

L4960

2.5A POWER SWITCHING REGULATOR

PRELIMINARY DATA

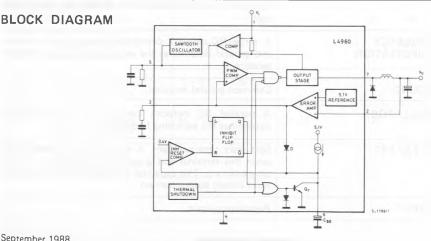
- 2.5A OUTPUT CURRENT
- 5.1V TO 40V OUTPUT VOLTAGE RANGE
- PRECISE (± 2%) ON-CHIP REFERENCE
- HIGH SWITCHING FREQUENCY
- VERY HIGH EFFICIENCY (UP TO 90%)
- VERY FEW EXTERNAL COMPONENTS
- SOFT START
- INTERNAL LIMITING CURRENT
- THERMAL SHUTDOWN

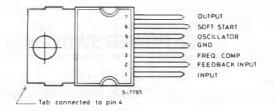
The L4960 is a monolithic power switching regulator delivering 2.5A at a voltage variable from 5V to 40V in step down configuration. Features of the device include current limiting.

ABSOLUTE MAXIMUM BATINGS

soft start, thermal protection and 0 to 100% duty cycle for continuous operation mode.

The L4960 is mounted in a Heptawatt plastic power package and requires very few external componénts.


Efficient operation at switching frequencies up to 150KHz allows a reduction in the size and cost of external filter components.


Heptawatt

ORDERING NUMBER: L4960 (Vertical) L4960H (Horizontal)

V ₁	Input voltage	50	V
$V_{1} - V_{7}$	Input to output voltage difference	50	V
V ₇	Negative output DC voltage	-1	V
	Negative output peak voltage at $t = 0.1 \mu s$; $f = 100 KHz$	-5	V
V3, V6	Voltage at pin 3 and 6	5.5	V
V ₂	Voltage at pin 2	7	V
l ₃	Pin 3 sink current	1	mA
15	Pin 5 source current	20	mA
Ptot	Power dissipation at $T_{case} \leq 90^{\circ}C$	15	W
T _I , T _{stq}	Junction and storage temperature	-40 to 150	°C

CONNECTION DIAGRAM

THERMAL DATA

R _{th j-case}	Thermal resistance junction-case	max	4	°c/w
R _{th j-amb}	Thermal resistance junction-ambient	max	50	°C/W

PIN FUNCTIONS

N°	NAME	FUNCTION
1	SUPPLY VOLTAGE	Unregulated voltage input. An internal regulator powers the internal logic.
2	FEEDBACK INPUT	The feedback terminal of the regulation loop. The output is connected directly to this terminal for 5.1V operation; it is connected via a divider for higher voltages.
3	FREQUENCY COMPENSATION	A series RC network connected between this terminal and ground determines the regulation loop gain charac- teristics.
4	GROUND	Common ground terminal.
5	OSCILLATOR	A parallel RC network connected to this terminal determines the switching frequency.
6	SOFT START	Soft start time constant. A capacitor is connected bet- ween this terminal and ground to define the soft start time constant. This capacitor also determines the average short circuit output current.
7	OUTPUT	Regulator output.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $T_1 = 25^{\circ}C$, $V_1 = 35V$, unless otherwise specified)

	Parameter	Test C	onditions	Min.	Тур.	Max.	Unit
YNAN	IC CHARACTERISTICS					-	1
Vo	Output voltage range	V ₁ = 46V	I ₀ = 1A	V _{ref}		40	V
VI	Input voltage range	$V_o = V_{ref}$ to 36V	I _o = 2.5A	9		46	v
AVo	Line regulation	$V_i = 10V$ to $40V$	$V_0 = V_{ref}$ $I_0 = 1A$		15	50	mV
ΔVo	Load regulation	V _o = V _{ret}	I _o = 0.5A to 2A		10	30	mV
V _{ref}	Internal reference voltage (pin 2)	V ₁ = 9V to 46V	I ₀ = 1A	5	5.1	5.2	V
AV _{ref}	Average temperature coefficient of refer, voltage	$T_{J} = 0^{\circ}C \text{ to } 125^{\circ}C$ $I_{O} = 1A$			0.4		mV/°C
Vd	Dropout voltage	I ₀ = 2A			1.4	3	V
lom	Maximum operating load current	$V_1 = 9V$ to 46V $V_0 = V_{ref}$ to 36V		2.5			A
I _{7∟}	Current limiting threshold (pin 7)	$V_1 = 9V$ to 46V $V_0 = V_{ref}$ to 36V		3		4.5	A
I _{SH}	Input average current	V _I = 46V; output	short-circuit		30	60	mA
η	Efficiency	f = 100KHz	V _o = V _{ref}		75		%
		I _o = 2A	V ₀ = 12V		85		%
SVR	Supply voltage ripple rejection	$\Delta V_{i} = 2V_{rms}$ f _{ripple} = 100Hz V ₀ = V _{ref}	I ₀ = 1A	50	56		dB
f	Switching frequency			85	100	115	KHz
∆f ∆Vj	Voltage stability of switching frequency	∨ ₁ = 9∨ to 46∨			0.5		%
$\frac{\Delta f}{\Delta T_j}$	Temperature stability of switching frequency	$T_j = 0^\circ C$ to $125^\circ C$			1		%
^f max	Maximum operating switching frequency	V _o = V _{ref}	1 ₀ = 2A	120	150		KHz
T _{sd}	Thermal shutdown junction temperature				150		°c

ELECTRICAL CHARACTERISTICS (continued)

Parameter Test Conditions Min. Typ. Max. Unit

DC CHARACTERISTICS

11Q	Quiescent drain current	100% duty cycle pins 5 and 7 open		30	40	mA
		0% duty cycle	V ₁ = 46V	15	20	mA
-17L	Output leakage current	0% duty cycle			1	mA

SOFT START

I _{6SO}	Source current	100	130	150	μA	
1651	Sink current	50	70	120	μA	

ERROR AMPLIFIER

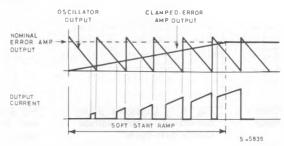
V _{3H}	High level output voltage	V ₂ = 4.7∨	$I_{3} = 100 \mu A$	3.5			V
V _{3L}	Low level output voltage	V ₂ = 5.3V	$I_{3} = 100 \mu A$			0.5	V
I ₃₅₁	Sink output current	V ₂ = 5.3V		100	150		μA
-1 ₃₅₀	Source output current	V ₂ = 4.7∨		100	150		μA
12	Input bias current	V ₂ = 5.2V			2	10	μA
Gv	DC open loop gain	$V_3 = 1V \text{ to } 3V$		46	55	-	dB

OSCILLATOR

CIRCUIT OPERATION (refer to the block diagram)

The L4960 is a monolithic stepdown switching regulator providing output voltages from 5.1V to 40V and delivering 2.5A.

The regulation loop consists of a sawtooth oscillator, error amplifier, comparator and the output stage. An error signal is produced by comparing the output voltage with a precise 5.1V on-chip reference (zener zap trimmed to $\pm 2\%$).


This error signal is then compared with the sawtooth signal to generate the fixed frequency pulse width modulated pulses which drive the output stage.

The gain and frequency stability of the loop can be adjusted by an external RC network connected to pin 3. Closing the loop directly gives an output voltage of 5.1V. Higher voltages are obtained by inserting a voltage divider.

Output overcurrents at switch on are prevented by the soft start function. The error amplifier output is initially clamped by the external capacitor C_{ss} and allowed to rise, linearly, as this capacitor is charged by a constant current source. Output overload protection is provided in the form of a current limiter. The load current is sensed by an internal metal resistor connected to a comparator. When the load current exceeds a preset threshold this comparator sets a flip flop which disables the output stage and discharges the soft start capacitor. A second comparator resets the flip flop when the voltage across the soft start capacitor has fallen to 0.4V.

The output stage is thus re-enabled and the output voltage rises under control of the soft start network. If the overload condition is still present the limiter will trigger again when the threshold current is reached. The average short circuit current is limited to a safe value by the dead time introduced by the soft start network. The thermal overload circuit disables circuit operation when the junction temperature reaches about 150°C and has hysteresis to prevent unstable conditions.

Fig. 2 - Current limiter waveforms

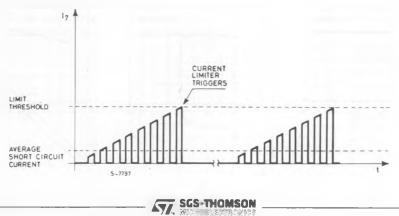
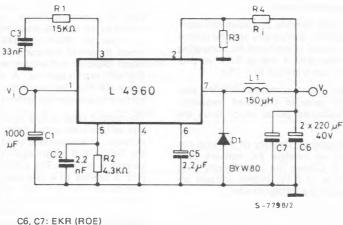
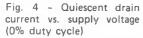
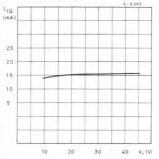
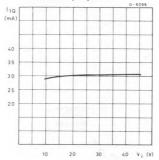
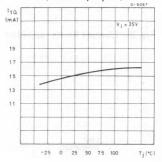




Fig. 3 - Test and application circuit

C6, C7: EKR (ROE) L1 = 150µH at 5A (COGEMA 946042) CORE TYPE: MAGNETICS 58206-A2 MPP N° TURNS 45, WIRE GAUGE: 0.8mm (20 AWG)


Fig. 5 - Quiescent drain current vs. supply voltage (100% duty cycle)

SGS-THOMSON

-7/. M

Fig. 6 - Quiescent drain current vs. junction temperature (0% duty cycle)

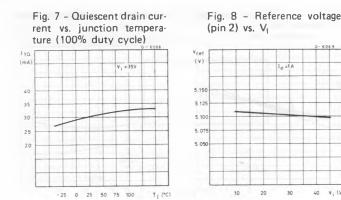


Fig. 9 - Reference voltage vs. junction temperature (pin 2)

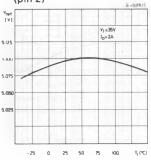


Fig. 10 - Open loop frequency and phase responde of error amplifier

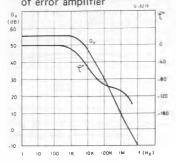


Fig. 11 - Switching frequency vs. input voltage

¥; (V)

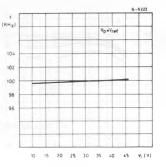
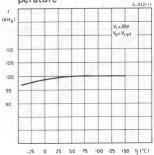
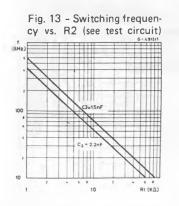
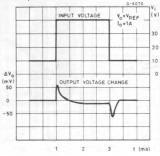
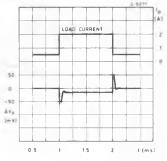



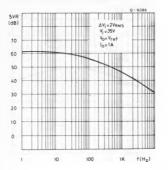
Fig. 12 - Switching frequency vs. junction temperature


Fig. 14 – Line transient response

SGS-THOMSON

171 16


Fig. 15 - Load transient response

7/13

L4960

Fig. 16 - Supply voltage ripple rejection vs. frequency

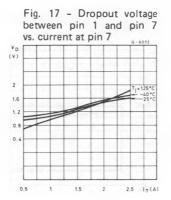


Fig. 18 - Dropout voltage between pin 1 and 7 vs. iunction temperature

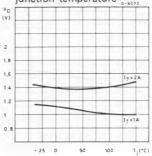


Fig. 19 - Power dissipation derating curve

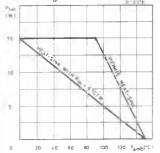


Fig. 20 - Efficiency vs. output current

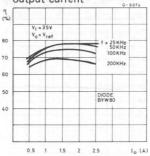
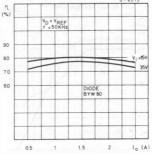
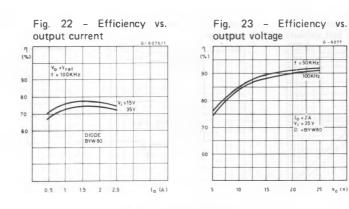
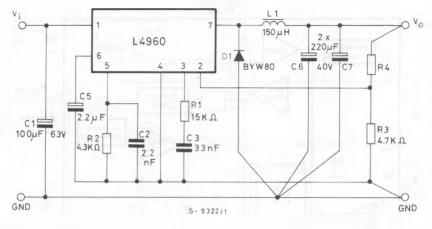




Fig. 21 - Efficiency vs. output current

TA MIN


SGS-THOMSON

ISI SCTROMICS

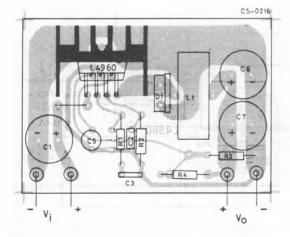

APPLICATION INFORMATION

Fig. 24 - Typical application circuit

 $\begin{array}{l} C_1, C_6, C_7\colon {\sf EKR}\ ({\sf ROE}) \\ D_1: {\sf BYW80}\ {\sf OR}\ {\sf 5A}\ {\sf SCHOTTKY}\ {\sf DIODE} \\ {\sf SUGGESTED}\ {\sf INDUCTOR}\colon L_1=150\mu{\sf H}\ {\sf at}\ {\sf 5A} \\ {\sf CORE}\ {\sf TYPE}\colon\ {\sf MAGNETICS}\ {\sf 58206}\ {\sf -A2}\ {\sf -MPP} \\ {\sf N}^\circ\ {\sf TURNS}:\ {\sf 45},\ {\sf WIRE}\ {\sf GAUGE}:\ 0.8mm\ (20\ {\sf AWG}),\ {\sf COGEMA}\ 946042 \\ {\sf U15/GUP15}\colon\ {\sf N}^\circ\ {\sf TURNS}:\ {\sf 60},\ {\sf WIRE}\ {\sf GAUGE}:\ 0.8mm\ (20\ {\sf AWG}),\ {\sf AIR}\ {\sf GAP}:\ 1mm,\ {\sf COGEMA}\ 969051. \end{array}$

Fig. 25 - P.C. board and component layout of the Fig. 24 (1: 1 scale)

Resistor values for standard output voltages				
Vo	R3	R4		
12V	4.7ΚΩ	6.2KΩ		
15V	4.7ΚΩ	9.1KΩ		
18V	4.7ΚΩ	12KΩ		
24V	4.7ΚΩ	18KΩ		

5%

360

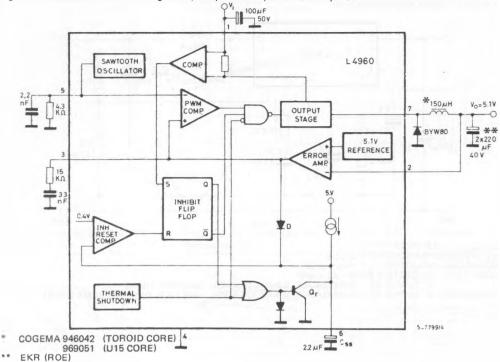
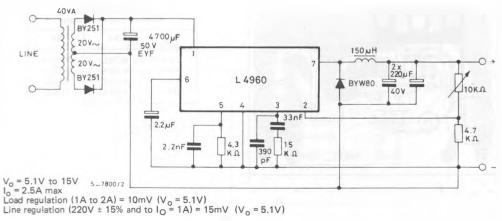
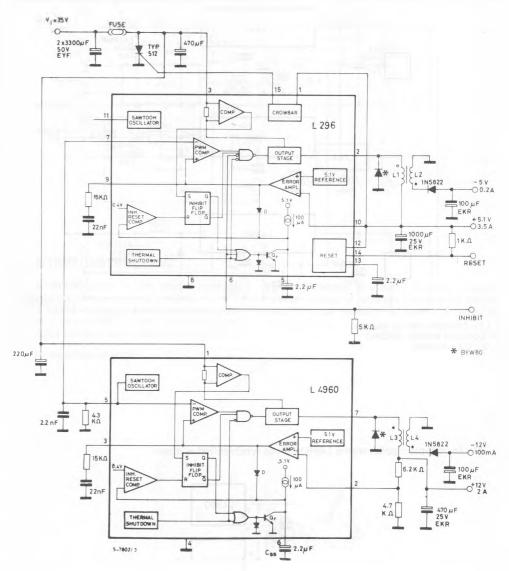
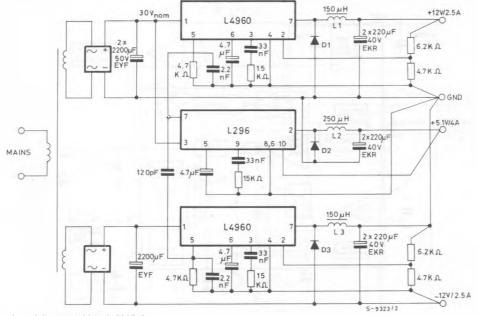



Fig. 26 - A minimal 5.1V fixed regulator; Very few component are required


Fig. 27 - Programmable power supply

APPLICATION INFORMATION (continued)


Fig. 28 - Microcomputer supply with + 5.1V, -5V, +12V and -12V outputs

SCS-THOMSON

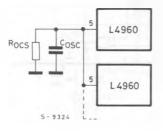
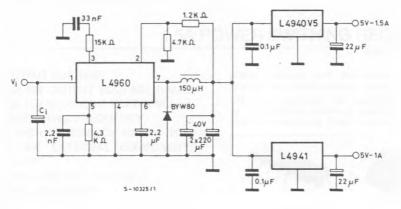

APPLICATION INFORMATION (continued)

Fig. 29 - DC-DC converter 5.1V/4A, ± 12V/2.5A; a suggestion how to synchronize a negative output

L1, L3 = COGEMA 946042 (969051) L2 = COGEMA 946044 (946045) D₁, D₂, D3 = BYW80

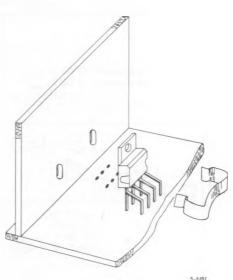
Fig. 30 - In multiple supplies several L4960s can be synchronized as shown



12/13

APPLICATION INFORMATION (continued)

Fig. 31 - Regulator for distributed supplies


MOUNTING INSTRUCTION

The power dissipated in the circuit must be removed by adding an external heatsink.

Thanks to the Heptawatt package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink

and the package it is better to insert a layer of silicon grease, to optimize the thermal contact, no electrical isolation is needed between the two surfaces.

Fig. 32 - Mounting example

SGS-THOMSON