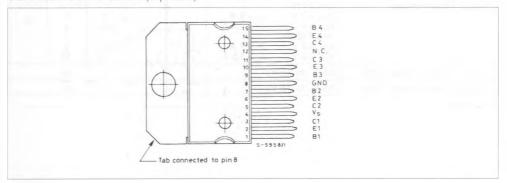



# 50 V QUAD DARLINGTON SWITCHES

- FOUR NPN DARLINGTONS WITH ISOLATED CONNECTIONS
- OUTPUT CURRENT TO 1.5 A EACH DARLING-TON
- MINIMUM BREAKDOWN 50 V
- MULTIWATT PACKAGE ALLOWS OPERA-TION AT 1.5 A. 50 V, 100 % DUTY CYCLE. ALL FOUR DEVICES ON
- INTEGRAL SUPPRESSION DIODES
- VERSIONS FOR 5 V AND 6-15 V LOGIC FAMI-LIES

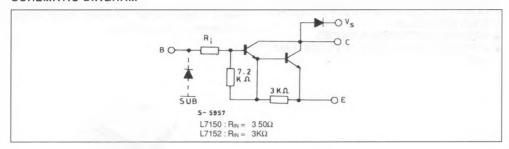
The L7150 has 350 input resistors and is compatible with TTL, DTL, LSTTL and 5 V CMOS logic. The L7152 has 3 K $\Omega$  input resistors for use with 6-15 V CMOS and PMOS logic.


These devices are suitable for driving a wide range of inductive and non-inductive loads including DC motors, stepper motors, solenoids, relays, lamps, multiplexed LEDs and heaters.



#### DESCRIPTION

The L7150 and L7152 are 1.5 A quad darlington arrays mounted in the 15-lead Myltiwatt<sup>®</sup> plastic package. Each darlington is equipped with a suppression diode for inductive loads and all three terminals are isolated.


#### CONNECTION DIAGRAM (top view)



### **ABSOLUTE MAXIMUM RATINGS**

| Symbol           | Parameter                                     | Value       | Unit |
|------------------|-----------------------------------------------|-------------|------|
| V <sub>CEX</sub> | Output Voltage                                | 50          | V    |
| Io               | Output Current                                | 1.75        | Α    |
| Vi               | Input Voltage                                 | 30          | V    |
| IB               | Input Current                                 | 25          | mA   |
| Ptot             | Power Dissipation (T <sub>case</sub> = 75 °C) | 25          | W    |
| Tamb             | Operating Ambient Temperature Range           | 0 to 70     | °C   |
| T <sub>stg</sub> | Storage Temperature                           | - 55 to 150 | °C   |

#### SCHEMATIC DIAGRAM



# **ELECTRICAL CHARACTERISTICS** (T<sub>amb</sub> = 25 °C unless otherwise specified)

| Symbol                 | Parameter                                | Test Co                                                                                               | ondtions                                                                                         | Min.                     | Typ. | Max.                      | Unit           | Fig. |
|------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------|------|---------------------------|----------------|------|
| CEX                    | Output Leakage Current                   | V <sub>CE</sub> = 50 V<br>V <sub>CE</sub> = 50 V                                                      | T <sub>amb</sub> = 70°C                                                                          |                          |      | 100<br>500                | μA<br>μA       | 1    |
| V <sub>CER</sub> (sus) | Collector-emitter<br>Sustaining Voltage* | I <sub>C</sub> = 100 mA                                                                               | V <sub>i</sub> = 0.4 V                                                                           | 35                       |      |                           | V              | 2    |
| V <sub>CE</sub> (sat)  | Collector-emitter<br>Saturation Voltage  | I <sub>C</sub> = 500 mA<br>I <sub>C</sub> = 750 mA<br>I <sub>C</sub> = 1 A<br>I <sub>C</sub> = 1.25 A | $I_B = 625 \mu A$ $I_B = 935 \mu A$ $I_B = 1.25 m A$ $I_B = 2 m A$                               |                          |      | 1.15<br>1.3<br>1.4<br>1.5 | > > >          | 3    |
| Ji(on)                 | Input Current                            | for L7150<br>for L7150<br>for L7152<br>for L7152                                                      | $V_i = 2.4 \text{ V}$<br>$V_i = 3.75 \text{ V}$<br>$V_i = 5 \text{ V}$<br>$V_i = 12 \text{ V}$   | 1.4<br>3.3<br>0.6<br>0.7 |      | 4.3<br>9.6<br>1.8<br>5.2  | mA<br>mA<br>mA | 4    |
| V <sub>i(on)</sub>     | Input Voltage                            | V <sub>CE</sub> = 2 V<br>for <b>L7152</b>                                                             | I <sub>C</sub> = 1 A<br>I <sub>C</sub> = 1.5 A<br>I <sub>C</sub> = 1 A<br>I <sub>C</sub> = 1.5 A |                          |      | 2<br>2.5<br>6.5<br>10     | V<br>V<br>V    | 5    |
| t <sub>PLH</sub>       | Turn-on Delay Time                       | 0.5 V <sub>i</sub> to 0.5 \                                                                           | / <sub>0</sub>                                                                                   |                          |      | 1                         | μs             |      |
| tpHL                   | Turn-off Delay Time                      | 0.5 V <sub>i</sub> to 0.5 \                                                                           | / <sub>0</sub>                                                                                   |                          |      | 1.5                       | μs             |      |

<sup>( )</sup>  $t_{(sus)} = 10 \ \mu s$ 

## THERMAL DATA

| - |           |                                     |     |    |      |  |
|---|-----------|-------------------------------------|-----|----|------|--|
|   | Rin prase | Themal Resistance Junction-case     | Max | 3  | °C/W |  |
|   |           | Thermal Resistance Junction-ambient | Max | 35 | °C/W |  |

### **TEST CIRCUIT**

Figure 1.

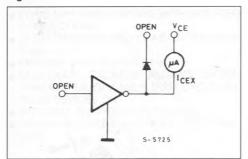



Figure 2.

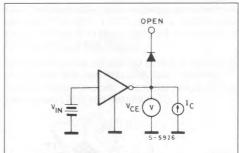



Figure 3.

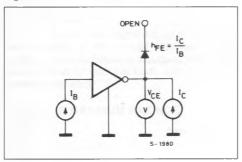



Figure 4.

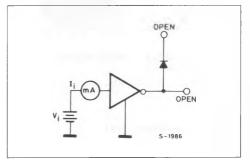
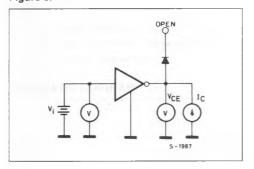
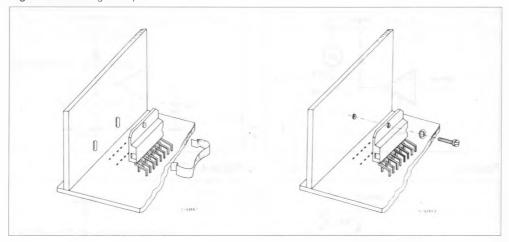




Figure 5.




#### MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.

Thanks to the Multiwatt® package attaching the heatsink is very simple, a screw or compression spring (clip) being sufficient. Between the heatsink

and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

Figure 6: Mounting Example.

