

DUAL POWER OPERATIONAL AMPLIFIER

ADVANCE DATA

- OUTPUT CURRENT TO 1A
- OPERATES AT LOW VOLTAGES
- SINGLE OR SPLIT SUPPLY
- LARGE COMMON-MODE AND DIFFER-ENTIAL MODE RANGE
- GROUND COMPATIBLE INPUTS
- LOW SATURATION VOLTAGE
- THERMAL SHUTDWON

The L272D is a monolithic integrated circuit in SO-16 packages intended for use as power operational amplifier in a wide range of appli-

cations including servo amplifiers and power supplies, compact disc, VCR, etc. The high gain and high output power capability provide superior performance wheatever an operational amplifier/power booster combination is required.

ABSOLUTE MAXIMUM RATINGS

V _s	Supply voltage	28	V
Vi	Input voltage	V _s	
V _i	Differential input voltage	± V _s	
I _o	DC Output current	1	Α
l _p	Peak output current (non repetitive)	1.5	Α
P _{tot}	Power dissipation at $T_{case} = 90^{\circ}C$	1.2	W
T_{stg} , T_j	Storage and junction temperature	-40 to 150	°C

CONNECTION DIAGRAMS

SCHEMATIC DIAGRAM (one only)

THERMAL DATA

R _{thj-alumina(*)}	Thermal resistance junction-alumina	max 50	°C/W

^(*) Thermal resistance junctions-pins with the chip soldered on the middle of an alumina supporting substrate measuring 15 x 20 mm; 0.65 mm thickness and infinite heathsink.

ELECTRICAL CHARACTERISTICS ($V_s = 24V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test Co.	nditions	Min.	Тур.	Max.	Uni
Vs	Supply voltage			4		28	V
l _s	Quiescent drain current	$V_0 = \frac{V_s}{2}$	V _s = 24V		8	12	m/
		2	V _s = 12V		7.5	11	m
Ib	Input bias current				0.3	2.5	μА
Vos	Input offset voltage				15	60	mV
los	Input offset current				50	250	nA
SR	Slew rate				1		V/μ
В	Gain-bandwidth product				350		КН
Ri	Input resistance			500			ΚΩ
G _v	O.L. voltage gain	f = 100Hz		60	70		dB
		f = 1KHz			50		dB
eN	Input noise voltage	B = 20KHz			10		μ∨
I _N	Input noise current	B = 20KHz			200		рА
CRR	Common Mode rejection	f = 1KHz		60	75		dB
SVR	Supply voltage rejection	f = 100Hz R _G = 10KΩ V _R = 0.5V	$V_{s} = 24V$ $V_{s} = \pm 12V$ $V_{s} = \pm 6V$	54	70 62 56		dB dB dB
Vo	Output voltage swing		I _p = 0.1A I _p = 0.5A	21	23 22.5		V V
Cs	Channel separation	f = 1KHz; R ₁ =	10Ω; G _V = 30dB V _S = 24V V _S = ± 6V		60 60		dB dB
d	Distortion	f = 1KHz V _s = 24V	G _v = 30dB R _L = ∞		0.5		%
T _{sd}	Thermal shutdown junction temperature				145		°c

Fig. 1 - Quiescent current

Fig. 2 - Quiescent drain

Fig. 3 - Open loop voltage

Fig. 4 - Output voltage swing vs. load current

Fig. 5 - Output voltage swing vs. load current

Fig. 6 - Supply voltage rejection vs. frequency

Fig. 7 - Channel separation

Fig. 8 - Common mode rejection vs. frequency

