Monolithic Linear IC No.2564 L A 3 2 4 1 PREAMP FOR COMPACT CASSETTE RECORDING-ONLY USE

The LA3241 is a preamp IC for compact cassette player recording-only use. The distinctive feature of the LA3241 is that it contains mechanical switches which have been so far connected externally as peripheral parts.

Applications

. Radio-cassette tape recorder/tape deck-use stereo compact cassette player

Features

- . Wide ALC : ALC_w=60dB typ
- . 2-step ALC level : ALC_{VO}=0.42V,0.65V
- . On-chip electronic select switches permitting selection of normal/metal tape and normal/higher speed mode recording equalizer
- . On-chip mike amp : Gain 25dB typ fixed
- . Low-voltage operation because the Schottky barrier diode is used for ALC rectifier diode.
- . Wide operating voltage : V_{CC} =4.5 to 14.0V

Functions

- . Recording preamp x2
- . Mike amp x1
- . ALC x1
- . Electronic switch x6

Operating Voltage Range

Maximum Ratings at Ta=25°C	
Maximum Supply Voltage	Vcc
Allowable Power Dissipation	V _{CC} Pd
Operating Temperature	Top

Maximum Supply Voltage	V _{CC} max
Allowable Power Dissipation	Pd max
Operating Temperature	Topr
Storage Temperature	Tstg

Operating Conditions at Ta=25°C Recommended Supply Voltage V_{CC}

. 16 V 720 шW oC -20 to +75 °C -40 to +125 unit

6

unit

V

v

V_{CC} op **Package Dimensions**

4.5 to 14.0

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

LA3241	
--------	--

• •

.

Operating Characteristics at	Ta=25 ⁰	$C, V_{CC} = 6V, R_I = 10$ kohms, $f = 1$ kH	z,0dB	=0.77	5V	
			min	typ	max	unit
Quiescent Current	^I cco	Me/Nor,Nor/High SW off	5		12	mA
Quiescent Current	ICCS	Me/Nor,Nor/High SW on	12	16	20	mA
[REC Amp]	005					
Voltage Gain (Open)	VG _{O1}		75	85		dB
Voltage Gain (Closed)	VGĬ	Vo=0dBm	-	44.5		dB
Total Harmonic Distortion	THD 1	Vo=0.4V		0.1		×.
Maximum Output Voltage	V _o max	THD=1%	0.7		- • •	v
Equivalent Input	V _{NI1}	Rg=2.2kohms,	•	1.1	1.7	uV
Noise Voltage	INT I	BPF: 20Hz to 20kHz				~.
Input Resistance	R _{T 1}	•	40	50	60	kohm
Crosstalk	R _I CT	Between REC amps	50	60		dB
	CT2	REC ampMike amp	50	75		dB
Channel Balance	СВ	V1=-50dBm	•••	0	2	dB
[Mike Amp]				-	_	
Voltage Gain	VG ₀₂		40	50		dB
Voltage Gain	VG2	V _O =OdBm	23	25	27	dB
Total Harmonic Distortion	THD2	$v_0 = 0.4v$	-5	0.1	•	v
Maximum Output Voltage	V ₀₂	THD=1%	0.8	1.1		v
Equivalent Input	V _{NI2}	Rg=3.6kohms,		1.2	1.7	uV
Noise Voltage	NIZ	BPF: 20Hz to 20kHz		•••=		
Input Resistance	RTO		40	50	60	kohm
Crosstalk	R _{I2} CT3	Mike ampREC amp	45	60		dB
[ALC]	-0			•••		ΨĽ
ALC Range	ALCW	Input range when output	55	60		dB
_	W	distortion becomes 1%				40
		after ALC begins to be a	pplied	1.		
ALC Balance	ALCB	Output difference betwee		0	2	dB
	D	CH1 and CH2		•	-	
ALC Distortion	ALCTHD			0.15	0.80	%
ALC Output Voltage	ALCVO	Vi=-40dBm,pin17 Gnd	0.33	0.42		v
	- vo	pin17 open		0.65		•
Crosstalk	СТ4	Between REC amps	45	60		dB
	CT5	REC amp-Mike amp	50	70		dB
[Switch]			23			20
ON-State Resistance	Ron			30	70	ohm
DC Feedback Resistance	R _{F1}		40	50	60	kohm
	r (

.:

Unit (resistance: Ω , capacitance: F)

j.

Sample Application Circuit

(Notes)

- 1. The electronic select switch level is approximately $(V_{CC}-0.9)/2$.
- 2. REC amplifier NF parameters Z1 through Z3 should be selected to accommodate the recording level and frequency response that will be required in metal/ normal tape and normal/higher speed modes.
- 3. Z1 through Z3 may be configured with coil "L", capacitor "C", and resistor "R".
- 4. The electronic select switch mode illustrated above shows no V_{CC} being impressed on Me/Nor SW (9) or Nor/High SW (10).
- 5. The ALC level on pin 7 should not be changed over while $V_{\rm CC}$ is impressed.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:

 Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.