LA7256 # High-Fidelity Audio Signal Record/Playback Processing Circuit for VCR Products ### Overview The LA7256 provides the record and playback amplification functions required for high-fidelity audio signal processing in VCR systems. The record system supports S-VHS and over-recording, and also supports the provision of an adjustment-free record current by using a constant-current regulated output scheme incorporating an AGC circuit. The playback system consists of a high-gain preamplifier with a small DC offset, and includes a built-in EP gain increasing function. ### **Functions** - · Preamplifier (two channels) - · RF switching between CH1 and CH2 - Record AGC amplifier (for over-recording and S-VHS) - · Constant-current regulated output record amplifier - Buffer amplifier that can be used in both record and playback ### **Features** - · Minimal number of required external components - The playback amplifier output DC offset is small. - · Built-in EP mode gain emphasis - Record AGC that handles three modes (for an adjustment-free record current) - Built-in buffer amplifier that can be used to construct an active filter. # **Specifications** Maximum Ratings at Ta = 25°C | Parameter | Symbol | Conditions | Ratings | Unit | |-----------------------------|---------------------|------------|-------------|------| | Maximum supply voltage | V _{CC} max | , | 7.0 | ٧ | | Allowable power dissipation | Pd max | Ta≤65°C | 700 | mW | | Operating temperature | Topr | | -10 to +65 | •c | | Storage temperature | Tstg | | -55 to +150 | °C | ## Operating Conditions at Ta = 25°C | Parameter | Symbol | Conditions | Ratings | Unit | |--------------------------------|--------------------|------------|------------|------| | Recommended supply voltage | Vcc | | 5.0 | ٧ | | Operating supply voltage range | V _{CC} op | | 4.5 to 5.5 | ٧ | ## **Package Dimensions** unit: mm ### 3067-DIP24S # Operating Characteristics at Ta = 25°C, V_{CC} = 5 V, in the specified test circuit | Parameter | Symbol | Conditions | min | typ | max | Unit | |--|--------------------------------|--|------|------|-----------------|--------------| | [Playback Mode] | ,,,,, | | | | , | | | Circuit current | ICCP | No input: the pin 14 influx current | 13 | 18 | 23 | mA | | Voltage gain, CH1 | G _{VP1} | Pin 20 input = 100 μ Vp-p, f = 1.5 MHz, pin 1 = low: measure the pin 3 output. | 72.5 | 75.5 | 78.5 | dB | | Voltage gain, CH2 | G _{VP2} | Pin 17 input = 100 μVp-p, f = 1.5 MHz, pin 1 = high: measure the pin 3 output. | 72.5 | 75.5 | 78.5 | dB | | Voltage gain difference | ∆G _{VP} | G _{VP1} - G _{VP2} | -2 | 0 | +2 | dB | | EP gain emphasis | ΔG _E ρ | Pin 20 input = 100 μVp-p, f = 1.5 MHz, pin 1 = low:
the ratio of the pin 3 outputs when pin 2 is high/low | 1.7 | 2.4 | 3.1 | dB | | Frequency characteristics, CH1 | ·f _{P1} | Pin 20 input = 100 μVp-p, pin 1 = low: the difference in the levels on pin 3 when f = 2.2 MHz and 1.0 MHz | -3.0 | -1.0 | 0 | dΒ | | Frequency characteristics, CH2 | f _{P2} | Pin 17 input = 100 μVp-p, f = 1.5 MHz, pin 1 = high:
the difference in the levels on pin 3 when f = 2.2 MHz
and 1.0 MHz | -3.0 | -1.0 | . 0 | dB | | Crosstalk CH1 to CH2 | CT _{1 → 2} | Pin 17 input = 0, pin 20 input = $100 \mu Vp$ -p, $f = 1.5 MHz$: the difference in the pin 3 output levels when pin 1 goes from low to high | | -40 | -35 | dB | | Crosstalk CH2 to CH1 | CT _{2→1} | Pin 20 input = 0, pin 17 output = 100 μVp-p, f = 1.5 MHz: the difference in the pin 3 output levels when pin 1 goes from high to low | | -40 | -35 | dB | | Equivalent input noise voltage CH1 | V _{NP1} | With pin 20 grounded through 0.01 μ F and 1 Ω , pin 1 = low: the pin 3 noise in input equivalent*1 | | 0.8 | 1.0 | μVrms | | Equivalent input noise voltage CH2 | V _{NP2} | With pin 17 grounded through 0.01 μ F and 1 Ω ,
pin 1 = high: the pin 3 noise in input equivalent ²¹ | | 0.8 | 1.0 | μVrms | | Second harmonic distortion CH1 | 2THD ₁ | Pin 20 input = 100 μVp-p, f = 1.5 MHz, pin 1 = low: the second harmonic in the pin 3 output | | -50 | -40 | dB | | Second harmonic distortion CH2 | 2THD ₂ | Pin 17 input = 100 μVp-p, f = 1.5 MHz, pin 1 = high:
the second harmonic in the pin 3 output | | -50 | -40 | dB | | Maximum output voltage CH1 | V _{OMP1} | With the pin 20 input varying, f = 1.5 MHz, pin 1 = low: when the pin 3 third harmonic distortion is -30 dB | 2.0 | | | Vp-p | | Maximum output voltage CH2 | V _{OMP2} | With the pin 17 input varying, f = 1.5 MHz, pin 1 = high: when the pin 3 third harmonic distortion is -30 dB | 2.0 | | | V p-р | | Output DC offset 1 | ΔV _{ODC1} | Pin 17 and 20 inputs = 0, pin 1 = low, pin 2 = low (SP):
the difference in the pin 3 DC level when pin 1 goes
from low to high | -30 | 0 | +30 | mV | | Output DC offset 2 | _∇ Λ ^{ODC5} | Pin 17 and 20 inputs = 0, pin 1 = low, pin 2 = high (EP):
the difference in the pin 3 DC level when pin 1 goes
from low to high | 50 | 0 | +50 | mV | | Head switching: CH1 hold voltage | V _{HS1} | The pin 1 DC voltage required to operate CH1 | 0 . | | 1.0 | V | | Head switching: CH2 hold voltage | V _{HS2} | The pin 1 DC voltage required to operate CH2 | 3.0 | | Vcc | V | | Playback mode switch
on resistance | R _{SW} | Calculate from the voltage difference on pin 16 when the pin 16 influx current is 1 mA and 2 mA. | | 4.0 | 6.0 | Ω | | SP hold voltage | V ₂ SP | The pin 2 voltage required to hold SP mode | 0 | | 1.0 | V | | EP hold voltage | V ₂ EP | The pin 2 voltage required to hold EP mode | 3.0 | | V _{CC} | V | | PB hold voltage | V _{5L} | The pin 5 voltage required to hold PB mode | 0 | | 1.0 | v | | [Record Mode] | | No single the sign of | A.E | 60 | 81 | mA. | | Circuit current | ICCR | No signal, the pin 14 influx current Pin 9 input = 180 mVp-p, f = 1.5 MHz: | 45 | 63 | " | mA | | Output current | lor | measure the pin 16 output | 48 | 53 | 58 | mAp-p | | AGC control characteristics 1 | ΔV _{AGC1} | Pin 9 input = 90 and 180 mVp-p, f = 1.5 MHz:
the ratio of the pin 16 output levels | -0.5 | -0.2 | | dB | | AGC control characteristics 2 | ΔV _{AGC2} | Pin 9 input = 360 and 180 mVp-p, f = 1.5 MHz:
the ratio of the pin 16 output levels | | 0.2 | 0.5 | dB | | Cross modulation distortion
0.4 MHz component | CMD ₀₄ | For a pin 9 input*2, the 0.4 MHz spurious signal in the pin 16 output current | | | -40 | dB | | Cross modulation distortion
0.9 MHz component | CMD ₀₉ | For a pin 9 input*2, the 0.9 MHz spurious signal in the pin 16 output current | | | -40 | dB | Note: 1. Measure the input noise voltage after passing the pin 3 output (playback FM output) through a 1.1 MHz low-pass filter. 2. 1.3 MHz (70 mVp-p) + 1.7 MHz (180 mVp-p) | Parameter | Symbol | Conditions | min | typ | max | Unit | |----------------------------------|----------------------------------|---|------|------|-----------------|------| | Over-record hold voltage | V _{11M} | The pin 11 DC voltage for over-record mode | 1.5 | | 3.0 | ٧ | | Over-record current ratio | lo-ov | Pin 9 input = 180 mVp-p, f = 1.5 MHz,
pin 11 = middle level: measure the pin 16 output current | 1.7 | 2.2 | 2.7 | dB | | S-VHS hold voltage | V _{11H} | The pin 11 DC voltage for S-VHS mode | 3.5 | | V _{CC} | ٧ | | S-VHS current ratio | I _{O-SV} | Pin 9 input = 180 mVp-p, f = 1.5 MHz, pin 11 = high:
measure the pin 16 output current | -2.0 | -2.6 | -3.2 | dB | | Record mute hold voltage 1 | V _{4L} | The pin 4 DC voltage when record muting is off | 0 | | 1.0 | V | | Record mute hold voltage 2 | V _{4H} | The pin 4 DC voltage when record muting is on | 3.0 | | V _{CC} | ٧ | | Mute attenuation | I _{OR} , M _U | Pin 9 input = 180 mVp-p, f = 1.5 MHz, pin 4 = high:
measure the pin 16 output current | | | -40 | dB | | Record hold voltage | V _{5H} | The pin 5 voltage required to hold record mode | 3.0 | | V _{CC} | V | | [Built-in Buffer] | | | | | | | | Buffer I/O DC offset | ΔV _{BUF} | | -10 | | +10 | m∨ | | Buffer frequency characteristics | f _{BUF} | Pin 9 input = 180 mVp-p, f = 1/10 MHz | -1 | | +1 | dB | # **Test Circuit Diagram** # **Application Circuit Block Diagram** Unit (resistance: Ω , capacitance: F) ## **Pin Functions** | 2 ESISP 2 SOK 0 3 OK 0 3 OK 0 4 REC MUTE 3 OK 0 3 OK 0 3 OK 0 4 REC MUTE 4 REC MUTE 5 OK 0 3 OK 0 3 OK 0 4 SOK 0 4 SOK 0 4 SOK 0 5 OK 0 4 SOK 0 5 OK 0 5 OK 0 4 SOK 0 5 OK 0 5 OK 0 5 OK 0 6 SOK | Pin No. | Symbol | Pin internal equivalent circuit | Function | |---|---------|--------------|---------------------------------|---| | 2 ESISP Low: 0 to 1.0 V → SP High: 3.0 to V _{CC} → EP A02850 Low: 0 to 1.0 V → Mule off High: 3.0 to V _{CC} → Mule on REC MUTE SOK 0 A02850 Low: 0 to 1.0 V → Mule off High: 3.0 to V _{CC} → Mule on Low: 0 to 1.0 V → Mule off High: 3.0 to V _{CC} → Mule on | 1 | A-HEAD PULSE | 30kû\$ \$5kû | Low: 0 to 1.0 V \rightarrow CH1
High: 3.0 to V _{CC} \rightarrow CH2 | | 3 PB-FM OUT A02658 REC MUTE A02658 Low: 0 to 1.0 V \rightarrow Mute off High: 3.0 to V _{CC} \rightarrow Mute on The second se | 2 | ES/SP | 30kû\$ \$5kû | Low: 0 to 1.0 V \rightarrow SP
High: 3.0 to V _{CC} \rightarrow EP | | 4 REC MUTE 30 k a \Rightarrow 5 k a Low: 0 to 1.0 V \rightarrow Mute off High: 3.0 to V _{CC} \rightarrow Mute on 5 REC 5 NA 30 k a \Rightarrow 2 k a Low: 0 to 1.0 V \rightarrow PB High: 3.0 to V _{CC} \rightarrow REC | 3 | PB-FM OUT | (3) -W 400#A | | | 5 REC Sok 2 ₹ 2k2 Low: 0 to 1.0 V → PB High: 3.0 to V _{CC} → REC | 4 | REC MUTE | 30k0 ₹ ₹5k0 | Low: 0 to 1.0 V \rightarrow Mute off High: 3.0 to V _{CC} \rightarrow Mute on | | 6 GND Ground for the playback output stage and record circuits | 5 | REC | 30kû\$ \$2kû | Low: 0 to 1.0 V → PB
High: 3.0 to V _{CC} → REC | | | 6 | GND | | Ground for the playback output stage and record circuits | | Pin No. | Symbol | Pin internal equivalent circuit | Function | |---------|-------------|----------------------------------|--| | 7 | BUFF IN | 7 1000
50kg
W 200#A 1/2VCC | | | 8 | BUFF OUT | B 200#A A02662 | DC voltage = 1/2 V _{CC} | | 9 | REC FM IN | 9 5kg 100g W W A02563 | Record amplifier input | | 10 | AGC FILT | 10 W 10kΩ ₹15kΩ | Detects the record amplifier AGC detector output | | 11 | REC MODÉ | 1100kg 100 mA 100 mA A02865 | Low: 0 to 1.0 V → Normal Middle: 1.5 to 3.0 V → Over-record High: 3.5 V to V _{CC} → S-VHS | | 12 | REC OUT GND | | Ground for the record output circuits | | L | 1 | <u> </u> | <u> </u> | Continued on next page. | Pin No. | Symbol | Pin internal equivalent circuit | Function | |---------|-----------------|---|---| | 13 | REC-CURR-ADJ | ACCESS | Converts the record output current output to a voltage | | 14 | v _{cc} | | | | 15 | REC BIAS | 800 #A 0 1.6 mA REC OUT AGC Amp 5000 15 W 1.5 mA 800 #A | Input block for the record current amplifier | | 16 | REC OUT | PB ON AO2668 | Switch for record current output and playback mode on On in PB mode | | 17 | CH2-IN | 10 k 2 REC ON W | Playback amplifier CH2 input | | 18 | PSW2 | 30kΩ
\$50kΩ
40kΩ
\$50kΩ | CH2 head current supply | Continued on next page. | Pin No. | Symbol | Pin internal equivalent circuit | Function | | | |---------|--------|---|---|--|--| | 19 | FILT2 | 1000
1.5k0
1.5k0
1.5k0
1.5k0
1.5k0 | Generates the playback amplifier CH2 DC bias. | | | | 20 | CH1-IN | 20 REC ON A02672 | Playback amplifier CH1 input | | | | 21 | PB GND | | Ground for the playback amplifier | | | | 22 | FILT1 | 1000 € 1.5k Q B00 µA ₹10k Q A02673 | Generates the playback amplifier CH1 DC bias. | | | | 23 | NC | | | | | | 24 | PSW1 | 30kΩ
350kΩ
40kΩ
350kΩ | Record amplifier CH2 head current supply | | | - No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss. - Anyone purchasing any products described or contained herein for an above-mentioned use shall: - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use: - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally. - Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties. This catalog provides information as of June, 1995. Specifications and information herein are subject to change without notice.