

OVERVIEW

The LA5603 is a multi-function, low dropout voltage, multiple voltage power supply for use in microcomputer controlled audio equipment such as CD players and minicomponent stereo systems.

The LA5603 features a 5.6 V, 0.5 A supply, a 7.5 V, 1.0 A supply and a -7.5 V, -1.0 A supply each with an on/off switch, a 4.8 V ($I_{OA2} = 0.1$ A, $I_{OA1} = 0$) supply with a reverse current prevention diode and a 5.6 V ($I_{OA1} = 0.1$ A, $I_{OA2} = 0$) supply enabling it to power both analog and digital components.

The LA5603 incorporates reset, mute and power-on functions for generating signals for the component(s) being powered and an adjustable startup delay function for controlling the sequence in which system components are powered up.

The LA5603 operates from a ± 8.5 to ± 16 V dual supply and is available in 18-pin SIPs.

FEATURES

- Low dropout voltage power supply
- 5.6 V, 0.5 A supply with on/off switch
- 7.5 V, 1.0 A and -7.5 V, -1.0 A supplies with on/off switches
- 4.8 V ($I_{OA2} = 0.1$ A, $I_{OA1} = 0$) supply with diode to prevent reverse currents
- 5.6 V ($I_{OA1} = 0.1$ A, $I_{OA2} = 0$) supply
- Reset function
- Mute function
- Auto power-on function
- Powers both analog and digital components
- ± 8.5 to ± 16 V dual supply
- 18-pin SIP

PACKAGE DIMENSIONS

Unit: mm

3109-SIP18H

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	
Supply voltage	V _{cc}	16	·	
	V _{EE}	-16	V	
QUICK IN input voltage	VQUICK IN	16	V	
Power dissipation (with infinite heatsink)	Po	4.3 (15)	W	
Operating temperature range	Topr	-20 to 85	°C	
Storage temperature range	Tstg	-55 to 150		

Recommended Operating Conditions

 $T_a = 25 °C$

Parameter	Symbol	Rating	Unit
Supply voltage	Vcc	8.5	
	VEE	8.5	V
Supply voltage range	Vcc	8.5 to 16	
	V _{EE}	-16 to -8.5	— v
Output current 1	loi	0 to 500	mA
Output current 2	102	0 to 1,0	A
Output current 3	103	-1.0 to 0	A
MUTE output current	IMUTE	0 to 10	mA
RES LOW-level output sink current	joria	0 to 2	mA
RES HIGH-level output source current	IOTH	0 to 200	μA
Auxiliary power total supply output current (IOA1 + IOA2)	loa1, loa2	0 to 100	mA

Electrical Characteristics

Main power supply

•	$V_{\rm CC}/V_{\rm EE} = \pm 8.5$ V, $T_{\rm a} =$	25 °C, T _j =	25 °C, $V_{OA1} = 5.6$	$V, V_{0A2} = 4.8$	$V, I_{OA1} = 100 \text{ m}$	A unless otherwise noted

Parameter	Symbol	Condition				
	Synass	Condition	min	typ	max	Unit
Output voltage	VOA1	$l_{OA2} = 0 \ (l_{OA1} = 100 \text{ mA})$	5.2	5.6	5.9	
Oulput voitage	V _{OA2}	$I_{OA2} = 100 \text{ mA} (I_{OA1} = 0)$	4.2	4.8	5.2	v
Dropout voltage	VDROP		_	0.6	1.0	V
Line regulation	ΔVOA1 LN	$V_{CC} = 7$ to 12 V, $I_{OA1} = 50$ mA	_	10	80	mV
Load regulation	۵VOA1 LD	$l_{OA1} = 1$ to 100 mA		20	100	mV
Peak output current	lop		100	200	-	mA
Output short-circuit current	losc		_	10	-	mA
Output leakage current	IOA LEAK	V _{CC} = 0 V, V _{OA2} = 6 V	-	-	2	μΑ

Parameter	Sumhal	Condition		Rating		11-14
	Symbol	Condition	ការ៉ា	typ	max	Unit
Current consumption with negative power supply	IQM1	I_{01} , I_{02} , I_{03} , I_{OA1} and $I_{MUTE} = 0$ A	-	3.2	-9.6	
	IQM2	l_{01} , l_{02} , l_{0A1} and $l_{MUTE} = 0$ A, $l_{03} = -500$ mA	-	6.3	-19	mA
Current consumption with positive power supply	lam	I_{01} , I_{02} , I_{03} , I_{0A1} and $I_{MUTE} = 0$ A	-	6.5	19.5	
	I _{QP2}	$ _{01} = 200 \text{ mA},$ $ _{02} = 500 \text{ mA}, _{03} = 0 \text{ mA},$ $ _{0A1} = 100 \text{ mA},$ $ _{MUTE} = 5 \text{ mA}$	-	26	78	mA

Reset

V_{CC}/V_{EE} = $\pm 8.5\,$ V, T_{j} = 25 °C, T_{a} = 25 °C

Parameter	Compleal	Symbol Condition				
	Symbol		min	typ	max	Unit
LOW-level output voltage	VORL	$l_{ORL} = 2 \text{ mA, } C_d \text{ grounded}$	_	100	200	mV
HIGH-level output voltage	VORH	loπ _H = 200 μA	4.47	4.97	5.47	v
Output voltage threshold	V _{RT}	l _{OA1} = 5 mA, V _{OA1} detection voltage LOW	3.7	3.9	4.1	v
Hysteresis voltage	Vhys	1 _{0A1} = 5 mA	-	100	200	mV
Output delay time	ta	$C_d = t \mu F$	240	300	360	ms

5.6 V power supply

V_{CC}/V_{EE} = ±8.5 V, T_{j} = 25 °C, T_{a} = 25 °C, I_{O} = 200 mA unless otherwise noted

Parameter	Symbol	Condition				
		Condition	min	typ	max	- Unit
Output voltage	Vo1		5.1	5.6	5.9	V
Dropout voltage	VDROP		_	0.6	1.0	v
Line regulation	434	V _{OC} = 8.5 to 16 V		20	100	
Line regulation	AVOLN	$V_{OC} = 9.5$ to 16 V	-	20	100	- mV
· · · · ·	434	$l_0 = 5$ to 500 mA	-	50	150	
Load regulation	∆Vold	$l_0 = 5$ to 100 mA	-	20	100	- mV
Peak output current	lop		500	750	-	mA
Output short-circuit current	losc			80	-	mA
Output noise voltage	V _{NO}	f = 10 Hz to 100 kHz		70	-	μV
Output vollage temperature coefficient	Δνο/Δτ	$T_j = 25$ to 85 °C	-	±0.7	-	mV/°C
Ripple rejection ratio	R _{rej}	f = 120 Hz, V _{CC} = 8.5 to 16 V		74	-	dB
EN LOW-level input voltage		Main power source OFF	0	-	0.3	v

7.5 V power supply

 $V_{CC}/V_{EE} = \pm 8.5$ V, $T_j = 25$ °C, $T_a = 25$ °C, $I_0 = 500$ mA, $C_0 = 100$ µF unless otherwise noted

Parameter	Symbol	Condition				
		Condition	min	typ	max	Unit
Output voltage	V _{O2}		7.1	7.5	7.8	V
Dropout voltage	VDROP		-	0.6	1.0	- v
Dioposi voitage	*DHOP	$l_0 = 300 \text{ mA}$	-	0.4	0.8	
Line regulation		V _{CC} = 8.5 lo 16 V	-	20	100	mV
Load regulation	ΔVold	$l_0 = 5 \text{ mA to 1 A}$	-	80	200	mV
Peak output current	lop	$V_{CO}/V_{EE} = \pm 12 V$	1.0	1.5		A
Output short-circuit current	losc		-	0.1	-	A
Output noise voltage	V _{NO}	f = 10 Hz to 100 kHz	-	70		μV
Output voltage temperature coefficient	$\Delta V_0 / \Delta T_a$	T _j = 25 to 85 °C	-	±0.5	-	mV/°C
Ripple rejection ratio	R _{rej}	f = 120 Hz, V _{CC} = 8.5 to 16 V	-	60	-	dB

-7.5 V power supply

 V_{CC}/V_{EE} = ±8.5 V, T_{j} = 25 °C, T_{a} = 25 °C, I_{0} = -500 mA, C_{0} = 100 μF unless otherwise noted

Parameter	Symbol	Condition				
		Condition	min	typ	max	- Unit
Output voltage	V ₀₃		-7.8	-7,5	-7.1	v
Dropout voltage	VDROP		_	0.6	1.0	- v
biopour voitage	*DROP	l _o = -300 mA	-	0.4	0.8	
Line regulation	ΔV _{OLN}	$V_{EE} = -16$ to -8.5 V	_	200	300	mV
Load regulation	ΔV _{OLD}	$l_0 = -1$ A to -5 mA	-	80	200	mV
Peak output current	lop	$V_{CC}/V_{EE} = \pm 12 V$	-	-1.5	-1.0	A
Output short-circuit current	losc		-	0.3	· -	A
Output noise voltage	VNO	f = 10 Hz to 100 kHz	-	70	-	μV
Output voltage temperature coefficient	ΔV _O /ΔT _a	T _j = 25 to 85 °C	-	±0.5	†	mV/°C
Ripple rejection ratio	R _{rej}	f = 120 Hz, V _{EE} = -16 Io -8.5 V	-	60	-	dB

5.0 V power supply with mute

 V_{CC}/V_{EE} = ±8.5 V, T_{j} = 25 °C, T_{\bullet} = 25 °C, I_{O} = 5 mA

Parameter	Symbol	Condition	Rating			
		Contraction	nim	typ	max	- Unit
MUTE OFF output voltage	VMUTE OFF	VQUICK IN = 5.5 V	-	0.2	0.3	v
MUTE ON output voltage	V _{MUTE ON}	····	4.6	5.0	5.4	v
QUICK IN LOW-level input voltage	VQUICK IN L				5.5	V
QUICK IN HIGH-level input voltage	V аліск ім н		7.5	-	Vcc	v
QUICK IN HIGH-level current	JQUICK IN H	VQUICK IN = 7.5 V		240	480	μA

DESIGN NOTES

When the 5.6 (V_{01}), 7.5 and -7.5 V outputs are ON, EN is high impedance.

When QUICK IN is HIGH, mute mode is ON. When QUICK IN is LOW, mute mode is OFF.

The output capacitors for V_{01} , V_{0A1} , and V_{0A2} should be 47 μ F or greater. The output capacitors for V_{02} and V_{03}

should be 100 μ F or greater. The output capacitors and C₄, the startup delay capacitor, should have good temperature stability to prevent oscillations at low temperatures.

Capacitors CN1, CN2, CN3 and CNA suppress noise and improve ripple rejection.

No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:

② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.

Information (including circuit diagrams and circuit parameters) herein is for 'example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.