Monolithic Linear IC

Features

- Stereo section 9V/3 Ω 3W×2, 12V/3 Ω 5W×2: noise filter capacitorless power
- Super bus section 9V/3Ω 6W, 12V/3Ω 10W: output capacitor, B-S capacitorless power This chip employs technology for eliminating pins and external connections to realize 3-dimensional power on a single chip. This IC is a single package power IC for making sound systems with punch.
- On-chip pop noise suppressor
- · On-chip power switch circuit
- External and mute functions on chip
- Protection functions on chip (thermal protection circuit and BTL section R_L short protection circuit)

Absolute Maximum Ratings at Ta = 25°C				unit
Maximum Supply Voltage	V _{CC} max	*1 no signal	20	V
Thermal Resistance	θ _{j-c}		2	°C/W
Maximum Output Current	lo peak		3	А
Allowable Power Dissipation	P _d max	With infinite heat sink	37.5	W
Operating Temperature	Topr		-20 to $+75$	°C
Storage Temperature	Tstg		-40 to $+150$	°C
Operating Conditions at Ta=25°C				unit
Recommended Supply Voltage	V _{CC}		9	V
,			12	V
Recommended Load Resistance	RL		3 to 8	Ω
Operating Voltage Range	Vcc op	*2	5 to 18	V
*1. Operational notes on the maximum supply	voltage			

*1: Operational notes on the maximum supply voltage

FRONT L/R	BTL	V _{CC} max	Conditions
R _L ≧3Ω	R _L ≧3Ω	20V	
R _L ≩3Ω	$R_{L} \ge 4\Omega$	21V	
$R_{L} \ge 3\Omega$	R _L ≧5Ω	22V	I No signal _[Front L/R input with capacitor Rg=0]
$R_{L} \ge 3\Omega$	R _L ≧6Ω	23V	BTL L/R input without capacitor Rg=0
$R_{L} \ge 3\Omega$	$R_L \ge 7\Omega$	24V]
R _L ≧3Ω	R _L ≧8Ω	24V	

For power supply transistor regulation, the equivalent power supply line resistance is 3Ω or greater.

*2: The upper limit for V_{CC} op is V_{CC} max - 2V.

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

LA4630N

[Precaution concerning the metal]

Select P₀ with a goal of a rated load/rated supply voltage of R_L=3 to 8 Ω and V_{CC}=5 to 18V and design to avoid exceeding the package P_dmax of 37.5 W. For heavy loads or high V_{CC}, the drive design is involved and the power effect deteriorates, so pay attention to these factors.

Operating Characteristics at Ta=25°C, V_{CC}=9V, R_L=3 Ω , f=1kHz

	-	-	min	typ	max	unit
Quiescent Flow-in Current	l _{cco}		35	70	140	mΑ
Standby Current	l _{st}			1.0	10.0	μΑ
Power Switch Pin Flow-in Current	l _{sw}			10.0		mA
Mute Supply Flow-in Current	I _{CCm}			35.0	70.0	mΑ
[Stereo Section]						
Output Power	P _o 1	V _{CC} =9V,THD=10%	2.2	3.0		W
	P ₀ 2	V _{CC} =12V,THD=10%	4.2	5.0		W
Total Harmonic Distortion	THD	V ₀ 1V		0.20	1.0	%
Input Resistance	R _i			50		kΩ
Voltage Gain	VG		43	45	47	dB
Output Noise Voltage	V _{NO}	Rg=0,BPF=20Hz to 20kHz		0.15	0.40	mV
Ripple Rejection	SVR	f _R =100Hz,V _R =0dBm	45	55		dB
Channel Separation	ch sep	$Rg=10k\Omega,V_0=0dBm$	45	50		dB
Muting Attenuation	Att	V ₀ =0dBm		80		dB
Low-Region Roll Off Frequency	fL	At VG = $-3dB$		50		Hz
High-Region Roll Off Frequency	fн	At VG= -3dB		50		kHz
[Super Bus Section]						
Output Power	P _o 1	V _{CC} =9V,THD=10%	5.0	6.0		W
	P _o 2	V _{CC} ==12V,THD=10%	8.0	10.0		W
Total Harmonic Distortion	THD	$V_0 = 1V$		0.20	1.0	%
Input Resistance	R _i			30		kΩ
Voltage Gain	VG		43	45	47	dB
Output Noise Voltage	V _{NO}	Rg=0,BPF=20Hz to 20kHz		0.3	0.6	mV
Ripple Rejection	SVR	f _R =100Hz,V _R =0dBm	50	60		dB
Muting Attenuation	Att	V ₀ =0dBm		80		dB
Low-Region Roll Off Frequency	fL	VG: -3dB		5		Hz
High-Region Roll Off Frequency	f _H	VG: -3dB		40		kHz
Output Offset Voltage	V _{OFF}	Rg=0	-150		+150	mV

- Note 1: The motor should not be connected to the power switch pin, since transient noise may appear on the amplifier outputs when the motor is started or stopped.
- Note 2: Audio mute is enabled by connecting a 300 Ω resistance between the DC pin and ground. DC bias control of both the stereo (L ch, R ch) and BTL (super bass) channels is enabled, and all audio output signals can be muted by controlling the MUTE pin.

Sample Printed Circuit Pattern

%: Insert 0.15 μF between power supply and ground at the root of the pins.

Pin Voltages

Pin No.	1	2	3	4	5	6	7	8	9
Name	OUT No	PWR GND 2	OUT Inv	BS R	OUT R	PWR GND 1	BS L	OUT L	V _{CC} 1
Pin voltage (V)	4.0	0	4.0	8.1	4.5	0	8.1	4.0	9.0
Pin No.	10	11	12	13	14	15	16	17	18
Name	DC	ΝL	I N R	PRE GND	IN No	NF Inv	NF No	PWR SW	V _{CC} 2
Pin voltage (V)	4.5	1.4	1.4	0	21 [mV]	1.4	1.4	9.0	9.0

Po Chart

(THD=10%)

Pdmax Chart

·····				
Item	RL	9V	12V	15V
	8Ω	1.4W	2.5W	3.9W
FRONT	6Ω	1.75W	3.2W	5.0W
L/R	4Ω	2.4W	4.3W	6.4W
	3Ω	3.2W	5.6W	—
	8Ω	3.2W	6.4W	11.0W
BTL	6Ω	4.0W	8.1W	13.5W
	4Ω	5.3W	10.4W	
	3Ω	6.4W	12.4W	—

Item	RL	9V	12V	15V
FRONT L/R	28	2.0W	3.2W	4.6W
	6Ω	2.4W	3.8W	5.7W
	4Ω	3.1W	5.0W	5.4W
	3Ω	3.8W	6.2W	
BTL	8Ω	2.8W	4.8W	7.2W
	6Ω	3.6W	6.0W	9.0W
	4Ω	5.0W	8.8W	
	3Ω	6.3W	11.2W	

Notes on using this IC

- Always short power supply pins 9 and 16 on the copper foil of the printed circuit pattern and apply the equivalent power supply voltage.
- Pin 17 is designed for the power switch.
 It can be switched on and off with a small current capacitance switch, but the point to watch out for is that if the voltage loss between pins 17 and 18 is too large, there may be problems in the biasing and the power may drop.
- . When switching with a transistor, the general practice is to insert a PNP transistor between pins 17 and 18.

i

Notes on Mounting Radiator Fin

- 1. The tightening torque should be in the range of 4 to 6 kg-cm.
- 2. The distance between screw holes of the radiator fin must coincide with the distance between screw holes of the IC. With case outline dimensions L and R referred to the screws must be tightened with the distance between them as close to each other as possible.

- 3. The screws to be used must have a head equivalent to the one of truss machine screw or binder machine screw defined by JIS. Washers must be also used to protect the IC case.
- 4. No foreign matter such as cutting particles shall exist between heat sink and radiator fin. When applying grease on the junction surface, it must be applied uniformly on the whole surface.
- 5. IC lead pins are soldered to the printed circuit board after the radiator fin is mounted on the IC.

