT, to reduce the arithmetic operations involved.
Most FFT algorithms were designed simply to minimise the total number of multiplications required to calcu
late the DFT, often at the expense of an increase in the number of additions, memory accesses and control
complexity. One such algorithm is the Cooley-Tuckey radix-2 FFT algorithm which necessitates a data size
equal to a power of two (N = 2n). Winogard FFT algorithms on the other hand requires that the number of
data points to be prime. Both algorithms simply minimize the number of multiplications in the DFT by the
use of redundancies resulting from the particular choice of the data size. These algorithms are particularly
suitable for general-purpose computers and microprocessors where the major limit on processing speed is
the time taken to perform the multiply instruction.

d)

Inverse Fourier Transform:
x(t) = — / X(w)eJutdu>

27r J_00
1 r+°°

(2)

Other algorithms have been developed which map the DFT process into particular hardware structures. Two
such techniques are the Rader’s Prime Number Transform (PNT) (reference 3) and the Chirp-Z Transform
(CZT) (reference 4) which convert the DFT into circular correlation/convolutions. These algorithms are particu

larly suitable for implementation using transversal filter type structures. In the past, CCD and SAW transversal
filters have been used to implement high-throughput wide-bandwidth DFT processors using these algorithms.
The analogue nature of the CCD and SAW technologies has restricted the precision of these processors.

The availability of the IMS A100, the first high performance cascadable digital transversal filter, means that
the same algorithms can now be implemented digitally offering both high speed and high accuracy. This ap
plication note deals with the concepts behind these algorithms and their implementations using the IMS A100
signal processor. Generalised mapping techniques which facilitate the DFT evaluation of a long data se
quence via a number of short transforms are also discussed (The radix-2 FFT is a special case of these
more general partitioning techniques). The approach described here is particularly suitable if a long DFT is
to be evaluated with a transversal filter of limited size. Also, these decomposition methods are applicable to
concurrent architectures and as such provide the basis for the trade-off between speed and cost involved in
a particular implementation. These issues are of major importance when combining the IMS A100(s) with the
INMOS transputer family of parallel processors.

Figure 9.1a shows the structure for an N-stage canonical transversal filter where the output is the weighted
sum of the N most recent input samples. The IMS A100 implementation of the transversal filter is depicted
in figure 9.1b where the multi-input summation of the canonical form has been replaced by a delay and add
chain. You should be able to convince yourself that the two structures in figure 9.1 have the same functional
behaviour. The main difference is that in figure 9.1b the partial product terms are passed down the delay-
and-add chain whilst in figure 9.1a, the input samples are delayed and the sum of products is calculated
simultaneously.

Input

Output

(a) canonical transversal filter architecture

Input

■ Output

(b) IMS A100 implementation of the transversal filter

Figure 9.1 Transversal filter architecture

A simplified functional diagram for the IMS A100 is shown in figure 9.2. The major processing part of the
chip incorporates 32 multipliers and a 32-stage delay-and-add chain. For the IMS A100 the input data word
length in 16 bits. The coefficient word length can be programmed to be 4, 8, 12 or 16 bits. The data
throughput ranges from 2.5 million samples/s to 10 million samples/s depending on the coefficient word size.
Two complete sets of coefficient memories are provided. At any instant one set of coefficients is applied to
the transversal filter, whilst the other set can be accessed via a standard memory interface (capable of 100ns
cycle time). The function of the two coefficient memories can be exchanged by writing to control registers.
Further this exchange can be made continuous, i.e alternate sets of coefficients can automatically be selected
for successive computation cycles. This is particularly useful for complex number processing.

Figure 9.2 User’s model of the IMS A100

Data input and output are available both through dedicated ports or via the memory interface. This selection
can be programmed via the control and status registers in the IMS A100.

To preserve complete numerical accuracy, no truncation or rounding is performed on the partial products in
the multiplications and delay-and-add chain. The output of the chain is calculated with a precision of 36 bits
which is sufficient to ensure no overflow occurs (the only time that the output of the delay-and-add chains
exceeds 36 bits is when all 32 coefficients and 32 successive input samples have the maximum possible
negative value i.e. 1000000000000000 in two’s complement binary notation, this is of course highly unlikely).
A programmable barrel shifter is located at the output of this chain, which allows 24 bits (starting at bits 7,
11,15 or 20 of the full 36 bit result) to be selected and rounded for output. To allow devices to be cascaded
without any external components, a 32-stage 24-bit wide shift register and a 24-bit adder are included on the
chip. For cascading purposes the output of one chip is connected directly to the cascade input of the next.

The control registers accessible via the memory interface allows various operational parameters to be pro
grammed. For the full detail of the specification you are advised to refer to the IMS A100 data sheet.

In the following parts of this application note the basic concepts of DFT will be reviewed and some algorithms
for its evaluation will be summarized. This is followed by a detailed description of those DFT algorithms
suitable for implementation using the IMS A100 transversal filter. A multi-dimensional mapping technique is
also described which allows efficient computations of long-length DFTs via the IMS A 100 implementations.

9.2 The basic concepts of DFT

The equation for the Fourier transform and its inverse (equations 1 & 2) can be made suitable for digital
processing by discretizing both the time variable t and the frequency variable w; and by constraining the
integration to finite limits. Referring to equation 1, for the forward transform, this can be done by making
t = nT and w = kuo. Where T is the sampling period of the time function and w0 is the frequency resolution
of the discrete spectrum. If the integration limits are confined over N time samples for which N independent
frequency samples can be calculated we have

n = 0,1,2,3,

A; = 0,1,2,3,

- ,N - 1

, N - 1

The Fourier-transform integral then beoomes a Fourier-transform sum given by:
N - 1

X(kwo) = 53 = 0,1, ...N - 1
n*0

It can be shown that the frequency resolution in the f-domain is given by:
2tt

W o = NT
Substituting this in (3) gives:

X(kxoo) = J2 x(nT)e~2n*kntN = 0,1, ...N - 1

(3)

(4)

(5)

For convenience the terms T and wo are usually dropped from the indicies giving the DFT equation as:
N - 1 N - 1

X(k) = 53 x(n)e~2ninklN = 53 fc = 0,1, - 1 (6)
n«*0 n«0

where
WN = e -2̂ = c o s (^) - s in (^) (7)

The inverse discrete Fourier transform (IDFT) can be derived in a similar manner from its corresponding
continuous form and is given by:

*(») = 77 E X(k)e2” nk'N = -^ 5 3 X(k)W^nk n = 0,1, ...N - 1 (8)
Iy fc-0 iV fc-0

Note that the DFT and its inverse, I DFT, are very similar, the only difference is the factor ± and the negative
exponent in the I DFT. This similarity has important practical significance as it allows an algorithm or a hardware
developed for DFT to be used for I DFT with minor modifications. For example an inverse DFT on the data
sequence x(0),x(1)....x(N - 1) can be carried out by first reversing this sequence to generate a new data
set x '() such that x'(0) = x(N - 1), x#(1) = x(N - 2)........x'(N - 1) * x(0) and then performing a DFT and
dividing the result by N. This technique works simply because x'(k) = x{-k) , (In the DFT both x(n) and X(k)
are assumed to be periodic) which converts the positive exponential in (8) into a negative one, representing
a DFT. For this reason any algorithm or implementation in the following subsections will only be described
for DFT as the extension to an IDFT is trivial.

It is worth noting that some authorities write the DFT and its inverse as:
1 JV-1

X(k) = — 53 DFT
n=0

N - 1
x(n) = 53 X(k)e2”ink/N IDFT

k=0

i.e. the factor ^ is applied to the DFT rather than its inverse. This version can be seen to have a physical
meaning since X (0), as defined, represents the average of the sampled time waveform i.e. the ‘d.c.’ value.
Other authorities express the DFT and its inverse as:

1 N - 1
= z m T ,

* n=0
— 2ixjnk/N DFT

1 N~1
a(n) = - U Y " X(k)e2nink<N IDFT.

This last formulation is necessary if the power contents of the time-domain and frequency-domain signals are
to be identical.

Throughout this application note, the definitions given by equations (6) and (8) are used for DFT and IDFT.
However, the techniques described here are applicable to all three formulations of the DFT and its inverse.

9.3 Algorithms for efficient evaluation of DFT

From equation (6), it is apparent that the direct evaluation of the DFT is very much computation intensive.
Assuming complex data, x(n) = a:r(n) + j xi(n), we have

X(k) rn XR(k) + jXI(k)m]>^[zr(n) + /xi(n)](COS(^^) - j S in (? ^)
n * 0

N N

or 1

XR(Jc) ■ xr(n) COS(-̂ ~—) + xi(n) Sin(—~ ~) (9a)
n=0

and

XI(k) = £ » (») C O S (^) - » (») S i n (^) (96)
n=0

where A; = 0,1,2......N -1 , XR(k) and XI(k) are the real and imaginary parts of the spectrum respectively.

From equation (9) it can be deduced that the direct evaluation of DFT involves 4N2 multiplications and ap
proximately 4N* additions. In these estimates the computations involved in the evaluation of the trigonometric
functions, (sin and cos) have been ignored as it is possible to precalculate the trigonometric values in a look-up
table and use them appropriately. Historically, multiplications were very slow compared to other operations,
therefore algorithms were developed to minimize the number of required multiplications at the expense of
other operations. These algorithms made use of the cyclic nature of the exponential e x p (— */»*) to reduce
the number of multiplications involved.

To demonstrate some of the resulting redundancies, consider the case where N is even. It is fairly straight
forward to show that for this case

(10)

and
(11)

One algorithm which uses these types of redundancies is the Cooley-Tuckey radix-2 FFT (reference 1). This
algorithm requires the number of data points to be equal to a power of two, ie N = 2m where m is an integer.
Using the identities given by (10) and (11) the algorithm expresses the JV-point DFT in terms of two ^-point
DFT’s. Then the f-p o in t DFT’s are expressed as two ^-point transforms using identities similar to (10) and
(11). This decomposition is carried out until all the DFT’s involved are only two-point transforms. The net result
of this decomposition is a considerable reduction in the number of multiplications. In fact it can be shown
that for the Cooley-Tuckey radix-2 FFT algorithm the number of multiplications involved is approximately
2j\Mog2(JV) and the number of additions is 3J\Mog2(i\r). Compared to the 4JV2 operations involved in the
direct DFT calculation, for a large N, the radix-2 FFT algorithm reduces the number of multiplications and
additions considerably.

Another algorithm which also minimises the number of multiplications is Winogard’s prime-length transform
(reference 2). This algorithm is applicable to cases where the data size is a prime number. In practice this
algorithm is used only for short-length transforms and mapping techniques are used to extend it to large data
sizes (references 5 & 6).

The argument behind the efficiency of these algorithms is only valid if the multiplication time is longer than
other operations such as indexing and memory accesses. This is indeed the case for most general-purpose
processors.

Todays digital technology is capable of providing extremely powerful processing engines which mean that
the minimization of the number of multiplications is not always the best approach. For high performance
systems, other issues such as the memory bandwidth, architecture efficiency and parallelism potential have
to be seriously considered. The advances in digital technology allow other algorithms particularly those
which map the DFT onto special VLSI hardware structures to be exploited. The following sections deal
with algorithms that map the DFT into correlation/convolutions, ideal for implementation using the IMS A100
transversal filter. This algorithms make use of the higher level functional nature of the device and its on-chip

memory to minimise the required host’s memory bandwidth. For this reason the combination of a medium-
speed microprocessor and the IMS A100 device(s) results in a very high performance system capable of
competing with bit-slice DSP processors.

9.4 DFT algorithms suitable for the IMS A100 implementation

There are basically two algorithms which map the DFT into a correlation (convolution) process. These are

(i) the Prime Number Transform (PNT)

(ii) the Chirp-Z-Transform (CZT)

The PNT was developed by Radar and is applicable when the number of data points is prime. The CZT
on the other hand is applicable to any data size; it can, however, be simplified if the data size is an even
number. The following two sections deal with each one of these algorithms and their implementations using
the IMS A100 transversal filter. The final part of this application note describes mapping techniques which
allow the DFT of a large number of data points to be evaluated via a number of short transforms. This
mapping technique is of vital practical significance when implemanting PNT & CZT processors.

9.4.1 Rader's Prime Number Transform

The PNT algorithm has its origin in number theory (reference 7) and consists of three seperate operations.
The first is a permutation (re-ordering) of the input data. The second operation is correlation of the permuted
input data with permuted discrete cosine and sine samples. The third operation is a repermutation, which
yields the DFT components in the conventional order of linear frequency. This final stage may be ignored in
applications which also involve an inverse DFT.

In this section the mathematical background for the PNT will be summarized. Where necessary examples
are provided to assist in the understanding of the concepts.

If the standard DFT equation, i.e.

N - 1 N - 1
X(k) = Y , x(n)e-2w]'nk/N = Y * W WNk * = 0,1, 1, (12)

n=0 n=0

is to be converted to correlation between x(n) and the twiddle factors WN's, the nk product needs to be
converted to a sum n + k. For cases where N is prime number theory allows us to achieve this.

According to number theory (reference 7), for each prime number N, there exist integers r, known as prim
itive roots, whose successive integer powers modulo-TV will generate a permuted version of the sequence
1,2,3,.......N - 1.

What this means is that for a prime number N, it is possible to map the sequence {p} = 0,1,2,JV - 2 via
the equation

q = (rq)mod N where {p } = {0 ,1 ,2 ,3 ,......N — 2} (13)
to a sequence {q} where q is a one-to-one map of the original sequence {p} and consists of a permuted
version of the sequence {1,2,3, ...N - 1}. For such a unique map to be possible r must be a primitive root
of N. Let us consider N = 7, for which one of the primitive roots of 7 is 3. From (13) the mapping equation is

q = {3p)mod N where p = 0,1,2,,5

For p - 3 , q = (27)mod 7 = 6. Table 9.1 gives the corresponding values of p and q which confirm the
one-to-one nature of the mapping.

It should be emphasized that for any prime N, the primitive root r, is not unique. For example table 9.2
illustrates the mapping given by (13) for N = 7. From this table you can see that the mapping is unique and
cyclic for r = 3 and r - 5 which are the primitive roots of 7. In most practical cases the smallest primitive root
is often selected.

p 0 1 2 3 4 5 6 7
q 1 3 2 6 4 5 1 3

Table 9.1 The mapping corresponding to equation (13) for r = 3

r \ p 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 4 1 2 4 1 2 4 1 2 4 1
3* 1 3 2 6 4 5 1 3 2 6 4 5 1
4 1 4 2 1 4 2 1 4 2 1 4 2 1
5* 1 5 4 6 2 3 1 5 4 6 2 3 1
6 1 6 1 6 1 6 1 6 1 6 1 6 1
7 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 2 4 1 2 4 1 2 4 1 2 4 1
10 1 3 2 6 4 5 1 3 2 6 4 5 1
11 1 4 2 1 4 2 1 4 2 1 4 2 1
12 1 5 4 6 2 3 1 5 4 6 2 3 1
13 1 6 1 6 1 6 1 6 1 6 1 6 1

* Note that r = 3 and r = 5 give unique mapping and are
therefore the primitive roots of 7.

Table 9.2 Values for q in the mapping q = (rp)modl

If N is prime and r is primitive root of N then we would like to apply the mapping given by (13) to an JV-point
DFT. Referring to the DFT equation (12), it can be seen that the subscripts n and k vary from 0 to N - 1
whilst in the mapping given by (13) the variable q assumes values from 1 to N - 1 i.e it excludes zero. To
overcome this problem we write the DFT equation (12) in the following form

N - 1
X(0) = J2 x(n) (14a)

n=0

N - 1

X(k) - x(0) = Y , x(n)WSk* - 1 JW— 1 (146)
n=1

i.e. we separate the expressions for the zero-frequency DFT component X(0) (the d.c. term) which is very
simple. This expression consists of N additions only and if required can be calculated directly.

We are left with DFT components X(k) corresponding, to k - 1,2,..TV - 1, which are given by (14b). Note
that in this equation we have taken x(0) to the left-hand side so as the summation over n is from n = 1 to
n = N - 1. We can now apply the mapping given by (13) to equation (14) via the following transformations,

n - (rm) mod N m = 0,1,......, W - 2 (15)

k = (r() mod N 0,1,........ 2 (16)
which result in a permutation of the terms in the summation and a change in the order of the equations.
Equation (14b) then becomes:

N - 2
X[(r‘)modN] - x(0) = ^ a:((rm)mo<iAr]W^rm)mo<iNlI(rl)mo<'wl (17)

m=0

w here/= 0, 1,2,N - 2

Remember that the twiddle factor, WNt is cyclic in N, therefore we have

X[(r')modj\T] - x(0) = Y (18)
m*0

where Z = 0,1,2,......N - 2 This equation indicates that the sequence XKr^modN] - x(0) can be calculated
via a circular correlation of the permuted input sequence x[(r{)mod N] and the sequence c- 2*jV)/ ^ . To see
this clearly let us consider in detail an example for a DFT of length 7.

The expression for a 7-point DFT is given by

6 6

X (k) = Y , x(n)W%k = Y *(n)«~2’r3'"*/7 (19)
n «0 n«0

where n, fc « 0 ,1 ,2 ,......N - 1

■ x (0) ■

oSioso£oooo

m 1
X(1) W° W1 W2 W3 IVs IV6x(1)
X(2) W° W 2 W4 IV6 1 w 3 w sx(2)
X(Z) = W° W 3 IV6 w 2w s 1 W4x(3)
X(4) W0 W A W S W 2 W 6 x(4)
X(5) W0 {yS W 3 W A W 2 s(5)
X(6) . w ° w 6 w s W4 w 3 w 2 1*(6) J

This DFT equation can be expressed in matrix form as: (The subscript 7 has been dropped from W7 for
convenience)

(20)

The superscript in each Wnk is evaluated mod 6. Noting that W° = 1 and separating the equation for X(0)
we can rewrite equation (20) as:

(21)

and
6

X (0) = £ > (n) (22)
n=0

The expression for X(0) i.e equation (22) is a simple summation and is assumed to be evaluated separately.

X (1)-x(0) 1 ■ ^1 W2 W3 WA flrS ^6 ' *0) 1
X(2)-x(Q) w 2 w 4 w 6 1 w 3 w sx(2)
X(Z) — x(0) w 3 w 6 w 2 1 4 x(3)
X(4) - x(0) W4 W1 IVs w 2 w 6 w 3 *(4)
X(5) - x(0) W5 IV3 w1 w 6 x(5)
X(6) - J w 6 w s W4 w 3 w'. *(6) .

Dealing with the computationally intensive part of the transform i.e. equation (21), we can apply the mapping
given by (13) to this equation which would convert equation 21 into a cyclic correlation suitable for imple
mentation using IMS A100 transversal filter. We choose r * 3 which is the smallest primitive root of 7.
The mapping would thus correspond to that given by table 9.1. We first apply the permutation given by this
mapping to the input sequence of z(n)'s. This would correspond to a column permutation of the twiddle matrix
as shown in (23).

X(1)-x(0) 1 ‘ W1 W3 W2 W6 Ws ' ■ x(1) •
X{2) - x(0)w 2 w6 W4 w s 1 w 3 x(3)
X {3) - x(0) W 3 W2 W6 4 IVs 1 x(2)
X(4) - x(0)W 4 W5 W1 W3 W2 IV6 x(6)
X(5) - x(0) W S 1̂ 1 W 3 WZ W 6 W A x(4)
X(6)-x(0) . w 6 w 4w s 1 w 3 w 2 x(5) J

Note that the matrix equations (23) and (21) are essentially the same and their difference is only in the order
of the terms. Next we apply the same mapping to the column matrix containing X(k) - z(0) terms in equation

(23), this would of course correspond to a similar permutation of the rows of twiddle matrix in (23); and the
result is given as equation (24).

X(1)-x(0) 1 ’ W 1 W3 W2 W6 WA W5 ■ *0) 1
X(3)-z(0) Wa W2 W6 WA W s 1 x(3)
X(2) - x(0) Wz W6 W4 WS jy1 W3 x(2)
X(6) - z(0) jy6 W4 WS W3 W2 *(6)
X(A) - z(0) w4 w 5 w ' w 3 w 2 w 6 *(4)
X(5) - x(0) (yS w \ W3 W2 W6 W4 *(5)

Referring to equation (24) it can be seen that the twiddle-factor matrix has the property that each row can
be obtained by a left-shift (rotate) of the previous row. This means that the sequence (X (1) - x(0), X(3) -
x(0), X(2) - s(0), X (6) - x(0), X(A) - rc(0), X(5) - x(0)} can be obtained by performing a circular con
volution between the sequence { x (1),z (3),z (2)x (6),x (4),:e(5)} and a permuted twiddle factor set given by
{W \ W 3,W 2tW6,W \ W 5}.

Figure 9.3 shows how this circular convolution can be implemented using a transversal filter structure. For the
moment let us confine our attention to the canonical transversal filter structure and assume that the transversal
filter is capable of complex processing i.e. both input data x(n) and the twiddle factors are complex. It will
be shown later how a single IMS A100 device can be used to implement this complex processing. Two
implementations are shown in figure 9.3.

(a) circulating the twiddle factors time

(b) circulating the permuted input sequence time

Figure 9.3 Prime number transform implementation based on the transversal filter structures

In the first implementation, figure 9.3a, the permuted twiddle factors are used as the inputs to the transversal
filter. These twiddle factors are first loaded into the filter with the input switch at position 1 and then circulated

with the input switch at position 2. The output samples, as shown in figure 9.3a, would correspond to the
DFT of the input sequence x(n). You should be able to confirm this by referring to the matrix equation given
by (24). For the arrangement in figure 9.3a the allocation of the data sequence z(n) to the coefficient memory
can be formulated as:

C(i) = x[(rN ~2~i)mod N] i - 0,1,..., N - 2 (25)

where N is 7 in this case. Similarly the twiddle factor sequencing, at the input of figure 9.3a, can be
mathematically expressed as:

Input(i) = W[{r')mod m * -0 ,1 , (26)

The output sequence for figure 9.3a is given by:

Output(i) = XKr^mod N] i = 0 ,1,....., N - 2 (27)

Figure 9.3b shows the second possible implementation in which the coefficient memory contains the permuted
twiddle factors and the permuted data sequence is loaded at the input of the filter and is circulated to generate
the DFT of the input samples. For this implementation the generalized equations for the input and output
sequences and the allocation of coefficient memory are:

C(i) = WHr')<nod N]i = 0)1................ (28)

Input(i) - x[(rN ~2~' mod TV] * = 0,1, ,N — 2 (29)

Output(i) = X[(rx)mod JV] i = 0 ,1,....., N — 2 (30)

Equation (25) to (27) and (28) to (30) define the required permutation and sequencing for a generalised prime
number transform based on the canonical transversal filter structure.

It was argued earlier that the IMS A100 implementation of the transversal filter structure (figure 9.1b) is
identical in behaviour to that of the canonical form (figure 9.1a). The only difference is that in the canonical
form the first coefficient, C(0), is associated with the left most memory location (see figure 9.1a) while in
the IMS A100 implementation the right most coefficient register is allocated to C(0). We will now show how
our 7-Point DFT can be implemented in complex form using the IMS A100 transversal filters. The input data
samples x(n), the twiddle factors Wn, and the DFT output samples X(n) can be expressed in terms of their
real and imaginary parts as:

x(n) = xr(n) + jxi(n)

WS = e~2*lN = ®OS(—~~) + y s in (Z | p) = WR(n)+jWI{n)

X(n) = XR(n) + jXI(n)

(31)

(32)

(33)

As mentioned earlier the IMS A100 device contains two sets of coefficient memories; at any instant one set
of the coefficients is used in the computation whilst the other set can be accessed via a standard mem
ory interface. One very important feature of the device is that the two memory banks can be exchanged
automatically at the beginning of every computation cycle, i.e. alternate set of coefficients are applied to
the filter successively. This feature allows complex convolution and correlation to be performed in a single
device. (This is unlike most conventional realizations of complex convolution/correlation where, as shown in
figure 9.4, four transversal filters are often used to implement these complex functions). This is achieved by
appropriately loading the two coefficient memories with combinations of real and imaginary samples of the
reference signal and using the continuous memory-swap mode to implement complex processing. The real
and imaginary parts of the signal to be correlated (or convolved) with the reference signal are then applied
alternatively to the input of the IMS A100 device. An application note entitled ‘Complex Processing Using the
IMS A100 Transversal Filters’ covers this topic in detail and is available from INMOS. The remainder of this
section gives an overview of the topic in relation to complex DFTs.

Figure 9.4 Conventional complex correlator/convolver involving four transversal filters

Figure 9.5 shows the IMS A100 implementation of the 7-point DFT example, corresponding to figure 9.3a,
where the twiddle factors are circulated. The notation used for real and imaginary parts of the signals is that
given by equations (31) to (33). The twiddle factors are applied to the input in a sequence identical to that
used in figure 9.3a, with the real part of each sample followed by its imaginary part. The output sequence
is also shown. It is assumed that the delay-and-add chain in the IMS A100 is cleared first by writing several
zero’s to the input. (Note that this is only needed once and any further transforms do not need this flushing).
The memory banks are set in their continuous-swap mode. In the first computation cycle, with WR(1) on the
input, the memory bank ’A ’ is used in the computation; in the second cycle, when WI(1) is applied to the
input, the memory bank ‘B’ is used in the computation; in the third cycle WR(3) is the input sample and the
memory bank A is used in the computation and so on. Note also that for each output sample an external
addition (with either rcr(0) or xi(0) depending on whether the output corresponds to real or imaginary part of
the result) has to be carried out as dictated by equation (24). This is a negligible overhead compared to the
computation performed by the transversal filter and can easily be carried out by the host processor.

In figure 9.5 the first eleven output samples (denoted with *) are partial results and as such are not fully valid.
This is due to the inherent delay associated with any transversal filter implementation. In continuous process
ing, however, it is possible to avoid these undefined output samples and to achieve a duty cycle of 100% by
updating two coefficient memory locations with new data samples. For example in figure 9.5, assumming that
we have applied the first cycle of the twiddle factor values i.e. W R^)iW I^)iWR(3)1Wl(3)..... WR(5), W 1(5)
to the input, it is possible to update the coefficient locations corresponding to si(1) and xr(1) in memory bank
A with the imaginary and real parts of the first sample of the new input data block. This can be done during
the latest computation cycle (with W 1(5) as the input twiddle factor) when the memory bank A is free. In
the next cycle when WR(1) is applied to the input, xr(1) and -**(1) in the memory bank B can be updated
with new data values while this memory bank is free. In the following computation cycle when W7(1) is the
input twiddle factor, the coefficient memory locations corresponding to xi(3) and xr(3) in the memory bank A
are updated and so on. This technique removes the undefined output samples and achieves a duty cycle of
100%.

Figure 9.5 IMS A100 implementation of a 7 point complex DFT,
corresponding to the canonical transversal filter realization of figure 9.3a

Figure 9.6 depicts the IMS A100 implementation of the 7-point DFT, corresponding to figure 9.3b, where the
input data samples are recirculated and the twiddle factors are stored in the coefficient memories. The input
data samples are applied to the input in a sequence identical to that used in figure 9.3b, with real part of
each sample followed by its imaginary part. The output sequence is also shown. Other characteristics of this
implementation are identical to the previous case with the exception that in this implementation it is impossible
to avoid initial undefined output samples even when several continuous transforms are to be performed.

The IMS A100 devices can be cascaded without any external components by simply connecting the output
of the first device to the cascade-input of the second device. This simple cascading allows transversal
filters/correlators with many stages to be easily implemented.

Figure 9.6 IMS A100 implementation of a 7 point complex DFT
corresponding to the canonical transversal filter realization of figure 9.3b

Using prime-number algorithm there are basically two ways to implement A 100 based DFT processors capable
of handling long data blocks. The obvious approach is to cascade several devices resulting in a sufficiently
large correlator/convolver capable of dealing with the whole data block size. This approach is only acceptable
for moderate block sizes and becomes impractical if the data size is very large. The second approach is based
on mapping techniques which convert a large DFT into several independent short transforms. These short
transforms can then be evaluated either concurrently or sequentially, depending on the required performance.
This means that the decomposition techniques described here are particularly useful as they provide the basis
for trade-offs between cost and speed. This subject will be discussed in detail in section 5 of this application
note.

As mentioned earlier the IMS A100 transversal filter has an on-chip industry standard memory interface which
allows the part to be fully memory-mapable. Figure 9.7 shows a schematic diagram of a simple system making
use of this memory interface. When implementing the prime transform algorithm on this system, the IMS A100
(or arrays of them) will perform the bulk of the computation and the host processor will be responsible for
data permutation (using look-up tables), evaluating the X(0) term (equation 22), and performing the auxiliary
addition involving either xr(0) or xi(0) (see figures 9.5-9.6).

IMS A100’s are memory mapped using the on-chip industry standard memory interface

Figure 9.7 Schematic diagram of a simple IMS A100 based system

Another possible system configuration is shown in figure 9.8. This is particularly suitable for the arrangement
of figure 9.5. The real and imaginary parts of the twiddle factors are pre-loaded in the memory MEM1 and
are supplied to the A100 via the dedicted input port. The sequencer shown in figure 9.8 could be a simple
counter. The processor accesses the coefficient memories and the output result via the IMS A100’s memory
interface. Other system configurations are possible. For example figure 9.9 shows the schematic of a high
performance signal processing system using a dedicated controller.

Figure 9.8 An implementation particularly suitable for the arrangement in figure 9.5

Figure 9.9 Schematic block diagram of a high performance involving a special purpose controller

9.4.2 The chirp-z transform

Another algorithm which converts the DFT equation into a convolution (or correlation) is the chirp-z transform.
The reason for the name chirp is that the transform uses a sampled linear frequency-modulated carrier which
in signal processing is often termed a ‘chirp signal’. In the previous section we saw that the prime number
transform consisted of three operations, namely

(i) Data input permutation.

(ii) Convolution (or correlation) of the permuted data with a permuted sequence of twiddle factors.

(iii) A final permutation to obtain the correct output sequence.

Figure 9.10 summarizes the principles of the prime number transform algorithm. The auxiliary computation
for zeroth input sample and evaluation of X(0) are also shown in this schematic diagram. The structure of the
chirp-z DFT algorithm is similar to that of the prime number transform technique and consists of the following
sequence of three operations:

(i) Premultiplication of the input sequence x(n) by the chirp

(ii) Convolution (or correlation) of the resulting sequence with a second chirp signal.

(iii) Post-multiplication of the resulting sequence by the chirp signal

These operations are summarized in figure 9.11. Comparing figure 9.10 and figure 9.11, it can be seen that
the major difference between the two algorithms is that in the chirp-z transform the permutation operations
are replaced by multiplications.

Figure 9.10 The principle of the prime number transform

s(n)

~ ~ T

\ w complex convolution w/) with a chirp signal X(k)

premultiplication
by the chirp

e { - r t jn Z/N)

postmultiplication
by the chirp

e (-n jk * / N)

Figure 9.11 The basic principle of the CZT

In the CZT the convolution (correlation) operations can be implemented using the IMS A100 transversal
filter, but the pre- and post-multiplications have to be done externally. In many applications data permutation
may be preferred to multiplication in which case the prime numbers approach may be considered more
advantageous. However there are applications (e.g beamforming) where the CZT, in particular a simplified
version of it referred to as sliding CZT, is preferred.

To understand the CZT algorithm we start from the DFT equation

n - 1 isr—1
X{k) = ^ 2 x(n)e~2njnklN = ^ x(n)W%k * = 0,1, ...N - 1 (34)

n=0 n—0

and replace the term -2nk in the complex exponential with the seemingly more complicated expression

-2 nk = (k - n)2 — k2 — n2 (35)

hence
JV-1

X(k) = e-j*k‘ /N J2 [x(n)e-i’”'^N][ein{k- n)2lN]
n=0

e - i n k 2/N y(n)[ey’r(fc“" ,2/W]
n=0

(36)

where k = 0,1,.....,N - 1.

In equation 36, the term X(k) consists of three operations:

(i) Multiplications of the samples X(n) with a complex linear frequency-modulated signal e-i™ z/N to
form a new set of samples y(n); This operation is often referred to as premultiplication by a chirp,

(ii) the convolution of y(n) with a second-linear frequency-modulated signal (the term eMk-nf/N ancj

(iii) post multiplication by e~jltk2!N .

Note that if only the power spectrum of the signal is required the final operation can be omitted, since e-j*k2/N
represent only a phase-shift and \e~jltkZlN \ = 1. Also in operation (ii) the term (k -n)2 in the complex
exponential is equal to (n - k f so that a convolution operation, in this case, is identical to that of a correlation.
Figures 9.12 and 9.13 show examples for a 6-point CZT implemented using the canonical transversal filter
structure. In these diagrams it is assumed that the transversal filter is capable of complex processing. As
described in the previous section the complex conolution/correlation can easily be implemented using the
IMS A100 transversal filter chip.

Figure 9.12 Schematic diagram for 6 point CZT using canonical transversal filter structure

In figure 9.12, samples corresponding to the product of the input data and the premultiplying chirp are stored
as the filter coefficients and a second sampled chirp is fed to the input of the convolver. Note that the
convolver has N-complex points. Figure 9.13 shows an alternative implementation where the product of the
input data samples and the premultiplying chirp samples are the inputs to the convolver and a chirp signal
is used as the reference signal in the coefficient store. Note that in this arrangement the convolver has to
have 2N - 1 complex points. However when the number of points in the transform are even (N =even), it
can easily be shown that the sampled chirp signal f(n) = ejnnZ/N has the following properties:

(i) it is periodic with a periodicity equal to N i.e.

f(n) = f(n + N) (37)

(ii) It is symmetrical about n = 4 i.e.
f(n) = f(N - n) (38)

These properties convert the convolution in figure 9.13 into a circular one which can be implemented with an
N-point complex transversal filter.

In many applications the PNT may be preferred to the CZT because of the requirement of pre- and post
multiplications in the latter. (Remember that in the PNT, permutation operations are involved rather than
multiplications).

As there are considerable amount of literature available on CZT, it will not be considered here in any more
detail.

-1 _ -1 ^ -1 'hi T - 1 h. -T-1 W _-1 hr T - 1 _-1 _ W _-1 W _-1 W _-1

b

x(n) &

g -irjr^ /6 f(

f(i) = e - ^ 2/ '

Z ” ■** z

4*
^ z

□

** Z z

r w

^ Z

b

z ^ z ♦ Z ^ z ► z

X

£

e-*'k2/6- K X)

X(k)’s

Figure 9.13 Alternative implementation of the 6 point CZT

9.5 Multidimensional index mapping for DFT decomposition

In the previous sections, algorithms which convert the DFT into convolution/correlation operations were pre
sented. These algorithms, particularly the PNT, are suitable for implementation using the IMS A100 transver
sal fiiter.

In order to compute the DFT of long data sequences, one approach is to cascade several the IMS A100
devices so that sufficient convolution/correlation points are made available. This approach is only acceptable
for moderate data sizes, and does not provide the optimum performance for a given number of devices.

In this section, index mapping techniques are described which allow long DFT’s to be decomposed into sev
eral shorter transforms. These shorter transforms can then be efficiently implemented by using IMS A100
transversal filters. The decomposition techniques described here can be viewed as generalised algorithms,
with radix-2 FFT being a special case of these more general partitioning techniques. These mapping tech
niques provide the basis for designing highly concurrent systems and optimization in terms of performance
and cost.

9.5.1 Basic concepts of index mapping

The essence of these mapping techniques is that by a simple change of variable, the original complex
problem is converted into several easy ones. Before applying these techniques to the DFT, let us consider
a few examples which should help to familiarize the reader with the terminologies used in general index
mapping.

Consider a one-dimensional array of data s(n), n = 0 to N - 1, where N is the total number of elements in
the array. For N = 6, the array elements will be given by

{*(0) x(1) x (2)x(3) x(4) x(5)}

Let us rearrange this one-dimensional array into a two-dimensional array as shown below:

[x(0) x(1) x (2)x (3) x (4) x(5)] *(0) *(1) x(2) 1 y(0,0) w(0.1) y(0,2) ‘
*(3) x(4) x(5) J y (i. 0) y(l,2) .

map (39)

We have ‘mapped’ the original one-dimensional array, ®(n) , into a two-dimentional array y(m, n2) . It can
be seen that in this example the mapping is given by the following linear equation.

n = 3ni + ri2 , x(n) = y(ni, 112) (40)

where m = 0,1 and n2 ■ 0, 1, 2 .

The mapping is said to be one-to-one (unique) as all the elements in the original array, x(n) , appear in the
two-dimensional array y (m ,n 2) .

As a second example consider the following mapping:

v(0, 2) I
v(1, 2) J

This mapping has been obtained from
n = (3ni + 2ri2) mod 6

Note that in equation (42) the index n is evaluated modulo N (in this case N=6) and it is therefore
cyclic in N.

[x(0) x(1) x (2)x (3) x(4) x(5)] map r *(0)
L x@

x(2)
x(5)

s(4)
x(1)]■f y(0, 0)

U(1,0)
y(0,i)
y(i,i) (41)

(42)

As a final example let us apply the following mapping

n = (2ni + 2n2) mod 6 (43)

to our 6-element array, which gives;

[x(0) x(1) x(2) ®(3) re(4) *(5) map x(0) *(2) x(4) 1 y(0,0) y(0,l) y(0,2) ‘
x(2) x(4) x(0) j . y(l.0) w(i,i) y(i,2) J (44)

Obviously this map is not unique as re(1),x(3) and rr(5) are not represented in the matrix y(n1,n2).

9.5.2 Generalisation and conditions for uniqueness

Let us now generalize the ideas developed in the previous examples. We are interested in mapping a one
dimensional array of length N = W1 x N2 into a two-demensional array that is JVi, by N2 in size. In other
words, the one-dimensional array

x(n) for n - 0,1, ...N — 1
is to be mapped into a two-dimensional array

y (n i, n2) for ni = 0 , — 1, and n2 = 0,1,...JV2 ~ 1 •

The major requirement is that the mapping must be unique. This mapping can be represented by

[x(0) x(1) x(2) - (j v - i) 3 ^

y(0.0)
v(1,0)

y(0,i)

y (J V , - 1, 0) # i , 1)

y(0,JV2 - l)
V(1,JV2 - 1)

y W - l , J V 2 - i)

(45)

where
x(n) = y(m, n2) (46).

This map, in general, can assume many different forms, but the one particularly useful to the DFT is the linear
form,

n = (Mi m + A/2n2) mod N. (47)
Note that n is evaluated modulo N, making the map cyclic in n. In order for this map to be unique and
one-to-one, the mapping constants M\ and Mz must satisfy certain conditions. In the literature (references
5 & 6) these conditions have been derived from number theory for two cases which are described in the
following two subsections.

Relatively prime case

In this case Ni and N2 are relatively prime and have no common factor. In the literature this case is often
denoted by:

M . J V i) - 1 (48)
which means that the greatest common divisor of Ni and N2 is unity. For example (5,7) = 1, (8,9) = 1 and
(6,25) = 1. For this case the conditions on Mi and M2 which make the mapping, given by (47), unique and
one-to-one are: (references 5 & 6)

[(Mi - aN2) and/or (M2 = 0Ni)] and (Mi, Ni) = (M2, N2) « 1 (49)

where a and 0 are integers.ln other words, to ensure a unique maping for this case:

(Mi must be a multiple of N2)
or (M2 must be a multiple of Ni)
or (Mi and M2 must be multiples of of N2 and Ni respectively)

and Mi and Ni must be relatively prime,

and M2 and N2 must be relatively prime.

As an example consider Ni = 5, N2 = 7, AT = 35. From (49) we have to choose Mi a multiple of N2 or
M2 a multiple of Ni or both. Let us make Mi the simplest multiple of N2 i.e. Mi = aN2 = N2 = 7, this also
satisfies (Mi,Ni) = (7,5) = 1. Then noting that we must have (M2iN2) = (M2%7) = 1, possible values for
M2 are: 1,2,3,4,5,6,8,9,10,11,12,13,15. While M2 = 7,14,21... are not allowed as they are not relatively
prime with N2. (Note also that for Mi = 5,10,15, we also have M2 = aNu which is allowed.)

If Mi is chosen to be Mi = 2 x N2 = 14, then again the same values of M2 as above are valid.

This example shows that a large class of unique mappings exist for this case.

Common factor case

In this case Ni and N2 have a common factor r. i.e. their greatest common divisor is r and we have:

(Wi, N2) = r (50)

For example (10,5) * 5, (9,12) = 3, and (7,21) = 7. For this case the conditions on Mi and M2, making the
mapping given by (47) unique, have been shown to be: (references 5 & 6)

1) (Mi =aiV2) and (M2 J 0Ni) and (a,Ni) - (M2fN2) « 1 (51a)

or
2) (Mi 4 aN2) and (M2 = pNi) and (0, N2) = (Mi, Ni) = 1 (51 b)

where a and 0 are integers.

As an example consider Ni = 9, N2 = 15, N = 135. From (51a) we can choose, Mi = aN2 = N2 = 15. The
condition (a,JVi) = (1,9) * 1 is already satisfied. From (51a), values of M2 which are allowed are those which
satisfy (M2 J 0 x 9) and (M2, 15) = 1. Therefore following values of M2 are allowed

M2 - 1,2,4,7,8,11,13,14,16,17,19,22,.....

M2 - 3 ,5 ,6,9,10,... are not allowed as they do not satisfy (Af2, 15) = 1.

Alternatively we could have chosen Mi = aN2 = 2 x 15 = 30, then possible values of M2 would again be

M2 = 1,2,4,7,8,11,13,14,......

However we could not have chosen Mi = aN2 = 3 x N2 since this violates the requirement (a, Ni) = 1.

9.5.3 Application of index mapping to DFT decomposition

Having covered the basic principle of index mapping and the required conditions for uniqueness, let us apply
the mapping given by (47) to the DFT and investigate its consequences.

Remember that the DFT equation is given by

N-^ N- 1
X(k) = x(n)e- Znink/N = J2 x(n)WNk * = 0,1, - N - 1 (52)

n*0 n*0

and that the exponent of W is evaluated modulo N since

= Wj}k+N. (53)

Let us apply the following mappings to the indices n and k; i.e. to both the input data array ^(n), and the
result array X(k);

n ■ (Mini + M2n2) mod N (54)
k = (L<\k<\ + L2k2) mod N (55)

Where n i , and Jti, are indexed to (JV1 -1) and n2 and k2 to (iNT2 — 1). As shown below these mappings convert
the one dimensional arrays x(n) and X(k) into two-dimensional matrices y(rM,n2) and 1̂ , 122) respectively.

[x(0) x{\) . . . x(n) ... x(N — 1)] map

y(0,0) y(0,1)
y(1,0) y(1,1)

. . . y(0, — 1)

. . . y (1,iV2 - 1)

y(ni,n2) '

where y(ni,ri2) = a:(n).

And

[X (0) X (1) . .X (f c) . .X (J V -1)] map

. y W - 1 , 0) » W , 1) y (N , - 1 , J V 2 - 1) .

m o , 0) y (0, i)
^ (1 , 0) K (1 , 1)

. . . y (0 , j v 2 - i)

. . . r (i , A r 2 - i)

: : ' • • y (* i , t e)

. y(j v , - i . o m ^ i) y (n , - : , n 2 - V '

where Y(ku k2) = X(k).

Applying these mappings to the DFT equation gives:

JV1-1 jv2- i

X(L,k, + L2k2) = E x(M'n' (56)
m =0 n2=0

or JVi-1 7̂ 2-1
Y(ku k2) = J2 E »<"1

n.i=0 n.2=0
(57)

with
y y n k _ yyrMzLznzkz yyM \L zn \kz yyM zL \nzk i (58)

Let us now partially define the maps in (54) and (55) by setting;

M2 = 0N-\ and Li = ^N2 (59)

Where 0 and 7 are integers.
These assignments make the last term in (58) i.e W pzL'n2k' equals to unity.Let us now separately consider
each one of the two cases studied earlier and investigate the effect on the three remaining terms in (58).

Case 1 - prime factor decomposition

For this case ATi and N2 are assummed to be relatively prime. From (49) it can be seen that it is possible to
also set*

M ,=a N 2 and L2 = 6N,. (60)
This makes the second term in (58) i.e. wjf'Lzn'kz also equal to unity. The remaining two terms in (58) can
be written as: yyMzLzNzkz _ yyPN\f>N\n2kz _ yyflSNinzkz

yyM\L\N\k\ _ _ ypra7JV2nifci

The DFT equation will therefore become:

(61)

(62)

Y(ku hi)
JV1-1
E
ni=0

-JV2-I
E y(ni,n2)Wfc N

• n.2=0

w/a7JV2nifci (63)

where fci = 0,1,2,..., JV1 - 1 and k2 = 0,1,2 ,..., N2 - 1
The advantage of this equation is that it uncouples the DFT calculations in the sense that the N-point DFT
can be mapped into two completely separate sets of short DFT’s. In evaluating the Yfa, k2)’s, in equation
(63), the inner summations over n2 are operations involving separate rows of the matrix y(ni,n2). The outer
summations over m , on the other hand, are column operations and can be carried out after the row operations
are completed. By suitable choice of a, 0, 7 , and 6, each one of these summations can be expressed as a
DFT of the corresponding row or column. Goods (reference 8) suggested:

a = 0 = 1
7 =(JV2- 1) mod JV1 (64)
6 = (iVf1) mod N2

[Note that in modulo arithmetic the reciprocal of a number (0) mod N is denoted by ($r1) mod N and
is defined as:

[(<7) mod i\T][(<7- 1 mod N] = 1.
For example

(3 1) mod 7 = (5) mod 7
since 5 x 3 = 15 which is 1 modulo 7.]

Applying (64) to (63) gives:

Y(ku kz)= Y ,
rN2~1 -1

E y (» i ,n 2) < 8 w n ifcl
N\-l

= E u(ni, k2)
ni =0 ■ n2=0 ni=0

This is now a true two-dimensional DFT with the mapping of n and k given by:

n = (N2n<\ + Nin2) mod N
k = {[(AT"1) mod iVi]N2k-\ + [(JVf1) mod N2]^ ,k 2} mod N

(65)

(бба)
(ббб)

In this example the mapping of n is of the simplest form and that of k is the so called Chinese Remainder
Theorem (CRT).

Having mapped the original sequence x(n) into the two dimensional array y (m ,n 2), equation (65) indicates
that the desired DFT can be evaluated by the following two steps:

(i) Performing an J\r2-point DFT on each row of matrix y(m, n2). This corresponds to a total of JVi N2-
point row DFT’s and would convert the matrix y (n i,n 2) into the matrix u(ni,A;2) as shown in fig
ure 9.14.

(ii) Performing an -point DFT on each column of the resultant matrix, u(nu k2), to yield F(fc1, k2). The
desired output sequence X(k) is related to k2) via the mapping given by (66b).

Figure 9.14 Schematic representation of equation 65 for N = iNT-, x N2 = 7 x 5

Example:

In this example we consider the evaluation of the DFT of a 35-element data array x(n) (n = 0 to 34) via the
mapping techniques discussed so far. Let us take N » JNTi x N2 = 7 x 5 = 35 i.e. JVi = 7 and N2 = 5. The data
array x(n) is first mapped into a two dimensional array y(m ,n2) via the mapping given by equation (66a) i.e.

n = (5ni + 7n2) mod 35

The array y (n i,n 2) would thus be as follows:

s(0) *(?) x(14) *(21) *(28) '
*(5) *(12) sc(19) *(26) x(33)
x(10) *(17) x(24) *(31) x(3)
*(15) *(22) x(29) *(1) *(8)
x(20) *(27) *(34) *(6) *(13)
*(25) *(32) x(4) *(11) x(18)
x(30) *(2) *(9) *(16) *(23) .

(67)

The next step is to perform the DFT of each row of this matrix. Obviously in this example this involves seven
5-point DFT’s as shown in figure 9.14. The result of these row DFT’s is a new matrix denoted by u(m,fc2).

Next the DFT of each column of the matrix u is evaluated. As shown in figure 9.14 this involves five 7-point
DFT’s and yields the matrix Y{k^, k2). The two dimensional array Y(k, , k2) contains desired DFT results X(k),
with the allocations governed by the mapping given by equation (66b) i.e. X(k) = Y(ki,fc2) with

k = {[(AT"1) mod N,]N2k, + [(N~1) mod N2]^ .k 2) mod N
k = {[3] 5 fci + [3] 7 k2} mod 35

= {15A;i + 2‘\k2} mod 35

The array Y(h,k2) would therefore have the following arrangement:

X(0) * (2 1) *(7) X(28) *(14) '
*(15) * (1) X(22) * (8) X(29)
A"(30) *(16) * (2) X{23) *(9)
* (10) *(31) *(17) *(3) *(24)
*(25) * (1 1) X{32) *(18) *(4)
*(5) X(26) * (1 2) X(33) *(19)
X(20) * (6) *(27) *(13) *(34) .

In a practical implementation, the IMS A100 transversal filter can be used to perform these short row and
column DFT’s via the prime number transform algorithm described earlier. The important fact to note here
is that each set of row (or column) DFT’s consists of a number of totally independent short transforms (see
figure 9.14). This allows various degrees of parallelism to be exploited very easily in acheiving the required
specification.

For example a single A100 based DFT processor can be used to sequentially perform all the row DFT’s
followed by the column DFT’s, or when extremeley high processing speed is essential, several such DFT
processors can be employed in parallel to complete the independent row (or column) DFT’s. In the extreme
case, it is possible to compute all row and column DFT’s concurrently in a pipelined system arrangement.
The INMOS concurrent processor family (transputers) when combined with the IMS A100(s) provide an ideal
environment for exploiting these algorithms.

In arriving at equation (65) we applied the conditions given by (64) to equation (63). This resulted in the
mapping given by (66) on which the last example was based . It is possible to use other values for a, p, 7 ,
and 6 than those given by (64).

For example we could have used:
7 =* = 1
a = (JVJ-1)
P = (A7 1) N2

This would have resulted in the mappings for n and k to be interchanged i.e.

n = {[(JV2- 1) mod N,]N2n, mod mod N
k = {N2ki + N,k2) mod N

(68)

(69a)
(696)

Another interesting possibility is
q: = /? = 7 = 6 = 1

This would result in the simple mapping for both n and k i.e.

n = N2n-\ + ATj n2
k = N2k\ + ATi k2

(70)

(71a)
(716)

but requires a modification in the W. We can see this by substituting (70) into (63) which gives:

Y(k,,k2)
rN̂ —̂N 1-1

E
n\ =0 L ri2=0

y ^ . n 2)WN̂̂ mkz TTrNzn\k\WNy (72)

By defining

and

Equation (72) can be rewritten as:

= w £ = e- 2niN'/N‘

W’N, = = e- ZniN*/N'

Y(kUk2)
N)-4* rN2~l
E E y(n'
m =0 *■ n2=0

xx/i n1fc1 ** Nx (73)

This equation is very similar to (65), with the exception that a modified W is used. Equation (73) also maps
into an arrangement similar to figure 9.14. The DFT’s of course, would have to be calculated with the modified
W. This still can be done via the prime number transforms by simply replacing W with W' in the transform.

Case 2 - common factor decomposition

Having covered the case where and N2 were relatively prime, we now go back to equation (58) and
consider the case where TVi and N2 have a common factor r, i.e.

M .J V s O -r

Remember that we applied (59) to (58) which made the last term in (58) equal to unity i.e. we have :

Y(k ̂ ik2)
Nx-4!
E
r»i=0

•N2— 1
y(nh n2)W ^ 2n2kz wff'Lin'k*W $',r" k'

■ U2=0
(74)

Unlike the previous case we cannot use equation (60) to make the second terms in (74) equal to unity. This
is because the equations in (60) would violate the necessary requirement, specified by (51), for one-to-one
mapping.

The term wff'Lzn'kz is referred to as a ‘twiddle factor’,
already used the conditions given by (59), we can set

Referring to (51) and remembering that we have

M\ = L 2 = /? = 7 = 1 (75)

which gives
iVi — 1

K<fc,,fc2)= X)
m=0

■N2- 1

E y(n, ,n2)W
■ n2=0

U/n'kzWn'k' WN "Nx (76)

with the mapping given by:
n = n-\+N-\n2 (T7a)
k - N2k̂ + k2 (776)

Note that equation (76) is very similar to equation (65) with the exception of the existence of the twiddle term.
Equation (76) can be interpreted as shown in figure 9.15. It can be seen that when ^ and N2 have a common
divisor, JV-complex multiplications have to be performed between the row and column DFT operations. In the
previous case where JVi and N2 were assumed to be relatively prime no such multiplications were needed
making the former mapping more efficient and easier to implement.

Figure 9.15 Mapping of an N point DFT into dimensions

9.5.4 Extension to multiple dimensions

The concepts presented in this application note were concentrated around a two-dimensional mapping. There
is no reason why the same concepts cannot be extended to more dimensions. For example if

N = m x N2 X N3

where i\Ti, N2 and N3 are relatively prime. The original TNT-point transform can be carried out via N2 x 2V3, Ap
point, transforms followed by JV1 x N3) iV2-point, transforms followed by Ni x N2, iVa-point, transforms. The
easiest way to see this is to first map the JV-point transform into a two-dimensional one with dimensions

N\ = N3 and N?> = NiN2

This consists of N3f iVi x JV2-point, transforms (row DFT’s) followed by N<\ x N2i jV3-point, transforms
(column DFT’s). Each one of the x J\r2-point transforms can then be decomposed into i\Ti, iV2-point,
transforms followed by N& -point, transforms.

Note that these multidimensional index mappings apply to both prime factor and common factor decom
positions. In fact radix-2 FFT is nothing more than a common factor decomposition where all the factors
iVi, N2, N3) Na.........are made equal to 2. The advantage of the prime factor over the common factor
decomposition is in that no twiddle matrix multiplications are needed for the prime factor case.

9.6 References

1 An algorithm for the machine calculation of complex Fourier series, Cooley J.W., Tukey J.W.,
Math. Comput., Vol.19, pp 297-301, April I965.

2 On computing the discrete Fourier transform, Winograd S.,
Proc. Nat. Acad. Sci. USA, Vol.73, No. 4, pp. 1005-1006, April 1976.

3 Discrete Fourier transforms when the number of data samples is prime, Rader C.M.,
Proc. IEEE, Vol.56, pp 1107-1109, June I968.

4 The chirp z-transform algorithm and its application, Rabiner L.R., et al,
The Bell System Technical Journal, May-June I969, pp 1249-1292.

5 Index mappings for multidimensional formulation of the D FT an convolution, Burrus C.S.,
IEEE Trans, on ASSP, Vol.25, June I977, pp 239-242.

6 DFT/FFT and convolutional algorithms-theory and implementation, Burrus C.S., Parks T.W.,
Wiley-interscience Publication, New York I985.

7 Number theory in digital signal processing, McClellan J.H., Rader C.M.,
Englewood Cliffs, NJ, Prentice-Hall Inc, I979.

8 The relationship between two fast Fourier transforms, Good I.J., IEEE Trans, on Comput., Vol. C-20,
pp 310-317, March 1971.

