

LA7416,7416M

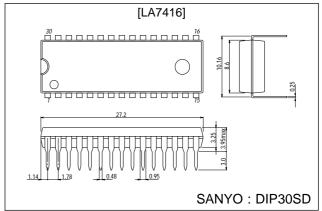
Playback Amplifier and Record Amplifier for VHS VCRs

Overview

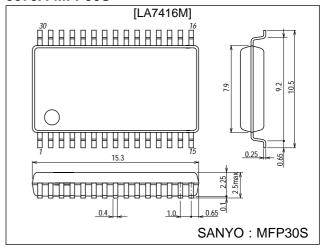
The LA7416 and LA7416M are playback and record amplifier ICs for four-head VHS VCRs. When used in conjunction with the video signal processing ICs of the LA7420/30 series, it is possible to eliminate the need to adjust the Y/C record current.

Functions

- · 4-channel playback amplifier.
- 2-channel recording amplifier (AGC built-in).
- REC/PB mode switching head switch circuit.
- Envelope wave detection (for auto-tracking).
- · Envelope comparator.


Features

- The record amplifier provides stable record characteristics in constant current drive mode, which is able to withstand load fluctuations. In addition, the built-in AGC eliminates the need to adjust the record current.
- Designed to share printed circuit boards with the LA7411/7411M (for 2-head systems).


Package Dimensions

unit: mm

3196-DIP30SD

3073A-MFP30S

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Specifications

Maximum Ratings at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7.0	V
Allowable power dissipation	Pd max	Ta ≦65 °C	650	mW
	Fu illax	1a ≥05 °C	*500	mW
Operating temperature	Topr		-10 to +65	°C
Storage temperature	Tstg		-40 to +150	∘C

^{*:} LA7416M Pd max value which represents the value when mounted on the board.

Operating Conditions at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V_{CC}		5.0	V
Operating voltage range	V _{CC} op		4.8 to 5.5	V

Electrical Characteristics at Ta = 25 °C

Parame	eter		Symbol	Input	Output	Conditions	T2	T4	T5	min	typ	max	Unit
[PB Mode]						T15: 5.0 V	TRCK	HA	SW30				
						T13: Open			MUTE				
						T7: Open							
Current consumption	n		ICCP			Pin 15 input	Open	0	0	26	30	34	mA
	T		_			current							
Voltage gain	SP L	CH1	G _{VP} 1	T20A	T10A	$V_I = 38 \text{ mVp-p}$ f = 1 MHz	Open	0	0	54.0	57.0	60.0	dB
	SP H	CH2	G _{VP} 2	T23A	T10A	=	Open	0	2.5	54.0	57.0	60.0	dB
	EP L	CH3	G _{VP} 3	T27A	T10A	_	Open	5.0	0	56.0	59.0	62.0	dB
	EP H	CH4	G _{VP} 4	T30A	T10A		Open	5.0	2.5	56.0	59.0	62.0	dB
Voltage gain differer			∆G _{VP} 1			G _{VP} 1 — G _{VP} 2				-1	0	+1	dB
Voltage gain differer			∆G _{VP} 2			G _{VP} 3 — G _{VP} 4				-1	0	+1	dB
Intermode gain diffe	rence		ΔG _{VP} E			G _{VP} 3 — G _{VP} 1				1.0	2.0	3.0	dB
Equivalent input		CH1	V _{NIN} 1	T20A	T10A	After 1.1 MHz LPF	Open	0	0		1.1	1.5	μVrms
noise voltage		CH2	V _{NIN} 2	T23A	T10A	VOUT	Open	0	2.5		1.1	1.5	μVrms
		CH3	V _{NIN} 3	T27A	T10A	$\frac{VOU1}{G_{VP}1,2,3,4}$	Open	5.0	0		1.1	1.5	μVrms
F		CH4	V _{NIN} 4	T30A	T10A	$V_I = 38 \text{ mVp-p}$ f = 7 MHz	Open	5.0	2.5	0.5	1.1	1.5	μVrms
Frequency characte	ristics	CH1	ΔVfp1	T20A	T10A		Open	0	0	-2.5	+1		dB
		CH2	ΔVfp2	T23A	T10A	V _{OUT}	Open	0	2.5	-2.5	+1		dB
		CH3	∆Vfp3	T27A	T10A	G _{VP} 1,2,3,4	Open	5.0	0	-2.5	+1		dB
	CH4	∆Vfp4	T30A	T10A	output ratio	Open	5.0	2.5	-2.5	+1		dB	
Secondary		CH1	V _{HDP} 1	T20A	T10A	$V_I = 38 \text{ mVp-p}$	Open	0	0		-40	-35	dB
harmonic distortion		CH2	$V_{HDP}2$	T23A	T10A	f = 4 MHz 8 M component	Open	0	2.5		-40	-35	dB
		CH3	$V_{HDP}3$	T27A	T10A	4 M component	Open	5.0	0		-40	-35	dB
		CH4	V _{HDP} 4	T30A	T10A	output ratio	Open	5.0	2.5		-40	-35	dB
Maximum output lev	rel	CH1	V _{OMP} 1	T20A	T10A	f = 1 MHz	Open	0	0	1.0	1.2		Vp-p
		CH2	V _{OMP} 2	T23A	T10A	Output level	Open	0	2.5	1.0	1.2		Vp-p
		CH3	V _{OMP} 3	T27A	T10A	when tertiary distortion of the	Open	5.0	0	1.0	1.2		Vp-p
		CH4	V _{OMP} 4	T30A	T10A	output is -30 dB	Open	5.0	2.5	1.0	1.2		Vp-p
Cross-talk		CH1	V _{CR} 1	T23A	T10A	V _I = 38 mVp-p	Open	0	0		-40	-35	dB
SP (Note 1)				T27A	T10A	f = 4 MHz	Open	0	0		-40	-35	dB
				T30A	T10A	Vout	Open	0	0		-40	-35	dB
		CH2	V _{CR} 2	T20A	T10A	G _{VP} 1,2	Open	0	2.5		-40	-35	dB
				T27A	T10A]	Open	0	2.5		-40	-35	dB
				T30A	T10A]	Open	0	2.5		-40	-35	dB
Cross-talk		CH3	CH3 V _{CR} 3	T20A	T10A	V _I = 38 mVp-p f = 4 MHz	Open	5.0	0		-40	-35	dB
EP (Note 1)				T23A	T10A		Open	5.0	0		-40	-35	dB
				T30A	T10A	$\frac{V_{OUT}}{G_{VP}3,4}$	Open	5.0	0		-40	-35	dB
		CH4	V _{CR} 4	T20A	T10A	G _{VP} 3,4	Open	5.0	2.5		-40	-35	dB
				T23A	T10A		Open	5.0	2.5		-40	-35	dB
				T27A	T10A		Open	5.0	2.5		-40	-35	dB

Continued on next page.

LA7416,7416M

Continued from preceding page.

Develope	Complete	1	0	On alitina	То	Τ4	T.		4		I India
Parameter Output DC offset	Symbol	Input	Output	Conditions	T2	T4	T5	min	typ	max	Unit
	∆V _{ODC} 1		T10A	CH1—CH2	Open		0	-100	0	+100	mV
			T404	0110 0114	Open	0	2.5	-100	0	+100	mV
	∆V _{ODC} 2		T10A	CH3—CH4	Open		0	-100	0	+100	mV
					Open	5.0	2.5	-100	0	+100	mV
	∆V _{ODC} 3		T10A	CH1—CH3	Open	0		-100	0	+100	mV
					Open	5.0	0	-100	0	+100	mV
	∆V _{ODC} 4		T10A	CH2—CH4	Open	0		-100	0	+100	mV
					Open	5.0	2.5	-100	0	+100	mV
	∆V _{ODC} 5		T10A	CH1—CH4	Open	0	0	-100	0	+100	mV
					Open	5.0	2.5	-100	0	+100	mV
	ΔV _{ODC} 6		T10A	CH2—CH3	Open	0	2.5	-100	0	+100	mV
					Open	5.0	0	-100	0	+100	mV
Envelope wave detection output pin voltage	V _{ENV}		T8	T8 DC voltage with no input	Open	0	0	0	0.8	1.5	V
Envelope wave detection voltage SP1	V _{ENVSP} 1	T20A	Т8	f = 4 MHz, T10A: Adjusted to 175 mVp-p	Open	0	0	2.1	2.6	3.1	V
Envelope wave detection voltage SP2	V _{ENVSP} 2	T20A	Т8	f = 4 MHz, T10A: Adjusted to 450 mVp-p	Open	0	0	4.5	4.8	5.0	\ \
Envelope wave detection voltage EP1	V _{ENVEP} 1	T27A	Т8	f = 4 MHz, T10A: Adjusted to 125 mVp-p	Open	5.0	0	2.0	2.5	3.0	V
Envelope wave detection voltage EP2	V _{ENVEP} 2	T27A	Т8	f = 4 MHz, T10A: Adjusted to 350 mVp-p	Open	5.0	0	4.5	4.8	5.0	٧
Comparator output voltage 1	V _{COMP} 1	T20A	Т3	f = 4 MHz, V _I = 38 mVp-p T3 DC voltage	5.0	0	0		0.4	0.7	V
Comparator output voltage 2	V _{COMP} 2	T27A	Т3	f = 4 MHz, V _I = 38 mVp-p T3 DC voltage	5.0	5.0	0	4.5	4.8		V
ON resistance of SW-Tr which is turned ON in PB mode	R _{PON} 17		P-17	DC difference measured for					4.0	6.0	Ω
	R _{PON} 18		P-18	1 mA, 2 mA current inflow					4.0	6.0	Ω
ON resistance of SW-Tr which is	R _{PON} 21		P-21	DC difference	Open	5.0			4.0	6.0	Ω
turned ON in PB mode	R _{PON} 24		P-24	measured for	Open	5.0			4.0	6.0	Ω
	R _{PON} 26		P-26	1 mA, 2 mA	Open	0			4.0	6.0	Ω
	R _{PON} 29		P-29	current inflow	Open	0			4.0	6.0	Ω
Trick 1 threshold level	TR1-1		T2	Normal → Trick 1	*			3.2		5.0	V
	TR1-2		T2	Trick 1 → Normal	*			1.2		2.8	V
Trick 2 threshold level	TR2-1		T2	Normal → Trick 2	*			0.0		0.8	V
	TR2-2		T2	Trick 2 → Normal	*			1.2		2.8	V
HAPB threshold level	HAP-1		T4	$SP \rightarrow EP$		*		1.8		5.0	V
	HAP-2		T4	$EP \to SP$		*		0.0		1.4	V
SW30 threshold level	SW30-1		T5	$Lch \to Hch$			*	1.2		5.0	V
	SW30-2		T5	Hch → Lch			*	0.0		0.8	V

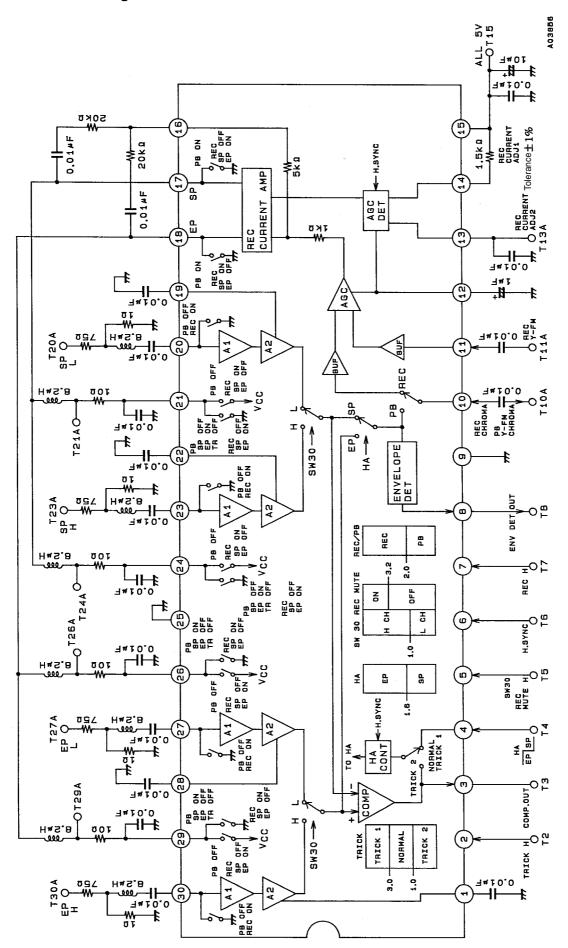
Note 1: Status where input stage L (8.2 $\mu H)$ is shorted

Note: Because the T4 (HA) control switching timing is synchronized with T6 (H-Sync), a trigger pulse (0 V to 5 V to 0 V) must be input to T6 before measuring each parameter for the LA7416/M.

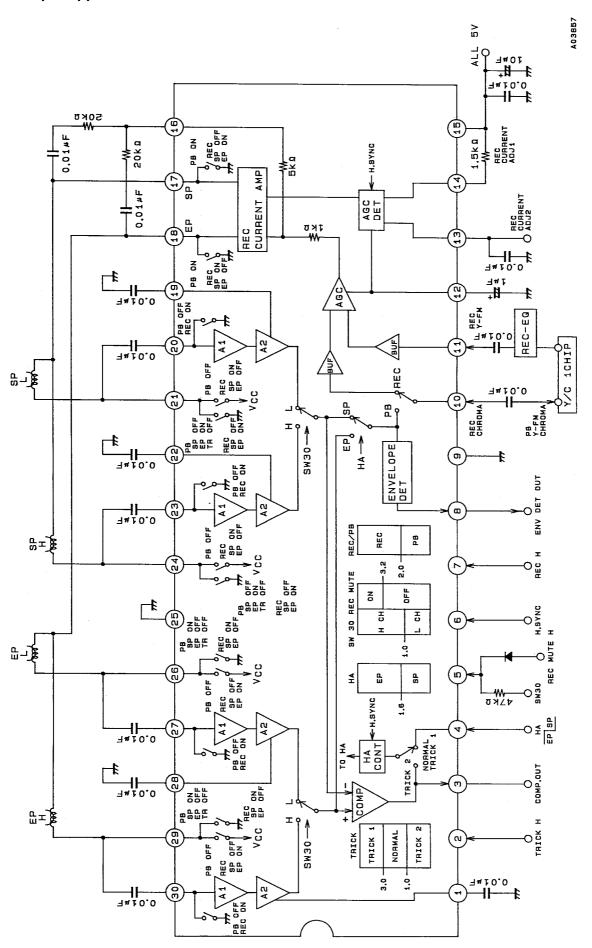
[&]quot;*" represents output pins.

LA7416,7416M

Electrical Characteristics at Ta = 25 °C


Parameter	Symbol	Input	Output	Conditions	T13	T4	T5	min	typ	max	Unit
[REC Mode]				T15: 5.0 V T2: Open T6: 5.0 V T7: 5.0 V	REC Adj2	НА	SW30 MUTE				
Current consumption	I _{CCP}			Pin 15 current input	Open	0	0	50	55	60	mA
REC AGC	V _{RSP}	T11A	T21A	f = 4 MHz	Open	0	0	147	156	165	mVp-p
Amp output level	V _{REP}	T11A	T26A	$V_I = 200 \text{ mVp-p}$	Open	5.0	0	116	123	130	mVp-p
Intermode gain difference	ΔG_{VR}			V _{RSP} /V _{REP}				1.30	2.05	2.80	dB
REC AGC Amp	ΔV _{AGC} 1-SP	T11A	T21A	f = 4 MHz, V _I = 400 mVp-p	Open	0	0		0.5	1.0	dB
control characteristics 1	ΔV _{AGC} 1-EP	T11A	T26A	Output level/ V _{RSP, EP} ratio	Open	5.0	0		0.5	1.0	dB
REC AGC Amp	ΔV _{AGC} 2-SP	T11A	T21A	f = 4 MHz, V _I = 100 mVp-p	Open	0	0	-1.0	-0.5		dB
control characteristics 2	ΔV _{AGC} 2-EP	T11A	T26A	Output level/ V _{RSP, EP} ratio	Open	5.0	0	-1.0	-0.5		dB
REC AGC Amp	ΔV _{FRS}	T11A	T21A	f = 1 M, 7 MHz, V _I = 200 mVp-p	Open	0	0	-4.0	-3.0	-2.0	dB
frequency characteristics (Note 2)	ΔV_{FRE}	T11A	T26A	7 MHz/1 MHz, output ratio	Open	5.0	0	-4.0	-3.0	-2.0	dB
REC AGC Amp secondary harmonic level	ΔV _{HDRS}	T11A	T21A	f = 4 MHz, V _I = 200 mVp-p 8 M component	Open	0	0		-45	-4 0	dB
Secondary narmonic level	ΔV _{HDRE}	T11A	T26A	4 M component output ratio	Open	5.0	0		-45	-40	dB
REC AGC Amp	ΔV _{OMRS}	T11A	T21A	f = 4 MHz, Output level	Adj.	0	0	20	22		mAp-p
maximum output level (Note 3)	$\Delta V_{\sf OMRE}$	T11A	T26A	when secondary distortion of the output is –30 dB	Adj.	5.0	0	20	22		mAp-p
REC AGC Amp	ΔV _{MRS}	T11A	T21A	f = 4 MHz, V _I = 200 mVp-p	Open	0	5.0		-45	-40	dB
mute attenuation	ΔV _{MRE}	T11A	T26A	Output level/ VRSP, EP output ratio	Open	5.0	5.0		-45	-40	dB
REC AGC Amp mixed modulation relative level	ΔV _{CYS}	T10A	T21A	T10A: f = 629 kHz, V _I = 360 mVp-p T11A:	Open	0	0		-45	-40	dB
	ΔV _{CYE}	T11A	T26A	f = 4 MHz, V _I = 200 mVp-p (4 M±629 k)/4 M output ratio	Open	5.0	0		-45	-40	dB
ON resistance of SW-Tr which	11011		P-17	DC difference	Open	5.0			4.0	6.0	Ω
switches between modes in REC	. KON.		P-18	measured for	Open	0			4.0	6.0	Ω
mode	R _{RON} 21		P-21	1 mA, 2 mA current inflow	Open	5.0			4.0	6.0	Ω
	R _{RON} 24		P-24	- Sanoni milow	Open	5.0			4.0	6.0	Ω
	R _{RON} 26		P-26	-	Open	0			4.0	6.0	Ω
LIA DEC throughold lavel	R _{RON} 29		P-29	CD . FD	Open	0		4.0	4.0	6.0	Ω
HA REC threshold level	HAR-1 HAR-2		T4 T4	$\begin{array}{c} SP \to EP \\ EP \to SP \end{array}$		*		1.8		5.0	V
REC MUTE threshold level	MUTE-1		T5	MUTE OFF →			*	3.4		1.4 5.0	V
	MUTE-2		T5	MUTE ON → OFF			*	0.0		3.0	V
REC/PB threshold level	SW REC/ PB			T7: Control voltage				2.2		5.0	V

Note 2: Apply approximately 1.8 V DC to the AGC wave detection filter pin (pin 12) and fix the amplifier gain for measurement. Note 3: Apply DC voltage to T13 (REC CUR. ADJ2) and adjust the output level.


Note: Use a resistor with a tolerance of \pm 1.0% between pins 14 and 15.

[&]quot;*" represents output pins.

Test Circuit Diagram

Sample Application Circuit

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1995. Specifications and information herein are subject to change without notice.