LINEAR INTEGRATED CIRCUIT ### MONOLITHIC HIGH GAIN POWER OUTPUT STAGE The L149 is a general purpose power booster in Pentawatt® package consisting of a quasi-complementary darlingtons output stage with the associated biasing system and inhibit facility. The circuit features are: - High output current (4A peak) - High current gain (10 000 typ.) - Operation up to ± 20V - Thermal protection - Short circuit protection - Operation within SOA - High slew-rate The device is particularly suited for use with an operational amplifier inside a closed loop configuration to increase output current ($P_0 = 20W$, d = 0.5%, $R_L = 4\Omega$, $V_s = \pm 16V$). #### ABSOLUTE MAXIMUM RATINGS | Supply voltage | ±20 | v | |---|---|--| | Input voltage | V _s | | | DC output current | 3 | Α | | Peak output current (internally limited) | 4 | Α | | Input inhibit voltage | -V _s +5 | V | | | -V _s -1.5 | V | | Power dissipation at T _{case} = 75°C | 25 | W | | Storage and junction temperature | -40 to 150 | °C | | | Input voltage DC output current Peak output current (internally limited) Input inhibit voltage Power dissipation at T _{case} = 75°C | Input voltage V_s DC output current 3 Peak output current (internally limited) 4 Input inhibit voltage $-V_s + 5$ Power dissipation at $T_{case} = 75^{\circ}C$ 25 | **ORDERING NUMBER: L149V** #### MECHANICAL DATA Dimensions in mm ## **CONNECTION DIAGRAM** (top view) ## SCHEMATIC DIAGRAM ## THERMAL DATA | R _{th j-c ase} | Thermal resistance junction-case | max | 3 | °C/W | |-------------------------|----------------------------------|-----|---|------| | | | | | | ## **ELECTRICAL CHARACTERISTICS** (T_{amb}= 25°C) | | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--------------------|---|---|-------|-------|-------|------| | V _s | Supply voltage | | | | ± 20 | ٧ | | Id | Quiescent drain current | V _s = ± 16V | | 30 | | mA | | lin | Input current | V _s = ± 16V V _i = 0V | | 200 | 400 | μА | | h _{FE} | DC current gain | V _s = ± 16V I _o = 3A | 6000 | 10000 | | _ | | G _v | Voltage gain | V _s = ± 16V I _o = 1.5A | | 1 | | _ | | V _{CEsat} | Saturation voltage
(for each transistor) | I _o = 3A | | | 3.5 | ٧ | | Vos | Input offset voltage | V _s = ± 16V | | | 0.3 | ٧ | | VINH | Inhibit input voltage
(pins 1-3) | ON condition | | | ± 0.3 | | | | | OFF condition | ± 1.2 | | | \ | | R _{INH} | Inhibit input resistance | f = 1 KHz | | 2.0 | | ΚΩ | | SR | Slew rate | | | 30 | | V/μs | | В | Power bandwidth | $V_s = \pm 18V$, d = 1%, R _L = 8 Ω | | 200 | | KHz | ## **TEST CIRCUIT** Fig. 1 - Maximum saturation voltage vs. output current Fig. 2 - Current limiting characteristics Fig. 3 - Supply voltage rejection vs. frequency #### APPLICATION INFORMATION Fig. 4 - High power amplifier with single power supply (G_v= 30 dB) Fig. 5 - Distortion vs. output power (f = 1 KHz) Fig. 6 - Distortion vs. output power (f= 10 KHz) Fig. 7 - Output power vs. supply voltage #### APPLICATION INFORMATION (continued) #### Fig. 8 - High slew-rate power operational amplifier Fig. 9 - Electronic potentiometer (short-circuit protected) Fig. 10 - 720W Switch-Mode Power Supply using the L149 as driver stage for the power transistors NOTE - For a more detailed description of the L149 and its applications, refer to SGS-TECHNICAL NOTE TN.150.