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Abstract 

 
With the emergence of thread level parallelism as a more efficient method of 

improving processor performance, Chip Multiprocessor (CMP) technology is being more 

widely used in developing processor architectures. Also, the widening gap between CPU 

and memory speed has evoked the interest of researchers to understand performance of 

memory hierarchical architectures. As part of this research, performance characteristic 

studies were carried out on the Intel Core 2 Duo, a dual core power efficient processor, 

using a variety of new generation benchmarks.  This study provides a detailed analysis of 

the memory hierarchy performance and the performance scalability between single and 

dual core processors.  The behavior of SPEC CPU2006 benchmarks running on Intel 

Core 2 Duo processor is also explained.  Lastly, the overall execution time and 

throughput measurement using both multi-programmed and multi-threaded workloads for 

the Intel Core 2 Duo processor is reported and compared to that of the Intel Pentium D 

and AMD Athlon 64X2 processors.  Results showed that the Intel Core 2 Duo had the 

best performance for a variety of workloads due to its advanced micro-architectural 

features such as the shared L2 cache, fast cache to cache communication and smart 

memory access. 
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1.  Introduction 

1.1  Overview 

This thesis work analyzes the performance characteristics of major architectural 

developments employed in Intel Core 2 Duo E6400 processor with 2.13GHz [15]. Intel 

Core 2 Duo is a high performance and power efficient dual core Chip-Multiprocessor 

(CMP). CMP embeds multiple processor cores into a single die to exploit thread-level 

parallelism for achieving higher overall chip-level Instruction-Per-Cycle (IPC) [4] [14] 

[15] [21]. In a multi-core, multithreaded processor chip, thread-level parallelism 

combined with increased clock frequency exerts a higher demand for on-chip and off-

chip memory bandwidth causing longer average memory access delays.  There has been 

great interest shown by researchers to understand the underlying reasons that cause these 

bottlenecks in processors.  

The advances in circuit integration technology and inevitability of thread level 

parallelism over instruction level parallelism for performance efficiency has made Chip-

Multiprocessor (CMP) or multi-core technology the mainstream in CPU designs. With 

the evolution of processor architectures over time, the benchmarks used to measure the 

performance of these high performance processors have also continued to evolve. Many 

single and multi threaded benchmarks have been defined and developed to stress the 

processor units to its maximum limit. Standard Performance Evaluation Corporation 

(SPEC) is one of the non profit organizations that have been developing benchmarks to 

meet the requirements of these dynamic processor architectures for nearly a decade. 

SPEC CPU2006 is a single-threaded compute-intensive benchmark developed by SPEC 

using C, C++ and FORTRAN programming language. To understand the performance of 
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multi-core processors completely it is equally important to understand their behavior 

while running multi threaded applications. SPEC JBB2005, lmbench, bioperf and splash2 

are some of the most popularly used multithreaded benchmarks for this purpose. 

This thesis work focuses mainly on workload characteristics, memory system 

behavior and multi-thread interaction of the benchmarks. This work also seeks to report 

performance measurement on Intel Core 2 Duo E6400 with 2.13GHz [15] and compare 

the results with Intel Pentium D 830 with 3.0GHz [19] and AMD Athlon 64X2 4400+ 

with 2.2GHz [2]. In contrast to existing performance evaluations [13] [26] [27] that 

usually provide overall execution time and throughput, this work emphasizes on the 

memory hierarchy performance. It reports the measured memory access latency and 

bandwidth as well as cache-to-cache communication delays. It also examines the 

performance scalability between single and dual cores on the three tested processors.  

Summarized below are a few interesting findings based on experiments conducted 

as part of this research: 

 SPEC CPU2006 running on Core 2 Duo exerts less pressure on the L1 

cache compared to SPEC CPU2000 benchmarks.  However, CPU2006 

benchmarks have larger data sets and longer execution times resulting in 

comparatively high stress on L2 cache. 

 The cache to cache latency of Core 2 Duo was measured to be 33ns. Core 

2 Duo has high memory bandwidth and low latency as a result of on-chip 

access to the other L1 cache and the presence of aggressive memory 

dependence predictors. . Its shared L2 generates less off-chip traffic than 

the other two. 
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 Due to its shared L2 cache access the execution time of all single threaded 

workloads are fast and range from 56-1500 seconds for Core 2 Duo. The 

average multi-programmed speedup for CPU2006 and CPU2000 

benchmarks was measured at 1.76 and 1.77 respectively which is lower 

than the ideal speedup of 2.  The Core 2 Duo’s speed-ups are constrained 

due to its ability to use the entire L2 cache. 

1.2  Architecture of Intel Core 2 Duo 

The Intel Core 2 Duo E6400 (Figure 1.1) processor supports CMP and belongs to 

the Intel’s mobile core family. It is implemented by using two Intel’s Core architecture 

on a single die. The design of Intel Core 2 Duo E6400 is chosen to maximize 

performance and minimize power consumption [18].  It emphasizes mainly on cache 

efficiency and does not stress on the clock frequency for high power efficiency. Although 

clocking at a slower rate than most of its competitors, shorter stages and wider issuing 

pipeline compensates the performance with higher IPC’s. In addition, the Core 2 Duo 

processor has more ALU units [13]. The five main features of Intel Core 2 Duo 

contributing towards its high performance are: 

• Intel’s Wide Dynamic Execution 

• Intel’s Advanced Digital Media Boost 

• Intel’s Intelligent Power Capability 

• Intel’s Advanced Smart Cache  

• Intel’s Smart Memory Access 

Core 2 Duo employs Intel’s Advanced Smart Cache which is a shared L2 cache to 

increase the effective on-chip cache capacity. Upon a miss from the core’s L1 cache, the 
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shared L2 and the L1 of the other core are looked up in parallel before sending the 

request to the memory [18]. The cache block located in the other L1 cache can be fetched 

without off-chip traffic. Both memory controller and FSB are still located off-chip. The 

off-chip memory controller can adapt the new DRAM technology with the cost of longer 

memory access latency. Intel Advanced Smart Cache provides a peak transfer rate of 96 

GB/sec (at 3 GHz frequency) [17]. 

 
Figure 1-1 Block Diagram of Intel Core 2 Duo Processor 

 
 Core 2 Duo employs aggressive memory dependence predictors for memory 

disambiguation. A load instruction is allowed to be executed before an early store 

instruction with an unknown address. It also implements a macro-fusion technology to 

combine multiple micro-operations.  

Another important aspect to alleviate cache miss penalty is data prefetching. 

According to the hardware specifications, the Intel Core 2 Duo includes a stride 

prefetcher on its L1 data cache [17] and a next line prefetcher on its L2 cache [13]. The 

Intel Core micro-architecture includes in each processing core two prefetchers to the 

Level 1 data cache and the traditional prefetcher to the Level 1 instruction cache. In 
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addition it includes two prefetchers associated with the Level 2 cache and shared between 

the cores. In total, there are eight prefetchers per dual core processor [17].The L2 

prefetcher can be triggered after detecting consecutive line requests twice. 

The stride prefetcher on L1 cache is also known as Instruction Pointer-Based (IP) 

prefetcher to level 1 data cache (Figure 1.2). The IP prefetcher builds a history for each 

load using the load instruction pointer and keeps it in the IP history array. The address of 

the next load is predicted using a constant stride calculated from the entries in the history 

array [17]. The history array consists of the following fields. 

 12 un-translated bits of last demand address 

 13 bits of last stride data (12 bits of positive or negative stride with the 13th bit 

the sign) 

 2 bits of history state machine 

 6 bits of last prefetched address—used to avoid redundant prefetch requests. 

 

Figure 1-2 Block Diagram of Intel Core Micro-architecture’s IP Prefetcher 
 

 The IP prefetcher then generates a prefetch request to L1 cache for the predicted 

address. This request for prefetch enters a FIFO and waits for its turn. When the request 

is encountered a lookup for that line is done in the L1 cache and the fill buffer unit. If the 
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prefetch hits either the L1 cache or the fill buffer, the request is dropped. Otherwise a 

read request to the corresponding line is sent to L2 cache.  

 Other important features involve support for new SIMD instructions called 

Supplemental Streaming SIMD Extension 3, coupled with better power saving 

technologies. Table 1.1 specifies the CPU specification of the Intel Core 2 Duo machine 

used for carrying out the experiments. It has separate 32 KB L1 instruction and data 

caches per core. A 2MB L2 cache is shared by two cores. Both L1 and L2 caches are 8-

way set associative and have 64-byte lines. 

Table 1.1 Specification of Intel Core 2 Duo machine. 
CPU Intel Core 2 Duo E6400 (2 x 2.13GHz) 
Technology 65nm 
Transistors 291 Millions 
Hyperthreading No 
L1 Cache  Code and Data: 32 KB X 2, 8 way, 64–byte cache line size, write-back 
L2 Cache  2MB shared cache (2MB x 1), 8-way, 64-byte line size, non-inclusive 

with L1 cache. 
Memory 2GB (1GB x 2) DDR2 533MHz  
FSB 1066MHz Data Rate 64-bit 
FSB bandwidth 8.5GB/s 
HD Interface SATA 375MB/s 

 
The remainder of this work is organized as follows. Chapter 2 analyzes SPEC 

CPU2006 benchmark using variety of performance results obtained from Intel(R) 

VTune(TM) Performance Analyzer 8.0.1 and compares it with SPEC CPU2000 

benchmarks. Chapter 3 compares memory latency and hierarchy of three dual core 

processors using micro-benchmarks. Chapter 4 discusses the performance measurement 

results for three dual core processors using single threaded, multi-programmed and 

multithreaded workloads. Chapter 5 describes related work. Finally, chapter 6 explains 

the brief conclusion obtained. 
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2.  Performance Analysis of SPEC CPU Benchmarks Running 
on Intel’s Core 2 Duo Processor 

2.1  Overview 

With the evolution of processor architecture over time, benchmarks that were 

used to measure the performance of these processors are not as useful today as they were 

before due to their inability to stress the new architectures to their maximum capacity in 

terms of clock cycles, cache, main memory and I/O bandwidth.  Hence new and 

improved benchmarks need to be developed and used. The SPEC CPU2006 is one such 

benchmark that has intensive workloads based on real applications and is a successor of 

the SPEC CPU2000 benchmark. 

This section presents a detailed analysis of the SPEC CPU2006 benchmark 

running on the Core 2 duo processor discussed earlier and emphasizes on its workload 

characteristics and memory system behavior.  Also, the cpu2006 and cpu2000 

benchmarks are compared with respect to performance bottlenecks by using the v-tune 

performance analyzer for the entire program execution. 

2.2  Methodology 

The SPEC CPU2006 has 29 benchmarks with 12 integer and 17 floating point 

programs. For our experiments, all the integer programs and a subset of 10 floating point 

programs were considered. The details of these benchmark programs are shown in Tables 

2.1 and 2.2.    

All experiments were run on systems with 32 bit Windows XP SP2 operating 

system and Intel Core 2 Duo processors, as explained in Chapter 1. The Intel(R) 

VTune(TM) Performance Analyzer 8.0.1 was used to analyze all benchmarks for their 
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Table 2.1 SPEC CPU20006 Integer Benchmark 

Integer 
Benchmark Language Description 
 Astar C++ Path-Finding Algorithm 
Bzip2 C Compression 
Gcc C C Compiler 
Gobmk C Artificial Intelligence: go 
H264ref C Video Compression 
Hmmer C Search Gene Sequence 

Libquantum C 
Physics: Quantum 
Computing 

Mcf C Combinatorial Optimization 
Omnetpp C++ Discrete Event Simulation 

Perlbench C 
PERL Programming 
Language 

Sjeng C Artificial Intelligence: Chess 
Xalancbmk C++ XML Processing 

 
Table 2.2 SPEC CPU20006 Floating Point Benchmark 

Floating 
Point 
benchmarks Language Description 
Bwaves Fortran Fluid Dynamics 
Gamess Fortran Quantum Chemistry 

Milc C 
Physics: Quantum 
Chromodynamics 

Gromacs C/Fortran
Biochemistry/Molecular 
Dynamics 

CactusADM C/Fortran Physics / General Relativity 
Leslie3d Fortran Fluid Dynamics 

Soplex C++ 
Linear Programming, 
Optimization 

GemsFDTD Fortran Computational Electromagnetics 
Lbm C Fluid Dynamics 
Sphinx3 C Speech recognition 

 
complete run time [20].  At a given time, Intel(R) VTune(TM) Performance Analyzer 

8.0.1 can measure only certain definite number of events, depending upon the 

configuration; hence, several complete runs were made to measure all the events. All 
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benchmarks were compiled using Microsoft Visual C/C++ 2005 and Intel® FORTRAN 

Compiler 9.1. We used the fastest speed compilation flags i.e. for the Microsoft VC++ 

compiler, we set “-O2”. 

2.3  Measurement Results 

2.3.1  IPC and Instruction Profile 

Figure 2.1(a) and Figure 2.1(b) represent the IPC of CPU2006 and CPU2000 

respectively. The average IPC’s for CPU2006 and CPU2000 benchmarks were measured 

at 1.006 and 0.85 respectively. From the figures it can be observed that mcf, omnetpp and 

lbm have low IPC among CPU2006 benchmarks, while mcf, art and swim have low IPC 

among the CPU2000 benchmarks. It is interesting to understand the causes of 

performance bottlenecks among these benchmarks and to do so the instruction profiles of 

these benchmarks were analyzed. 

Figure 2.2(a) and Figure 2.2(b) represent the instruction profile of CPU2006 and 

CPU2000 respectively. It is evident from the figure that a very high percentage of 

instructions retired consist of loads and stores. CPU2006 benchmarks like h264ref, 

hmmer, bwaves, lesli3d and GemsFDTD have comparatively high percentage of loads 

while astar, bzip2, gcc, gobmk, libquantum, mcf, omnetpp, perlbench, sjeng, xalancbmk 

and gamess have high percentage of branch instructions. On the contrary CPU2000 

benchmarks like gap, parser, vortex, applu, equake, fma3d, mgrid and swim have 

comparatively high percentage of loads while almost all integer programs have high 

percentage of branch instructions. 
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(a) 

CPU2000 IPC
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Figure 2-1 (a) IPC of SPEC CPU2006 Benchmarks 
                  (b) IPC of SPEC CPU2000 Benchmarks 

 
However, higher percentage of load and store instructions retired or higher 

percentage of branches do not indicate presence of better bottlenecks. For example 

h264ref and perlbench have high percentage of load, store and branch instructions, but 

they also have comparatively high IPC. Similarly among CPU2000 benchmarks crafty, 

parser and perl have high percentage of load, store and branch instruction and have better 

IPC. To get a better understanding of the bottlenecks of these benchmarks, L1 cache 

misses, L2 cache misses and branch instruction mis-predicted were measured and 
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analyzed. The higher the measured rates the better is the bottleneck produced by the 

respective benchmark. 
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CPU2000 INSTRUCTION PROFILE
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(b) 

Figure 2-2 (a) Instruction Profile of SPEC CPU2006 Benchmarks 
                  (b) Instruction Profile of SPEC CPU2000 Benchmarks 

 

2.3.2   L1 D-Cache Misses  

Figure 2.3(a) and 2.3(b) indicates the L1 cache misses per 1000 instructions of 

CPU2006 and CPU2000 benchmarks. The results show that there is no significant 

improvement in CPU2006 than CPU2000 with respect to stressing the L1 cache. The 

average L1-D cache misses per 1000 instructions for cpu2006 and cpu2000 benchmark 

set under consideration was found to be 24.2 and 27.8 respectively.  The mcf benchmark 
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has highest L1 cache misses per 1000 instructions in both CPU2000 and CPU2006 

benchmarks. This is one of the significant reasons for its low IPC.  

CPU2006 L1 D-Cache Miss Per Kinst
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CPU2000 L1 D-Cache Miss Per Kinst
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(b) 

Figure 2-3 (a) L1-D Cache Misses per 1000 instructions of SPEC CPU2006 Benchmarks 
                 (b) L1-D Cache Misses per 1000 instructions of SPEC CPU2000 Benchmarks 

 
Mcf is a memory intensive integer benchmark written in C language. Code 

analysis using Intel(R) VTune(TM) Performance Analyzer 8.0.1 shows that the key 

functions responsible for stressing the various processor units are primal_bea_mpp and 

refresh_potential. Primal_bea_mpp (72.6%) and refresh_potential (12.8%) together are 

responsible for 85% of the overall L1 data cache miss events.  
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A code sample of primal_bea_mpp function is shown in Figure 2.4. The function 

traverses an array of pointer (denoted by arc_t) to a set of structures. For each structure 

traversed, it optimizes the routines used for massive communication. In the code under 

consideration, pointer chasing in line 6 is responsible for more than 50% of overall L1D 

cache misses for the whole program. Similar result for mcf in CPU2000 was also found 

in previous work [11]. Apart from mcf, lbm have comparatively significant L1 cache 

misses rate in CPU2006 and mcf, art and swim have comparatively significant L1 cache 

misses rate in CPU2000.  

 
Figure 2-4 Sample Code of MCF Benchmark 

2.3.3  L2 Cache Misses 

Figure 2.4(a) and 2.4(b) represent the L2 cache misses per 1000 instructions of 

CPU2006 and CPU2000 SPEC benchmarks respectively. The average L2 cache misses 

per 1000 instructions for CPU2006 and CPU2000 benchmarks under consideration was 

found to be 4.4 and 2.5 respectively. Lbm has the highest L2 cache misses which 

attributes for its low IPC. Lbm (Lattice Boltzmann Method) is a floating point based 

benchmark written in C language. It is used in the field of fluid dynamics to simulate the 

behavior of fluids in 3D. Lbm has two steps of accessing memory, namely i) streaming 
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step , in which values are derived  from neighboring cells and  ii) linear memory access to 

read the cell values (collide-stream) and write the values to the cell (stream-collide) [9]. 
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Figure 2-5  (a) L2 Cache Misses per 1000 instructions of SPEC CPU2006 Benchmarks 
       (b) L2 Cache Misses per 1000 instructions of SPEC CPU2000 Benchmarks 

 
Code analysis reveals that LBM_performStreamCollide function used to write the 

values to the cell is responsible for 99.98% of the overall L2 cache miss events. A code 

sample of the same function is shown in Figure 2.6. A macro “TEST_FLAG_SWEEP” is 

responsible for 21% of overall L2 cache misses. The definition of TEST_FLAG_SWEEP 

is shown in Figure 2.6(b). The pointer *MAGIC_CAST dynamically accesses memory 

accesses over 400MB of data which is much larger than the available L2 cache size 

   14



(2MB), resulting in very high L2 cache misses. Hence it can be concluded that lbm has 

very large data footprint which results in high stress on L2 cache. For mcf, 

Primal_bea_mpp (33.4%) and refresh_poten-tial (20.2%) are two major functions 

resulting in L2 cache misses. Intensive pointer chasing is responsible for this. 

 

Figure 2-6 Sample Cde of LBM Benchmark 
 

2.3.4  Branch Misprediction  

Figure 2.5(a) and 2.5(b) represents the branch mispredicted per 1000 instructions 

of CPU2006 and CPU2000 SPEC benchmarks. CPU2006 benchmarks have 

comparatively higher branch misprediction than CPU2000 benchmark and almost all 

floating point benchmarks under consideration have negligible branch misprediction 

comparatively. The average branch mispredicted per 1000 instructions for CPU2006 and 

CPU2000 integer benchmarks were measured as 4.2 and 4.0 respectively and the average 

branch misprediction per 1000 instructions for CPU2006 and CPU2000 floating point 

benchmarks were measured as 0.4 and 0.08 respectively. 

We also measured L1 DTLB misses for SPEC CPU2006. Only a few programs 

have L1 DTLB miss rates equal to or larger than 1%. They are astar (1%), mcf (6%), 

omnetpp (1%) and cactusADM (2%). Some programs have very small L1 DTLB miss 

rate, for example, the miss rates for hammer, gromacs are 3.3*10-5 and 6.2*10-5 

respectively. Other interesting results include hmmer and h264ref that has very high 
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percentage of loads and store but have negligible L1 and L2 cache misses per 1000 

instructions. This is likely because hmmer and h264ref exhibit high locality of data set 

which favors the hardware prefetcher. 
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(b) 

Figure 2-7 (a) Branch Mispredicted Per 1000 Instructions of SPEC CPU2006   
                        Benchmarks; (b) Branch Mispredicted Per 1000 Instructions of SPEC 

CPU2000 Benchmarks 
 

Thus from the results analyzed so far we can conclude that the cpu2006 

benchmarks have larger data sets and requires longer execution time than its predecessor 

CPU2000 benchmarks. 
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3.  Performance Comparison of Dual Core Processor Using 
Microbenchmarks 

3.1  Overview 

In this section performance measurement results of three dual core desktop 

processors: Intel Core 2 Duo E6400 with 2.13GHz [15], Intel Pentium D 830 with 

3.0GHz [19] and AMD Athlon 64X2 4400+ with 2.2GHz [2] are analyzed and compared. 

The results in this section of work done emphasizes mainly on memory hierarchy and 

cache-to-cache communication delays of the three processors under consideration. 

There are several key design choices for the memory subsystem of the three 

processors. All three have private L1 caches with different sizes. At the next level, the 

Intel Core 2 Duo processor adapts a shared L2 cache design, called Intel Advanced Smart 

Cache for the dual cores [17]. The shared L2 approach provides a larger cache capacity 

by eliminating data replications. It also permits naturally sharing of cache space among 

multiple cores. When only one core is active, the entire shared L2 can be allocated to the 

single active core. However, the downside for the shared L2 cache is that it suffers longer 

hit latency and may encounter competitions of its shared cache resources. Both the Intel 

Pentium D and the AMD Athlon 64X2 have a private L2 cache for each core, enabling 

fast L2 accesses, but restricting any capacity sharing among the two cores. 

The shared L2 cache in the Core 2 Duo eliminates on-chip L2-level cache 

coherence. Furthermore, it resolves coherence of the two core’s L1 caches internally 

within the chip for fast access to the L1 cache of the other core. The Pentium D uses an 

off-chip Front-Side Bus (FSB) for inter-core communications. Basically, the Pentium D 

is basically a technology remap of the Pentium 4 Symmetric Multiprocessor (SMP) that 

requires accessing the FSB for maintaining cache coherence. AMD Athlon 64X2 uses a 
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Hyper-Transport interconnect technology for faster inter-chip communication. Given an 

additional ownership state in the Athlon 64X2, cache coherence between the two cores 

can be accomplished without off-chip traffic. In addition, the Athlon 64X2 has an on-die 

memory controller to reduce memory access latency. 

 To examine memory bandwidth and latency, we used lmbench [33], a suite of 

memory measurement benchmarks. Lmbench attempts to measure the most commonly 

found performance bottlenecks in a wide range of system applications. These bottlenecks 

can be identified, isolated, and reproduced in a set of small micro-benchmarks, which 

measure system latency and bandwidth of data movement among the processor, memory, 

network, file system, and disk. In addition, we also ran STREAM [24] and STREAM2 [25] 

recreated by using lmbench’s timing harness. They are kernel benchmarks measuring 

memory bandwidth and latency during several common vector operations such as matrix 

addition, copy of matrix, etc. We also used a small lockless program [29] to measure the 

cache-to-cache latency of the three processors. The lockless program records the duration 

of ping-pong procedures of a small token bouncing between two caches to get the 

average cache-to-cache latency.  

3.2  Architecture of Dual-Core Processors 

3.2.1  Intel Pentium D 830 

The Pentium D 830 (Figure 3.1) glues two Pentium 4 cores together and connects 

them with the memory controller through the north-bridge. The off-chip memory 

controller provides flexibility to support the newest DRAM with the cost of longer 

memory access latency. The MESI coherence protocol from Pentium SMP is adapted in 

Pentium D that requires a memory update in order to change a modified block to shared. 
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The systems interconnect for processors remains through the Front-Side Bus (FSB). To 

accommodate the memory update, the FSB is located off-chip that increases the latency 

for maintaining cache coherence.  

The Pentium D’s hardware prefetcher allows stride-based prefetches beyond the 

adjacent lines. In addition, it attempts to trigger multiple prefetches for staying 256 bytes 

ahead of current data access locations [16]. The advanced prefetching in Pentium D 

enables more overlapping of cache misses. 

 
Figure 3-1 Block Diagram of Pentium D Processor 

3.2.2  AMD Athlon 64X2 

The Athlon 64X2 (Figure 3.2) is designed specifically for multiple cores in a 

single chip (Figure 1(c)). Similar to the Pentium D processor, it also employs private L2 

caches. However, both L2 caches share a system request queue, which connects with an 

on-die memory controller and a Hyper-Transport. The Hyper-Transport removes system 

bottlenecks by reducing the number of buses required in a system. It provides 

significantly more bandwidth than current PCI technology [3]. The system request queue 

serves as an internal interconnection between the two cores without involvements of an 

external bus. The Athlon 64X2 processor employs MOESI protocol, which adds an 
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“Ownership” state to enable blocks to be shared on both cores without the need to keep 

the memory copy updated. 

 The Athlon 64X2 has a next line hardware prefetcher. However, accessing data in 

increments larger than 64 bytes may fail to trigger the hardware prefetcher [5]. 

          
Figure 3-2 Block Diagram of AMD Athlon 64x2 Processor  

 

3.2.3  Processor Comparison 

Table 3.1 lists the specifications of the three processors experimented in this 

paper. There are no Hyper-threading settings on any of these processors. The Intel Core 2 

Duo E6400 has separate 32 KB L1 instruction and data caches per core. A 2MB L2 cache 

is shared by two cores. Both L1 and L2 caches are 8-way set associative and have 64-

byte lines. The Pentium D processor has a Trace Cache which stores 12Kuops. It is also 

equipped with a write-through, 8-way 16KB L1 data cache with a private 8-way 1MB L2 

cache. The Athlon 64X2 processor’s L1 data and instruction cache are 2-way 64KB with 

a private 16-way 1MB L2 cache for each core. Athlon 64X2’s L1 and L2 caches in each 

core is exclusive. All three machines have the same size L2 caches and Memory. The 

Core 2 Duo and the Pentium D are equipped with DDR2 DRAM using advanced memory 
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controllers in their chipsets. The Athlon 64X2 has a DDR on-die memory controller. All 

three machines have 2GB memory. The FSB of the Core 2 Duo is clocked at 1066MHz 

with bandwidth up to 8.5GB/s. The FSB of the Pentium D operates at 800MHz and 

provides up to 6.4GB/sec bandwidth. The Athlon 64X2 has a 2GHz I/O Hyper-Transport 

with bandwidth up to 8GB/s. Bandwidth of hard drive interface for the three machines 

are 375MB/s, 150MB/s and 300MB/s respectively. Because of our experiments are all in-

memory benchmarks, difference in hard drives should have little impact.  

Table 3.1 Specifications of the selected processors 

CPU 
Intel Core 2 Duo 
E6400 (2 x 2.13GHz) 

Intel Pentium D 830 
(2 x 3.00GHz) 

AMD Athlon64 
4400+ (2 x 2.20GHz) 
 

Technology 65nm 90nm 90nm 
Transistors 291 Millions 230 Millions 230 Millions 
Hyperthreading No No No 

L1 Cache  

Code and Data: 32 KB 
X 2, 8 way, 64–byte 
cache line size, write-
back 

Trace cache: 12Kuops 
X 2, data: 16KB X 2, 
8-way, 64-byte line 
size, write-through 

Code and data: 64KB 
X 2, 2-way,  64-byte 
cache line size, write-
back 

L2 Cache  

2MB shared cache 
(2MB x 1), 8-way, 64-
byte line size, non-
inclusive with L1 
cache. 

2MB private cache 
(1MB x 2), 8-way, 64-
byte line size, 
inclusive with L1 
cache. 

2MB private cache 
(1MB x 2), 16-way, 
64-byte line size, 
exclusive with L1 
cache. 

Memory 
2GB (1GB x 2) DDR2 
533MHz 

2GB(512MBx4) 
DDR2 533MHz 

2GB(1GB x 2) DDR 
400MHz 

FSB 
1066MHz Data Rate 
64-bit 

800MHz Data Rate 
64-bit 

HyperTransport 16bit 
up/down 2GHz Data 
Rate (up+down) 

FSB bandwidth 8.5GB/s 6.4GB/s 8GB/s 
HD Interface SATA 375MB/s SATA 150MB/s SATA 300MB/s 

3.3  Methodology 

 We installed SUSE linux 10.1 with kernel 2.6.16-smp on all three machines. We 

used maximum level GCC optimization to compile the C/C++ benchmarks of lmbench 

and lockless program. We used lmbench suite running on the three machines to measure 
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bandwidth and latency of memory hierarchy. Lmbench attempts to measure performance 

bottlenecks in a wide range of system applications. These bottlenecks have been 

identified, isolated, and reproduced in a set of small micro-benchmarks, which measure 

system latency and bandwidth of data movement among the processor, memory, network, 

file system, and disk.  

Table 3.2 Memory operations from Lmbench 
Operation 
 

Description  
 

Libc bcopy 
unaligned 

measuring how fast the processor can copy data blocks when data 
segments are not aligned with pages using a system call bcopy(). 

Libc bcopy 
aligned 

measuring how fast the processor can copy data blocks when data 
segments are aligned with pages using a system call bcopy(). 

Memory 
bzero 

measuring how fast the processor can reset memory blocks using a 
system call bzero(). 

Unrolled 
bcopy 
unaligned 

measuring how fast the system can copy data blocks without using 
bcopy(), when data segments are not aligned with pages.  

Memory 
read measuring the time to read every 4 byte word from memory  
Memory 
write measuring the time to write every 4 byte word to memory 

 
In our experiments, we focus on the memory subsystem and measure memory 

bandwidth and latency with various operations [33]. Table 3.2 lists the operations used to 

test memory bandwidth and their meanings. We can run variable stride accesses to get 

average memory read latency. In addition, we ran multi-copies lmbench, one on each core 

to test the memory hierarchy system. We also ran STREAM [24] and STREAM2 [25] 

recreated by using lmbench’s timing harness. They are simple vector kernel benchmarks 

measuring memory bandwidth. Each version has four common vector operations as listed 

in Table 3.3. Average memory latencies for these operations are also reported.      
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Table 3.3 Kernel operations of the STREAM and STREAM2 benchmarks 
Set Kernel Operation 
STREAM copy c[i]=a[i] 
STREAM scale b[i] = scalar * c[i] 
STREAM add c[i] = a[i] + b[i] 
STREAM triad a[i] = b[i] + scalar * 
STREAM2 fill a[i] = q 
STREAM2 copy a[i] = b[i] 
STREAM2 daxpy a[i] = a[i] + q * b[i] 
STREAM2 sum sum = sum + a[i] 

 
 

   We measured the cache-to-cache latency using a small lockless program [29]. It 

doesn’t employ expensive read-modify-write atomic instructions. Instead, it maintains a 

lockless counter for each thread. The c-code of each thread is as follows.    

*pPong = 0; 
  for (i = 0; i < NITER; ++i) 
  { 
       while (*pPing < i); 
       *pPong = i+1; 
  } 

 
    Each thread increases its own counter pPong and keeps reading the peer’s 

counter by checking pPing. The counter pPong is in a different cache line from the 

counter pPing. A counter pPong can be increased by one only after verifying the update 

of the peer’s counter. This generates a heavy read-write sharing between the two cores 

and produces a Ping-Pong procedure between the two caches. The average cache-to-

cache latency is measured by repeating the procedure. 

3.4  Memory Bandwidth and Latency Measurements 

 We used the lockless program described in section 3.3 to measure the dual-core 

cache-to-cache latency. The average cache-to-cache latency of Core 2 Duo, Pentium D, 

and Athlon 64X2 are 33ns, 133ns and 68ns respectively. Core 2 Duo resolves L1 cache 
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coherence within the chip and enables the fastest cache-to-cache transfer. Pentium D 

requires external FSB for cache-to-cache transfer. Athlon 64X2’s on-chip system request 

inter-face and the MOESI protocol permits fast cache-to-cache communication.  

We ran the bandwidth and latency test programs present in the lmbench suite. 

Figure 3.3 shows memory bandwidth for many operations from lmbench. Figure 3.3(a), 

3.3(c) and 3.3 (e) present data collected while running one copy of lmbench on the three 

machines. Several observations can be made:  

 (1) In general, Core 2 Duo and Athlon 64 X2 have better bandwidth than that of 

Pentium D. Only exception is that Pentium D shows the best memory read bandwidth 

when the array size is less than 1MB. The shared cache of Core 2 Duo demands longer 

access latency though providing larger effective capacity. For Athlon 64X2, because the 

equipped DRAM has lower bandwidth, its memory read bandwidth is lower than that of 

Pentium D when memory bus is not saturated. The memory read bandwidth for the three 

machines drops when the array size is larger than 32KB, 16KB and 64KB respectively. 

These reflect the sizes of their L1 cache. When the array size is larger than 2MB, 1MB 

and 1MB for the respective three systems, we can see another dropping, reflecting their 

L2 cache sizes.  

    (2) The memory bzero operation shows different behaviors: when the array size is 

larger than their L1 data cache sizes, i.e., 32KB for Core 2 Duo and 64KB for Athlon 

64X2, the memory bandwidth drops sharply. This is not true for Pentium D. The L1 

cache of Core 2 Duo and Athlon 64X2 employ a write-back policy while the L1 cache of 

Pentium D uses a write-through policy. When the array size is smaller than their L1 data 

cache sizes, the write-back policy updates the L2 cache less frequently than the write- 
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through policy, leading to higher bandwidth. However, when the array size is larger than 

their L1 data cache sizes, the write-back policy does not have any advantage as indicated  
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(f) 

Figure 3-3 Memory bandwidth collected from the lmbench suite (1 or 2 copies). 
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by the sharp decline of the bandwidth. 
 

 (3) For Athlon 64X2, libc bcopy unaligned and libc bcopy aligned show a big 

difference while alignment does not have much difference for Core 2 Duo and Pentium 

D. ‘Aligned’ here means the memory segments are aligned to the page boundary. The 

operation bcopy could be optimized if the segments are page aligned. In Figure 3.3(a), 3.3 

(c) and 3.3 (e), Core 2 Duo and Pentium D show optimizations for unaligned bcopy 

access while Athlon 64X2 does not.  

Figure 3.3 (b), 3.3 (d) and 3.3 (f) plot the bandwidth while running two copies of 

lmbench on three machines. The scale of the vertical axis of these three figures is doubled 

compared to their one-copy counterparts. We can observe that memory bandwidth of 

Pentium D and Athlon 64X2 are almost doubled for all operations. Core 2 Duo has 

increased bandwidth, but not doubled. This is because of the access contention when two 

lmbench copies compete with the shared cache. When the array size is larger than its L2 

cache size 2MB, Athlon 64X2 provides almost doubled bandwidth for two-copy lmbench  

memory read operation compared with its one-copy counterpart. Athlon 64X2 benefits 

from its on-die memory controller and separate I/O Hyper-Transport. Intel Core 2 Duo 

and Pentium D processors suffer FSB bandwidth saturation when the array size exceeds 

the L2 capacity. 

We tested memory load latency for multiple sizes of stride access and random 

access for all the three machines. Figure 3.4(a), 3.4 (c) and 3.4 (e) depict the memory 

load latency lines of the three machines running with one copy of lmbench. Several 

observations can be made: (1) For Core 2 Duo, latencies for all configurations jump after 

the array size is larger than 2 MB while for Pentium D and Athlon 64X2 latencies for all 
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the configurations jump after the array size is larger than 1MB. This relates to the L2 

cache sizes of the measured machines. (2) As described in Section 2, when hardware  
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AMD-Memory Load Latency-2 copies
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(f) 

Figure 3-4 Memory load latency collected from the lmbench suite (1 or 2 copies) 
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prefetchers on all machines work, the memory bus bottleneck will not be reflected. When 

the stride size is equal to 128 bytes, Pentium D still benefits partially from its hardware 

prefetcher but the L2 prefetchers of Core 2 Duo and Athlon 64X2 is not triggered. This 

leads to better performance for Pentium D. (3) When the stride size is large than 128 

bytes, all hardware prefetchers don’t take effect. Multiple L2 cache misses put pressures 

onto the memory buses. Athlon 64X2’s on-die memory controller and separate I/O 

HyperTransport show the advantage. Pentium D’s memory latency have a large jump for 

these operations but Athlon 64X2’s latency almost keeps unchanged.   

We increased pressure on memory hierarchy by running 2 copies of lmbench 

simultaneously. Figure 3.4(b), 3.4(d) and 3.4(f) show memory latencies of two lmbench 

copies. We found that Core 2 Duo and Athlon 64X2 show a slight increase in the 

latencies for stride sizes larger than 128 bytes while Pentium D’s latencies in those 

situations increases a lot. Core 2 Duo benefits from its shared cache, which generates 

lower external traffic and its faster FSB while Athlon 64X2 take the advantage of on-chip 

memory controller and separate I/O Hyper-Transport. However, Pentium D’s latencies 

jump due to suffering from memory bus saturation. 

We also ran the STREAM and STREAM2 benchmarks implemented in lmbench to 

measure memory bandwidth and latency of eight kernel operations. Figure 3.5(a) shows 

memory bandwidth of STREAM and STREAM2 operations when running with a single 

copy of each operation. We made two observations. First, the add operation in the 

STREAM suite shows much higher bandwidth than other operations. After examining the 

related assembly code, we found that the add operation is a loop of c[i] = a[i] + b[i], 

which can easily take advantage of the SSE2 packet operations. Other operations such as 
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copy and fill do not use SSE2 instructions and therefore do not show much difference. 

Triad and daxpy have longer delay and lower bandwidth for each step because of 

multiplication. Performance of the operation sum was hurt because of its inter-loop 

dependence: s += a[i]. Second, Intel Core 2 Duo shows the best bandwidth for all 

operations because of L1 data prefetchers and the faster Front Side Bus. 
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Figure 3-5 Memory bandwidth and latency collected from the STREAM and STREAM2 
benchmarks (1 or 2 copies) 
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Figure 3.5(b) depicts memory bandwidth when running with 2 copies of each 

operation in STREAM / STREAM2, one on each core. From this figure, we can see that 

Core 2 Duo and Athlon 64X2 have better bandwidth than that of Pentium D. This is due 

to the fact that Pentium D’s FSB is saturated when running two copies of each operation. 

Athlon 64X2 benefits from its on-die memory controller and separate HyperTransport for 

I/O although its main memory DDR bandwidth is worse than that of Pentium D. Core 2 

duo benefits from the presence of its L1 data prefetchers and the faster FSB. Figure 3.5(c) 

and 3.5(d) show the memory latencies for the three machines. Similar to the bandwidth 

figures, memory latency of Core 2 Duo and Pentium D are shorter than that of Athlon 

64X2 when a single copy of the STREAM/STREAM2 benchmark is running. Apparently, 

the shorter latency from on-die memory controller does not pay off in comparison with an 

off-die controller with better DRAM technology. However, while running the 2-copy 

version, memory latency of Pentium D is higher than the other two. 
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4.  Performance Comparison of Dual Core Processors Using   
Multiprogrammed and Multithreaded Benchmarks 

4.1  Overview 

 This section emphasizes on comparing the performance measurement results of 

three dual core desktop processors, explained in chapter 3 : Intel Core 2 Duo E6400 with 

2.13GHz [15], Intel Pentium D 830 with 3.0GHz [19] and AMD Athlon 64X2 4400+ 

with 2.2GHz [2] using multi-programmed and multi threaded benchmarks. 

  To evaluate the architecture performance a mixture of single threaded and multi-

programmed benchmarks are used. A set of single-threaded workloads is run on the three 

systems to determine the dual-core speedups over a single core. For single-thread 

programs, we experiment a subset of mixed SPEC CPU2000 and SPEC CPU2006 

benchmarks [31]. To examine the scalability of single and dual cores, we run a set of 

single- and multi- threaded workloads on the three systems. For multi-threaded 

workloads, we select blastp and hmmpfam from the BioPerf suites [6], SPECjbb2005 

[32], as well as a subset of SPLASH2 [22].  

4.2   Methodology 

Similar to the methodology used in chapter 3 we used SUSE linux 10.1 with 

kernel 2.6.16-smp on all three machines for all our experiments in this section. We used 

maximum level GCC optimization to compile all the C/C++ benchmarks including SPEC 

CPU2000, SPEC CPU2006, SPLASH2 and blastp and hmmpfam from BioPerf. SPEC 

jbb2005 was compiled using SUN JDK 1.5.0. 

 For multiprogrammed workloads, the cross-product of mixed SPEC 

CPU2000/2006 benchmarks were run on the three machines to examine the dual-core 
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speedups over a single core. All the SPEC CPU2000/2006 programs were run with their 

respective ref inputs. In our simulations, when two programs were run together, we 

guaranteed that each program was repeated at least four times. The shorter programs may 

run more than four iterations until the longer program completes its four full iterations. 

We discarded the results obtained in the first run and used the average execution time and 

other metrics from the remainder three repeated runs to determine the speedups. We 

calculated the dual-core speedup for multiprogrammed workloads similarly to that used 

in [25]. Firstly, the single program’s running time were collected individually and were 

considered as the base runtime. Secondly, the average execution time of each workload 

when run simultaneously was re-corded. Then, the dual-core speedup of each workload is 

calculated by finding the ratio of average run time when run individually (single core) by 

the average run-time when run together (dual core). Finally, we add the speedups of the 

two programs run together to obtain the dual-core speedup. For example, if the speedups 

of two programs are 0.8 and 0.9 when run simultaneously, the respective dual-core 

speedup will be 1.7.  

 We used the same procedure for homogeneous multi-threaded workloads 

including blastp and hmmpfam from the BioPerf suites, a subset of SPLASH2, as well as 

SPECjbb2005. The BioPerf suite has emerging Bio-informatics programs. SPLASH2 is a 

widely used scientific workload suite. SPECjbb2005 is a java based business database 

program. Table 4.1 lists the input parameters of the multithreaded workloads used. We 

ran each of these workloads long enough to compensate overheads of sequential portions 

of the workloads. 
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Table 4.1 Input parameters of the selected multithreaded workloads 
Workload Input parameters 
blastp Swissprot database, large input 
hmmpfam Large input 
barnes 1048576 bodies 
fmm 524288 particles 
ocean-continuous 2050 X 2050 grid 

fft 
2^24 total complex data points 
transformed 

lu-continuous  4096 X 4096 node matrix 
lu-non-continuous 4096 X 4096 node matrix 
radix 134217728 keys to sort 

SPECjbb2005 

Default ramp up time 30s, 
measurement time 240s, from 1 to 8 
warehouses 

4.3  Multiprogrammed Workload Measurements 

  We measured execution time of a subset of SPEC CPU2000 and CPU 2006 

benchmarks running on the three systems. In figure 5(a) and 5(c), the Core 2 Duo 

processor runs fastest for almost all workloads, especially for memory intensive 

workloads art and mcf. 

Core 2 Duo has a wider pipeline, more functional units, and a shared L2 cache 

that provides bigger cache for single thread. Athlon 64X2 shows the best performance for 

ammp, whose working set is large, resulting in large amount of L2 cache misses for all 

three machines. Athlon 64X2 benefits from its faster on-chip memory controller.   

  Figure 4.1(b) and 4.1(d) depict average execution time of each workload when 

mixed with another program in the same suite. There is an execution time increasing for 

each workload. For memory bounded programs art, mcf and ammp, execution time 

increasing is large while CPU bounded workloads such as crafty, mesa, perl and sjeng 

show a little increasing.  
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SPEC CPU2000 Execution Time (Single Program)
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SPEC CPU2000 Average Execution Time (Mixed Program)
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SPEC CPU2006 Execution Time (Single Program)
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SPEC CPU2006 Average Execution Time (Mixed Program)
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(d) 

Figure 4-1 SPEC CPU2000 and CPU2006 benchmarks execution time 
 

The multi-programmed speedup of the cross-product of mixed SPEC CPU2000 

and CPU2006 programs for the three machines are given in the Figure 4.2, where C2D, 

PNT and ATH denote the measured Core 2 Duo, Pentium D, and Athlon 64X2 

respectively. From Figure 4, we can see that Athlon 64X2 achieves the best speedup 2.0 

for all the workloads. Crafty, eon, mesa in CPU 2000 and perl in CPU2006 have the best 

speedup when run simultaneously with other programs because they are CPU bounded 

instead of memory bounded programs which have comparatively very low L1 Data cache 

misses and hence do not conflict with the other program when running together. On the 

other hand, in most cases, art shows the worst speedup because it is a memory bounded 
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program. Its intensive L2 cache misses occupy the shared memory bus and block another 

program’s execution. In the extreme case, when an instance of art was run against 

another art, the speedups were 0.82, 1.11 and 1.36 for Core 2 Duo, Pentium D and 

Athlon 64X2. Other memory bounded programs, ammp and mcf, present similar 

behaviors.  
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Figure 4-2 Multi-programmed speedup of mixed SPEC CPU 2000/2006 benchmarks. 
 

Comparing the three machines, the multi-programmed Athlon 64X2 outperforms 

those of Core 2 Duo and Pentium D for almost all workload mixes. It is interesting to 

note that even though Core 2 Duo has better running time than the other two machines, 

the overall speedup is lesser. The reason again is due to its L2 shared cache. 
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4.4  Multithreaded Program Behavior 
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Multithreaded Speedup
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(b) 

Figure 4-3 (a) Execution time for 1-thread version of selected multithreaded programs 
      (b) Speedup for 2-thread version of selected multithreaded programs 

 
The multithreaded program execution time and performance speedup of the three 

systems is presented. We selected blastp and hmmpfam from the BioPerf suite and a set 

of the SPLASH2 workloads. Figure 4.3(a) and 4.3(b) illustrates execution time of single 

thread version of the programs and the speedup when running with 2-thread version. In 

general, Core 2 Duo and Athlon 64X2 do not show performance advantages on 

bioinformatics and scientific workloads because of less data communication between two 
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cores. Similar results were also reported on Multimedia programs [13]. Core 2 Duo 

shows the best speedup for ocean due to a large amount of cache-to-cache transfers [22]. 

We also verified this by Intel(R) VTune(TM) Performance Analyzer 8.0.1 [20]. 

According to the VTune measurements, the ratio of cache-to-cache transfers (snoop) to 

total loads and stores committed is over 15% which is the highest for these workloads. 

Pentium D shows the best speed up for barnes because of the low cache miss rate [22]. 

According to our measurement in chapter 3, the Pentium D processor shows the best 

memory read bandwidth when the array size is small. Bioinformatics workloads have 

high speedups for all three machines due to their small working sets [6]. 

 Workloads with larger data sharing such as database programs benefit more from 

the cache-to-cache latency difference. We tested SPECjbb2005 on all the three machines. 

The throughput for different numbers of warehouses is shown in Figure 4.4. The 

throughput reaches its peak point when the number of warehouses equals to 2 due to the 

dual cores.  In all cases, Core 2 Duo shows the best throughput due to its faster FSB and 

other memory design features. Scalability-wise, the throughput for 2 warehouses of 

Pentium D and Athlon 64X2 systems are, 1.78 and 1.88 of that for 1 warehouse 

respectively. The longer cache-to-cache latency in Pentium D accounts for the difference 

with Athlon 64X2. For the Core 2 Duo system the throughput for 2 warehouses is 1.71 

times of that for 1 warehouse. The throughput ratio of Core 2 Duo’s 2 warehouses 

version over 1 warehouse is relatively low because of the competence of its shared L2 

cache.  
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SPECjbb2005 Results
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Figure 4-4 Throughput of SPECjbb2005 running with 1 to 8 warehouses. 

 
From above studies, Core 2 Duo shows its performance advantages for 

workloads, such as ocean and SPECjbb2005, with high data sharing. Basically, Athlon 

64X2 doesn’t show performance advantage over Pentium D for bioinformatics and 

scientific workloads though it has faster cache-to-cache data transfer 
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5.  Related Work 
 
 Much of the early reports on performance of processors present the performance 

metrics such as running time and throughput without detailed analysis [13][26][27]. In 

this paper, we focus on the performance analysis of Intel Core 2 Duo processor and 

emphasize on the underlying reasons to better understand the design tradeoffs and causes 

for the performance bottlenecks.  

 Chip Multiprocessor (CMP) or multi-core technology was first reported in [14]. 

Companies such as IBM and SUN applied it on their server processors [22] [34]. In 2005, 

Intel announced to shelve its plan in pursuing higher frequency and instead switch to 

building multi-core processors [19]. Similarly, AMD also made the same decision about 

the same time [4]. 

 Bekerman and Mendelson [12] used CPI metrics to analyze a Pentium based 

system. The CPI was broken into its basic constituents and the effect of various 

architectural features for different software environment was closely examined. Tuck and 

Tullsen [36] studied thread interactions on an Intel Pentium 4 Hyper-threading processor. 

They used multi-programmed and multithreaded workloads to measure speedup and 

synchronization and communication throughput. Bulpin and Pratt [9] measured an SMT 

processor with consideration about fairness between threads. They also showed the 

performance gap between SMP and Hyper-threaded SMT for multi-programmed 

workloads. 

 In [6], Yue Li, Tao Li, Kahveci and Fortes proposed and studied the workload 

charcacterization of a benchmark suite based on bioinformatics. To understand the 

impacts and implications of bioinformatics workloads on the microprocessor designs, 

   39



they compared the characteristics of bioinformatics workloads with the characteristics of 

SPEC 2000 integer benchmarks running under similar i/o environment. In a study carried 

by Birdj , Phansalkarj , John , Mericasa and Indukuru [8]; the behavior of CPU2006 

benchmarks on the Intel's Woodcrest processor based on the Core microarchitecture. 

They analyzed the impact of new feature called "Macro-fusion” that reduces run time on 

the SPEC Benchmarks. They found that macro fusion shows significant improvement in 

performance for integer benchmarks. 

 There are several recent proposals to study the issues of CMP cache fairness and 

partitioning. In [38], the authors proposed and evaluated five different metrics such as 

shared cache miss rates, which can be correlated to execution time, used for CMP 

fairness and proposed static and dynamic caches partitioning algorithms that optimize 

fairness. This dynamic algorithm can help the operating system thread scheduling and to 

avoid thread thrashing. CMP cache capacity and latency optimization has recently been 

studied extensively. In [37], a victim replication scheme based on a shared cache to 

reduce latency was proposed. It tried to keep victims of L1 caches into the local L2 cache 

slices. In case of future reuses of the replicated victims, access latency would be reduced. 

 Peng, Peir, Prakash, Chen and Koppelman [30] studied memory performance 

scalability of Intel’s and AMD’s various dual core processor by reporting performance 

measurement results on three dual core desktop processors: Intel Core 2 Duo, Intel 

Pentium D and AMD Athlon 64X2. These measurements are parallel to my work done 

upon which the thesis is based. 
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6.  Conclusion 
 
 In this paper, selected SPEC CPU2006 benchmarks and the memory hierarchy of 

selected Intel and AMD dual-core processors are analyzed. The IPC, instruction profile, 

L1 data cache miss rate, L2 cache miss rate and branch misprediction rate for the various 

SPEC CPU20006 benchmarks were first analyzed. Based on the analysis of CPU2006 

benchmarks it was confirmed that CPU2006 benchmarks have large data set and take 

longer running time than CPU2000 benchmarks, resulting in stressing the processor 

architectures at full throttle. 

 The memory bandwidth and latency of Core 2 Duo, Pentium D and Athlon 64X2 

was measured using lmbench. In general, Core 2 Duo and Athlon 64X2 have better 

memory bandwidth than that of Pentium D. Only exception is that Pentium D shows the 

best memory read bandwidth with small array size.  

     The individual execution time and the average execution time of each application 

when mixed with other programs on the dual cores of SPEC CPU2000 and CPU2006 

were measured. In general, Core 2 Duo runs fastest for all single and mixed applications 

except for ammp. It was observed that memory intensive workloads such as art, mcf and 

ammp have worse speedups. From the measured cache-to-cache latencies it was 

determined that Core 2 Duo has the shortest cache-to-cache latencies. This generic 

memory performance behavior is consistent with the performance measurement results of 

multithreaded workloads such as SPECjbb with heavy data sharing between the two 

cores.  

 The Core 2 Duo has two distinct advantages: (1) faster core-to-core 

communication and (2) dynamic cache sharing between cores. Faster core-to-core 
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communication makes the Core 2 Dual the best for multi-threaded workloads with 

heavily data sharing or communication. However, to manage cache resource efficiently is 

a challenge especially when two cores have very different demands for caches. In 

summary, for the best performance and scalability, the following are important factors: 

(1) fast cache-to-cache communication, (2) large L2 or shared capacity, (3) fast L2 access 

delay, and (4) fair resource (cache) sharing. Three processors that we studied have shown 

benefits of some of them, but not all of them.  

 

 

 

 

 

 

 

 

 

 

 

 

   42



References 
 
 [1]. AMD, AMD Athlon 64X2 Dual-Core Processor Model Number and Feature 
Comparisons,http://www.amd.com/usen/Processors/ProductInformation/0,,30_118_9485
13041 %5E13076,00.html. 
 
[2]. AMD, AMD Athlon 64X2 Dual-Core Product Data Sheet, 
http://www.amd.com/us-en/assets/content_type/ white_papers_and_tech_docs/33425.pdf. 
 
[3]. AMD, AMD HyperTransport Technology, http://www.amd.com/us-
en/Processors/DevelopWithAMD/ 0,,30_2252_2353,00.html. 
 
[4]. AMD, Multi-core Processors: The Next Evolution in Computing, 
http://multicore.amd.com/WhitePapers/Multi-Core_Processors_WhitePaper.pdf, 2005. 
 
[5]. AMD, Software Optimization Guide for AMD64 Proc-essors, Chap. 5, Page 105, 
www.amd.com/us-en/assets/ content_type/white_papers_and_tech_docs/25112.PDF. 
 
[6]. D. Bader, Y. Li, T. Li, V. Sachdeva, BioPerf: A Bench-mark Suite to Evaluate 
High-Performance Computer Ar-chitecture on Bioinformatics Applications, in Proceed-
ings of the 2005 IEEE International Symposium on Workload Characterization, Oct. 
2005. 
 
[7]. B. M. Beckmann and D. A. Wood, “Managing Wire Delay in Large Chip 
Multiprocessor Caches,” In Proceedings of the 37th International Symposium on Mi-
croarchitecture, pages 319-330, Dec. 2004. 
 
[8]. Sarah Birdj , Aashish Phansalkarj , Lizy K. Johnj , Alex Mericasa and Rajeev 
Indukuru, “Performance Characterization of SPEC CPU Benchmarks on Intel's Core 
Microarchitecture based processor”,  in the proceedings of 2007 SPEC Benchmark 
Workshop, Jan 2007. 
 
[9]. J. R. Bulpin and I. A. Pratt, Multiprogramming Performance of the Pentium 4 
with Hyper-threading, In Pro-ceedings of Third Annual Workshop on Duplicating, 
Deconstructing, and Debunking (WDDD), Jun. 2004. 
 
[10]. D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting the Inter-thread Cache 
Contention on a Chip Multiproc-essor Architecture,” In Proceedings of the 11th Interna-
tional Symposium on High Performance Computer Ar-chitecture, pages 340-351, Feb. 
2005. 
 
[11]. J. Chang and G. S. Sohi. Cooperative Caching for Chip Multi-processors. In 
Proceedings of the 33nd Annual International Symposium on Computer Architecture, 
June 2006. 
 

   43



[12]. Michael Bekerman, Avi Mendelson, A Performance Analysis of Pentium 
Processor Systems, in Proceedings of the 1995 IEEE Micro, Oct 1995 
 
[13]. F. Delattre and M. Prieur, Intel Core 2 Duo – Test, 
http://www.behardware.com/articles/623-16/intel-core-2-duo-test.html. 
 
[14]. L. Hammond, B. A. Nayfeh and K. Olukotun, A Single-Chip Multiprocessor, 
IEEE Computer, Sep. 1997. 
 
[15]. Intel, Announcing Intel Core 2 Processor Family Brand, 
http://www.intel.com/products/processor/core2/index.htm 
 
[16]. Intel, IA-32 Intel Architecture Optimization Reference Manual, Chap. 6, Page 6-
4,http://www.intel.com/design/ pentium4/manuals/248966.htm. 
 
[17]. Intel, Inside Intel Core Microarchitecture and Smart Memory Access. 
http://download.intel.com/technology/ architecture/sma.pdf.  
 
[18]. Intel, CMP Implementation in Systems Based on the Intel Core Duo Processor, 
http://www.intel.com/technology/itj/2006/voume10issue02/art02_CMP_Implementation/
p03_implementation.htm. 
 
[19]. Intel, Intel Pentium D Processor Product Information, 
http://www.intel.com/products /processor/pentium_d/. 
 
[20]. Intel, Intel VTune Performance Analyzers, 
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/239144.htm 
 
[21].  J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sin-haroy, “IBM eserver 
Power4 System Microarchitecture,” IBM White Paper, Oct. 2001. 
 
[22]. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,” The SPLASH-2 
Programs: Characterization and Metho-dological Considerations”, in Proceedings of the 
22nd Annual International Symposium on Computer Architecture (ISCA), pages 24-36, 
Jun. 1995.  
 
[23]. N. Tuck and D. M. Tullsen.” Initial observations of the simultaneous 
multithreading Pentium 4 processor”,in Proceedings of the 12th International Conference 
on Parallel Architectures and Compilation Techniques (PACT), pages 26-34, Sep. 2003. 
 
 [24]. J. D. McCalpin, Sustainable memory bandwidth in cur-rent high performance 
computers. Technical report, Sili-con Graphics, Oct. 1995. 
 
[25]. J. D. McCalpin, The stream2 homepage. 
http://www.cs.virginia.edu/stream/stream2. 

   44

http://www.behardware.com/articles/623-16/intel-core-2-duo-test.html
http://www.intel.com/products/processor/core2/index.htm
http://www.intel.com/technology/itj/2006/voume10issue02/art02_CMP_Implementation/p03_implementation.htm
http://www.intel.com/technology/itj/2006/voume10issue02/art02_CMP_Implementation/p03_implementation.htm
http://www.intel.com/products%20/processor/pentium_d/
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/239144.htm


[26]. A. Mitrofanov, Dual-core processors, http://www.digital-daily.com/cpu/dualcore-
cpu/index.htm. 
 
[27]. www.motherboards.org, AMD Vesus Intel Battle of the Dual-Core CPUs, 
http://www.motherboards.Org/ re-views/ hardware/1513_2.html. 
 
[28]. V. Romanchenko, Intel processors today and tomorrow, http://www.digital-
daily.com/cpu/intel-roadmap/. 
 
[29]. Michael S., How can we measure cache-to-cache trans-fer speed? 
http://www.aceshardware. com/forums/read_post.jsp? id=20676&forumid=2. 
 
[30]. L. Peng, J-K. Peir, T. K. Prakash, Y-K. Chen, D. Koppelman, “Memory 
Performance and Scalability of Intel's and AMD's Dual-Core Processors: A 
Case Study,” In Proceedings of 26th IEEE International Performance Computing and 
Communications Conference (IPCCC), New Orleans, LA, Apr. 2007. 
 
[31]. SPEC, SPEC CPU2000 and CPU2006, http://www.spec.org/  
 
[32]. SPEC, SPECjbb2005, http://www.spec.org/jbb2005/ 
 
[33]. C. Staelin. lmbench --- an extensible micro-benchmark suite. HPL-2004-213. Dec. 
2004, http://www.hpl.hp. com/techreports/2004/HPL-2004-213.pdf. 
 
[34]. Sun Microsystems, “Sun’s 64-bit Gemini Chip,” Sun-flash, 66(4), Aug. 2003. 
 
[35]  Patrick Lester,” A* Pathfinding for Beginners”, July 18, 2005, 
http://www.gamedev.net/reference/articles/article2003.asp 
 
[36] Jan Treibig, Simon Hausmann, Ulrich Rüde, “Performance analysis of the Lattice 
Boltzmann Method on x86-64 Architectures” in the proceeding of 18th Symposium 
Simulationstechnique ASIM 2005 Proceedings ,Sept 2005. 
 
[37]. M. Zhang, K. Asanovic, “Victim Replication: Maximiz-ing Capacity while 
Hiding Wire Delay in Tiled Chip Multiprocessors,” In Proceedings of the 32nd Interna-
tional Symposium on Computer Architecture, pages 336-345, Jun. 2005. 
 
[38]  S. Kim, D. Chandra, Y. Solihin, “Fair Cache Sharing and Partitioning in a Chip 
Multiprocessor Architecture,” In Proceedings of the 13th International Conference on 
Parallel Architectures and Compilation Techniques, pages 111-122, Sep. 2004. 
 
 
 
 
 
 

   45

http://www.digital-daily.com/cpu/dualcore-cpu/index.htm
http://www.digital-daily.com/cpu/dualcore-cpu/index.htm
http://www.digital-daily.com/cpu/intel-roadmap/
http://www.digital-daily.com/cpu/intel-roadmap/
http://www.spec.org/
http://www.spec.org/jbb2005/
http://www.gamedev.net/reference/articles/article2003.asp


Vita 
 

Tribuvan Kumar Prakash was born in Bangalore, in the state of Karnataka, India. 

He graduated from High School in April 2000 with first class. In the Fall of 2000, he 

enrolled in the department of Electronics and Telecommunications at the Vemanna 

Institute of Technology (affiliated to Visweswariah Technical University, Karnataka) and 

graduated with a first class distinction in spring 2004 with a Bachelor of Engineering 

degree. 

He then joined the Department of Electrical and Computer Engineering at 

Louisiana State University, Baton Rouge, to complete his master's, in the Fall of 2004. 

He worked with Unisys as an intern for the summer and fall semester of 2006. He will be 

graduating in August 2007 with the degree of Master of Science in Electrical 

Engineering. 

 

   46


	List of Tables
	List of Figures
	Abstract
	1.  Introduction
	1.1  Overview
	1.2  Architecture of Intel Core 2 Duo

	2.  Performance Analysis of SPEC CPU Benchmarks Running on Intel’s Core 2 Duo Processor
	2.1  Overview
	2.2  Methodology
	2.3  Measurement Results
	2.3.1  IPC and Instruction Profile
	2.3.2   L1 D-Cache Misses 
	2.3.3  L2 Cache Misses
	2.3.4  Branch Misprediction 


	3.  Performance Comparison of Dual Core Processor Using Microbenchmarks
	3.1  Overview
	3.2  Architecture of Dual-Core Processors
	3.2.1  Intel Pentium D 830
	3.2.2  AMD Athlon 64X2
	3.2.3  Processor Comparison

	3.3  Methodology
	3.4  Memory Bandwidth and Latency Measurements

	4.  Performance Comparison of Dual Core Processors Using   Multiprogrammed and Multithreaded Benchmarks
	4.1  Overview
	4.2   Methodology
	4.3  Multiprogrammed Workload Measurements
	4.4  Multithreaded Program Behavior

	5.  Related Work
	6.  Conclusion
	References
	Vita

