5-CH MOTOR DRIVER The KA9259BD is a monolithic integrated circuit, and suitable for 5-ch motor driver which drives focus actuator, tracking actuator, sled motor, spindle motor and loading motor of CD system. ### **FEATURES** - 1 phase, full-wave, linear DC motor driver - · Built-in TSD (Thermal shutdown) circuit - Built-in 5V regulator (With an external PNP TR) - Built-in mute circuit - · Built-in loading motor speed control circuit - Wide operating supply voltage range: 6V~13.2V # 28-SSOPH-375 ### ORDERING INFORMATION | Device | Package | Operating Temperature | |---------|--------------|-----------------------| | KA9259D | 28-SSOPH-375 | −25°C ~ +75°C | ### **TARGET APPLICATION** - CD-PLAYER - VIDEO-CD - CAR-CD ### **BLOCK DIAGRAM** ### **PIN CONFIGURATION** ## **PIN DESCRIPTION** | Pin No. | Symbol | I/O | Description | Pin No. | Symbol | I/O | Description | | |---------|--------|-----|----------------------------|---------|------------------|-----|-------------------------------|--| | 1 | DO1.1 | 0 | Focus output 1 (–) | 15 | DO5.1 | 0 | Loading output 1(+) | | | 2 | DO1.2 | 0 | Focus output 2 (+) | 16 | DO5.2 | 0 | Loading output 2(-) | | | 3 | DI1.1 | | Focus input 1 | 17 | DO3.1 | 0 | Sled output (-) | | | 4 | DI1.2 | | Focus input 2 (Adjustable) | 18 | DO3.2 | 0 | Sled output (+) | | | 5 | REB | 0 | Regulator base | 19 | DI3 | I | Sled input | | | 6 | REO | 0 | Regulator output, 5V | 20 | LD CTL | I | Loading motor speed control | | | 7 | MUTE | I | Mute | 21 | V _{CC1} | _ | Supply voltage 1 | | | 8 | GND1 | - | Ground 1 | 22 | V _{CC2} | _ | Supply voltage 2 | | | 9 | DI5.1 | I | Loading input 1 | 23 | VREF | I | 2.5V bias | | | 10 | DI2 | I | Spindle input 2 | 24 | DI4.1 | I | Tracking input 1 (Adjustable) | | | 11 | DO2.1 | 0 | Spindle output (+) | 25 | DI4.2 | I | Tracking input 2 | | | 12 | DO2.2 | 0 | Spindle output (-) | 26 | DO4.1 | 0 | Tracking output 1 (+) | | | 13 | GND2 | _ | Ground 2 | 27 | DO4.2 | 0 | Tracking output 2 (–) | | | 14 | DI5.2 | | Loading input 2 | 28 | GND3 | _ | Ground 3 | | ### **EQUIVALENT CIRCUITS** | Driver input (Except for loading motor driver) | Driver output | | | | | |--|---|--|--|--|--| | 2.5V \$\bigs\bigs\bigs\bigs\bigs\bigs\bigs\bigs | 10k \$ 1 2 11 12 15 16 16 17 18 27 26 VREF1 | | | | | | Loading motor driver input | Loading motor speed control input | | | | | | 9
50k
50k
50k
50k
50k
50k
50k | 50k \$ 50k \$ 200 | | | | | | Mute input | Bias input | | | | | | 7 ■ 50k | 23 | | | | | # ABSOLUTE MAXIMUM RATING (Ta=25°C) | Characteristics | Symbol | Value | Unit | | |------------------------|---------------------|--------------------|------|--| | Maximum supply voltage | V _{CC MAX} | 18 | V | | | Power dissipation | P _D | @1.7 | W | | | Operating temperature | T _{OPR} | −25 ~ + 75 | °C | | | Storage temperature | T _{STG} | −55 ~ + 150 | °C | | | Maximum current output | I _{OMAX} | 1 | A | | ### NOTE:@ - 1. When mounted on $76\text{mm} \times 114\text{mm} \times 1.57\text{mm}$ PCB (Phenolic resin material). - 2. Power dissipation reduces 13.6mW / °C for using above Ta=25°C - 3. Do not exceed Pd and SOA. # RECOMMENDED OPERATING CONDITION (TA=25°C) | Characteristics | Symbol | Value | Unit | | |--------------------------|-----------------|----------|------|--| | Operating supply voltage | V _{CC} | 6 ~ 13.2 | V | | ### **ELECTRICAL CHARACTERISTICS** (Ta=25°C, V_{CC} =8V, R_L =8 Ω , f=1kHz, unless otherwise specified) | Characteristic | Symbol | Test conditions | Min. | Тур. | Max. | Unit | |-----------------------------------|----------------------|---|-------|------|------|------| | Quiescent circuit current | I _{CCQ} | Under no-load | 7 | 10 | 13 | mA | | Mute-on current | I _{MUTE} | Pin 7=GND | _ | 4 | 7 | mA | | Mute-on voltage | V _{MON} | _ | _ | - | 0.5 | V | | Mute-off voltage | V_{MOFF} | _ | 2 | - | - | V | | REGULATOR PART | 1 | 1 | 1 | · | | l | | Output voltage | V_{REG} | I _L =100mA | 4.7 | 5.0 | 5.3 | V | | Load regulation | ΔV_{RL3} | I _L =0→200mA | -50 | 0 | 50 | mV | | Line regulation | ΔV_{CC} | V _{CC} =6→13V, I _L =100mA | -20 | 0 | 80 | mV | | DRIVER PART (Except for loa | ding moto | r driver) | | • | | • | | Input offset voltage | V _{IO} | _ | -15 | _ | 15 | mV | | Output offset voltage 1 | V ₀₀₁ | _ | -40 | _ | 40 | mV | | Maximum source current 1 | I _{SOURCE1} | $R_L=8\Omega \rightarrow V_{CC}$ | 0.25 | 0.4 | _ | Α | | Maximum sink current 1 | I _{SINK1} | $R_L=8\Omega\rightarrow GND$ | 0.25 | 0.4 | _ | Α | | Maximum output voltage 1 | V _{OM1} | V _{IN} =0.7V | 2.5 | 3.3 | _ | V | | Maximum output voltage 2 | V_{OM2} | V _{IN} =7V | _ | -4.5 | -3.7 | V | | Closed-loop voltage gain | A _{VF} | V _{IN} =0.1V _{RMS} | 5 | 6.5 | 8 | dB | | Ripple rejection ratio | RR | V _{IN} =0.1V _{RMS} , f=120Hz | 40 | 60 | _ | dB | | Slew rate | SR | 120Hz, V _{IN} =1V _{RMS} ,
Square wave | 1 | 2 | - | V/μs | | LOADING MOTOR DRIVER PA | ART (Unles | s otherwise specified, VCTL=op | ened) | · | | l | | Output voltage 1 | V _{O1} | V_{PIN9} =5V, V_{PIN14} =0V, R_L =45 Ω | 2.5 | 3.1 | 3.8 | V | | Output voltage 2 | V _{O2} | V_{PIN9} =0V, V_{PIN14} =5V, R_L =45 Ω | 2.5 | 3.1 | 3.8 | V | | Output voltage regulation 1 (CTL) | V _{OCTL1} | V_{CTL} =3.5 \rightarrow 4.5V, V_{PIN9} =5V V_{PIN14} =0V, R_L =45 Ω | 0.5 | 1.0 | 1.5 | V | | Output voltage regulation 2 (CTL) | V _{OCTL2} | V_{CTL} =3.5 \rightarrow 4.5V, V_{PIN9} =0V V_{PIN14} =5V, R_L =45 Ω | 0.5 | 1.0 | 1.5 | V | | Load regulation 1 | ΔV_{RL1} | I _L =100→400mA, V _{PIN9} =5V,
V _{PIN14} =0V | - | 300 | 700 | mV | | Load regulation 2 | ΔV_{RL2} | I _L =100→400mA, V _{PIN9} =0V,
V _{PIN14} =5V | - | 300 | 700 | mV | | Output offset voltage 2 | V _{OO2} | V _{PIN9} =5V, V _{PIN14} =5V | -40 | _ | 40 | mV | | Output offset voltage 3 | V _{OO3} | V _{PIN9} =0V, V _{PIN14} =0V | -40 | - | 40 | mV | ### **APPLICATION INFORMATION** ### 1. MUTE | Pin #7 Mute circuit High Turn-off Low Turn-on | Output driver bias | |---|--------------------| |---|--------------------| - When the mute pin #7 is open or the voltage of the mute pin #7 is below 0.5V, the mute circuit is activated so that the output circuit will be muted. - When the voltage of the mute pin is above 2V, the mute circuit is stopped and the output circuit is operated normally. - If the chip temperature rises above 175°C, then the TSD (Thermal shutdown) circuit is activated and the output circuit is muted. ### 2. TSD (THERMAL SHUTDOWN) - The V_{REF BG} is the output voltage of the band-gap-referenced biasing circuit and acts as the input voltage of the TSD circuit. - The base-emitter voltage of the TR, Q11 is designed to turn-on at below voltage. $V_{BE} = V_{REF\ BG} \times R12\ /\ (R11+R12) = 400mV$ - When the chip temperature rises up to 175°C, then the turn-on voltage of the Q11 would drop down to 400mV. Hence, the Q11 would turn on so the output circuit will be muted. ### 3. REGULATOR - The V_{REF BG} is the output voltage of the band-gap-referenced biasing circuit and is the reference voltage of the regulator. - The external circuit is composed of the transistor, KSB772 and a capacitor, 100μF, and the capacitor is used as a ripple eliminator and should have a good temperature characteristics. - The output voltage, V_{OUT} is decided as follows. V_{OUT} = V_{REF BG} × 2 = 2.5 × 2 = 5V (R2 = R3) R2 = R3 ### 4. LOADING MOTOR DRIVER - The input voltages of (5V and 0V) or (0V and 5V) pairs are applied to the input pin #9 and #14 respectively. - When the input voltages are applied to the input pin #9 and #14, then the output of the comparator is decided depends on the input voltage status. - As shown in the above diagram, the difference ΔV , $[V_{REF1} + (I \times R)] [V_{REF1} (I \times R)]$, is applied to the both terminals of the motor. The direction of the motor is decided by the voltage difference, $+\Delta V$ and $-\Delta V$. - The output characteristics is as follows, - If pin # 9=5V and #14=0V, then pin # 15=+ Δ V and #16= $-\Delta$ V, hence the motor turn in forward direction. - If pin # 9=0V and #14=5V, then pin # 15= $-\Delta V$ and #16= $+\Delta V$, hence the motor turn in reverse direction. - If pin # 9=5V and #14=5V, then Δ V=0V, hence the motor stop. - If pin # 9=0V and #14=0V, then Δ V=0V, hence the motor stop. - When the rotation speed control of the loading motor is desired, refer to the follows. ### 5. LOADING MOTOR SPEED CONTROL - If the torque of the loading motor is too low when it is used with the pin #20 open, then it should used as the above diagram. - The desired torque could be obtained by selecting the appropriate resistor R as shown in the left diagram. - If it is necessary, the zener diode can be used as in the right diagram. - The maximum torque is obtained when the applied voltage at pin #20 is about 6.8V (at V_{CC}=8V). ### 6. DRIVER (EXCEPT FOR LOADING MOTOR DRIVER) - The voltage, V_{REF}, is the reference voltage given by the bias voltage of the pin #23. - The input signal through the pin #3 is amplified by 10k/10k times and then fed to the level shift. - The level shift produces the current due to the difference between the input signal and the arbitrary reference signal. The current produced as $+\Delta I$ and $-\Delta I$ is fed into the driver buffer. - Driver Buffer operates the power TR of the output stage according to the state of the input signal. - The output stage is the BTL Driver and the motor is rotating in forward direction by operating TR Q1 and TR Q4. On the other hand, if TR Q2 and TR Q3 is operating, the motor is rotating in reverse direction. - When the input voltage through the pin #3 is below the V_{REF}, then the direction of the motor in forward direction. - When the input voltage through the pin #3 is above the V_{REF}, then the direction of the motor in reverse direction. - If it is desired to change the gain, then the pin #4 or #24 can be used. 7. When the bias voltage of the pin #23 is below 1.4V, then the output circuit will be muted. Hence for the normal operation, the bias voltage should be used in $1.6V \sim 6.5V$. 8. Connect a by-pass capacitor, $0.1\mu\text{F}$ between the supply voltage source. 9. Radiation fin is connecting to the internal GND of the package. Connect the fin to the external GND. ### **ELECTRICAL CHARACTERISTICS CURVES** # **ELECTRICAL CHARACTERISTICS CURVES(CONTINUE)** ### **TEST CIRCUIT** ### **APPLICATION CIRCUIT**