LA9410

Final Audio Output IC for LD Players

Overview

The LA9410 final audio output IC for laser disk players has an internal input amplifier for the 1-bit DAC, 40 kHz LPF, digital/analog signal select circuit, output mute, volume circuit, mixing amplifier and limitter circuit for RF output, and voltage regulator for plus and minus power supply, It provides a compact implementation of audio output circuitry for LD and CD compatible players and laser karaoke systems.

Functions

- Input amplifier for 1-bit DAC, LPF
- Input signal select (digital/analog audio)
- Output mute
- Volume circuit (for headphone amplifier. No headphone drive output amplifier is provided)
- Mixing amplifier for RF output (with internal limitter circuit)
- Regulated power supply circuit (internal use only. Cannot be output to external circuits)

Features

- Provides compact implementation of LD player output circuits
- Suitable for 1-bit DAC
- Internal voltage regulator allows direct use of nonregulated power supply
- Package: DIP-28S

Package Dimensions

unit : mm

3063-DIP28S

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Specifications

Maximum	Ratings	at Ta =	= 25°C
---------	---------	---------	--------

Parameter	Symbol	Conditions	Ratings	
Maximum Supply Voltage	V _{CC} max	(IC only, V _{CC} –V _{EE})	14	V
Allowable power dissipation	Pd max		600	mW
Operating temperature	Topr		-10 to +75	°C
Storage temperature	Tstg		-40 to +150	°C

Operating Conditions at $Ta=25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended Supply Voltage	Vsup	(For use in application circuit)	±14	V
Power supply voltage operating range	Vsup op	(For use in application circuit)	±11 to ±18	V
Reference output voltage	Vr		2	Vrms

Operating Characteristics at Ta = 25°C, Vsup = $\pm 14V$, Vi= 2Vrms = 0dB, 1kHz, R_L = 10k Ω , Vcont = 0V

Parameter	Cumhal	Symbol Conditions	Ratings			Unit
Parameter	er Symbol Conditions	min	typ	max		
Quiescent supply current	Icco	No signal	±17	±21	±25	mA
Line output level / digital	Vod	Digital input, line output	-1	0	+1	dB
Line output level / analog	Voa	Analog input, line output	-1	0	+1	dB
Volume output level	VRo	Volume input/output	-3	0	+3	dB
Mixing output level	VMo	Volume input, Mixed output for L&R in–phase input	-5	-3	-1	dB
Line frequency response / digital 1	F1	Digital input, -20dB, 20kHz/1kHz, line output	0	0.7	1.5	dB
Line frequency response / digital 2	F2	Digital input, -20dB, 40kHz/1kHz, line output	0	2.5	5	dB
Muting ratio	Mr	Digital input, line output	90	110		dB
Volume attenuation level 1	VRr1	Volume input/output, Vcont = 1V	-15.5	-12.5	-9.5	dB
Volume attenuation level 2	VRr2	Volume input/output, Vcont =5V		-58	-50	dB
Signal/noise ratio digital	S/N1	Digital input mode, 20kHz/LPF, line output	86	99		dB
Signal/noise ratio analog	S/N2	Analog input mode, 20kHz/LPF, line output	86	99		dB
Channel separation	Sep	Digital input, line output	86	96		dB
Crosstalk	Cr	Digital input mode, line output	86	98		dB
Total harmonic distortion (digital 1)	THD1	1kHz, 0dB, Digital input, line output		0.005	0.009	%
Total harmonic distortion (digital 2)	THD2	10kHz, –10dB, Digital input, line output		0.02	0.07	%
Total harmonic distortion (analog)	THD3	1kHz, 0dB, Analog input, line output		0.008	0.03	%
Line output offset voltage	Voff	Digital input mode, line output	-50	0	+50	mV
Pin 18 threshold voltage	Vth18		1.5	2.1	3	V
Pin 19 threshold voltage	Vth19		1.5	2.1	3	V

Note: Unless otherwise specified, a 400Hz to 30kHz bandpass filter is used.

Block Diagram

Unit (resistance: Ω, capacitance: F)

Test Circuit

Sample Application Circuit

Technical information

1. Internal digital input filter

The filter internal to the LA9410 is designed to form a third-order filter when used in combination with an external first-order filter. Characteristics when used alone and when used in conjunction with the external filter are illustrated below.

Reference Figure 1

2. External components for input circuit for 1-bit DAC

The LA9410 circuit is directly connected from the input to line output. If the differential of the external components used for the input circuit (differential input) of the 1-bit DAC is large, it will become a DC offset, and may cause popping noise during selection and muting.

3. Power supply

In the LA9410 the IC is protected from high voltage inputs by series resistors located in the power supply, and voltage regulator circuits in the IC. This means that IC current dissipation will be strongly affected by supply voltage and the series resistance. Power supply design requires sufficient leeway so that the allowable power dissipation of the IC is not exceeded.

Note: Use a series resistance in the power supply so that the IC current dissipation is 38mA or less.

4. Measurement of separation and crosstalk

The effects of the IC evaluation circuit board pattern may make accurate measurement of crosstalk and separation impossible. This is especially common when the peripheral resistor of the 1-bit DAC input circuit has a high resistance.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 1999. Specifications and information herein are subject to change without notice.