

Isolated Profibus RS-485 Transceiver with Integrated Transformer Driver

Check for Samples: ISO1176T

FEATURES

- 3000V_{RMS} / 4242V_{PK} Isolation
- Meets or Exceeds the Requirements of EN 50170 and TIA/EIA RS-485
- Signaling Rates up to 40 Mbps
- Easy Isolated Power Design with Integrated Transformer Driver
- Typical Efficiency > 60% (I_{LOAD} = 100 mA) see sluu471
- Differential Output exceeds 2.1V (54Ω Load)
- Low Bus Capacitance 10pF (MAX)
- 50kV/µs Typical Transient Immunity
- UL 1577, IEC 60747-5-2 (VDE 0884, Rev. 2) Approvals Pending
- Fail-safe Receiver for Bus Open, Short, or Idle

DESCRIPTION

APPLICATIONS Profibus[®]

- Frombus*
- Factory Automation
- Networked Sensors
- Motor/motion Control
- HVAC and Building Automation Networks
- Networked Security Stations

The ISO1176T is an isolated differential line transceiver with integrated oscillator outputs that provide the primary voltage for an isolation transformer. The device is ideal for long transmission lines because the ground loop is broken to allow the device to operate with a much larger common-mode voltage range. The symmetrical isolation barrier of each device is tested to provide $4242V_{PK}$ of isolation per VDE for 60 seconds between the line transceiver and the logic-level interface.

The galvanically isolated differential bus transceiver is an integrated circuit designed for bi-directional data communication on multipoint bus-transmission lines. The transceiver combines a galvanically isolated differential line driver and differential input line receiver. The driver has an active-high enable with isolated enable-state output on the ISODE pin (pin 10) to facilitate direction control. The driver differential outputs and the receiver differential inputs connect internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or $V_{CC2} = 0$.

Any cabled I/O can be subjected to electrical noise transients from various sources. These noise transients can cause damage to the transceiver and/or near-by sensitive circuitry if they are of sufficient magnitude and duration. The ISO1176T can significantly reduce the risk of data corruption and damage to expensive control circuits.

The device is characterized for operation over the ambient temperature range of -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Profibus is a registered trademark of Profibus International.

ISO1176T

SLLSE28F-OCTOBER 2010-REVISED OCTOBER 2012

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DEVICE INFORMATION

Figure 1. Typical Applications

PIN DESCRIPTIONS

NAME	PIN #	FUNCTION
D1	1	Transformer Driver Terminal 1, Open Drain Output
D2	2	Transformer Driver Terminal 2, Open Drain Output
GND1	3	Logic-side Ground
V _{CC1}	4	Logic-side Power Supply
R	5	Receiver Output
RE	6	Receiver Enable Input. This pin has complementary logic.
DE	7	Driver Enable Input
D	8	Driver Input
GND2	9, 11, 14, 15	Bus-side Ground. All pins are internally connected.
ISODE	10	Bus-side Driver Enable Output Status
А	12	Non-inverting Driver Output / Receiver Input
В	13	Inverting Driver Output / Receiver Input
VCC2	16	Bus-side Power Supply

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

					VALUE	UNIT	
V _{CC1} , V _{CC2}	Input supply ve	oltage ⁽²⁾			-0.5 to 7	V	
V	Voltage at any	bus I/O terminal			-9 to 14	V	
Vo	Voltage at D1,	D2			14	V	
VI	Voltage input a	at D, DE or RE terminal		-0.5 to 7	V		
l _o	Receiver output	Receiver output current					
$I_{D1,}$ I_{D2}	Transformer D	Transformer Driver Output Current					
				Bus pins to GND1	±6	kV	
		Human Body Model	JEDEC Standard 22, Test Method A114-C.01	Bus pins to GND2	±10		
ESD	Electrostatic Discharge			all pins	±4		
	Distinge	Charged Device Model	JEDEC Standard 22, Test Method C101		±1.5	kV	
		Machine Model	ANSI/ESDS5.2-1996	all pins	±200	V	
TJ	Maximum junction temperature					°C	
T _{STG}	Storage tempe	torage temperature					

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values except differential I/O bus voltages are with respect to the referenced network ground terminal and are peak voltage values.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V _{CC}	Logic side supply voltage, V _{CC1} (with	respect to GND1)	3		5.5	V
	Bus side supply voltage, V_{CC2} (with re	espect to GND2)	4.75		5.25	
V _{CM}	Voltage at either bus I/O terminal	А, В	-7		12	V
V		RE	2		V _{CC1}	V
VIH	High-level input voltage	D, DE	0.7 V _{CC1}			
N/		RE	0		0.8	V
VIL	Low-level input voltage	D, DE			0.3 V _{CC1}	
V _{ID}	Differential input voltage	A with respect to B	-12		12	V
	Output Ourput	RS-485 driver	-70		70	mA
I _O	Output Current	Receiver	-8		8	
T _A	Ambient temperature		-40		85	°C
TJ	Operating junction temperature				150	°C
1 / t _{UI}	Signaling Rate				40	Mbps

SLLSE28F-OCTOBER 2010-REVISED OCTOBER 2012

www.ti.com

SUPPLY CURRENT

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Logic-side quiescent supply		V_{CC1} = 3.3 V ± 10%, DE, \overline{RE} = 0V or $V_{CC1},$ No load		4.5	8	mA
ICC1	current	$V_{CC1} = 5 \text{ V} \pm 10\%$, DE, $\overline{RE} = 0 \text{V} \text{ or } V_{CC1}$, No load		7	11	mA
$I_{CC2}^{(1)}$	Bus-side quiescent supply current	V_{CC2} = 5 V ± 5%, DE, \overline{RE} = 0V or $V_{CC1},$ No load		13.5	18	mA

(1) I_{CC1} and I_{CC2} are measured when device is connected to external power supplies. D1 and D2 are disconnected from external transformer.

ISODE-PIN ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V		$I_{OH} = -8mA$	V _{CC2} - 0.8	4.6		N/
V _{OH}	High-level output voltage	$I_{OH} = -20\mu A$	V _{CC2} - 0.1	5		v
V		$I_{OL} = 8mA$		0.2	0.4	N/
V _{OL}	Low-level output voltage	$I_{OL} = 20\mu A$		0	0.1	v

RS-485 DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TE	ST CONDITIONS	MIN	ТҮР	МАХ	UNIT	
V _{OD}	Open-circuit differential output voltage	V _A – V _B , See	e Figure 2	1.5		V_{CC2}	V	
	Standy state differential output valtage	See Figure 3	and Figure 7	2.1				
V _{OD(SS)}	Steady-state differential output voltage magnitude		Common-mode loading n –7V to +12V	2.1			V	
$ \Delta V_{OD(SS)} $	Change in steady-state differential output voltage between logic states	See Figure 5 and Figure 6, $R_L = 54\Omega$		-0.2		0.2	V	
V _{OC(SS)}	Steady-state common-mode output voltage			2		3		
$\Delta V_{OC(SS)}$	Change in steady-state common-mode output voltage	See Figure 5 and Figure 65, $R_L = 54\Omega$		-0.2		0.2	V	
V _{OC(pp)}	Peak-to-peak common-mode output voltage			0.5				
V _{OD(ring)}	Differential output voltage over and under shoot	See Figure 7	and Figure 10			10%	V _{OD(pp)}	
I _I	Input current	D, DE at 0V o	or V _{CC1}	-10		10	μA	
I _{O(OFF)}	Power-off output current	$V_{CC2} = 0 V$		Saa raaaii	or input ou	rrant		
I _{OZ}	High-impedance output current	DE at 0V		See receiv	ver input cu	nent		
I _{OS(P)}	Peak short-circuit output current	See	$V_{OS} = -7V$ to 12V	-250		250		
	Figure 9, DE $V_{OS} = 12V$, D a		V _{OS} = 12V, D at GND1			135	mA	
I _{OS(SS)}	Steady-state short-circuit output current	at V _{CC1}	$V_{OS} = -7V$, D at V_{CC1}	-135				
C _{OD}	Differential output capacitance				eceiver C _{IN}			
CMTI	Common-mode transient immunity	See Figure 20		25			kV/µs	

RS-485 DRIVER SWITCHING CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Prop delay time	$V_{\rm CC1} = 5V \pm 10\%$,			23	35	2
t _{sk(p)}	Pulse skew (t _{PHL} – t _{PLH})	$V_{CC2} = 5V \pm 5\%$			2	5	ns
t _{PLH} , t _{PHL}	Prop delay time	$V_{CC1} = 3.3V \pm 10\%$,	See Figure 10		25	40	2
t _{sk(p)}	Pulse skew (t _{PHL} – t _{PLH})	$V_{CC2} = 5V \pm 5\%$	See Figure 10		2	5	ns
t _r	Differential output signal rise	e time		2	3	7.5	2
t _f	Differential output signal fall	time		2	3	7.5	ns
t _{pDE}	DE to ISODE prop delay		See Figure 14			30	ns
$t_{t(MLH)}$, $t_{t(MHL)}$	Output transition skew		See Figure 11			1	ns
$t_{p(AZH)}, t_{p(BZH)}, t_{p(AZL)}, t_{p(BZL)}$	Propagation delay, high-imp	edance-to-active output	See Figure 12 and			80	2
$t_{p(AHZ)}, t_{p(BHZ)}, t_{p(ALZ)}, t_{p(BLZ)}$	Propagation delay, active-to-	-high-impedance output	Figure 13, C _L = 50pf, RE at 0 V			80	ns
$\begin{array}{ } t_{p(AZL)} - t_{p(BZH)} \\ t_{p(AZH)} - t_{p(BZL)} \end{array}$	Enable skew time				0.55	1.5	ns
t _(CFB)	Time from application of short-circuit to current fold back		See Figure 9		0.5		μs
t _(TSD)	Time from application of sho	rt-circuit to thermal shutdown	See Figure 9, T _A = 25°C	100			μs

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

PARAI	METER		TEST CONDITIONS	;	MIN	TYP	MAX	UNIT
V _{IT(+)}	Positive-going input thresho	ld voltage	See Figure 16	$I_0 = -8mA$		-80	-10	
V _{IT(-)}	Negative-going input thresh	old voltage	See Figure 16	$I_{O} = 8mA$	-200	-120		mV
V _{hys}	Hysteresis voltage (V _{IT+} – V	/ _{IT-})				25		
V	High lovel output veltage		V _{ID} = 200 mV, See	I _{OH} = -8mA	$V_{CC1} - 0.4$	3		V
V _{ОН}	High-level output voltage	$V_{CC1} = 3.3V \pm 100\%$ and $V_{CC1} = 3.3V \pm 100\%$	Figure 16	I _{OH} = -20μA	$V_{CC1} - 0.1$	3.3		V
V		- 10% and V _{CC2} = 5V ± 5%	V _{ID} = -200 mV, See	$I_{OL} = 8mA$		0.2	0.4	V
V _{OL}	Low-level output voltage		Figure 16	$I_{OL} = 20 \mu A$		0	0.1	v
v	High-level output voltage		V _{ID} = 200 mV, See	$I_{OH} = -8mA$	$V_{CC1} - 0.8$	4.6		V
V _{OH}	High-level output voltage	$V_{CC1} = 5V \pm$	Figure 16	$I_{OH} = -20\mu A$	$V_{CC1} - 0.1$	5		v
V _{OL}	Low-level output voltage	10% and $V_{CC2} = V_{ID} = -200 \text{ m}^3$	V _{ID} = -200 mV, See Figure 16	I _{OL} = 8mA		0.2	0.4	V
01	, ,			I _{OL} = 20μA		0	0.1	
I _A , I _B				V _{CC2} = 4.75V or 5.25V	100		200	
I _{A(off)} , I _{B(off)}	Bus pin input current			$V_{CC2} = 0V$	-160		200	μA
կ	Receiver enable input curre	nt	$\overline{RE} = 0 \text{ V}$		-50		50	μA
I _{OZ}	High-impedance state output	ut current	$\overline{RE} = V_{CC1}$		-1		1	μA
R _{ID}	Differential input resistance		A, B		60			kΩ
C _{ID}	Differential input capacitance		Test input signal is a wave with 1Vpp amp measured across A	olitude. CD is		7	10	pF
CMR	Common mode rejection		See Figure 19			4		V

SLLSE28F-OCTOBER 2010-REVISED OCTOBER 2012

www.ti.com

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	V _{CC1} = 5V ± 10%,			50	65	
t _{sk(p)}	Pulse skew (t _{PHL} – t _{PLH})	$V_{CC2} = 5V \pm 5\%$	See Figure 16		2	5	
t _{PLH} , t _{PHL}	Propagation delay time	V _{CC1} = 3.3V ± 10%,	- See Figure 16		53	70	
t _{sk(p)}	Pulse skew (tpHL - tpLH)	$V_{CC2} = 5V \pm 5\%$			2	5	
t _r	Output signal rise time			2	4	~~~	
t _f	Output signal fall time				2	4	ns
t _{PZH}	Propagation delay, high-impeda	nce-to-high-level output			13	25	
t _{PHZ}	Propagation delay, high-level-to-high-impedance output		DE at V _{CC1} , See Figure 17		13	25	
t _{PZL}	Propagation delay, high-impedance-to-low-level output				13	25	
t _{PLZ}	Propagation delay, low-level-to-	high-impedance output	DE at V _{CC1} , See Figure 18		13	25	

TRANSFORMER DRIVER CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
٤		V_{CC1} = 5V ± 10%, D1 and D2 connected to Transformer	350	450	610	kHz
f _{OSC}	Oscillator frequency	V_{CC1} = 3.3V ± 10%, D1 and D2 connected to Transformer	300	400	550	КПZ
R _{ON}	Switch on resistance	D1 and D2 connected to 50Ω pull-up resistors		1	2.5	Ω
	D4 D0 sutsut rise time	V_{CC1} = 5V ± 10%, See Figure 21, D1 and D2 connected to 50 Ω pull-up resistors		80		
t _{r_D} D1, D2 output rise time	D1, D2 output rise time	V_{CC1} = 3.3V ± 10%, See Figure 21, D1 and D2 connected to 50 Ω pull-up resistors		70		ns
	D4 D0 sutsut fall time	V_{CC1} = 5V ± 10%, See Figure 21, D1 and D2 connected to 50 Ω pull-up resistors		55		
t _{f_D}	D1, D2 output fall time	V_{CC1} = 3.3V ± 10%, See Figure 21, D1 and D2 connected to 50 Ω pull-up resistors		80		ns
f _{St}	Startup frequency	V _{CC1} = 2.4 V, D1 and D2 connected to Transformer		350		kHz
	Brook before make time dalay	V_{CC1} = 5V ± 10%, See Figure 21, D1 and D2 connected to 50 Ω pull-up resistors		38		20
t _{BBM}	Break before make time delay	V_{CC1} = 3.3V ± 10%, See Figure 21, D1 and D2 connected to 50 Ω pull-up resistors		140		ns

PARAMETER MEASUREMENT INFORMATION

Figure 2. Open Circuit Voltage Test Circuit

Figure 4. Driver V_{OD} with Common-mode Loading Test Circuit

Figure 3. V_{OD} Test Circuit

Figure 5. Driver V_{OD} and V_{OC} Without Common-Mode Loading Test Circuit

Texas Instruments

www.ti.com

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 8. Input Voltage Hysteresis Test Circuit

Figure 10. Driver Switching Test Circuit and Waveforms

8

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 14. DE to ISODE Prop Delay Test Circuit and Waveforms

Figure 15. Receiver DC Parameter Definitions

Figure 16. Receiver Switching Test Circuit and Waveforms

Figure 17. Receiver Enable Test Circuit and Waveforms, Data Output High

Figure 18. Receiver Enable Test Circuit and Waveforms, Data Output Low

Figure 19. Common-Mode Rejection Test Circuit

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 21. Transition Times and Break-Before-Make Time Delay for D1, D2 Outputs

		INPUT	ENABLE INPUT	ENABLE	OUTF	PUTS
V _{CC1}	V _{CC2}	(D)	(DE)	OUTPUT (ISODE)	Α	В
PU	PU	Н	Н	Н	Н	L
PU	PU	L	Н	Н	L	Н
PU	PU	Х	L	L	Z	Z
PU	PU	Х	open	L	Z	Z
PU	PU	open	Н	Н	Н	L
PD	PU	Х	Х	L	Z	Z
PU	PD	Х	Х	L	Z	Z
PD	PD	Х	Х	L	Z	Z

Table 1. DRIVER FUNCTION TABLE⁽¹⁾

(1) PU = Powered Up, PD = Powered Down, H = High Level, L= Low Level, X = Don't Care, Z = High Impedance (off)

V _{cc1}	V _{CC2}	DIFFERENTIAL INPUT $V_{ID} = (V_A - V_B)$	ENABLE (RE)	OUTPUT (R)
PU	PU	$-0.01V \le V_{ID}$	L	Н
PU	PU	-0.2V < V _{ID} < -0.01V	L	?
PU	PU	V _{ID} ≤ -0.2V	L	L
PU	PU	Х	Н	Z
PU	PU	Х	open	Z
PU	PU	Open circuit	L	Н
PU	PU	Short Circuit	L	Н
PU	PU	Idle (terminated) bus	L	Н
PD	PU	Х	Х	Z
PU	PD	Х	L	Н
PD	PD	Х	Х	Z

Table 2. RECEIVER FUNCTION TABLE⁽¹⁾

(1) PU = Powered Up, PD = Powered Down, H = High Level, L= Low Level, X = Don't Care, Z = High Impedance (off), ? = Indeterminate

IEC INSULATION AND SAFETY RELATED SPECIFICATIONS FOR 16-DW PACKAGE

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(I01)	Minimum air gap (Clearance) ⁽¹⁾	Shortest terminal to terminal distance through air	8.3			mm
L(I02)	Minimum external tracking (Creepage) ⁽¹⁾	Shortest terminal to terminal distance across the package surface	8.1			mm
СТІ	Tracking resistance (Comparative Tracking Index)	DIN IEC 60112 / VDE 0303 Part 1	400			V
	Minimum Internal Gap (Internal Clearance)	Distance through the insulation	0.008			mm
R _{IO}	Isolation resistance	Input to output, V_{IO} = 500 V, all pins on each side of the barrier tied together creating a two-terminal device		>10 ¹²		Ω
CIO	Barrier capacitance Input to output	$V_{I} = V_{CC}/2 + 0.4 \text{ sin } (2\pi \text{ft}), \text{ f} = 1\text{MHz}, V_{CC} = 5 \text{ V}$		2		pF
CI	Input capacitance to ground	$V_{I} = 0.4 \sin (2\pi ft), f = 1MHz$		2		pF
P _D	Maximum device power dissipation	$\label{eq:V_CC1} \begin{array}{l} V_{CC1} = 5.5 \text{V}, \ V_{CC2} = 5.25 \text{V}, \ T_J = 150^\circ \text{C}, \ C_L = \\ 50 \text{pf}, \ R_L = 54 \Omega \\ \\ \text{Input a 20MHz 50\% duty cycle square wave} \end{array}$			719	mW

(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to make sure that the mounting pads of the isolator on the printed circuit board do not reduce this distance.

Creepage and clearance on a printed circuit board become equal according to the measurement techniques shown in the Isolation Glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications

IEC 60664-1 RATINGS TABLE

PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic isolation group	Material group	11
	Rated mains voltage ≤ 150V _{rms}	I-IV
Installation classification	Rated mains voltage ≤ 300V _{rms}	1-111
	Rated mains voltage ≤ 400V _{rms}	I-II

IEC 60747-5-2 INSULATION CHARACTERISTICS⁽¹⁾

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	SPECIFICATION	UNIT	
VIORM	Maximum working insulation voltage		566	Vpeak	
V _{PR}	Input to output test voltage	Method b1, $V_{PR} = V_{IORM} \times 1.875$, 100% Production test with t = 1s, Partial discharge < 5pC	1062	Vpeak	
		Method a, After environmental tests subgroup 1, $V_{PR} = V_{IORM} \times 1.6$, t = 10s, Partial discharge < 5pC	906		
		After Input/Output Safety Test Subgroup 2/3, $V_{PR} = V_{IORM} \times 1.2$, t = 10s, Partial discharge < 5pC	680		
V _{IOTM}	Transient overvoltage	t = 60s (qualification), t = 1s (100% production)	4242	Vpeak	
VIOSM	Maximum surge voltage	Tested per IEC 60065 (Qualification Test)	4242	V _{peak}	
R_S	Insulation resistance	$V_{IO} = 500V \text{ at } T_{S} = 150^{\circ}C$	> 10 ⁹	Ω	
	Pollution degree		2		

(1) Climatic Classification 40/125/21

SLLSE28F-OCTOBER 2010-REVISED OCTOBER 2012

REGULATORY INFORMATION

VDE	UL
Certified according to DIN EN 60747-5-2 (VDE 0884 Part 2)	Recognized under 1577 Component Recognition Program
Basic Insulation Maximum Transient Overvoltage, 4242 V _{PK} Maximum Surge Voltage, 4242 V _{PK} Maximum Working Voltage, 566 V _{PK}	Single / Basic Isolation Voltage, 2500 V _{RMS} ⁽¹⁾
File Number: Pending	File Number: Pending

(1) Production tested \ge 3000 V_{rms} for 1 second in accordance with UL 1577.

IEC SAFETY LIMITING VALUES

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the IO can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
I_{S}	Safety input, output, or supply current	DW-16	$\theta_{JA} = 76^{\circ}C/W, V_{I} = 5.5 V, T_{J} = 170^{\circ}C, T_{A} = 25^{\circ}C$			347	mA
T_S	Maximum case temperature	DW-16				150	°C

The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Characteristics table is that of a device installed on a High-K Test Board for Leaded Surface Mount Packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾	ISO1176T	
		DW-16	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	76	
θ _{JC(top)}	Junction-to-case(top) thermal resistance	37.9	
θ_{JB}	Junction-to-board thermal resistance	44.6	0000
Ψιτ	Junction-to-top characterization parameter	12.1	°C/W
Ψјв	Junction-to-board characterization parameter	37.9	
θ _{JC(bottom)}	Junction-to-case(bottom) thermal resistance	n/a	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

Figure 22. DW-16 θ_{JC} THERMAL DERATING CURVE per IEC 60747-5-2

500 Ω

≶

Texas

INSTRUMENTS

TYPICAL CHARACTERISTICS

ISO1176T

SLLSE28F-OCTOBER 2010-REVISED OCTOBER 2012

APPLICATION INFORMATION

REFERENCE DESIGN

ISO1176T Reference Design (SLUU471) is available to provide complete isolated data and power solution.

TRANSIENT VOLTAGES

Isolation of a circuit insulates it from other circuits and earth so that noise develops across the insulation rather than circuit components. The most common noise threat to data-line circuits is voltage surges or electrical fast transients that occur after installation and the transient ratings of ISO1176T are sufficient for all but the most severe installations. However, some equipment manufacturers use their ESD generators to test transient susceptibility of their equipment and can exceed insulation ratings. ESD generators simulate static discharges that may occur during device or equipment handling with low-energy but high voltage transients.

Figure 31 models the ISO1176T bus IO connected to a noise generator. C_{IN} and R_{IN} is the device and any other stray or added capacitance or resistance across the A or B pin to GND2, C_{ISO} and R_{ISO} is the capacitance and resistance between GND1 and GND2 of ISO1176T plus those of any other insulation (transformer, etc.), and we assume stray inductance negligible. From this model, the voltage at the isolated bus return is

 $v_{GND2} = v_N \frac{z_{ISO}}{z_{ISO} + z_{IN}}$ and will always be less than 16 V from V_N. If ISO1176T is tested as a stand-alone device, $R_{IN} = 6 \times 10^4 \Omega$, $C_{IN} = 16 \times 10^{-12}$ F, $R_{ISO} = 10^9 \Omega$ and $C_{ISO} = 10^{-12}$ F.

Note from Figure 31 that the resistor ratio determines the voltage ratio at low frequency and it is the inverse capacitance ratio at high frequency. In the standalone case and for low frequency,

$$\frac{v_{GND2}}{v_N} = \frac{R_{ISO}}{R_{ISO} + R_{IN}} = \frac{10^9}{10^9 + 6 \times 10^4}$$

or essentially all of noise appears across the barrier. At high frequency,

$$\frac{v_{GND2}}{v_N} = \frac{\frac{1}{C_{ISO}}}{\frac{1}{C_{ISO}} + \frac{1}{C_{IN}}} = \frac{1}{1 + \frac{C_{ISO}}{C_{IN}}} = \frac{1}{1 + \frac{1}{16}} = 0.94$$

and 94% of V_N appears across the barrier. As long as R_{ISO} is greater than R_{IN} and C_{ISO} is less than C_{IN} , most of transient noise appears across the isolation barrier, as it should.

We recommend the reader not test equipment transient susceptibility with ESD generators or consider product claims of ESD ratings above the barrier transient ratings of an isolated interface. ESD is best managed through recessing or covering connector pins in a conductive connector shell and installer training.

Figure 31. Noise Model

REVISION HISTORY

CI	hanges from Revision initial (October 2010) to Revision A	Page
•	Updated transformer driver characteristics	6
•	Added Thermal Table data	14
C	hanges from Revision A (December 2010) to Revision B	Page
•	Changed the Steady-state short-circuit output current - Test Conditions and values	4
•	Changed the Oscillator frequency values	6
•	Changed the D1, D2 output rise time values	6
C	hanges from Revision B (December 2010) to Revision C	Page
•	Added a Typ value of 23ns to Prop delay time for V_{CC1} = 5V in the RS-485 DRIVER SWITCHING CHARACTERISTIC table	5
•	Added a Typ value of 25ns to Prop delay time for V _{CC1} = 3.3V in the RS-485 DRIVER SWITCHING CHARACTERISTIC table	5
•	Deleted R _{OFF} from the TRANSFORMER DRIVER CHARACTERISTICS table	6
•	Changed θ_{JA} = 212°C/W To: θ_{JA} = 76°C/W, Changed the I _S Max value From: 128mA To: 347mA, and change paragraph two in the IEC SAFETY LIMITING VALUES section	
•	Changed Figure 22	15
C	hanges from Revision C (February 2011) to Revision D	Page
•	Added Figure 1	2
•	Moved the Pin Description closer to the Pin drawing	2
C	hanges from Revision D (May 2011) to Revision E	Page
•	Deleted the MIN and MAX values for t _{r D} , t _{r D} and t _{BBM} specifications in the Transformer Driver Characteristic	s table 6
•	Changed test conditions from 1.9 V to 2.4 V, and changed TYP value from 230 to 350 for f _{St} specification in Transformer Driver Characteristics table.	the
CI	hanges from Revision E (August 2011) to Revision F	Page
•	Changed From "ISO1176T Reference Design SLLU471" To: "ISO1176T Reference Design SLUU471"	20

24-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	0	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
ISO1176TDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO1176T	Samples
ISO1176TDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO1176T	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	-	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO1176TDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Mar-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO1176TDWR	SOIC	DW	16	2000	367.0	367.0	38.0

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AA.

LAND PATTERN DATA

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated