Monolithic Linear IC

Applications

The LA6518M is a 2-output power operational amplifier developed for use in consumer and industrial equipment.

Features and Functions

- High output current ($I_0 max = 0.5 A$)
- High gain
- Includes current limiter
- Wide operating voltage range (± 2 to ± 18 V)
- Single power supply operation possible (4 to 36 V)
- Thermal shutdown function built in

Package Dimensions

unit : mm

3097-MFP16FS

Specifications

Maximum Ratings at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} /V _{EE}		±18	V
Differential input voltage	V _{ID}		30	V
Common-mode input voltage	V _{IN}		±15	V
Allowable power dissipation	Pd max		0.7	W
Operating temperature	Topr		-20 to +75	۰C
Storage temperature	Tstg		-55 to +150	°C

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Operating Conditions at Ta = 25 $^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit	
Recommended supply voltage	V _{CC} /V _{EE}		±2 to ±16	V	

Electrical Characteristics at Ta = 25 °C, $V_{CC}/V_{EE} = \pm 15 \text{ V}$

Parameter	Symbol	Conditions	min	typ	max	Unit
No-load current drain	ICC			8	20	mA
Input offset voltage	V _{IO}	$R_{S} \leq 10 \ k\Omega$		2	7	mV
Input offset current	l _{IO}			10	100	nA
Input bias current	Ι _Β			100	300	nA
Common-mode input voltage range	VICM		-14		+13	V
Common-mode signal rejection ratio	CMR		65	80		dB
Maximum output voltage	Vo	$R_L = 33 \Omega$	±11	±12		V
Voltage gain	V _{GO}			85		dB
Slew rate	SR	$G_V = 0, R_L = 33 \Omega, R = 10 \Omega, L = 0.1 \mu F$		0.15		V/µs
Supply voltage rejection ratio	SVR			30	300	μV/V
Limit current (built-in type)	I _{SC}			0.5		A

• Thermal shutdown function built in.

Block Diagram and Pin Assignment

2. V₀

Test Circuit

3. CMRR, V_{ICM}

4. IB (-)

$$\mathrm{IB}(-) = \frac{|\Delta \mathrm{V}_0 2 - \mathrm{V}_0 1|}{50 \mathrm{k} \Omega \times 100}$$

5. IB(+)

$$IB(+) = \frac{|\Delta V_0 3 - V_0 1|}{50k\Omega \times 100}$$

6. I_{IO}

$$I_{IO} = \frac{|V_O 4 - V_O 1|}{50 k\Omega \times 100}$$

9. VG₀

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 1995. Specifications and information herein are subject to change without notice.