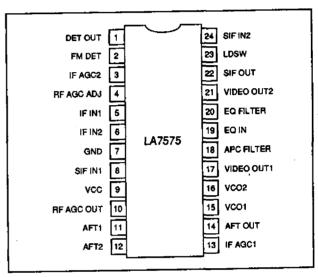

Ordering number: EN3760

OVERVIEW

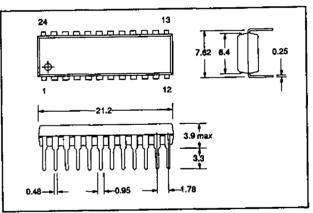
The LA7575 is a super-split, phase-locked loop video and sound intermediate frequency signal processor incorporating super-split-carrier processing of the video and sound signals using a phase-locked loop.


The LA7575 features audio buzz cancelation, and automatic frequency and phase control.

The LA7575 operates from either a 9 V or 12 V supply and is available in 24-pin DIPs.

FEATURES

- Super-split-carrier processing of sound and video signals
- Audio buzz cancelation
- High-fidelity sound reproduction
- Complete video and sound IF amplifier stages
- Automatic frequency tuning
- Automatic phase control
- RF and IF time-constant switching for high-speed AGC
- Mute circuit
- 9 or 12 V supply
- 24-pin DIP

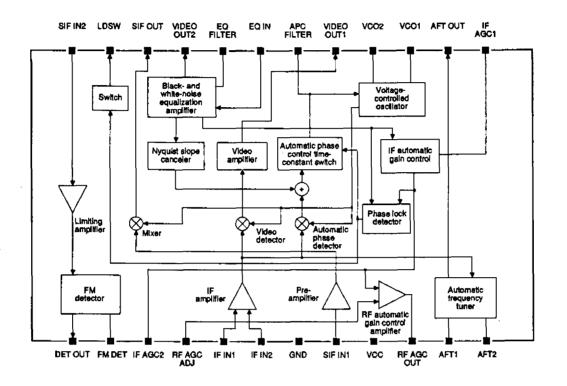

PINOUT

PACKAGE DIMENSIONS

Unit: mm

3067-DIP24S

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN


5091TS(US) No.3760-1/16

.

.

BLOCK DIAGRAM

•

PIN DESCRIPTION

.

Number	Name	Description
1 .	DET OUT	FM detector audio output
2	FM DET	FM quadrature detector
3	IF AGC2	Second IF AGC filter connection
4	RF AGC ADJ	RF AGC adjust
5	IF IN1	Balanced video IF input 1
6	IF IN2	Balanced video IF input 2
7	GND	Ground
8	SIF IN1	First sound IF input
9	VCC	Supply voltage
10	RF AGC OUT	RF AGC output
11	AFT1	AFT quadrature detection phase shift tank connection
12	AFT2	AFT quadrature detection phase shift tank connection
13	IF AGC1	First IF AGC filter connection
14	AFT OUT	AFT output
15	VC01	VCO tank connection
16	VCO2	VCO tank connection
17	VIDEO OUT1	4.5 MHz composite video output and IF trap connection
18	APC FILTER	APC filter time constant network connection
19	EO IN	Equalization amplifier input

No. 3760-2/16

Number	Name	Description
20	EQ FILTER	Video equalization filter connection
21	VIDEO OUT2	Video output
22	SIF OUT	Sound IF bandpass filter connection
23	LDSW	Lock detector switch
24	SIF IN2	Sound IF input 2

SPECIFICATIONS

Absolute Maximum Ratings

•

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC} max	13.8	v
Power dissipation	PD	1.2	W
IF AGC stage input voltage	V3, V13	Vcc	v
AFT 90-degree phase-shifter voltage	V ₁₁	V _{CC}	V
Lock detector switch voltage	V ₂₃	V _{cc}	v
FM detector output current	l ₁	-1	mA
Video amplifier output current	117	-5	mA
Equalization amplifier output current	121	-3	mA
Sound IF amplifier 1 output current	I ₂₂	-2	mA
RF AGC amplifier output current	l ₁₀	_3	mA
Operating temperature range	T _{opr}	-20 to 70	deg. C
Storage temperature range	T _{stg}	-55 to 150	deg. C

Recommended Operating Conditions

 $T_{\bullet} = 25$ deg. C

Parameter	Symbol	Rating	Unit
Supply voltage	Vœ	9 or 12	V
Supply voltage range	V _{cc}	8.2 to 13.2	V

Electrical Characteristics

Video IF stage

.

 V_{cc} = 12 V, T_{\star} = 25 deg. C, f_{p} = 58.75 MHz

Parameter	Symbol	0 an distan	Rating			- Unit
ratameter		Condition	min	typ	max	Unit
Supply current	io	V ₁₃ = 5 V	46	58	72	mA
Quiescent video output voltage	V ₂₁	$V_{13} = 5 V$	6.4	6.8	7.2	v
Minimum RF AGC voltage	V _{10L}	V ₁₃ = 8 V	-	0	0.5	v
Maximum RF AGC voltage	V10H	V ₁₃ = 8 V	10.6	11	11.4	v
Quiescent AFT output voltage	V14	V ₁₃ = 5 V	3.0	5.9	8.0	v

No. 3760-3/16

Barrowstern				Unit		
Parameter	Symbol	Condition	min	min typ		
Minimum AFT voltage	V14L			0.4	1.0	v
Maximum AFT voltage	V14H		11	11.5	12	v
Input sensitivity	Vi		25	31	37	dB/µV
AGC dynamic range	GR		62	70	· _	dB
Maximum input voltage	V _i max		100	105	_	dB/µV
Video output amplitude	Vo (video)	87.5% modulation	1.65	1.95	2.25	V _{p-p}
Output signal-to-noise ratio	S/N		49	55	_	dB
Synchronizing tip voltage	V ₂₁ (tip)		4.25	4.55	4.85	v
920 kHz-beat level	IF ₉₂₀	P = 0, C = -4 dB, S = -14 dB	37	42	_	dB
Frequency response	fc	P = 0, S =14 dB	6	8	_	MHz
Differential gain	DG	V, = 10 mV, 87.5%	_	4	8 .	%
Differential phase	DP	modulation, 10-step star video waveform	_	3	8	•
White-noise threshold voltage	Vwth		8.9	9.3	9.7	v
White-noise clamp voltage	VwcL		5.3	5.7	6.1	v
Black-noise threshold voltage	V _{втн}		3.1	3.4	3.7	v
Black-noise clamp voltage	VacL		5.3	5.7	6.1	v
AFT detection sensitivity	 Տլ		44	60	84	mV/kHz
Video IF amplifier input resistance	Ri (VIF)		0.8	1.3	1.75	kΩ
Video IF amplifier input capacitance	Ci (VIF)		-	3.0	6.0	pF
APC pull-in range (U)	feu-2		0.6	1.2	-	MHz
APC pull-in range (L)	fPL-2		_	-1.7	-0.8	MHz
	Δfu	V ₁₈ = 3 V	0.6	1.8	-	MHz
VCO maximum variation range	ΔfL	V ₁₈ = 7 V	_	-1.5	-0.8	MHz
VCO control sensitivity	β	$V_{18} = 4.6 \text{ to } 5 \text{ V}$	1.5	3.1	6.2	kHz/mV

.

 V_{cc} = 9 V, T_{a} = 25 deg. C, f_{p} = 58.75 MHz

.

.

.

Parameter	Symbol	Canditian	Rating			- Unit
		Condition	min	typ	тах	
Supply current	la	V ₁₃ = 5 V	39	49	60	mA
Quiescent video output voltage	V ₂₁	V ₁₃ = 5 V	4.9	5.3	5.7	v
Minimum RF AGC voltage	V _{10L}	V ₁₃ = 8 V	_	0	0.5	v
Maximum RF AGC voltage	V _{10H}	V ₁₃ = 8 V	7.6	8	8.4	v
Quiescent AFT output voltage	V14	$V_{13} = 5 V$	2.6	4.5	6.0	v
Minimum AFT voltage	V _{14L}		-	0.3	1.0	v
Maximum AFT voltage	V14H		8	8.5	9.0	v
Input sensitivity	Vi		27	33	39	dB/µV
Video output amplitude	V ₀ (VIF)		1.15	1.45	1.75	V _{p-p}
Synchronizing tip voltage	V ₂₁ (tip)		3.35	3.65	3.95	v

No. 3760-4/16

LA7	′575
-----	------

Parameter	Symbol	A		Unit		
		Condition	nim	typ	max	Unit
White-noise threshold voltage	Vwth		6.8	7.2	7.6	v
White-noise clamp voltage	VwcL	• • • • • •	4.0	4.4	4.8	v
Black-noise threshold voltage	Vвтн		2.4	2.7	3.0	.V.
Black-noise clamp voltage	VBCL		3.7	4.1	4.5	v
AFT detection sensitivity	Sr		28	39	55	mV/kHz

Sound IF stage

.

 $V_{cc} = 12$ V, $T_a = 25$ deg. C, $f_p = 58.75$ MHz

Parameter	Cumbel	Orandision	Rating			Unit
rarameter	Symbol	Condition	mis	typ	max	Unit
4.5 MHz conversion gain	VG	V _i = 10 mV, 54.25 MHz	16	22	27	dB
First sound IF amplifier input resistance	Ri (SIF)		1.2	2	2.7	kΩ
First sound IF amplifier input capacitance	Ci (SIF)		1	3	6	pF
Sound IF amplifier limiting sensitivity	V _i (lim)	$f_8 = 4.5 \text{ MHz}$		38	44	dB/µV
FM detector output voltage	Vo	$V_i = 100 \text{ mV},$ $f_s = 4.5 \text{ MHz},$ $\Delta f = \pm 25 \text{ kHz}$ at 400 Hz	330	490	640	mV
AM rejection	AMR	fs = 4.5 MHz	40	49	-	dB
Total harmonic distortion	THD	f _s = 4.5 MHz	-	0.5	1.0	%
Audio and video IF signal-to-noise ratio	S/N (SIF)	f _s = 4.5 MHz	60	78	-	dB
AFT defeat threshold voltage	VD11	1	0.5	2.3	-	v
Audio and video muting threshold voltage	V _{4TH}	· · · ·	0.5	1.9	-	v
FM muting threshold voltage	V _{2TH}		0.5	2.0	-	v
AFT defeat voltage	V _{D14}		5.4	6	6.6	v

$V_{cc} = 9 V$, $T_{a} = 25 deg$. C, $f_{p} = 58.75 MHz$

.

Parameter	Symbol Condition -	Rating			Unit	
reraindler		min	typ	max	Unit	
FM detector output voltage	Vo	$V_i = 100 \text{ mV},$ $\Delta f = \pm 25 \text{ kHz at } 400 \text{ Hz}$	330	490	640	mV
AFT defeat threshold voltage	V _{D11}		0.5	1.6	-	v
Audio and video muting threshold voltage	V _{4TH}		0.5	1.1	-	v
FM muting threshold voltage	V _{2TH}		0.5	1.9	-	V
AFT defeat voltage	V _{D14}		3.9	4.5	5.1	V

No. 3760—5/16

BUZZ CANCELATION

Phase-locked loop (PLL) detectors feature lower harmonic distortion in the video stage, higher IF phase differential suppression and much lower audio buzz than conventional quasi-synchronous detectors. However, voltage-controlled oscillators (VCOs) in PLL detectors, generally, are highly susceptible to interference from flyback pulses. This interference can affect the frequency of the VCO, resulting in added output noise components and audio buzz. This interference is minimized by VCO supply voltage regulation.

The PLL detector is shown in figure 1. The automatic phase control (APC) circuit multiplies the IF signal by the VCO output signal, which is phase shifted by 90 degrees, to suppress the AM component. The APC output is passed through a lowpass filter to form the VCO control signal. This results in a signal with a good carrier-to-noise ratio.

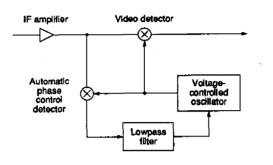


Figure 1. Structure of the PLL detector

A simple PLL detector, however, can cause other audio problems, because the broadcast signal is transmitted using vestigial sideband modulation. In this case, the RF signal is converted to an IF signal by the Nyquist slope of the SAW filter. Since the sidebands in the vicinity of the picture carrier are attenuated, the magnitudes of the upper and lower sideband vectors are different. The result is a phase distortion component, θ , in the composite vector as shown in figure 2.

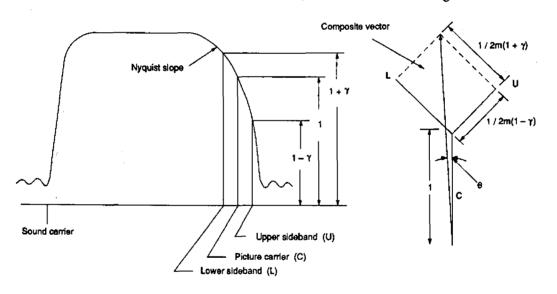


Figure 2. Phase noise components

The phase distortion is the cause of audio buzz, or Nyquist buzz, because the VCO synchronizes to the composite vector. A Nyquist buzz cancelation circuit is incorporated to reduce the level of this noise as shown in figure 3.

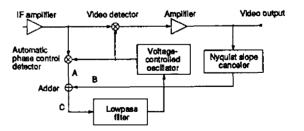


Figure 3. Detector with buzz cancelation

A typical signal with Nyquist buzz is shown in figure 4 together with the compensating signal generated by the Nyquist-slope canceler and the resultant signal.

No. 3760-6/16

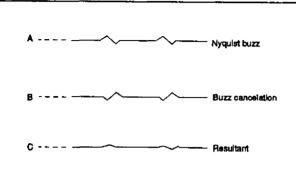


Figure 4. Nyquist buzz cancelation waveforms

DESIGN NOTES

FM Detector

The FM detector output, AF OUT, is an emitter follower with a 200 Ω series protection resistor as shown in figure 5.

In multiplex audio applications where AF OUT is connected to the input of a multiplexed audio decoder, the input resistance of the decoder can decrease causing distortion of the (L - R) signal. A 5.1 k Ω resistor, R1, should be connected to ground as shown in figure 5.

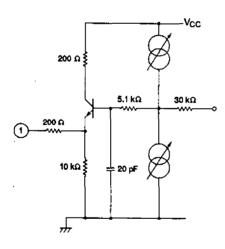
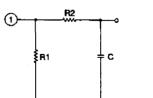



Figure 5. FM detector, audio output

In monophonic applications, an RC deemphasis circuit should be connected as shown in figure 6. The time constant is given by R2C.

The circuit shown in figure 3 is highly effective in suppressing audio buzz caused by the 4.5 MHz IF beat signal in Japanese multiplexed (L - R) audio or American Multichannel TV Sound (MTS).

As buzz cancelation is independent of the PLL loop time constant, other parameters such as automatic phase control can be optimized to eliminate interference from flyback pulses.

FM discriminator

The quadrature detector frequency at which the 90-degree phase shift occurs is determined by the tuned circuit connected to FM DET as shown in figure 7.

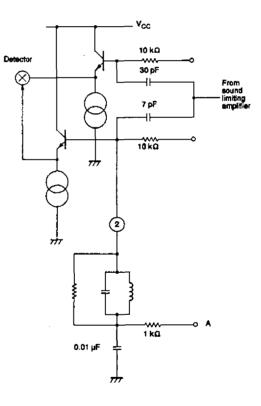


Figure 7. FM discriminator

IF AGC Filters

The IF signal is peak-detected and averaged by the filters connected to IF AGC1 and IF AGC2, which are the first and second IF AGC filters, respectively, as shown in figure 8. The IF AGC audio component of the input signal to the video IF stage is first removed by an audio trap.

m m

Figure 6. RC deemphasis circuit

No. 3760---7/16

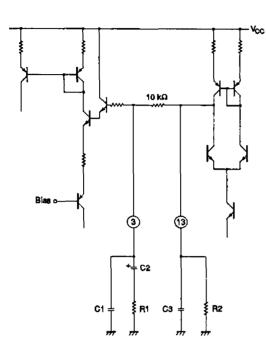


Figure 8. IF AGC filters

The typical component values of the resistors and capacitors in the first and second filter time constants are shown in table 1.

Table 1. Time constant setting components

Pin	Component	First IF filter	Second IF filter
	C1	330 pF	330 pF
3	C2	-	0.47 μF
	R1	-	2.2 kΩ
	C3	0.47 μF	0.068 µF
13	R2	820 kΩ	820 kΩ

Mute Switch

The black-noise canceler can be disabled by pulling IF AGC1 to 1 V or lower. An external AGC source can then be applied to IF AGC2 to drive the AGC circuit. This mode of operation is designed for use with an IS-15 (EIA standard) switch.

Ghosting Problems

Reflected signals, which have a phase different from that of the main signal, can cause distortion of the horizontal-synchronizing pulse as shown in figure 9. As a result, the same charge-to-discharge current ratio of the IF AGC cannot be maintained. If the phase difference is large, the video signal can also be distorted as shown in figure 10. Distortion can be minimized by connecting a resistor in the range 820 k Ω to 1 M Ω between IF AGC1 and GND.

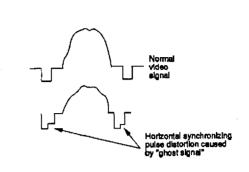


Figure 9. Horizontal-synchronizing pulse distortion

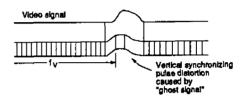


Figure 10. Video signal distortion

RF AGC Adjust

The operating point of the RF automatic-gain control can be adjusted by using a variable resistor connected to RF AGC ADJ as shown in figure 11. When RF AGC ADJ is pulled to 0.5 V, both the FM output and the video output are muted.

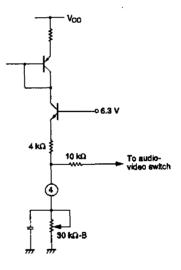


Figure 11. RF AGC adjustment resistor

Video IF Input

The video IF amplifier inputs on IF IN1 and IF IN2,

shown in figure 12, should be capacitively coupled. The input signal is the average of these two inputs. The input resistance is approximately 1.5 k Ω , and the input capacitance, 3 pF.

No. 3760-8/16

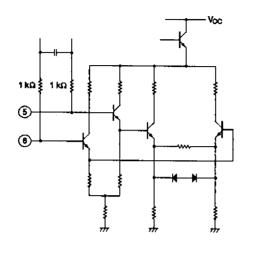


Figure 12. Video IF amplifier

First Sound IF Input

The first sound IF amplifier input, SF IN1, shown in figure 13, should be capacitively coupled. If a SAW filter is used, an inductor should also be connected as shown in figure 14. This matches the SAW filter output capacitance to the LA7575 input capacitance and increases the sensitivity.

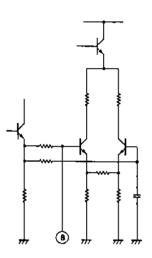
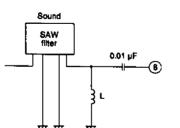



Figure 13. First sound IF input

RF AGC Output

The RF AGC amplifier output, RF AGC OUT, is an emitter follower with a 200 Ω series protection resistor as shown in figure 15. The value of the bleeder resistor connected between RF AGC OUT and the tuner, shown in figure 16, should be chosen based on the tuner maximum gain.

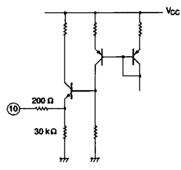


Figure 15. RF AGC output

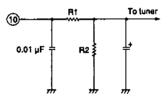
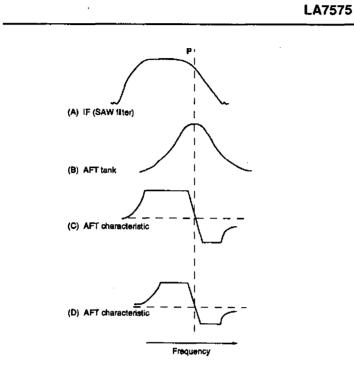


Figure 16. Bleeder resistor connection

AFT Tank

The automatic frequency tuning (AFT) tank connected to AFT1 and AFT2 generates the 90-degree phase shift required for quadrature detection. The bandpass frequency characteristic of the IF SAW filter is shown in figure 17(A), and the AFT tank, in figure 17(B). The combined response is shown in figure 17(C). The resulting extended low-frequency response, which increases susceptibility to incorrect operation, can be reduced by connecting a capacitor, C2, in series with the AFT tank as shown in figure 18. The resultant frequency response is shown in figure 17(D).


Capacitors C1 and C2 should have a ratio of approximately 5 to 1. An inductor or resistor should also be connected in parallel with C2 to maintain the DC balance of the AFT tank.

117 TTT TTT

.

Figure 14. SAW filter matching

No. 3760-9/16

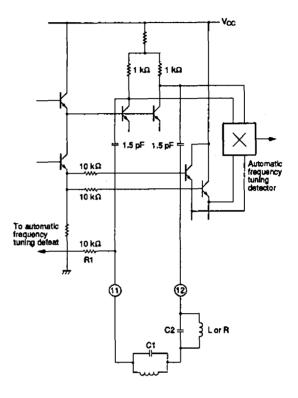


Figure 17. Tank circuit response characteristics

Figure 18. AFT tank

The AFT can be defeated by connecting AFT1 to ground through resistor R1, which should be 20 k Ω or lower.

AFT Output

•

An external bleeder resistor is required to generate the AFT voltage. The AFT loop time constant is formed by the external resistor, R3, and a capacitor, C2, as shown in figure 19. The resistor also provides series protection.

Fluctuations in the AFT quiescent output voltage, if present, can be reduced by connecting a series resistor, R4, as shown in figure 20. Note, however, that this also reduces the AFT range.

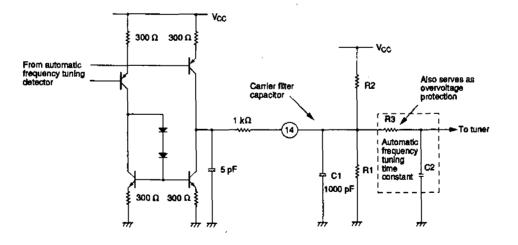


Figure 19. AFT loop time constant

No. 3760-10/16

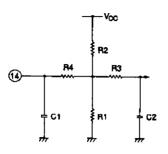


Figure 20. AFT output

VCO Tank

The VCO tank circuit is shown in figure 21. The tank capacitors connected between VCO1 and VCO2 should be in the range 20 to 27 pF (24 pF is recommended). The VCO tank susceptibility to external effects can be reduced by using either chip capacitors or capacitors integrated with the tank coil.

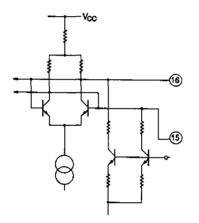


Figure 21. VCO tank

Composite Video Output

The 4.5 MHz composite video output, VIDEO OUT 1, is shown in figure 22. A resistor should be connected between this emitter follower output and ground to ensure adequate output drive capability. The resistor should be 1.2 k Ω or greater if V_{cc} is 12 V, and 1.0 k Ω or greater, if V_{cc} is 9 V.

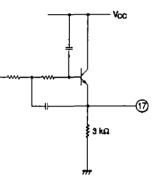


Figure 22. Composite video output

APC Filter

Time-constant switching is incorporated into the VCO for automatic phase control (APC). When the PLL is locked, the VCO is controlled by loop A as shown in figure 23. When the PLL is unlocked or the signal is weak, the VCO is controlled by loop B which has higher gain. The increased APC loop gain also increases the pull-in range.

The recommended range for the external APC filter resistor is 47 to 150 Ω , and for the capacitor, 0.47 μ F. If the resistor is greater than 47 Ω , the modified circuit shown in figure 24 should be used.

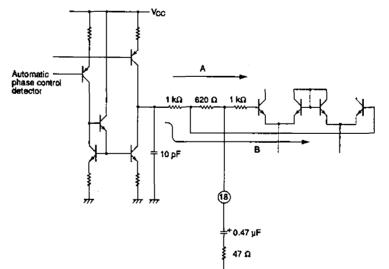


Figure 23. APC filter

No. 3760-11/16

.

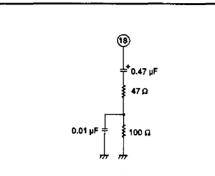


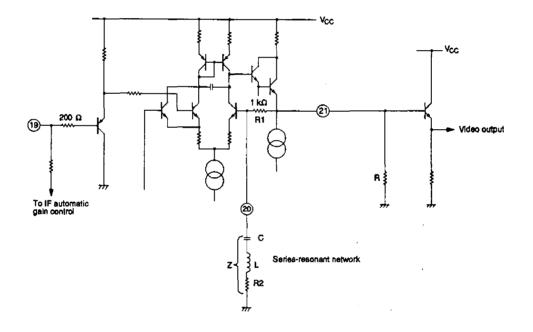
Figure 24. Modified APC filter circuit

Equalization Amplifier

The video signal, after passing through the 4.5 MHz trap, is input on EQ IN to the equalization amplifier, and output, on VIDEO OUT. A resistor should be connected between the emitter follower output and ground to ensure adequate output drive capability. The resistor

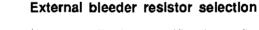
should be 2.7 k Ω or greater if V_{cc} is 12 V, and 2.2 k Ω or greater, if V_{cc} is 9 V. A buffer transistor should be used if the signal is taken off-board.

Equalization amplifier design


The equalization amplifier has an external series resonant circuit, shown in figure 25, which controls the frequency characteristic. The output voltage, V_0 , is given by the following equation.

$$V_0 = (R1 / Z + 1) (V_1 + V_{in})$$

Since the input voltage, V_{in} , is small, the gain is given approximately by the following equation.


$$A_V = V_O / V_I = R1 / Z + 1$$

The amplifier can be used as a voltage amplifier by connecting a network to EQ FILTER as shown in figure 26. The bleeder resistance should be chosen to avoid excessive gain and extreme video synchronizing tip voltages.

LA7575

Figure 25. Equalization amplifier

If the equalization amplifier is configured for nonunity gain, the bleeder resistors, R2 and R3 shown in figure 27, are required to ensure that the output DC voltage does not change.

The synchronizing tip voltage does not change if V_x is approximately equal to V_{21} . V_x is given by the following equation.

$$V_{Y} = V_{CO} \times R^2 / (R^2 + R^3)$$

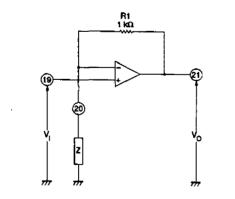


Figure 26. Voltage amplifier configuration

 $\mathbf{v}_{\mathbf{X}} = \mathbf{v}_{\mathbf{C}\mathbf{C}} \times \mathbf{K}_{\mathbf{Z}} + (\mathbf{K}_{\mathbf{Z}} + \mathbf{K}_{\mathbf{D}})$

The voltage gain is given by

 $A_V = 1 + 1000 / Z_1$

No. 3760-12/16

where

 $Z1 = R2 \times R3 / (R2 + R3)$

Resistors R2 and R3 are given by

R2 = 1000 × V_{CC} / ((V_{CC} - V_X) × (A_V - 1))

 $R3 = 1000 \times V_{CC} / (V_X \times (A_V - 1))$

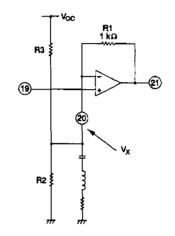


Figure 27. External bleeder resistor selection

First Sound IF Output

The first sound IF stage output is an emitter follower with internal 100 Ω series resistor. An extra series resistor should be added for impedance matching to the ceramic bandpass filter as shown in figure 28.

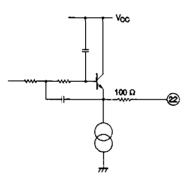


Figure 28. First sound IF output

Lock Detector Switch

.

The APC time-constant switching is done internally. However, the LDSW pin, shown in figure 29, can be used to monitor the PLL lock condition.

Sound IF Input

The input impedance of the amplifier, shown in figure 30, is approximately 1 k Ω . Any interference on BPF2, a video signal for example, can cause audio buzz or heterodyning. Good circuit board layout is essential. Examples of both good and poor layout are shown in figures 31 and 32, respectively.

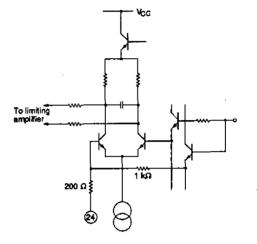


Figure 30. First audio IF amplifier

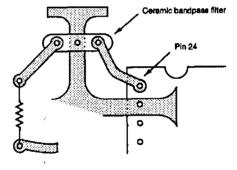


Figure 31. Good PCB layout

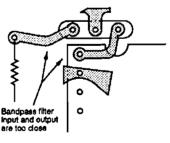


Figure 32. Poor PCB layout

m m

Figure 29. Lock detector monitoring

No. 3760-13/16

APPLICATION NOTES

Sanyo SAW Filters

Two types of surface-acoustic-wave (SAW) filter built on different piezoelectric substrates can be used with the LA7575—Lithium Tantalate and Lithium Niobate.

Lithlum Tantalate (LiTaO₃) SAW filters

The LiTaO₃ SAW filters have a low temperature coefficient of -18 ppm/deg. C and good stability, but have

high insertion loss. An external coil is required at the output for level matching as shown in figure 33.

The LiTaO₃ SAW filters cover the Japanese and American bands, which both have relatively high IF frequencies. These filters have part numbers TSF1XXX or TSF2XXX.

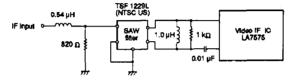


Figure 33. LiTaO₃ SAW filter

Lithium Niobate (LiNbO3) SAW filters

The LiNbO₃ SAW filters have a relatively high temperature coefficient of -72 ppm/deg. C, but have an insertion loss of approximately 10 dB lower than LiTaO₃ filters. A matching circuit is, therefore, not required at the output as shown in figure 34. As a result of the lower insertion loss, the passband ripple is higher. However, the low impedance and low feedthrough of these filters make them less susceptible to stray capacitance effects caused by external components and printed circuit board layout, resulting in greater stability.

The LiNbO₃ SAW filters cover the PAL and American bands, which both have relatively low IF frequencies. These filters have part numbers TSF5XXX.

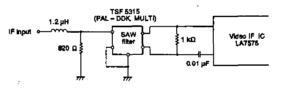
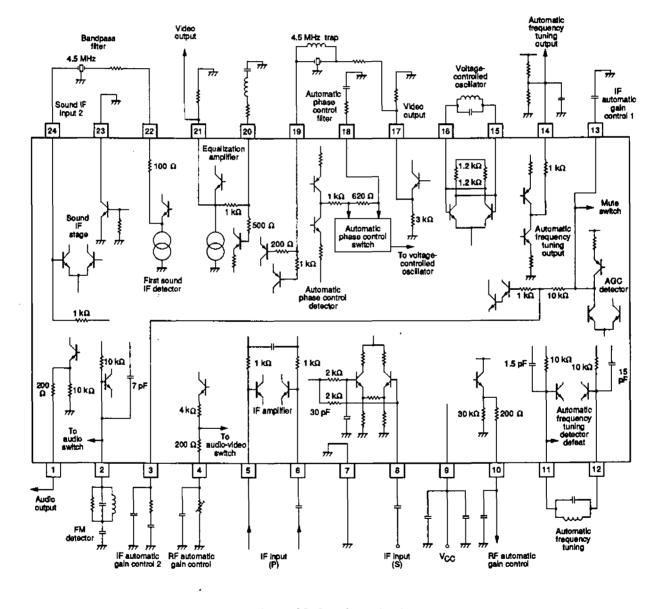



Figure 34. LiNbO3 SAW filter

Coil Specifications

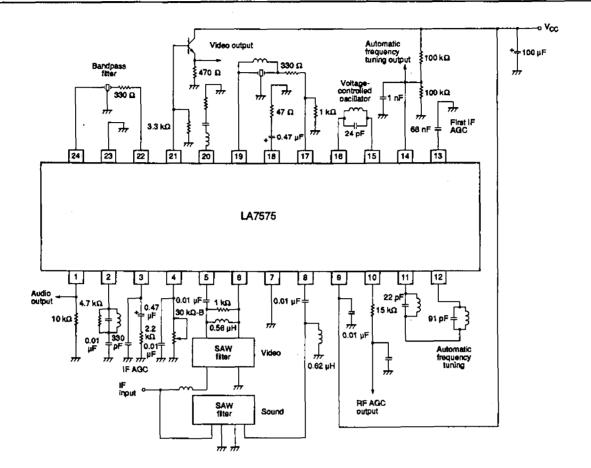
Parameter	NTSC		
	Japan	U.S.A.	FAL
IF frequency	58.75 MHz	45.75 MHz	38.9 MHz
VCO coil	$ \begin{array}{c} \mathbf{S} \\ \mathbf{O} \\ \mathbf$	S 9 turne 0.12 mm DIA C = 24 pF	8 0 11 tuma 0.12 mm DIA 0 2 4 pF
	HW6226-4	HW6227-4	MA6389
AFT coil	S o 3.5 turns 0,5 mm DIA	S S S 5.5 turns 0.5 mm DIA 0.5 mm DIA	S ຈຳຈັດ 0.5 mm DIA ອ່າວ
	MA8181	MA6343	MA7115

No. 3760-14/16

TYPICAL APPLICATIONS

....

.


Parameter	NTSC		PAL
	Japan	U.S.A.	
Sound IF coil	S	5 0.08 mm DIA 0.08 mm DIA C = 100 pF	S 25 turns 0.08 mm DIA C = 100 pF
	K\$6102-1	KS6102-1	MA8182
Video SAW filter	TSF1132L	TSF1229L	TSF5315
Sound SAW filter	TSB1101P	TSB1205P	-

LA7575

Figure 35. Interface circuit

No. 3760-15/16


•

.

.

Figure 36. Japan NTSC IF signal processor

No. 3760—16/16