

No.3045

LA7533

unit

IF Signal Processing (VIF+SIF) Circuit for TV / VCR Use

The LA7533 is an IC containing the VIF section and SIF section on a single chip in the DIP20S package. The use of the small-sized package serves to make VTR tuner units smaller.

As compared with the LA7530N, the LA7533 is improved in characteristics when it is operated at supply voltage 9V (DG, DP, RF AGC temperature characteristics).

The LA7533 is applicable to the circuit designed for the LA7530N.

Functions

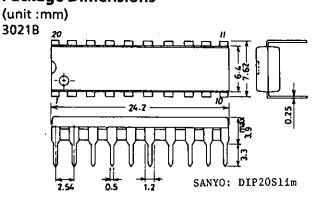
· VIF section: VIF AMP, VIDEO DET, PEAK IF AGC, B/W NOISE CANCELLER, RF AGC, AFT,

VIDEO MUTE.

· SIF section: SIF LIMITER AMP, FM DET, SND MUTE.

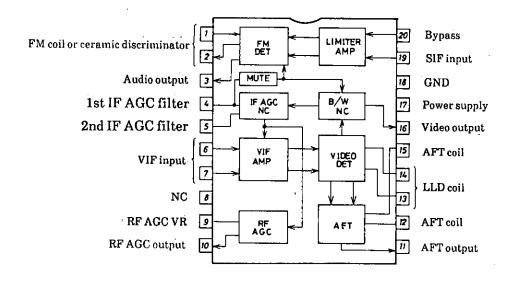
Features

- · High-gain VIF amp requiring no preamp.
- · Higher AGC speed.
- · Adjustment-free FM detector because of ceramic discriminator-used quadrature detection.
- · Possible to mute video, sound for VTR.
- Small-sized package.
- Minimum number of external parts required.
- · Operated at supply voltage 9V


Maximum	Ratings	at Ta -	25°€
171 21 21 11 11 11 11 11 11 11 11 11 11 11	ILAUINES	at la –	- 2011 1.4

Maximum Supply Voltage	V_{CC} max		14	V
External Flow-out Current	I ₁₆ max		5	mÅ
Pin 20 Maximum	V_{20} max		V_{CC}	V
Supply Voltage			00	
Allowable Power Dissipation	Pd max	Ta≦40°C	1.1	W
Operating Temperature	Topr		-20 to +70	°C
Storage Temperature	Tstg		-55 to + 125	°C
Operating Conditions at Ta=2	:5°C			unit

0


portung conditions at 14 = 20	<u> </u>		u
Recommended Supply Voltage	V_{CC}	9	
Operating Voltage Range	V _{CC} op	8.1 to 13.2	

Package Dimensions

Operating Characteristics at T	$a = 25$ °C, V_{CC}	$_{\rm c} = 9 \text{V}, f_{\rm p} = 58.75 \text{MHz}, f_{\rm s} = 54.25 \text{MHz}$	MHz(V	IF),		
$\mathbf{f}_{\mathbf{c}}$	= 4.5 MHz(S)	JIF)	min	typ	max	unit
Total Circuit Current	I ₁₇	DC	40	49	63	mA
Maximum RF AGC Voltage	V_{10H}	DC	6.2	6.5	6.8	V
Minimum RF AGC Voltage	V _{10L}	DČ	4	0.1	0.5	Ÿ
Quiescent Video	V ₁₆	DČ	4.2	4.6	5.0	Ÿ
OutputVoltage	' 10	20	1,2	1.0	0.0	•
Quiescent AFT Ouptut Voltage	V.,	DC	2.9	4,9	5.9	v
Input Sensitivity	$\mathbf{\dot{v}_{i}^{i}}$	$f_{\rm m} = 400 \text{Hz} 40\% \text{AM},$	31	37	42	
Input Sensitivity	v ₁		01	31	42	dΒμ
AGC Range	GR	$V_0 = 0.8 \text{Vp-p}$				100
AGC Range	GIL	$f_{\rm m} = 400 Hz \ 40\% AM$	57	63		dB
Manimum Allamakla Imust	37	$V_0 = 0.8Vp-p$		4.00		
Maximum Allowable Input	V _i max	$f_{\rm m}=15{\rm kHz}~78\%{\rm AM},$	90	130		mVrms
17: Jan Ordania A 1:4 3	7.7	$V_0 = \pm 1 dB$				
Video Output Amplitude	$V_{o(VIDEO)}$	$V_i = 10 \text{mVrms},$	1.4	1.65	1.9	Vp-p
O + + C(N)	001	$f_{\rm m} = 15 \text{kHz} 78\% \text{AM}$				
Output S/N	S/N	$V_i = 10 \text{mVrms}$ CW	48	53		dB
Carrier Leak	CL	$V_i = 100 \text{mVrms},$	50	55		dB
3.4 ·		$f_m = 15kHz 78\%AM$				
Maximum AFT Voltage	\mathbf{v}_{11H}	$V_i = 10 \text{mVrms}$ SWEEP	8.1	8.5	8.9	V
Minimum AFT Voltage	V_{11L}	$V_i = 10 \text{mVrms SWEEP}$	0.1	0.4	0.9	V
AFT Detection Sensitivity	$\mathbf{S_f}$	$V_i = 10 \text{mVrms SWEEP}$	45	70		mV/kHz
White Noise Threshold Level	V_{WTH}	$V_i = 10 \text{mVrms SWEEP}$	4.7	5.1	5.5	V
White Noise Clamp Level	V_{WCL}	$V_i = 10 \text{mVrms SWEEP}$	2.9	3.3	3.7	Ý
Black Noise Threshold Level	V_{BTH}	V _i =10mVrms SWEEP	1.6	1.85	2.1	Ÿ
Black Noise Clamp Level	VBCL	Vi=10mVrms SWEEP	2.6	2.9	3.2	v
SIF Output Signal Voltage	V _o (SIF)	P/S=20dB	70	100		mVrms
Frequency Characteristic	f _c	-3dB	. 5	7	140	MHz
Differential Gain	ĎG	$V_i = -27 dBm \text{ (peak) } 87.5\%$	U	3		W1112 %
	20	VIDEOMOD VIDEOMOD		J		70
Differential Phase	DP	$V_i = -27 dBm \text{ (peak) } 87.5\%$		9		1
Differ chidden i habe	D1	VIDEOMOD		3		deg
VIF Input Resistance	r.	ATDROMOD		1 2		10
VIF Input Capacitance	r _i c _i			1.5		kΩ
SIF Limiting Voltage		–3dB		3.0	400	, pF
Detection Output Voltage	V _{i (lim)}		440	300	600	μVrms
Detection Output Voltage	$V_{o (DET)}$	$V_i = 100 \text{mVrms}, f_m = 400 \text{Hz},$	440	670	800	mVrms
Total Harmonic Distortion	(TILL)	$\Delta f = \pm 25 \text{kHz}$				
Total Harmonic Distortion	THD (DET)	$V_i = 100 \text{mVrms}, f_m = 400 \text{Hz},$		0.6	1.5	%
AM Paination	A 3.413	$\Delta f = \pm 25 \text{kHz}$				_
AM Rejection	AMR	$V_i = 100 \text{mVrms}, f_m = 400 \text{Hz},$	50	60		dB
Nation Outside Walter	T7	$\Delta f = \pm 25 \text{kHz} 30\% \text{AM}$				
Noise Output Voltage	$\mathbf{v}_{\mathbf{N}}$				3.5	mVrms
Pin 4 Muting Start Voltage	V _{M(4)}		0.3	0.5		V
Pin 20 Muting Attenuation	$\mathrm{ATT}_{\mathrm{M}(20)}'$		60			dB

Equivalent Circuit Block Diagram

Sample Application Circuit (USA)

Unit (resistance: Ω , capacitance:F)

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - 2 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guarant-eed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1996. Specifications and information herein are subject to change without notice.