Monolithic Linear IC
LA4270
Dual-Channel AF Power Amp

Features

reatures				
. High-output dual-channel A	AF Power IC			
$(Po=6.0Wx2, V_{CC}=25V, R_{L}=80hm, f=1kHz, THD=1.0\%)$				
. Low distortion (THD=0.1%, V_{CC} =25V, R_L =80hm, f=1kHz, P_O =2W).				
. Minimum number of external	CC-20, NL-0011, 1- KHZ, 1	0 ⁼² ^W)		
Low pop poice of the time	af never and a ON (ODD	up capacitor re	equired).	
Low pop noise at the time				
. High ripple rejection (58c				
. Wide supply voltage range				
. On-chip protector against	abnormality (thermal shutdo	own, overvolta	ge).	
Maximum Ratings at Ta=25 ⁰ C		й. С		
-			unit	
Maximum Supply Voltage	V _{CC} max	35	V	
Maximum Output Current	I _Q peak	3.5	A	
Allowable Power Dissipation		20	W	
• • • •	See Pd-Ta graph.		_	
Operating Temperature	Topr	-20 to +75		
Storage Temperature	Tstg	-40 to +150	°c	
Operating Conditions at Ta=25 ^C	'C		unit	
Recommended Supply Voltage	V _{CC}	25	v	
Operating Voltage Range	V _{CC} V _{CC} op	10 to 32	v	
Recommended Load Resistance	R _I .	-8	ohm	
	~			
Operating Characteristics at T	a=25 ⁰ C, V _{CC} =25V, R, =80hm, f=1k	Hz.Rg=600ohm.		
S	See specified Test Circuit.	min typ	max unit	
	:00	25 45		
Voltage Gain VÖ		38 40	•	
Output Power Po	THD=1%	5.0 6.0	W	
	·····	Continued on		
Equivalent Circuit Block Diagr	am and	constined OI	nevr hage.	

Pin Assignment

1

Unit (resistance: Ω)

Package Dimensions 3024A (unit:mm)

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

.

ß

+ 277 С10 470н 35V

C9

oVcc

1000µ 1 25 v

INPU C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Description of	External Parts
C1,C4:	Input capacitors
(4.7µF)	Since the DC potential of the input pins is not 0, the two
	capacitors cannot be omitted. Decreasing the capacitor value
	extremely causes the frequency response to lower at low
	frequencies.
C2,C3:	Feedback capacitors
(100µF)	Decreasing the capacitor value causes the frequency response to
	lower at low frequencies. Increasing the capacitor value makes
C5:	the starting time later.
(100µF/25V)	Ripple filter capacitor Decreasing the capacitor value provides less ripple rejection.
(1000) 200	Decreasing the capacitor value also makes the starting time
	earlier.
C6,C9:	Output capacitors
(1000µF/25V)	Decreasing the capacitor value provides less power at low
	frequencies.
C7,C8:	Oscillation blocking capacitors
(0.1µF	Decreasing the capacitor value causes oscillation to be liable
Polyester	to occur. It is recommended to use polyester film capacitors
	which are excellent in high frequency response, temperature
tors)	characteristic. The use of electrolytic capacitors or ceramic
C10:	capacitors may cause oscillation to occur at low temperatures. Power capacitor
(470µF/35V)	Decreasing the capacitor value causes ripple to be liable to
(1) 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	occur. If the distance between the IC and this capacitor is
	made long or this capacitor is removed, oscillation may occur.
R1,R2:	Resistors connected in series with oscillation blocking
(2.20hms)	capacitors
- r	Used to prevent phase shift attributable to the oscillation
	blocking capacitors so that oscillation is hard to occur.
	Increasing or decreasing the resistor value causes oscillation
• •	to be liable to occur. The optimum value must be used.

Sample Application Circuit 1 : Dual-channel use (specified Test Circuit)

9

+ CH 1

. 1. 1. **1**. 1. 1. 1.

.....

INPUT 1

External Muting

1. Lowering of potential at ripple filter pin (pin 3)

Muting can be provided by discharging resistor R connected across pin 3 and GND to lower the potential at pin 3. Too small an R value causes pop noise to occur; and too large an R value causes muting to fail to work.

If no adequate R value is obtained, it is recommended that the R value is made rather small and the C5 value is increased.

2. Application of positive bias to NF pins Muting can be provided by positive bias applied to the NF pins. In this case, the R value must be determined so that the potential at the NF pins (pins 1, 6) does not exceed 3V at the muting mode.

Voltage Gain

The voltage gain is fixed to 40dB by the ratio of on-chip resistors 30kohm and 300ohm. It is impossible to use the IC at ^{IN-10} a voltage gain greater than this. In an application where the IC is used at a vol tage gain of less than 40dB, resistors are connected in series with feedback resistors as shown right. In this application, however, oscillation is liable to occur. IN-20 So, the voltage gain must not be less than 30dB.

Sample Application Circuit 2 : Bridge amp use

#:Polyester film capacitor

Unit (resistance: Ω , capacitance: F)

يتوجد الم

.....

In this application, output capacitors must be used. Since the IC handles an apparent load of 40hm, more distortion results, making it impossible for the IC to deliver power at THD=1% as in 2-channel use. It is possible for the IC to deliver power at THD=5% or 10%.

.

•

No.1724-6/10

LA4270

.

No.1724-7/10

.

No.1724-8/10

Proper Cares in Using IC

- . Maximum ratings: If the IC is used in the vicinity of the maximum ratings, even a slight variation in conditions may cause the maximum ratings to be exceeded, thereby leading to breakdown. Allow an ample margin of variation for supply voltage, etc. and use the IC in the range where the maximum ratings are not exceeded.
- . Pin-to-pin short: If power is applied when the space between pins is shorted, breakdown or deterioration may occur. When mounting the IC on the board or applying power, make sure that the space between pins is not shorted with solder, etc.
- . When used in radio applications: When using in radios, allow a good distance between IC and bar antenna.
- . Printed circuit pattern: When drawing the printed circuit pattern, make the power supply, output, and ground lines thick and short and arrange the pattern and parts so that no feedback loop is formed between input and output. Place power capacitor C10, oscillation blocking capacitors C7, C8 as close to IC pins as possible to prevent oscillation from occurring. Refer to the sample printed circuit pattern.

Proper cares in Mounting Radiator Fin

- 1. The mounting torque is in the range of 4 to 6kg.cm.
- 2. The distance between screw holes of the radiator fin must coincide with the distance between screw holes of the IC. With case outline dimensions L and R referred to, the screws must be tightened with the distance between them as close to each other as possible.

- 3. The screw to be used must have a head equivalent to the truss machine screw or binder machine screw defined by JIS. Washers must be also used to protect the IC case.
- 4. No foreign matter such as cutting particles shall exist between heat sink and radiator fin. When applying grease on the junction surface, it must be applied uniformly on the whole surface.
- 5. IC lead pins are soldered to the printed circuit board after the radiator fin is mounted on the IC.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

7