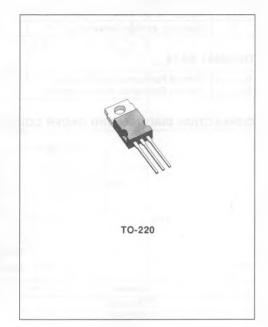
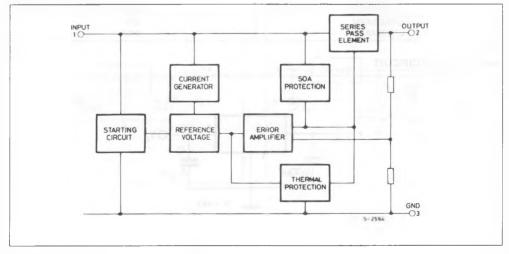
PRECISION 500mA REGULATORS


- OUTPUT CURRENT UP TO 0.5A
- OUTPUT VOLTAGES OF 5; 6; 8; 12; 15; 18; 20; 24V

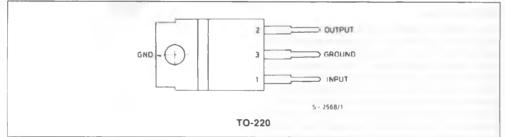
SGS-THOMSON


- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSISTORS SOA PROTECTION
- ± 2% OUTPUT VOLTAGE TOLERANCE
- GUARANTEED IN EXTENDED TEMPERA-TURE RANGES

DESCRIPTION

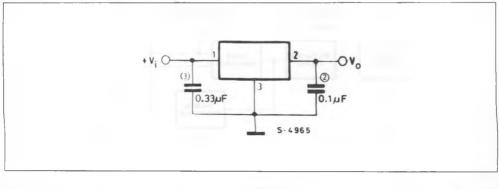
The L78M00AB series of three-therminal positive regulators is available in TO-220 package and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making is provided, they can deliver over 0.5A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

BLOCK DIAGRAM

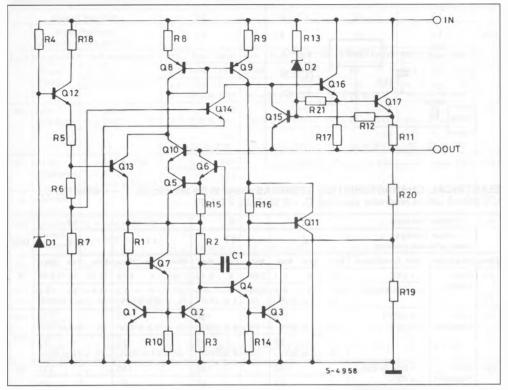

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
Vi	DC Input Voltage (for $V_o = 5$ to 18V) (for $V_o = 20, 24V$)	35 40	V V	
10	Output Current	Internally limited		
Ptot	Power Dissipation	Internally limited		
Tstg	Storage Temperature	- 65 to + 150	°C	
T	Operating Junction Temperature	- 40 to 125	°C	

THERMAL DATA


Rth j-case	Thermal Resistance Junction-case	Max	3	°C/W
Rthjamb	Thermal Resistance Junction-ambient	Max	50	°C/W

CONNECTION DIAGRAM AND ORDER CODES (top view)



Codes	Output Voltage			
L78M05ABV	5V			
L78M06ABV	6V			
L78M08ABV	8V			
L78M12ABV	12V			
L78M15ABV	15V			
L78M18ABV	18V			
L78M20ABV	20V			
L78M24ABV	24V			

APPLICATION CIRCUIT

SCHEMATIC DIAGRAM

TEST CIRCUITS

Figure 1 : DC Parameters.

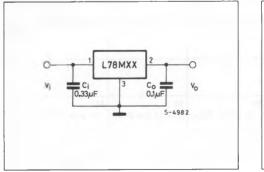


Figure 2 : Load Regulation.

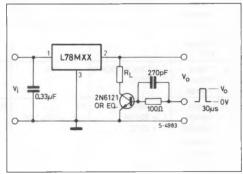
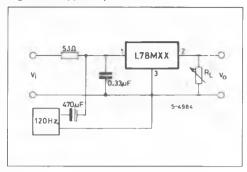



Figure 3 : Ripple Rejection.

ELECTRICAL CHARACTERISTICS L78M00AB (Refer to the test circuits, $T_j = -40$ to 125°C, $I_o = 350$ mA unless otherwise specified, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F)

Output Voltage			5		6			8			12			Unit
Input Voltage (unless otherwise specified)		10		11			14			19				
Sym.	Parameter	Test Conditions	Min. Typ.	Max.	Min.	Тур.	Max.	Min.	Typ.	Max.	Min.	Тур.	Max.	1
Vo	Output	T ₁ = 25°C	4.9 5	5.1	5.88	6	6.12	7.84	8	8.16	11.75	12	12.25	V
	Voltage	$l_o = 5$ to 350mA	4.8 5 (V ₁ = 7 to	5.2 20V)	5.75 (Vi	6 = 8 to	6.3 21V)	7.7 (Vi =	8 10.5 tr	8.3 p 23V)	11.5 (Vi =	12 14.5 t	12.5 o 27V)	
ΔV _o	Line Regulation	I _o = 200mA T _j = 25°C	(V _i = 7 to	100 25V)	(Vi	= 8 to	100 25V)	(V _i =	10.5 te	100 25V)	(V _i =	14.5 t	100 o 30V)	mV
			(V _i = 8 to	30 25V)	(Vi	= 9 to	30 25V)	(V _i =	= 11 to	30 25V)	(V _i =	16 to	30 30V)	
ΔV_{o}	Load	$I_0 = 5mA \text{ to } 0.5A$		100			120			160			240	mV
	Regulation	$T_j = 25^{\circ}C$ $I_o = 5mA$ to 200mA		50			60			8 0			120	
ld	Quiescent Current	T _j = 25°C		6			6			6			6	mA
∆ld	Quiescent Current Change	$I_o = 5mA \text{ to } 350mA$		0.5		_	0.5			0.5			0.5	mA
		l _o = 200mA	(V, = 8 to	0.8 25V)	(Vi	= 9 to	0.8 25V)	(V, =	10.5 to	0.8 25V)	(V _i =	14.5 tr	0.8 (V0C o	
$\frac{\Delta V_{o}}{\Delta T}$	Output Voltage Drift	I _o = 5mA	- 0.5			- 0.5		- 0.5			- 1.0		mV/°C	
θ _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25^{\circ}C$	40			45		52			75		μV	
SVR	Supply Voltage Rejection	f = 120Hz $I_o = 300mA$ $T_j = 25°C$	62 (V _i = 8 to 18V)		59 (V _i = 9 to 19V)			56 (V _i = 11.5 to 21.5V)) 55 (V _i = 15 to 25V)		dB	
Vd	Dropout Voltage	$T_j = 25^{\circ}C$	2	2			2			2		V		
I _{sc}	Short Circuit Current	$V_i = 35V$ $T_j = 25^{\circ}C$	300	270			250			240			mA	
l _{scp}	Short Circ. Peak Current	T _j = 25°C	700		700		700			700			mA	

ELECTRICAL CHARACTERISTICS L78M00AB (continued)

Output Voltage Input Voltage (unless otherwise specified)			15	18	20	24	Unit	
			23	26	29	33		
Sym.	Parameter	Test Conditions	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	1	
V.	Output Voltage	T _j = 25°C	14.7 15 15.3	17.64 18 18.36	19.6 20 20.4	23.5 24 24.5	V	
		1 _o = 5 to 350mA	$\begin{array}{rrrr} 14.4 & 15 & 15.6 \\ (V_i = 17.5 \ to \ 30V) \end{array}$	17.3 18 18.7 ($V_i = 20.5$ to 33V)	19.2 20 20.8 (V ₁ = 23 to 35V)	23 24 25 (V _i = 27 to 38V)		
ΔV₀	Line Regulation	$I_o = 200 \text{mA}$ $T_i = 25^{\circ}\text{C}$	100 (V _i = 17.5 to 30V)	100 (V _i = 21 to 33V)	100 (V _i = 23 to 35V)	100 (V ₁ = 27 to 38V)	mV	
			30 (V _i = 20 to 30V)	30 (V _i = 24 to 33V)	30 (V ₁ = 24 to 35V)	30 (V _i = 28 to 38V)		
ΔV_{o}	Load	$1_0 = 5mA \text{ to } 0.5A$	300	360	400	480	mV	
	Regulation	$T_j = 25^{\circ}C$ $I_a = 5mA$ to 200mA	150	180	200	240		
Id	Quiescent Current		6	6	6	6	mA	
Δld	Quiescent Current Change	$I_o = 5mA$ to $350mA$	0.5	0.5	0.5	0.5	MM	
		l _o = 200mA	0.8 (V _i = 17.5 to 30V)	0.8 (V ₁ = 21 to 33V)	0.8 (V ₁ = 23 to 35V)	0.8 (V _i = 27 to 38V)		
ΔV ₀ ΔT	Output Voltage Drift	l _o = 5mA	- 1	- 1.1	- 1.1	- 1.2	mV/°C	
e _N	Output Noise Voltage	B = 10Hz to 100KHz T _j = 25°C	90	100	110	170	μV	
SVR	Supply Voltage Rejection	f = 120Hz $I_0 = 300mA$ $T_1 = 25°C$	54 (V _i = 18.5 to 28.5V)	53 (V, = 22 to 32V)	53 (V _i = 24 to 34V)	50 (V ₁ = 28 to 38V)	dB	
Vd	Dropout Voltage	T _j = 25°C	2	2	2	2	V	
I _{sc}	Short Circuit Current	$V_1 = 35V$ $T_j = 25°C$	240	240	240	240	mA	
l _{scp}	Short Circ. Peak Current	T ₁ = 25°C	700	700	700	700	Am	

Figure 4 : Dropout Voltage vs. Junction Temperature.

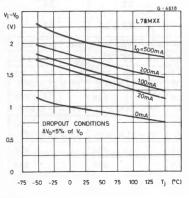


Figure 6 : Peak Output Current vs. Input-Output Differential Voltage.

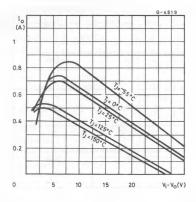


Figure 8 : Supply Voltage Rejection vs. Frequen-CY.

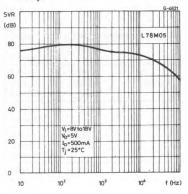


Figure 5 : Dropout Characteristics.

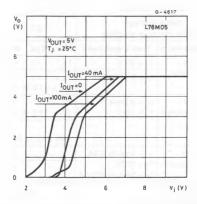
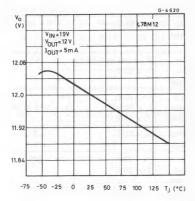
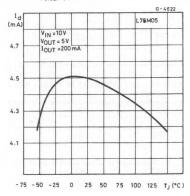




Figure 7 : Output Voltage vs. Junction Temperature.

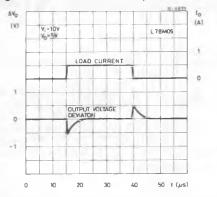
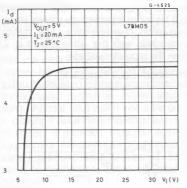
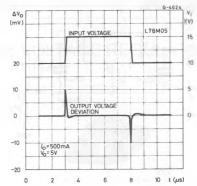



Figure 10 : Load Transient Response.

Figure 12 : Quiescent Current vs. Input Voltage.


APPLICATIONS INFORMATION

DESIGN CONSIDERATIONS

The L78M00AB Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

Figure 13 : Current Regulator.

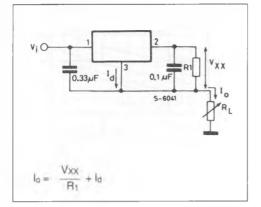


Figure 15 : Current Boost Regulator.

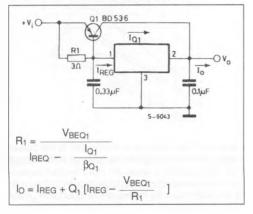
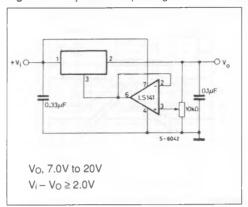
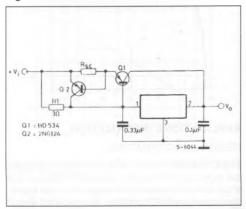




Figure 14 : Adjustable Output Regulator.

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0V greater than the regulator voltage.

Figure 16 : Short-circuit Protection.

The circuit of figure 6 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, Rsc, and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the threeterminal regulator. Therefore, a four-ampere plastic power transistor is specified.

