
Ordering number : EN4276

Overview

The LA8517M, an audio signal processing IC for cordless telephone answering machine applications, incorporates speech network, audio signal processing and cross-point switching functions into a single chip.

Applications

Speech Network

- 2 to 4 wire conversion
- Impedance matching
- Line driver
- DTMF interfacing
- Transmitting amplifier
- Key tone interfacing
- Receiving amplifier

Audio Signal Processing

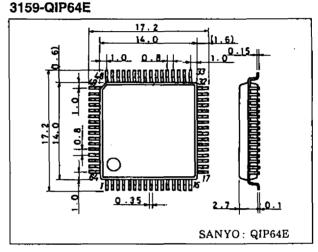
- Recorder preamplifier (with ALC)
- Playback equalizer amplifier
- Recorder amplifier
- Voice detection circuit (VOX)
- Power amplifier ($P_0 = 200 \text{ mW}$, $R_L = 8\Omega$, $V_{CC} = 5 \text{ V}$)

Cross-point Switching

- 8 × 8 equivalent cross-point switching
- CPU interfacing (serial control)

Features

Speech Network


- Supports direct interfacing using low impedance telephone receiver.
- Using dialer IC mute signaling, supports output to circuit following changeover of telephone receiver and dial signal (DTMF).
- Transmit gain and receive gain are controlled automatically in response to loop current.
- Supports forced attenuation of transmit gain and receive gain from gain control pin.
- Equipped with dial confirmation tone (key tone) input pin (mute signal control).
- Variety of handsets supported using externally connected components for varying transmit gain and receive gain.
- Outstanding for branch performance with low operating current.

Audio Signal Processing

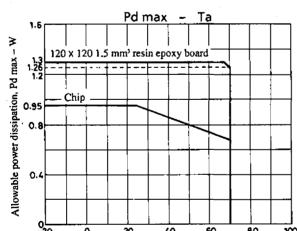
- Supports single mechanism system.
- All necessary answering machine functions built-in; microcontroller control permits unique system construction.
- a Duille in manual annullfian

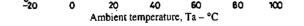
Package Dimensions

unit : mm

• Built-in power amplifier.

• Permits independent settings for recording amplifier gain and recording bias current using external resistors.


SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO JAPAN


31593TS A8-9583 No. 4276-1/21

LA85 ⁻	17	М
-------------------	----	---

Continued from preceding page. <PB AMP> min typ max unit VG_{E} 47 49 51 dB -60dBV input between pins 23 - 25 Voltage gain Total harmonic distortion THD -60dBV input between pins 23 - 250.3 1.0 % $\mathbf{V}_{\mathbf{NI}}$ 23pin shorts (in terms of AC), 20Hz to 20kHz Equivalent input noise voltage 1.0 5 μVrms <OGM AMP> -20dBV input between pins 29 - 30 dB Voltage gain VG_G 8 10 12 Total harmonic distortion THD -20dBV input between pins 29 - 30 0.1 1.0 % <REC AMP> Voltage gain VG_R Pin 21 $Z_{AC} = 9k\Omega$ between pins 27 – 22 -6 --4 -2 dB Output bias voltage (pin 22 voltage) $v_{\rm B}$ Pin 21 Z_{DC} = 15k Ω , 6.8 k Ω pin 22 load, 0.8 1.0 1.2 v Total harmonic distortion THD -30 dBV input pin 9 . pin 22 fixed 0.5 1.0 % <MIC AMP> Voltage gain VG_M -40dBV input between pins 34 - 36 28 30 32 ₫B Total harmonic distortion THD -40dBV input between pins 34 - 36 0.1 1.0 % Equivalent input noise voltage 34 pin shorts (in terms of AC), 20Hz to 20kHz 5 \mathbf{V}_{NI} 1.5 μVrms <POWER AMP : $R_L = 8\Omega$ > VG_P -30dBV input between pins 45 - 42 28 30 32 dB Voltage gain THD = 10% 250 mW Output power $\mathbf{P}_{\mathbf{O}}$ 200 THD -30dBV input between pins 45 – 42 0.5 1.5 % Total harmonic distortion Ri 60 kΩ Input resistance SVRR Rg = 0, fr = 100Hz, Vr = -20dBV50 60 dB Ripple rejection 45 pin shorts (in terms of AC), 20Hz to 20kHz Output noise voltage V_{NO} 0.04 0.1 mVrms <VOX> Sensitivity I -24dBV input 0.3 v VOXL Sensitivity 2 V_{OXH} -28dBV input 4.5 v <V_{REF}> Output voltage V_{REF} 2.1 2.3 2.5 ۷ <CONTROL> $\mathbf{F}_{\mathbf{CK}}$ **Clock frequency** 500 kHz Input signal "H" level $\mathbf{v}_{\mathbf{H}}$ 3 v Input signal "L" level $v_{\boldsymbol{L}}$ 1.5 v

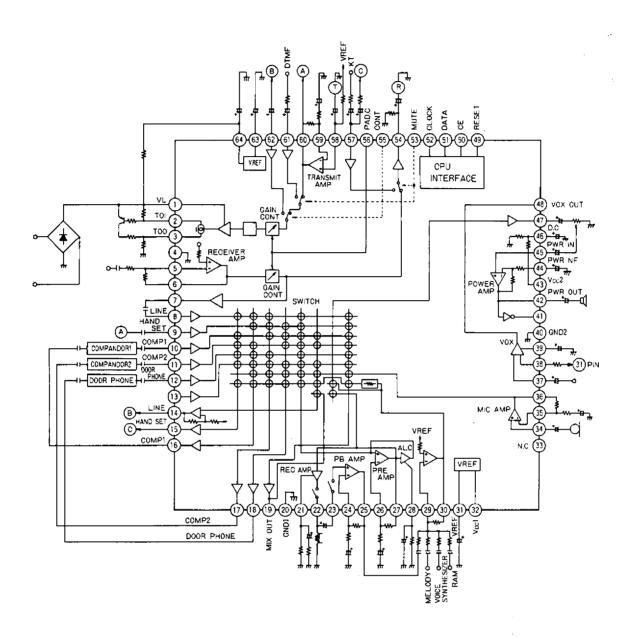
Allowable power dissipation vs. ambient temperature

No. 4276-3/21

.

Cracifications						
Specifications	2590			•.		
Maximum Ratings at Ta = 3		A A A		unit		
Maximum supply voltage	V _L max	Speech network	15 10	v v		
	V _{CC} max	Excluding speech network	130			
Loop current Allowable power dissipation	I _L max Pd max		950	mA mW		
Operating temperature	Top r		-20 to +70	°C		
Storage temperature	Tstg		-40 to +150	°C		1
	•		-40 10 11:50			
Operating Conditions at Ta			_	unit		
Recommended supply voltage	V _{cc}	Excluding speech network	5	· V		
Supply voltage operating range	V _{CC} op	Excluding speech network	4.5 to 7.5	v		
Operating Characteristics a	at Ta = 25°C,	f = 1kHz				
[Speech network]			min	typ	max	unit
Line voltage	V _L	$I_L = 20 mA$	3.3	3.8	4.3	v
		$I_L = 50 m A$	5.5	6.3	7.1	v
		$I_L = 120mA$	10.2	12.2	14.2	v
Internal supply voltage	v_{cc}	$I_L = 20 m A$	1.9	2.1	2.3	v
		$I_{L} = 50 \text{mA}$	3.3	3.6	3.9	V
The second state of the	6	$I_{L} = 120 \text{mA}$	6.8	7.1	7.4	V
Transmitting gain	G _T	$I_L = 20mA, V_{IN} = -55dBV$ $I_L = 120mA, V_{IN} = -55dBV$	34 32	36 34	38 36	dB dB
Receiving gain	G _R	$I_L = 20 \text{mA}, V_{IN} = -20 \text{dBV}$	-5	_3	-t	dB
Receiving gan	⊖ _R	$I_{\rm L} = 120 {\rm mA}, V_{\rm IN} = -20 {\rm dBV}$ $I_{\rm L} = 120 {\rm mA}, V_{\rm IN} = -20 {\rm dBV}$	-9.5	-7.5	-5.5	dB
DTMF gain	G _{MF}	$I_L = 20 \text{mA}, V_{IN} = -30 \text{dBV}$	19.5	21.5	23.5	dB
	- MIF	$I_L = 120 \text{mA}, V_{IN} = -30 \text{dBV}$	17	19	21	dB
KTI gain	G _{KT}	$I_L = 20$ mA, $V_{IN} = -40$ dBV	12	14	16	dB
		$I_L = 120 \text{mA}, V_{1N} = -40 \text{dBV}$	14	16	18	dB
Transmitting dynamic range	DRT	$l_{L} = 20mA$, THD = 4%	2.5			V _{P-P}
		$I_{L} = 120mA$, THD = 4%	4.5			V _{P-P}
Receiving dynamic range	DR _R	$I_{\rm L} = 20 {\rm mA}, {\rm THD} = 10\%$	0.3			V _{P-P}
		$I_{\rm L} = 120 {\rm mA}, {\rm THD} = 10\%$	0.5			V _{P.P}
DTMF input impedance	Z _{MF}			20		kΩ
KTI input impedance	Ζ _{κτ}			24		kΩ
Mute input "H" level voltage	V _{IH}	$I_L = 20 \text{mA} \text{ to } 120 \text{mA}$	V _{CC} /2		v _{cc}	V
Mute input "L" level voltage	V _{IL}	$I_L = 20$ mA to 120mA	0		0.2	V
Transmitting PADC attenuation	∆ G _T	$I_L = 30 \text{mA}, 24 \text{k}\Omega$ ground		3		dB
Receiving PADC attenuation	$\triangle G_R$	$I_L = 30 \text{mA}, 24 \text{k}\Omega \text{ ground}$		6		dB
Internal reference voltage	V _{REF}	$I_L = 20mA$ $I_L = 50mA$		0.65		v v
		$I_L = 50mA$ $I_L = 120mA$		1.13 2.25		v
faudio ciencl processine'				2.20		•
[Audio signal processing]						
Quiescent current	Icco		10	. 21	30	mA
<pre amp=""></pre>						
Voltage gain	VG _C	-48dBV input between pins 8 -	- 27 37	39	41	dB
Total harmonic distortion	THD	-30dBV input between pins 8 -	- 27	0.25	1.0	%
ALC saturation output level	Vos	-30dBV input between pins 8 -	- 27 430	530	630	mVrms
ALC range	ALCW	After ALC is on and until THE becomes 1%	35	40		₫B
Equivalent input noise voltage	V_{NI}	Number 8 pin shorts (in terms 20 Hz – 20 kHz	of AC),	2.0	5	μVrms

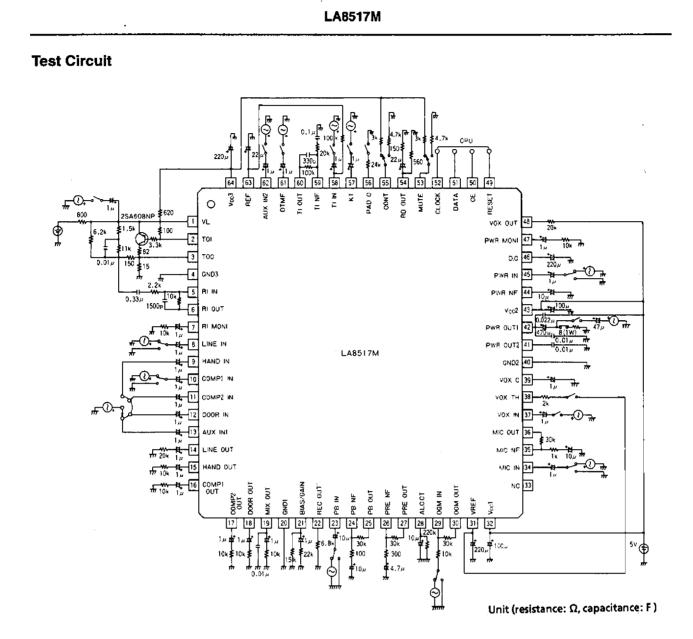
Continued on next page.



Equivalent Circuit Block Diagram and Peripheral Circuits

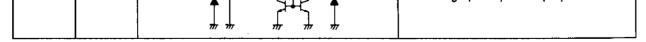
.

20


.

1.	VL	17.	COMP2 OUT	33.	NC	49.	RESET
2.	TOI	18.	DOOR OUT	34.	MIC IN	50.	CE
3.	TOO	19.	MIX OUT	35.	MIC NF	51.	DATA
4.	GND3	20.	GND1	36.	MIC OUT	52.	CLOCK
5.	RLIN	21.	BIAS/GAIN	37.	VOX IN	53.	MUTE
6.	RIOUT	22.	REC OUT	38.	VOX TH	54.	RD OUT
7.	RI MONI	23.	PB IN	39.	vox c	55.	CONT
8.	LINE IN	24.	PB NF	40.	GND2	56.	PAD C
9.	HAND IN	25.	PB OUT	41.	PWR OUT2	57.	кт
10.	COMP1 IN	26.	PRE NF	42.	PWR OUT1	58.	TI IN
11.	COMP2 IN	27.	PRE OUT	43.	Vcc2	59.	TI NF
12.	DOOR IN	28.	ALC CT	44.	PWR NF	60.	TI OUT
		20	0.014 111			~ .	

13. AUX IN1	29. OGM IN	45. PWR IN	61. DTMF
14. LINE OUT	30, OGM OUT	46. D.C	62. AUX IN2
15. HAND OUT	31. VREF	47. PWR MONI	63. REF
16. COMP1 OUT	32. Vcc1	48. VOX OUT	64. Vcc3


No. 4276-4/21

Description of Pin Functions

Unit (resistance: Ω)

Pin Number	Pin Name	Internal Equivalent Circuit	Pin Description
1	VL	()	Input pin for Loop current and Line voltage.
2	τοι	(2) → → → → → → → → → → → → → → → → → → →	Inlet pin for transmitting output current.
3	тоо	3 € 6.2k \$ 100	Transmitting output current output pin
4	GND3		Speech network system ground (GND) pin.
5	RI IN		Receiving input amplifier negative (–) input pin Permits adjustments of galn and frequency performance using externally connected components.
6	RI OUT	┙┙┙┙	Receiving input amplifier output pln.

Continued on next page.

No. 4276-5/21

LA	B51	7	Μ
----	-----	---	---

.

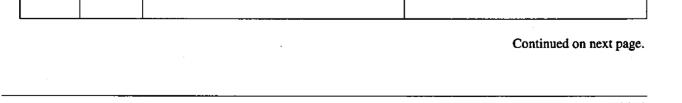
Pin Number	Pin Name	Internal Equivalent Circuit	Pin Description
7	RI MONI		Receiving input monitor amplifier output pin.
8	LINE IN		Line input pin.
9	HAND IN		Handset input pin.
10	COMP1 IN	↓ ↓ 3 0k	Compandor 1 input pin.
11	COMP2 IN	8~13	Compandor 2 input pin.
12	DOOR IN		Door phone input pin.
13	AUX IN1		Auxiliary input pin.
14	LINE OUT		Line output pin.
15	HAND OUT	REF Vcc1	Handset output pin.
16	COMP1 OUT		Compandor 1 output pin.
17	COMP2 OUT	5~18 € 20k € ■	Compandor 2 output pin.
18	DOOR OUT		Door phone output pin.
19	MIX OUT	REF 5k \$ 10k \$ 20k \$ \$	Mixing output pin.
20	GND1		Signal processing ground (GND) pin.
21	BIAS/GAIN		Bias pin. Supports control of record amplifier gain and recording bias using exter resistor.
22	RECOUT		Recording amplifier output pin.

Continued on next page.

No. 4276-6/21

,

Pin Number	Pin Name	Internal Equivalent Circuit	Pin Description
23	PBIN		PB amplifier positive (+) input pin.
24	PBNF		PB amplifier negative () input pin.
26	PRE NF		Preamplifier negative (-) input pin.
34	MIC IN	23,34	Microphone amplifier positive (+) input pin.
35	MIC NF	की तीर थि	Microphone amplifier negative () input pin.
25	PB OUT		PB amplifier output pin.
27	PRE OUT		Preamplifier output pin.
36	MIC OUT	25,27,36 777 777	Microphone amplifier output pin.
28	ALC. CT		ALC time constant connection pin.
29	OGM IN		Outgoing message (OGM) signal negative (-) input pin
			· · ·
30	OGMOUT		Outgoing message (OGM) signal output pin.
31	V _{REF}	· · · · · ·	internal reference voltage output pin.
		→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
1	1 1		
32	V _{CC} 1		Signal processing power supply pin.


		_

Continued on next page.

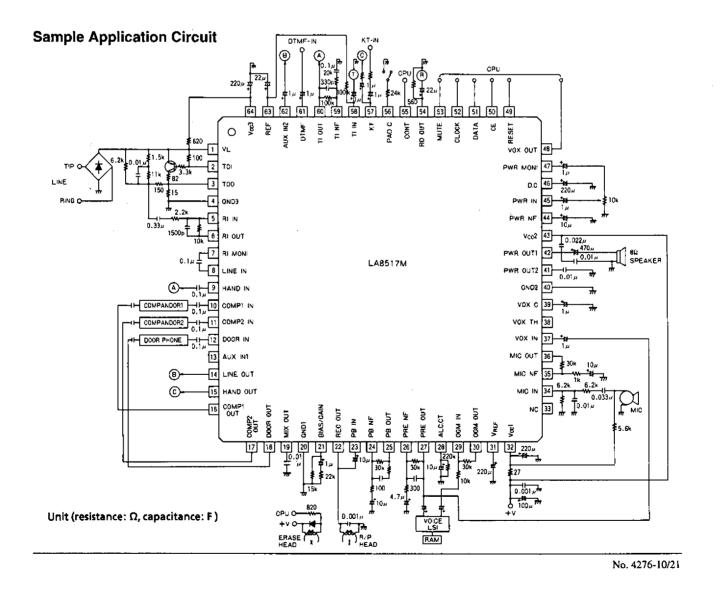
No. 4276-7/21

,

Continued from preceding page. Unit (resistance: Ω) Pin Number Pin Name Internal Equivalent Circuit Pin Description VOX IN 37 Voice detection (VOX) positive (+) input pin. Vcc1 38 VOX TH Voice detection (VOX) sensitivity adjustment pin. Adjusts VOX sensitivity using connection to V_{REF} (pin 31) with resistor located between. / BEI 39 VOX. C Voice detection (VOX) output pin. Vcc1 39 4.7k 40 GND2 Power system ground (GND) pin. 41 PWR OUT2 Power amplifier 2 output pin (inverted). 42 PWR OUT1 Power amplifier 1 output pin (non-inverted). 44 PWR NF Power amplifier negative (--) input pin. 45 PWR IN Power amplifier positive (+) input pin. D. C 46 Power amplifier reference voltage output pin (approximately 4/9 X V_{CC}2. 43 V_{cc}2 Power system power supply pin. 47 PWR MONI Power amplifier output pin. Vcc1 VOX 48 Voice detection (VOX) output pin, open-collector (O/C). Vec1 Reset pin. Resets with "L". 49 RESET 50 CE Chip enable input pin. DATA 51 Data input pin. 49-52 52 CLOCK Clock Input pin.

No. 4276-8/21

.

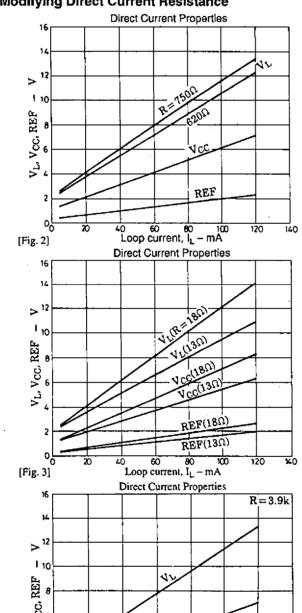

Continued from preceding page. Unit (resistance: Ω) Pin Number Pin Name Internal Equivalent Circuit Pin Description MUTE Mute pin. Changes receiving signal, KT signal of 53 receiving system and transmitting signal as well as DTMF signal of transmitting system. "H": Call settings "L": DTMF transmitting, KT receiving output 53.55 55 CONT Control pin. When set to "L", signal input from AUX IN2 (pin 62) becomes transmitting output. 54 RD OUT Receiving output pin. Connected to low impedance telephone receiver (approximately 150Ω) through capacitor. 56 PADC PAD control pin. The valve of the resistor Vcc3 between this pin and either the $V_{CC}\mathbf{3}$ (pin 64) or GND3 (pin 4) determines the shape of the Loop current vs. gain control (auto PAD) characteristics. (56 22k Key tone input. The input signal switches to KT Vcc3 57 Vcc3 receiving output when the MUTE pin (pin 53) is REF REF set to "L" for low. 28 (57 12k TIIN 58 Vec3 Transmitting input amplifier positive (+) input pin. (59 59 TINF Transmitting input amplifier negative (--) input pin. (58 60 TIOUT Transmitting input amplifier output pin. 61 DTMF DTMF input pin. The input signal becomes transmitting output when the MUTE pin (pin 53) REF is set to "L" for low.

Continued on next page.

No. 4276-9/21

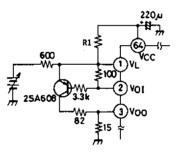
•

Pin Number	Pin Name	Internal Equivalent Circuit	Pin Description
62	AUX IN2	Vcc3 REF 62 Wcc3 REF 62 Wcc3	Auxiliary input pin. The input signal switches to transmitting output when the CONT pin (pin 55 is set to "L" for low.
63	REF	Vcc3	Internal reference voltage output pin. Should not be used as an external power supply source.
64	V _{CC} 3		Internal power supply pin. Internal circuit powe supply voltage. Should not be used as an external power supply source other than fo MUTE pin and CONT pin "H" (high) level voltage.

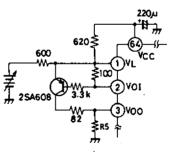

Functional Description C2 Since the LA8517 is equipped with a built-in 1) Speech Network ∓₿+ 220 μ power amplifier, a surface mount transistor for Unit (resistance: Ω , capacitance: F) the allowable demand should be attached as R1 ₹ 620 shown in figure 1 so that loop current is consumed outside the IC. Loop current Loop current Vcc -> ٧ı flowing to the transistor can be controlled by LA8517M R2 🗲 100 varying the R3 base resistor. R4 and R5 allowable electrical power setting reflects the ж2 ٧o C1 6 maximum current requirements of the expected loop current. *1 Line driver V00 82 R5 **≶**15 [Fig. 1] amplifier Notes: 777

LA8517M

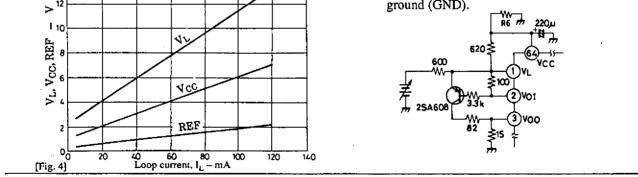
*1. The line driver amplifier absorbs transmitting signal delivery and direct current.


*2. In cases of oscillation caused by load conditions existing between V_L and GND, a 0.1 µF rated capacitor should be installed.

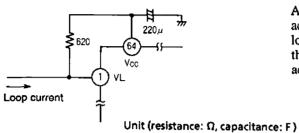
• Modifying Direct Current Resistance



(1) By varying R1 (620 Ω), direct current resistance can be modified as shown in figure 2. Under such circumstances, the alternating current impedance is also changed.

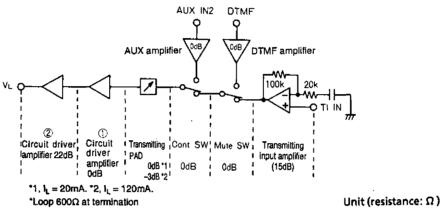

Unit (resistance: Ω, capacitance: F)

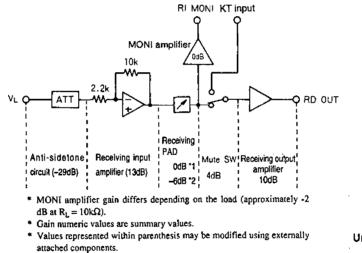
(2) By varying R5 (15Ω) , direct current resistance can be modified as shown in figure 3. Under such circumstances, BN (balancing network) conditions and transmitting gain are also changed.



③ Direct current resistance can also be altered, as shown in figure 4, by establishing a connection from the V_{CC} pin (pin 64) through an R6 to the ground (GND).

No. 4276-11/21


Setting Alternating Current Impedance


Alternating current impedance is fundamentally decided according to 620Ω 220µF. In practice, because current loads, other than those of the speech network, enter from the line, alternating current impedance is synthetically adjusted to match the impedance of the speech network.

Gain Allocation

(1) Transmitting Gain Allocation

(2) Receiving Gain Allocation

Unit (resistance: Ω)

- Gain Control Circuit (PADC pin)
- (1) PADC pin open (auto PAD)

Loop current capacity which supports transmitting and receiving gain is automatically adjusted. When transmitting is approximately -3dB and when receiving is approximately -6dB, attenuation follows the increase of loop current.

② PADC pin connected to ground (GND) using resistor

Gain attenuation begins using a loop current capacity which is lesser than when the PADC pin is open.

(3) PADC pin connected to V_{CC} using resistor

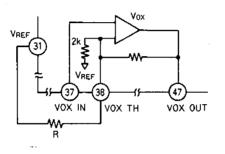
Gain attenuation begins using a loop current capacity which is greater than when the PADC pin is open.

- **Receiving Amplifier** ٠
 - Uses a dynamic receiver

No. 4276-12/21

2) Signal Processing

• ALC


ALC operates with input ranging between approximately -45dBV to -5dBV. ALC saturation power level is approximately 500 mVrms.

• V/I Conversion

V/I conversion is made to draw the recording current for DC bias. The conversion gain and bias current can be controlled using an external resistor connected to pin 21. DC equalling pin 21 DC output is output from pin 22.

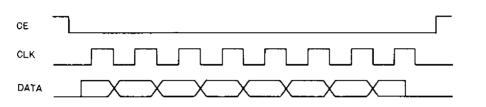

• vox

Detects the presence or absence of a call. When the VOX input pin (pin 37) signal is -24dB or greater, the VOX output pin (pin 47) switches to "L" for low. Detection level adjustments may be performed by installing an R resistor between VOX TH (pin 38) and V_{REF} (pin 31) as shown in the following figure.

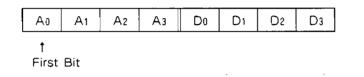
Unit (resistance: Ω)

- 3) Power Amplifier
- Oscillation prevention Capacitor

Note: A Mylar capacitor is recommended as a damping capacitor. (A ceramic capacitor may be use in * 1.) • Mute


Under mute conditions, power amplifier output impedance switches to high impedance.

- 4) Cross-point
- Mixing Mixing is possible with MIX OUT only (pin 19).
- Line Output Amplifier Line output amplifier gain becomes approximately 16dB. When set to -6dB using serial control, line output amplifier gain is established at approximately 10dB.


No. 4276-13/21

Serial Control Input Data Format

Serial Data Contents

$$A_3 = 0$$

•

Displays control data for cross-point switching. At such a time, A_2 through A_0 indicate cross-point switching output addresses.

 $A_2 = 0 \implies$ Indicates mixing output control data. $A_2 = 1 \implies$ Indicates audio signal processing control data.

 $\begin{array}{l} A_3 = 1, A_2 = 0 \qquad \Longrightarrow \\ A_3 = 1, A_2 = 1 \qquad \Longrightarrow \\ Table 1 \text{ indicates contents.} \end{array}$

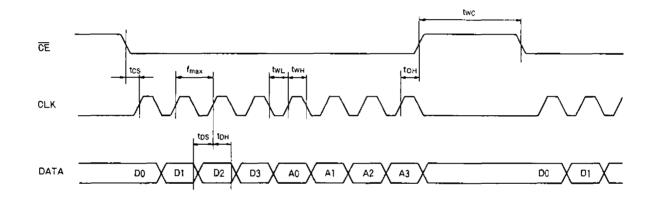
⇒

Аэ	A2	A 1	Ao	Con	itents
0	0	0	0	Output address 0	HANDSET
0	0	o	1	Output address 1	COMP 1
0	0	. 1	0	Output address 2	COMP 2
0	0	1	1	Output address 3	DOOR PHONE
0	1	0	0	Output address 4	PRE AMP
0	1	0	1	Output address 5	LINE
0	1	1	0	Output address 6	POWER
1	0	0	0	Ouput address 7A	MIXING OUT
1	0	0	1	Output address 7B	MIXING OUT
1	1	•	•	CONTROL DATA	
: don't	cae			[Table 1]	

D₃toD₀: Input addresses for cross-point switching control data are shown in table 2. Table 3 shows address assignments for mixing output control data. On/off settings for all controls are indicated in table 4 for audio signal processing control data.

Dз	D2	D۱	Do		Contents
0	0	0	0	ALL OFF	
0	0	0	1	Input address 1	LINE
0	o	1	0	Input address 2	HANDSET
0	0	1	1	Input address 3	COMP 1
0	1	o	0	Input address 4	COMP 2
0	1	0	1	Input address 5	DOOR PHONE
0	1	1	0	Input address 6	AUX
0	1	1	1	Input address 7	MIC
1	0	0	0	Input address 8	OGM
•	0	0	1	Input address 9	PRE (Used only with output address 6)
•	0	1	0	Input address 10	MIX (Used only with output address 5)
* : don'i	care			[Table 2]	

No. 4276-14/21


Item	Contents					
	Output Address 7-A	Output Address 7-B				
Do	Input address 1 LINE	Input address 5 DOOR PHONE				
D ₁	Input address 2 HANDSET	Input address 6 AUX				
D ₂	Input address 3 COMP 1	Input address 7 MIC				
Da	Input address 4 COMP 2	Input address 8 OGM				

		[Table 3]		
Item		Contents	······································	
A ₁	LINE –6dB	1: On	0: Off	
Do	ALC	1: On	0: Off	
D	PB	1: On	0: Off	
D ₂	REC	1: On	0: Off	
D_3	POWER AMP MUTE	1: Mute	0: Release	

[Table 4]

Input Address Port Timing

•

• fmax	(Maximum clock frequency)	500kHz
• t _{WL}	(Clock pulse width "L")	250ns or more
• t _{WH}	(Clock pulse width "H")	250ns or more
• ^t CS	(Chip enable setup time)	200ns or more
• ^t CH	(Chip enable hold time)	400ns or more
• t _{DS}	(Data setup time)	250ns or more
• t _{DH}	(Data hold time)	250ns or more
• ^t wc	(Chip enable pulse width)	400ns or more

Proper Care for IC Applications

1) PCB

During PCB manufacturing, the ground (GND) line of pin 20 becomes thicker and shorter. When common impedance is applied, problems may occur due to distorted coefficients.

- 2) If the IC is used in the vicinity of the maximum rating, even a slight variation in conditions may cause the maximum rating to be exceeded, thereby leading to a breakdown. Allow an ample margin of variation in such areas as supply voltage and use the IC in a range where the maximum rating will not be exceeded.
- 3) Shorting Between Pins

If the power supply is applied when the space between pins is shorted, a breakdown or deterioration may occur. When installing the IC on the board or applying the supply voltage, make sure that the space between pins is not

shorted with solder or by other means.

4) Load Shorting

2

·

If the IC is used with the load shorted for a long time, a breakdown or deterioration may occur. Be sure not to short the load.

No. 4276-15/21

Serial Control Mode

The following table indicate basic modes.

Mode	Serial Data							Notes	
	Ao	A1	A2	Аз	Do	D1	D2	Dз	
ICM REC	O	0	1	0	1	0	0	0	Input is set to LINE while output sets to PRE.
	0	1	1	0	1	0	0	•	Input is set to PRE while output sets to PWR.
	•	*	1	1	1	0	• 1	0	ALC and REC are on.
2 WAY REC	0	0	1	0	1	0	0	0	Input is set to LINE while output sets to PRE.
	•	•	1	1	1	0	1	0	ALC and REC are on.
DECT REC	0	0	1	0	1	1	1	O	Input is set to MIC while output sets to PRE.
	*	•	1	1	1	0	1	0	ALC and REC are on.
2 WAY BEEP	0	1	1	0	0	0	0	1	Input is set to OGM while output sets to PWR
	0	0	1	0	0	0	0	1	Input is set to OGM while output sets to PRE
	1	0	1	o	o	0	0	1	Input is set to OGM while output sets to LINE
	•	•	1	1	1	0	1	0	ALC and REC are on.
	•	1	1	1	0	0	0	0	LINE Amp -6dB
ICM OUT	0	1	1	0	0	0	0	1	Input is set to OGM while output sets to PWF
	1	0	1	o	0	0	o	1	Input is set to OGM while output sets to LINE
	•	•	1	1	o	1	0	0	PB ON
ICM PLAY	0	1	1	o	o	0	0	1	Input is set to OGM while ouput sets to PWR
	•	•	1	1	0	1	0	0	PB ON
OGM REC	0	0	1	0	1	1	1	0	Input is sets to MIC while output sets to PRE
	٠	•	1	1	1	0	0	0	ALC ON
OGM CHANGE	0	0	1	0	1	0	0	0	Input is set to LINE while output sets to PRE
	0	1	1	0	1	0	0	•	Input is set to PRE while output sets to PWR
	-		1	1	1	0	0	o	ALC ON
OGM OUT	0	1	1	0	0	0	0	1.	Input is set to OGM while output sets to PWF
	1	0	1	0	0	o	0	1	Input is set to OGM while output sets to LINE
OGM PLAY	0	1	1	0	0	0	0	1	Input is set to OGM while output sets to PWF
ROOM MONI	1	0	1	0	1	1	1	o	Input is set to MIC while output sets to LINE.
ROOMOUT	0	0	1	0	1	0	0	0	Input is set to LINE while output sets to PRE
	0	1	1	0	1	0	0	•	Input is set to PRE while output sets to PWR
VOICE SELE	1	0	1	0	1 0	0	0	1	Input is set to OGM while output sets to LINI
	0	0	1	0	1	0	0	0	Input is set to LINE while output sets to PRE
	O	1	1	D	1	0	0		Input is set to PRE while output sets to PWR
Dialogue REC	1	0	1	0	0	0	0	1	Input is set to OGM while output sets to LIN
	0	0	1	0	1	0	0	0	Input is set to LINE while output sets to PRE
	•			1		0		0	ALC and REC are on
Extension calling	1	0	0	0	0	1	6	0	Input is set to HAND while output sets to COMP
(main phone $\leftarrow \rightarrow$	0			0	1	1	0	0	Input is set to COMP1 while output sets to COMP
extension phone) Extension phone →		0	0						
external line (used		0	1	0			0	0	Input is set to COMP1 while output sets to LIN
for accessing an external line)	1	0	0	0	1	0	0	0	Input is set to LINE while output set to COMP

"1" = High, "0" = Low • : don't care

.

No. 4276-16/21

Mode Description

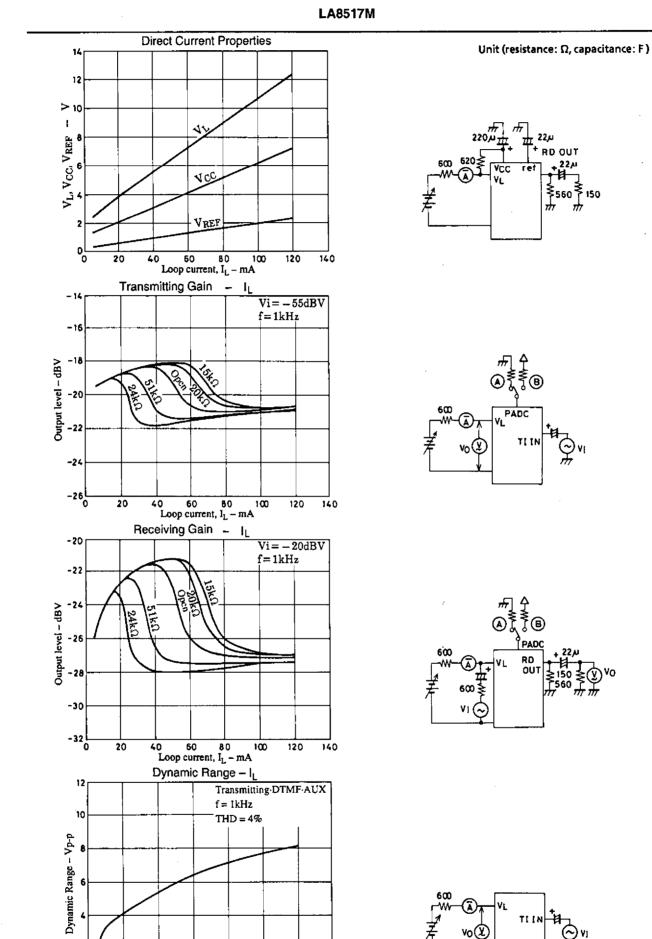
- 1) ICM REC (Incoming Message Rec.)
 - Incoming message recording.
 - Recording of dictation from distant location (remote-controlled at separate location).
- 2) 2-way REC
 - Recording of both conversations while talking over the telephone.
 - Incoming message recording.
- 3) DICT REC
 - Dictation recording using microphone (records family messages or other messages with limited contents).
- 4) 2-way BEEP
 - Outputs alarm sound to speaker and if recording incoming message (ICM), simultaneously activates line output to also inform caller.
 - Informs caller of recording activity.
 - Line output sets to 6dB for line output of other modes.
- 5) ICM OUT
 - Incoming message playback.
 - Listening to the incoming message using telephone from distant location.
 - Incoming message transfer.
 - Recorded dictation playback.
- 6) ICM PLAY
 - Incoming message playback.
 - Recorded dictation playback.
- 7) OGM REC (Outgoing Message Rec.)
 Outgoing message recording.
- 8) OGM CHANGE
 - Changing outgoing message from distant location using remote control operations.
- 9) OGM OUT
 - Outgoing message playback.
 - Outgoing message transmitting (with remote control operations, etc.).
- 10) OGM PLAY
 - Outgoing message playback and confirmation.
- 11) ROOM MONI

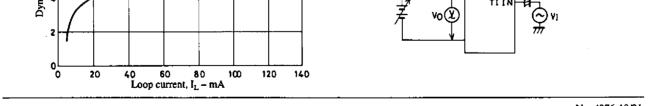
• Listening to microphone input using remote control operations from distant location.

12) ROOM OUT

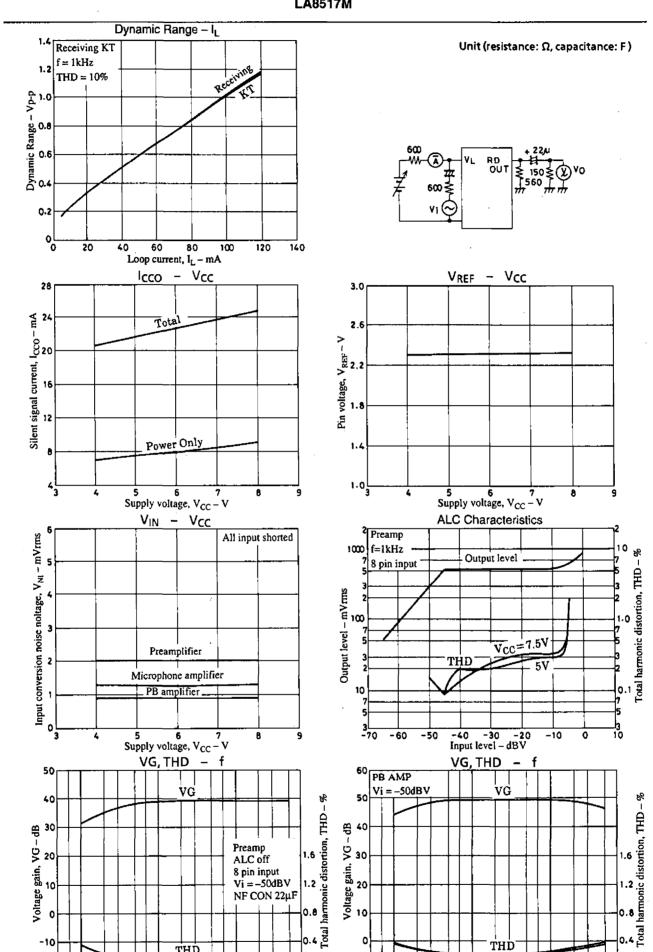
• Generating speaker output such as messages using remote control operations from distant location.

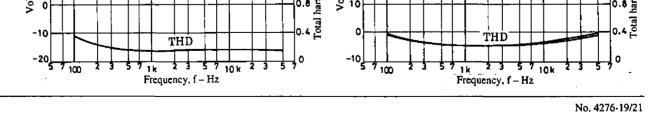
13) VOICE SELE

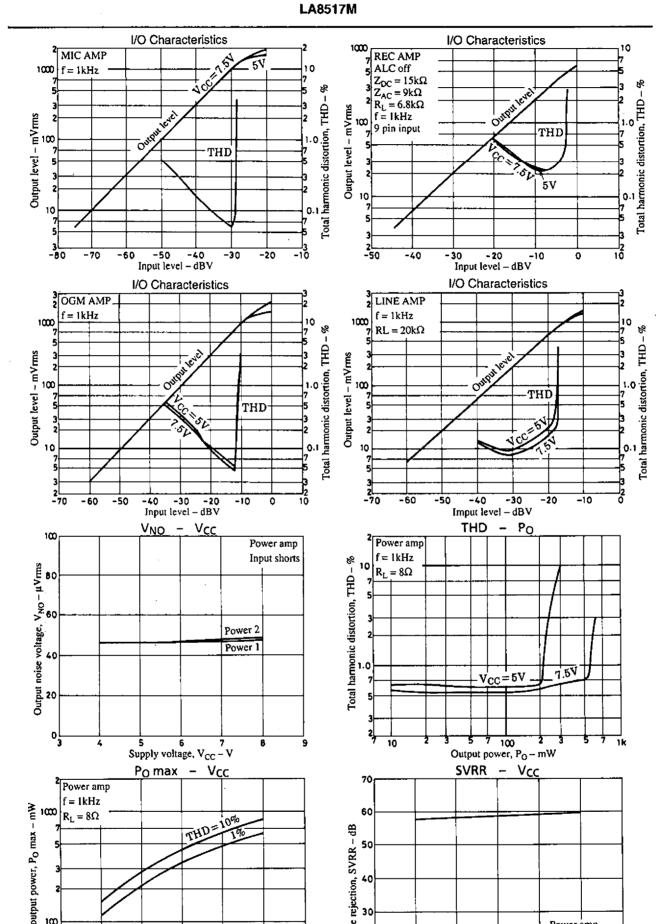

• Confirming speaker output of other person's voice along with outgoing message transmission.

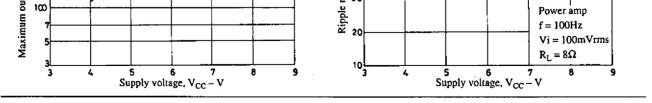

14) Dialog REC

0

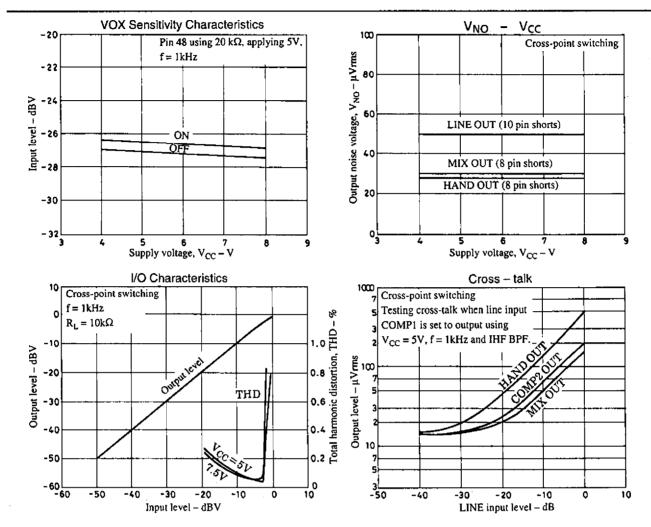

• Recording incoming message while transmitting outgoing message.

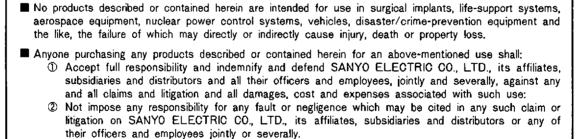

No. 4276-17/21





No. 4276-18/21





No. 4276-20/21

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

No. 4276-21/21