DUAL POWER OPERATIONAL AMPLIFIER ADVANCE DATA - OUTPUT CURRENT TO 1A - OPERATES AT LOW VOLTAGES - SINGLE OR SPLIT SUPPLY - LARGE COMMON-MODE AND DIFFER-ENTIAL MODE RANGE - GROUND COMPATIBLE INPUTS - LOW SATURATION VOLTAGE - THERMAL SHUTDWON The L272D is a monolithic integrated circuit in SO-16 packages intended for use as power operational amplifier in a wide range of appli- cations including servo amplifiers and power supplies, compact disc, VCR, etc. The high gain and high output power capability provide superior performance wheatever an operational amplifier/power booster combination is required. #### ABSOLUTE MAXIMUM RATINGS | V _s | Supply voltage | 28 | V | |-------------------|---|------------------|----| | Vi | Input voltage | V _s | | | V _i | Differential input voltage | ± V _s | | | I _o | DC Output current | 1 | Α | | l _p | Peak output current (non repetitive) | 1.5 | Α | | P _{tot} | Power dissipation at $T_{case} = 90^{\circ}C$ | 1.2 | W | | T_{stg} , T_j | Storage and junction temperature | -40 to 150 | °C | #### CONNECTION DIAGRAMS ### SCHEMATIC DIAGRAM (one only) ### THERMAL DATA | R _{thj-alumina(*)} | Thermal resistance junction-alumina | max 50 | °C/W | |-----------------------------|-------------------------------------|--------|------| | | | | | ^(*) Thermal resistance junctions-pins with the chip soldered on the middle of an alumina supporting substrate measuring 15 x 20 mm; 0.65 mm thickness and infinite heathsink. # **ELECTRICAL CHARACTERISTICS** ($V_s = 24V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified) | Parameter | | Test Co. | nditions | Min. | Тур. | Max. | Uni | |-----------------|---------------------------------------|---|---|------|----------------|------|----------------| | Vs | Supply voltage | | | 4 | | 28 | V | | l _s | Quiescent drain current | $V_0 = \frac{V_s}{2}$ | V _s = 24V | | 8 | 12 | m/ | | | | 2 | V _s = 12V | | 7.5 | 11 | m | | Ib | Input bias current | | | | 0.3 | 2.5 | μА | | Vos | Input offset voltage | | | | 15 | 60 | mV | | los | Input offset current | | | | 50 | 250 | nA | | SR | Slew rate | | | | 1 | | V/μ | | В | Gain-bandwidth product | | | | 350 | | КН | | Ri | Input resistance | | | 500 | | | ΚΩ | | G _v | O.L. voltage gain | f = 100Hz | | 60 | 70 | | dB | | | | f = 1KHz | | | 50 | | dB | | eN | Input noise voltage | B = 20KHz | | | 10 | | μ∨ | | I _N | Input noise current | B = 20KHz | | | 200 | | рА | | CRR | Common Mode rejection | f = 1KHz | | 60 | 75 | | dB | | SVR | Supply voltage rejection | f = 100Hz
R _G = 10KΩ
V _R = 0.5V | $V_{s} = 24V$ $V_{s} = \pm 12V$ $V_{s} = \pm 6V$ | 54 | 70
62
56 | | dB
dB
dB | | Vo | Output voltage swing | | I _p = 0.1A
I _p = 0.5A | 21 | 23
22.5 | | V
V | | Cs | Channel separation | f = 1KHz; R ₁ = | 10Ω; G _V = 30dB
V _S = 24V
V _S = ± 6V | | 60
60 | | dB
dB | | d | Distortion | f = 1KHz
V _s = 24V | G _v = 30dB
R _L = ∞ | | 0.5 | | % | | T _{sd} | Thermal shutdown junction temperature | | | | 145 | | °c | Fig. 1 - Quiescent current Fig. 2 - Quiescent drain Fig. 3 - Open loop voltage Fig. 4 - Output voltage swing vs. load current Fig. 5 - Output voltage swing vs. load current Fig. 6 - Supply voltage rejection vs. frequency Fig. 7 - Channel separation Fig. 8 - Common mode rejection vs. frequency