# IR3Y30M/M1

## DESCRIPTION

The IR3Y30M/M1 are bipolar single-chip signal processing ICs with built-in low-pass filter and delay line for B/W video cameras. They realize both downsizing and cost reduction of the finished set.

# FEATURES

- Low power consumption : 265 mW (TYP.)
- Wide AGC range : -3 to +29 dB
- High speed sample-and-hold circuits : pulse width 15 ns (MIN.)
- Signal processing from CCD output to 75  $\Omega$  video output is possible
- · Built-in low-pass filter
- · Built-in comparator for electronic exposure control
- · Built-in aperture circuit and delay line
- Single +5 V power supply
- Packages
  - IR3Y30M : 48-pin QFP (P-QFP048-1010)
  - IR3Y30M1 : 48-pin QFP (P-QFP048-0707)
    - 0.5 mm pin-pitch

### **COMPARISON TABLE**

|                       | IR3Y30M                    | IR3Y30M1                   |
|-----------------------|----------------------------|----------------------------|
| Package               | 48-pin QFP (P-QFP048-1010) | 48-pin QFP (P-QFP048-0707) |
| Power consumption     | 725 mW                     | 560 mW                     |
| PD derating ratio     | 5.8 mW/°C                  | 4.5 mW/°C                  |
| Operating temperature | −30 to +75°C               | −30 to +70°C               |

CCD Signal Processors for B/W CCD Cameras

#### **PIN CONNECTIONS**



# **BLOCK DIAGRAM**



## **PIN DESCRIPTION**

| PIN NO. | SYMBOL        | VOLTAGE | EQUIVALENT CIRCUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DESCRIPTION                                                                                                                                                   |
|---------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | CCDIN         | 2.5 V   | Vcc1<br>200<br>1<br>200<br>1<br>200<br>1<br>200<br>1<br>20<br>20<br>20<br>20<br>3<br>20<br>3<br>20<br>3<br>20<br>3<br>20<br>3<br>3<br>20<br>3<br>3<br>20<br>3<br>3<br>20<br>3<br>3<br>20<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Input for the signal from CCD area sensor. 2.5 V bias applied internally.                                                                                     |
| 2       | CLAMP<br>BIAS | 2.9 V   | Vcc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Feed through level of the input<br>signal is clamped to this pin voltage.<br>2.9 V bias applied internally.<br>Connect capacitor between this pin<br>and GND. |
| 3       | IRIS<br>GAMMA | 3.1 V   | Vcc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gamma adjustment of the exposure<br>circuit. This pin is preset to 3.1 V,<br>and gamma becomes 0.45 at open.                                                  |
| 4       | WINDOW        |         | Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1 | Window pulse input for the exposure circuit. Outputs the signal while "H".                                                                                    |
| 5       | IRIS OUT      | 2.3 V   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Output for the exposure signal.<br>Connect a resistor between this pin<br>and GND.                                                                            |

| PIN NO. | SYMBOL  | VOLTAGE | EQUIVALENT CIRCUIT                     | DESCRIPTION                                                                                    |
|---------|---------|---------|----------------------------------------|------------------------------------------------------------------------------------------------|
| 6       | VCC1    |         |                                        | Power supply for analog circuits.                                                              |
| 7       | GND1    |         |                                        | Ground for analog circuits.                                                                    |
| 8       | EE NR   |         | Vcc1<br>\$50 k<br>200<br>W<br>B<br>GND | Comparator output for electronic exposure control.                                             |
| 9       | SET NR  |         |                                        | High reference voltage input of the comparator for electronic exposure control.                |
| 10      | IRIS IN |         |                                        | Input of the amplifier for electronic<br>exposure control. This amplifier has<br>5 times gain. |
| 11      | SET UP  |         | GND                                    | Low reference voltage input of the comparator for electronic exposure control.                 |
| 12      | EE UP   |         |                                        | Output of the comparator for electronic exposure control.                                      |
| 13      | SYNC    |         |                                        | Synchronous signal input.                                                                      |

| PIN NO. | SYMBOL    | VOLTAGE | EQUIVALENT CIRCUIT                                                                                                                     | DESCRIPTION                                                                                                                                               |
|---------|-----------|---------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14      | BLK CLP   |         | Vcc1 $\downarrow$ | Composite pulse input.<br>(pulse for optical black clamp and<br>pulse for blanking)                                                                       |
| 15      | BCLIP     |         |                                                                                                                                        | Adjustment for the base clip level in<br>the aperture circuit.<br>Eliminates the low-level noise of<br>aperture signal.<br>Base clip is canceled at open. |
| 16      | VCC2      |         |                                                                                                                                        | Power supply for output amplifier<br>circuits.                                                                                                            |
| 17      | VIDEO OUT | 1.5 V   |                                                                                                                                        | Video signal output.<br>At 75 Ω terminated : 1 Vp-p<br>(Synchronous level 0.3 Vp-p)                                                                       |
| 18      | PEDESTAL  | 2.5 V   | Vcc2                                                                                                                                   | Blanking level adjustment.<br>100 mV at open.                                                                                                             |

| PIN NO. | SYMBOL       | VOLTAGE | EQUIVALENT CIRCUIT                                             | DESCRIPTION                                                                                                                                  |
|---------|--------------|---------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 19      | WCLIP        | 3.3 V   | Vcc2                                                           | White clip adjustment.<br>120% at open.                                                                                                      |
| 20      | CLAMP2       | 2.3 V   |                                                                | Input for encoder circuit. Black level<br>of input signal is clamped to 2.3 V.                                                               |
| 21      | AMP2 OUT     | 1.0 V   | Vcc1                                                           | Output for the gain control amplifier.                                                                                                       |
| 22      | GAIN<br>CTRL | 2.5 V   | Vcc1<br>39 k<br>10 k<br>10 k<br>1.8 k<br>200 µ<br>200 µ<br>GND | Controls the output amplitude at pin<br>No. 21.<br>Gain is controlled in the range from<br>6 to 12 dB.<br>It is approximately 10 dB at open. |
| 23      | C3           | 1.8 V   | Vcc1                                                           | Feedback clamp detector. Connect capacitor between this pin and GND.                                                                         |

| PIN NO. | SYMBOL       | VOLTAGE | EQUIVALENT CIRCUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DESCRIPTION                                                                                                                                                                |
|---------|--------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24      | C2           | 1.8 V   | Vcc1<br>200<br>3p<br>3p<br>3p<br>3p<br>$50 \mu$<br>$50 \mu$ | Feedback clamp detector. Connect<br>capacitor between this pin and GND.<br>When the external DL circuit is used,<br>this will be input pin to make the<br>aperture signal. |
| 25      | APA CTRL     | 1.8 V   | Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>Vcc1<br>C<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Adjustment for the horizontal<br>aperture amount. It is approximately<br>12 dB at open.                                                                                    |
| 26      | HAPA IN      |         | Vcc1<br>200<br>4<br>200 µ ⊖ 100 µ<br>= GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Input for signal from pin 28. This<br>signal is used as a main signal<br>when aperture signals are mixed.                                                                  |
| 27      | DL ADJ       | 1.2 V   | Vcc1<br>200 \$4 k<br>200 \$4 k<br>\$10 k<br>GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Adjustment for built-in delay line.<br>When 200 k $\Omega$ resistor is connected<br>between this pin and GND, delay<br>line can be turned off.                             |
| 28      | GAMMA<br>OUT | 2.3 V   | Vcc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gamma and knee processed signal output.                                                                                                                                    |

| PIN NO. | SYMBOL       | VOLTAGE | EQUIVALENT CIRCUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DESCRIPTION                                                                     |
|---------|--------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 29      | KNEE ADJ     | 2.8 V   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Knee adjustment.<br>120% at open.                                               |
| 30      | GAMMA<br>ADJ | 2.0 V   | Vcc1<br>40  k<br>30<br>40  k<br>30<br>10  k<br>30<br>10  k<br>30<br>10  k<br>30<br>10  k<br>30<br>10  k<br>10  k | Gamma correction adjustment.<br>0.7 at open.                                    |
| 31      | GND2         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ground for analog circuits.                                                     |
| 32      | AGC DET      | 2.0 V   | Vcc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Signal output for AGC control.<br>Connect resistor between this pin<br>and GND. |
| 33      | C1           | 2.0 V   | Vcc1<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Feedback clamp detector. Connect capacitor between this pin and GND.            |
| 34      | AMP1 IN      |         | Vcc1<br>33<br>170 µ⊖ ⊖250 µ<br>GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Input for gamma and knee signal process.                                        |

| PIN NO. | SYMBOL   | VOLTAGE | EQUIVALENT CIRCUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DESCRIPTION                                                                                                                                    |
|---------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 35      | LPF ADJ  |         | Vcc1<br>5 p<br>35 200<br>T<br>GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Adjustment for built-in LPF characteristic. When connected resistor is 220 k $\Omega$ or more between this pin and GND, LPF can be turned off. |
| 36      | AGC OUT  | 2.3 V   | Vcc1<br>↓ 100<br>↓ | AGC signal output.                                                                                                                             |
| 37      | Vref     | 2.0 V   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reference voltage.                                                                                                                             |
| 38      | Vc       | 2.0 V   | Vcc1<br>38<br>200<br>38<br>522 k<br>200<br>58 k<br>520 k<br>520 k<br>38<br>500<br>38<br>500<br>38<br>500<br>38<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bias for reference voltage. Connect capacitor between this pin and GND.                                                                        |
| 39      | AGC CTRL |         | Vcc1<br>5 k<br>39<br>650 µ<br>GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gain control for AGC amplifier. Be<br>sure to input the voltage within the<br>range from 2 to 4 V.                                             |

| PIN NO. | SYMBOL        | VOLTAGE | EQUIVALENT CIRCUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DESCRIPTION                                                                                                                                                                                    |
|---------|---------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40      | AGC OP<br>OUT |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Output of the operation at amplifier for AGC control.                                                                                                                                          |
| 41      | MAX<br>GAIN   | 3.3 V   | Vcc1<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>50 µ<br>50 | Adjustment for AGC amplifier<br>maximum gain. Maximum gain is 18<br>dB when opened. When applied<br>voltage is 0.62 V or less, AGC<br>circuit turns off and the amplifier is<br>fixed to 0 dB. |
| 42      | AGC OP<br>IN  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The operational amplifier for AGC control.                                                                                                                                                     |
| 43      | CLAMP1        | 2.0 V   | Vcc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Input of AGC amplifier. Black level is clamped at 2.0 V.                                                                                                                                       |
| 44      | CDS OUT       | 2.4 V   | Vcc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CDS signal output.                                                                                                                                                                             |

| PIN NO. | SYMBOL | VOLTAGE | EQUIVALENT CIRCUIT | DESCRIPTION                               |
|---------|--------|---------|--------------------|-------------------------------------------|
| 45      | PVcc   |         |                    | Power supply for pulse circuits.          |
| 46      | FS     |         | PVcc               | Pulse input for sample-hold.              |
| 47      | FCDS   |         | PVcc               | Pulse input for feed-through level clamp. |
| 48      | PGND   |         |                    | Ground for pulse circuits.                |

## FUNCTIONAL OPERATION

#### **CDS Circuit**

The feed-through level of the input signal is clamped by the clamp circuit. Then the signal period is sampled and other periods are held by the sample and hold circuit, so that signals can be obtained.



## **Highlight Clip Circuit**

Before the AGC circuit, excessive signals of more than approximately 0.5 Vp-p are clipped.

## AGC Amplifier Circuit

The amplitude of output signals from the AGC amplifier is externally detected and the gain is controlled with control signals from the AGC operational amplifier. Decreasing voltage at pin 41 to 0.62 V or less causes the amplifier to be fixed to 0 dB.

## LPF Circuit

The characteristics can be controlled with an external resistor at pin 35. Increasing the resistor to 220 k $\Omega$  or more allows signals passing over the LPF to be output.

### Gamma and Knee Corrections Circuits

In order to comply with the characteristics of CRT, the high-bright part is suppressed. Pin 29 and 30 can be used to control this suppression. If voltage at pin 30 is increased to 4 V or more gamma will be 1.

#### **Exposure Circuit**

Signals which have not been processed by AGC are amplified, suppressed by gamma correction, and then output. Control signals can be generated by inputting the above signals to pin 10 after detecting them.

#### **Aperture Circuit**

The video articulation can be increased by enhancing the signal contour. If the built-in delay line is not used, it can be turned off by using an external resistor of minimum 200 k $\Omega$  at pin 27. To control the aperture amount, use a base clip.



## **Output Circuit**

A load of 75  $\Omega$  can be driven directly. In addition, the pedestal level can be controlled vertically.

#### CAUTIONS

- To control the aperture amount, apply base clip by controlling pin 15.
- Avoid connecting or disconnecting an external resistor at pin 27 to prevent the malfunction of the built-in delay line.
- Use the shortest possible distance to connect the bypass capacitors between the power supply and GND pins. The addition or removal of any external component should be determined by how the existing components are mounted.
- This device is electronically sensitive. Handle only at electrostatically safe work stations.

# **ABSOLUTE MAXIMUM RATINGS**

(Unless otherwise specified,  $TA = +25^{\circ}C$ )

| PARAMETER                 | SYMBOL     | CONDITIONS                            | RAT                | ſING       |       |  |
|---------------------------|------------|---------------------------------------|--------------------|------------|-------|--|
| PARAMETER                 | STINDUL    | CONDITIONS                            | IR3Y30M            | IR3Y30M1   |       |  |
| Supply voltage            | VCC1, VCC2 |                                       | -                  | 7          | V     |  |
| Supply voltage            | PVcc       |                                       | -                  | 7          | V     |  |
|                           | VIA        | Except for pins 46 (FS) and 47 (FCDS) | Vcc                |            | V     |  |
| Input voltage             | VIP        | Pins 46 (FS) and 47 (FCDS)            | -0.2 to PVcc + 0.2 |            | V     |  |
| Comparator output voltage | Vsd        |                                       | Vcc                |            | V     |  |
| Power consumption         | PD         | Ta ≤ +25°C                            | 725                | 560        | mW    |  |
| PD derating ratio         |            | TA > +25°C                            | 5.8                | 4.5        | mW/°C |  |
| Operating temperature     | TOPR       |                                       | -30 to +75         | -30 to +70 | °C    |  |
| Storage temperature       | Tstg       |                                       | -55 to             | o +150     | °C    |  |

## **RECOMMENDED OPERATING CONDITIONS**

| PARAMETER                 | SYMBOL | APPLICABLE PINS                        | RATING       | UNIT  |
|---------------------------|--------|----------------------------------------|--------------|-------|
| Supply voltage            | Vcc    | Pins 6 (Vcc1), 16 (Vcc2) and 45 (PVcc) | 4.75 to 5.25 | V     |
| H-aperture signal         | VH-AP  | Pin 26 (HAPA IN)                       | 600 (MAX.)   | mVp-p |
| Standard CCD input signal | VCCD   | Pin 1 (CCD IN)                         | 200 (TYP.)   | mVp-p |
| Clamp pulse width         | tFS    | Pin 46 (FS)                            | 15 (MIN.)    | ns    |
| Sample-hold pulse width   | tFCDS  | Pin 47 (FCDS)                          | 15 (MIN.)    | ns    |

# **ELECTRICAL CHARACTERISTICS**

(Unless otherwise specified, TA = +25°C, Vcc = 5.0 V, SW conditions→(a), V26 = 2.3 V, V34 = 2.0 V, V39 = 3 V, R27 = 30 kΩ, R35 = 22 kΩ)

| PARAMETER                 | SYMBOL        | CONDITIONS                                                                                                    |                  | MIN.    | TYP. | MAX. | UNIT |
|---------------------------|---------------|---------------------------------------------------------------------------------------------------------------|------------------|---------|------|------|------|
| Supply current            | ICC1          | Measure pin 6 (Vcc1).                                                                                         |                  |         | 43.0 | 54.5 | mA   |
|                           | ICC2          | Measure pin 16 (Vcc2).                                                                                        |                  |         | 5.7  | 7.8  | mA   |
|                           | Іссз          | Measure pin 45 (PVcc).                                                                                        |                  |         | 4.3  | 5.4  | mA   |
| CDS Circuit               |               |                                                                                                               |                  |         |      |      |      |
|                           |               | With signal 1 applied to SG1                                                                                  | , measure the    |         |      |      |      |
| 1                         |               | signal attenuation on TP44. FS = 5 V, FCDS                                                                    |                  |         |      |      |      |
| Low frequency             | GLF           | = Signal 2 (FCDS), VA = TP44 amplitude (f =                                                                   |                  |         | -30  | -25  | dB   |
| attenuation               |               | 100 kHz), Vв = TP44 amplitu                                                                                   | ide (f = 10 MHz) |         |      |      |      |
|                           |               | GLF = 20*LOG (VA/VB)                                                                                          |                  |         |      |      |      |
|                           |               | Signal 2 applied to SG1, FS and FCDS,                                                                         |                  |         |      |      |      |
| Gain                      | GCDS          | measure the amplitude on TP44.                                                                                |                  | -2      | 0    | 2    | dB   |
|                           |               | SG1 = 200 mVp-p, f = 10 MHz                                                                                   |                  |         |      |      |      |
| Clamp bias                | VCP/BIAS      |                                                                                                               |                  | 2.7     | 2.9  | 3.1  | V    |
| AGC Operational An        | nplifier Cire | cuit                                                                                                          |                  |         |      |      |      |
| Low level                 | AOPL          | Measure the voltage on<br>TP40B. SW40, SW42→(b)                                                               | V42 = 3 V,       |         | 1.0  | 10   |      |
|                           |               |                                                                                                               | I40 = +200 μA    |         | 1.0  | 1.2  |      |
| High level                | Аорн          |                                                                                                               | V42 = 1 V,       | 3.9 4.1 |      | V    |      |
|                           |               | I40 = −200 μA                                                                                                 |                  | 3.9     | 4.1  |      |      |
| <b>Exposure Operation</b> | al Amplifie   | r & Comparator Circuits                                                                                       |                  |         |      |      |      |
|                           | Gop           | With V10 = 2.3 V, measure the voltage of V9a (TP8 : $L \rightarrow H$ ) and V11a (TP12 : $H \rightarrow L$ ). |                  | 0.40    | 0.46 | 0.51 | v    |
|                           |               |                                                                                                               |                  |         |      |      |      |
| Operational amplifier     |               | With $V_{10} = 2.4 V$ , measure the voltage of $V_{9b}$                                                       |                  |         |      |      |      |
| gain                      |               | (TP8 : $L \rightarrow H$ ) and V11b (TP12 : $H \rightarrow L$ ).                                              |                  |         |      |      |      |
|                           |               | GOP = (V9b-V9a) or (V11b-V11a)                                                                                |                  |         |      |      |      |
|                           |               | SW9, SW10, SW11→(b)                                                                                           |                  |         |      |      |      |
| Comparator low loval      | IOPL          | Change the voltage of V9 and V11, and                                                                         |                  |         | 0    | 0.2  |      |
| Comparator low level      | IOFL          | measure the voltage on TP8 and TP12.                                                                          |                  |         |      | 0.2  | v    |
| High level                | Іорн          | V10 = 2.3 V                                                                                                   |                  | 4.70    | 4.95 |      | v    |
| nigri ievei               | ЮРП           | SW9, SW10, SW11→(b)                                                                                           |                  | 4.70    | 4.95 |      |      |
| AGC Circuit               |               |                                                                                                               |                  |         |      |      |      |
| Highlight clip level      | HcL           | Change the amplitude of signal 3 which is                                                                     |                  |         |      |      |      |
|                           |               | applied to SG43, and measure the amplitude                                                                    |                  | 0.4     | 0.5  | 0.6  | Vр-р |
|                           |               | on TP36 when TP36's output signal is clipped.                                                                 |                  |         |      |      |      |
|                           |               | SW43, SW41→(b), Pulse→CLP, V41 = 0 V,                                                                         |                  |         |      |      |      |
|                           |               | R35 = 220 kΩ                                                                                                  |                  |         |      |      |      |

| PARAMETER            | SYMBOL | CONDITIONS                            | 6                    | MIN.  | TYP.  | MAX. | UNIT |
|----------------------|--------|---------------------------------------|----------------------|-------|-------|------|------|
| AGC circuit (contd.) |        |                                       |                      |       |       |      |      |
| AGC maximum gain     | _      | Apply signal 3 to SG43 and            | SG43 = 20 mVp-p      |       |       |      |      |
| (1)                  | GAMAX1 | measure the amplitude on              | V39 = 4 V, V41 = 5 V | 27    | 29    | 31   |      |
| AGC maximum gain     | _      | TP36.                                 | SG43 = 20 mVp-p      |       | 10.0  |      |      |
| (2)                  | GAMAX2 | GA1 to GA4 = 20*LOG                   | V39 = 4 V, SW41→(a)  | 15.5  | 18.0  | 20.5 |      |
|                      | _      | (TP36 amplitude/SG43                  | SG43 = 400 mVp-p     |       | -3.5  | -0.5 | dB   |
| AGC minimum gain     | Gamin  | amplitude)                            | V39 = 2 V, V41 = 5 V | -6.5  |       |      |      |
|                      | 0      | SW41, SW43→(b),                       | SG43 = 200 mVp-p     | •     |       |      |      |
| AGCOFF gain          | GAOFF  | Pulse→CLP, R35 = 220 kΩ               | V39 = 4 V, V41 = 0 V | -2    | 0     | 2    |      |
|                      |        | Apply signal 3 to SG43 and n          | neasure the          |       |       |      |      |
|                      |        | amplitude on TP36.                    |                      |       |       |      |      |
| Output dynamic       | DA     | SG43 = 50 mVp-p, SW41, SV             | W43 <b>→</b> (b),    | 0.55  | 0.75  |      | Vp-p |
| range                |        | Pulse→CLP, V39 = 4 V, V41 =           | = 5 V,               |       |       |      |      |
|                      |        | R35 = 220 kΩ                          |                      |       |       |      |      |
|                      | fA1    | Apply signal 4 to SG43.               |                      |       | 4.5   |      |      |
| Frequency            |        | Increase the frequency of             | SG43 = 10 mVp-p      |       |       |      |      |
| characteristic (1)   |        | signal 4 until the frequency          | R35 = 22 kΩ          | 3.5   |       |      |      |
|                      |        | components of the signal on           | V39 = 4 V            |       |       |      |      |
|                      |        | TP36 are 3 dB lower than              |                      |       |       |      | MHz  |
| <b>-</b>             | fA2    | that at f = 100 kHz, and              | 0040 000 014         | 7.0   | 10.0  |      |      |
| Frequency            |        | measure the frequency of              | SG43 = 200 mVp-p     |       |       |      |      |
| characteristic (2)   |        | signal 4. SW41→(b),                   | R35 = 220 kΩ         |       |       |      |      |
|                      |        | Pulse→CLP, V41 = 5 V                  |                      |       |       |      |      |
|                      | fАз    | When measuring case (2),              | SG43 = 10 mVp-p      |       | -35   | -25  |      |
| Frequency            |        | adjust the V39 such that the          | R35 = 22 kΩ          |       |       |      | aD   |
| characteristic (3)   |        | amplitude of the output on            | V39 = 4 V            |       |       |      | dB   |
|                      |        | TP36 is 200 mVp-p.                    | f = 9.5 MHz          |       |       |      |      |
|                      |        | Apply signal 3 to SG43, chan          | ge V41, and          |       | -     |      |      |
|                      |        | measure the voltage of V41 who        | en the gain on       |       | 0.6   | 0.8  |      |
| AGC ON/OFF           | VAGC   | TP36 changes from -3.5 to 0           | dB. The gain on      |       |       |      | v    |
| switching voltage    |        | TP36 : 20*LOG (TP36 amplitud          | -                    | 0.4   |       |      |      |
|                      |        | SG43 = 400 mVp-p, SW43, S             | • •                  |       |       |      |      |
|                      |        | Pulse→CLP, V <sub>39</sub> = 2 V, R35 | = 220 kΩ             |       |       |      |      |
| Reference voltage 1  | VREF   | Measure the voltage on TP37           |                      | 1.84  | 1.94  | 2.04 | V    |
| Reference voltage 2  | ΔVREF2 | With I37 = +500 µA, measure           |                      |       |       |      |      |
|                      |        | voltage on TP37B.                     | -                    | 0     | 0.15  | 0.30 | v    |
|                      |        | SW37→(b)                              |                      |       |       |      |      |
|                      |        | With I37 = -500 µA, measure           | the change in        |       | -0.15 | 0    |      |
| Reference voltage 3  | ∆VREF3 | voltage on TP37B.                     | C                    | -0.30 |       |      | V    |
| 5                    |        | SW37→(b)                              |                      |       |       |      |      |

| PARAMETER                   | SYMBOL | CONDITIONS                                                                                                                                                                                                                                           | 6                                      | MIN. | TYP. | MAX. | UNIT  |
|-----------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|------|------|-------|
| Exposure Circuit            |        | 1                                                                                                                                                                                                                                                    |                                        |      |      |      |       |
| Exposure AMP gain           | Gı     | Apply signal 3 to SG43 and measure the amplitude on                                                                                                                                                                                                  | SG43 = 200 mVp-p<br>V3 = 5 V, V4 = 5 V | 10.5 | 11.5 | 12.5 | dB    |
| Gamma output level          | γPRE   | TP5.                                                                                                                                                                                                                                                 | SW3→(a)                                | 0.25 | 0.32 | 0.40 | Vp-p  |
| Output dynamic range        | Dı     | SW3, SW4, SW43→(b),<br>Pulse→CLP, BLK                                                                                                                                                                                                                | SG43 = 800 mVp-p<br>V3 = 5 V, V4 = 5 V | 1.5  | 1.9  |      | Vp-p  |
| Black level                 | Ві     | Measure the voltage on TP5.<br>SW4→(b), Pulse→CLP, BLK                                                                                                                                                                                               | , V4 = 0 V                             | 2.15 | 2.30 | 2.45 | v     |
| Black level offset 1        | BIOFF1 | Measure the voltage on TP5.                                                                                                                                                                                                                          | V4 = 5 V                               | -50  | 0    | 50   | mV    |
| Black level offset 2        | BIOFF2 | SW4→(b), Pulse→CLP, BLK                                                                                                                                                                                                                              | V4 = 0 V                               | -50  | 0    | 50   | mv    |
| Frequency<br>characteristic | fı     | Apply signal 4 to SG43. Incre<br>frequency of signal 4 until the<br>components of the signal on<br>lower than that at f = 100 kHz<br>the frequency of signal 4.<br>SG43 = 200 mVp-p, V4 = 5 V<br>SW4, SW43 $\rightarrow$ (b), Pulse $\rightarrow$ CL | 0.7                                    | 1.1  |      | MHz  |       |
| Window OFF output<br>level  | Owoff  | Apply signal 3 to SG43 and measure the amplitude on TP5. SG43 = 200 mVp-p, SW4, SW43 $\rightarrow$ (b), Pulse $\rightarrow$ CLP, BLK, V4 = 0 V                                                                                                       |                                        |      | 40   | 70   | mVp-p |
| Window ON switching voltage | Vw     | Same as in the window OFF output level<br>measurement. Increase V4, and measure V4<br>when the amplitude of output signal on TP5 is<br>not changed.                                                                                                  |                                        | 1.2  | 1.4  | 1.6  | v     |
| Window input current        | Iw     | With V4 = 5 V, measure input current on pin 4. $SW4 \rightarrow (b)$                                                                                                                                                                                 |                                        | 0.5  | 1.2  | 3.0  | μA    |
| AMP1 Circuits               |        |                                                                                                                                                                                                                                                      |                                        |      |      |      |       |
| AMP1 gain                   | GAMP1  | Apply signal 3 to SG34 and measure the amplitude on TP32. SW34 $\rightarrow$ (b), Pulse $\rightarrow$ CLP, BLK, SG34 = 100 mVp-p, Black level = 2 V                                                                                                  |                                        | 13   | 14   | 15   | dB    |
| Output dynamic<br>range     | DAMP1  | Same as in the AMP1 gain measurement.<br>Measure output dynamic range on TP32.                                                                                                                                                                       |                                        | 1.20 | 1.40 |      | Vp-p  |
| Black level                 | BAMP1  | Measure the voltage on TP32. Pulse→CLP, BLK                                                                                                                                                                                                          |                                        | 1.9  | 2.0  | 2.1  | V     |
| Gamma & Knee Circ           | uits   |                                                                                                                                                                                                                                                      |                                        |      |      |      |       |
| Gamma gain (1)              | Gγ1    | Apply signal 3 to SG34 and                                                                                                                                                                                                                           | SG34 = 100 mVp-p                       | 310  | 410  | 510  | mVp-p |
| Gamma gain (2)              | Gγ2    | measure the amplitude on<br>TP28. SW34 $\rightarrow$ (b), Pulse $\rightarrow$ CLP,                                                                                                                                                                   |                                        | -6.4 |      | dB   |       |
| Gamma gain (3)              | Gγ3    | BLK, Input black level = $2 \text{ V}$ SG34 = 200 mVp-p                                                                                                                                                                                              |                                        |      | 1.3  |      |       |

| PARAMETER                      | SYMBOL      | CONDITIONS                                                                                                                                                                                                                                                                                                                                          | 6                                          | MIN.  | TYP.  | MAX. | UNIT  |
|--------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------|-------|------|-------|
| Gamma & Knee Circ              | uits (contd | .)                                                                                                                                                                                                                                                                                                                                                  |                                            | 1     | 1     |      |       |
| Gamma OFF gain                 | GγOFF       | Apply signal 3 to SG34 and measure the<br>amplitude on TP28. SW29, SW30, SW34 $\rightarrow$ (b),<br>Pulse $\rightarrow$ CLP, BLK, SG34 = 100 mVp-p,<br>Black level = 2 V, V29 = 5 V, V30 = 5 V                                                                                                                                                      |                                            |       | 510   | 580  | mVp-p |
|                                | (1) CL1     | Measure the amplitude of $SW30 \rightarrow (a)$                                                                                                                                                                                                                                                                                                     |                                            |       | 0     | 50   |       |
| Cleaning offset                | (2) CL2     | TP28 between BLK level and<br>black level. Pulse→CLP, BLK                                                                                                                                                                                                                                                                                           | SW30→(b),<br>V30 = 5 V                     | -50   | 0     | 50   | mV    |
| Frequency<br>characteristic    | fγ          | Apply signal 4 to SG34. Increase the<br>frequency of signal 4 until the frequency<br>components of the signal on TP28 are 3 dB<br>lower than that at f = 100 kHz, and measure<br>the frequency of signal 4. SW34 $\rightarrow$ (b),<br>Pulse $\rightarrow$ CLP, BLK, SG34 = 100 mVp-p,<br>Black level = 2 V                                         |                                            | 6.0   |       |      | MHz   |
| Aperture & AMP <sub>2</sub> Ci | rcuits      |                                                                                                                                                                                                                                                                                                                                                     |                                            |       |       |      |       |
| Aperture maximum<br>gain       | Gармах      | Apply signal 3 to SG26 and                                                                                                                                                                                                                                                                                                                          | SW25→(b),<br>V25 = 5 V                     | 840   | 1 130 |      |       |
| Aperture preset gain           | GAPPRE      | measure the amplitude on TP21 SW26A $\rightarrow$ (b)                                                                                                                                                                                                                                                                                               |                                            | 740   | 840   | 940  | mVp-p |
| Aperture minimum<br>gain       | Gapmin      | Pulse $\rightarrow$ CLP, BLK,<br>SG26 = 100 mVp-p,                                                                                                                                                                                                                                                                                                  | SW25→(b),<br>V25 = 0 V                     | 320   | 420   | 520  |       |
| Base clip output               | BCL         |                                                                                                                                                                                                                                                                                                                                                     | SW15→(b), V15 = 0 V<br>SW25→(b), V25 = 5 V | 250 3 | 350   | 450  |       |
| Delay line output              | DLout       | Apply signal 3 to SG34 and measure the<br>amplitude on TP21. SW15, SW23, SW25,<br>SW29, SW30, SW34 $\rightarrow$ (b), Pulse $\rightarrow$ CLP, BLK,<br>SG34 = 50 mVp-p, Black level = 2 V, V15 = V25<br>= V29 = V30 = 5 V, V23 = 1.2 V, V26 = 2.3 V                                                                                                 |                                            | 1 100 | 1 700 |      | mVp-p |
| AMP2 maximum gain              | Gамр2мах    | Apply signal 3 to SG26 and measure the amplitude on                                                                                                                                                                                                                                                                                                 | SG26 = 100 mVp-p,<br>V22 = 5 V             | 370   | 440   | 510  |       |
| AMP2 minimum gain              | Gamp2min    | TP21. Pulse→CLP, BLK,<br>SW15, SW22, SW25, SW26A→(b),                                                                                                                                                                                                                                                                                               | SG26 = 100 mVp-p,<br>V22 = 0 V             | 180   | 230   | 280  | mVp-p |
| Output dynamic<br>range        | DAMP2       | Input black level = $2.3 \text{ V}$ ,<br>V15 = V25 = $0 \text{ V}$                                                                                                                                                                                                                                                                                  | SG26 = 800 mVp-p,<br>V22 = 5 V             | 2 000 | 2 550 |      |       |
| Frequency<br>characteristic    | famp2       | Apply signal 4 to SG26. Increase the<br>frequency of signal 4 until the frequency<br>components of the signal on TP21 are 3 dB<br>lower than that at f = 100 kHz, and measure<br>the frequency of signal 4.<br>SW15, SW25, SW26A $\rightarrow$ (b), V15 = 0 V, V25 = 0 V,<br>Pulse $\rightarrow$ CLP, BLK, SG26 = 100 mVp-p,<br>Black level = 2.3 V |                                            | 8.0   |       |      | MHz   |

| PARAMETER                            | SYMBOL | CONDITIONS                                                                                                                                                                                                                                                            |                                                                                    |      | TYP. | MAX. | UNIT |
|--------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------|------|------|------|
| Encoder Circuit                      |        |                                                                                                                                                                                                                                                                       |                                                                                    |      |      | 1    |      |
| White clip (1)                       | WC1    | Apply signal 3 to SG20 and                                                                                                                                                                                                                                            | SW19→(b), V19 = 5 V                                                                | 1.9  | 2.0  |      |      |
| White clip (2)                       | WC2    | measure the amplitude on TP17A. SW19 $\rightarrow$ (b), V19 = 0 V                                                                                                                                                                                                     |                                                                                    |      | 0.85 | 0.95 | V    |
| White clip preset                    | WCPRE  |                                                                                                                                                                                                                                                                       | SW19→(a)                                                                           | 1.75 | 1.85 | 1.95 |      |
| Setup (1)                            | SUP1   | Measure the amplitude of SW18→(b), V18 = 5 V                                                                                                                                                                                                                          |                                                                                    | 230  | 280  |      |      |
| Setup (2)                            | SUP2   | TP17A between BLK level<br>and black level.                                                                                                                                                                                                                           | SW18→(b), V18 = 0 V                                                                |      | -310 | -260 | mV   |
| Setup preset                         | SUPPRE | Pulse→CLP, BLK                                                                                                                                                                                                                                                        | SW18→(a)                                                                           | -150 | -100 | -50  | -    |
| SYNC level                           | Vsync  | Measure the amplitude of TP <sup>+</sup><br>SYNC level and black level.<br>Pulse→CLP, BLK, SYNC                                                                                                                                                                       | Measure the amplitude of TP17A between SYNC level and black level.                 |      |      | 630  | mV   |
| Gain                                 | Gout   |                                                                                                                                                                                                                                                                       | Apply signal 3 to SG20 and measure the amplitude on TP17A. SW20 $\rightarrow$ (b), |      |      | 1    | dB   |
| Output dynamic<br>range              | Dout   | Apply signal 3 to SG20 and measure the amplitude of TP17A between SYNC level and white level. SW19, SW20 $\rightarrow$ (b), V19 = 5 V, Pulse $\rightarrow$ CLP, BLK, SYNC                                                                                             |                                                                                    |      | 2.5  |      | Vp-р |
| Frequency<br>characteristic          | fout   | Apply signal 4 to SG20. Increase the<br>frequency of signal 4 until the frequency<br>components of the signal on TP17B are 3 dB<br>lower than that at $f = 100$ kHz, and measure<br>the frequency of signal 4. SG20 = 1 Vp-p,<br>SW17, SW20→(b), Pulse→CLP, BLK, SYNC |                                                                                    | 10   |      |      | MHz  |
| Output voltage                       | Vout   | Apply signal 3 to SG20 and measure the amplitude of TP17B between SYNC level and white level. SG20 = $1.3 \text{ Vp-p}$ , SW17, SW20→(b), Pulse→CLP, BLK, SYNC                                                                                                        |                                                                                    | 0.9  | 1.0  |      | Vp-p |
| Pulse Circuit                        | •      |                                                                                                                                                                                                                                                                       |                                                                                    |      |      |      | •    |
| Clamp threshold voltage              | VFCDS  |                                                                                                                                                                                                                                                                       |                                                                                    |      | 1.3  |      |      |
| Sample-hold                          | VFS    | Apply voltages to FCDS, FS, SYNC, BLK and<br>CLP and measure the threshold voltage of<br>each circuit.                                                                                                                                                                |                                                                                    |      | 1.5  |      |      |
| threshold voltage                    | VIS    |                                                                                                                                                                                                                                                                       |                                                                                    |      | 1.5  |      |      |
| Synchronous signal threshold voltage | VSYNC  |                                                                                                                                                                                                                                                                       |                                                                                    |      | 2.5  |      | v    |
| Blanking threshold voltage           | VBLK   |                                                                                                                                                                                                                                                                       |                                                                                    |      | 1.5  |      |      |
| Clamp threshold voltage              | VCP    |                                                                                                                                                                                                                                                                       |                                                                                    | 3.5  |      | •    |      |

## **Measurement Waveforms**



### **Test Circuit**



Switching Polarity

# PACKAGE OUTLINES



