Monolithic Linear IC

LA9511W

AV Remote Coupler Transmitter

Overview

The LA9511W is a transmitter IC developed for freespace infrared transmission of stereo audio and video signals. It integrates all the required functions for transmission, including audio signal modulation, video signal modulation, LED drive, and other functions on a single chip. An AV coupler system can be implemented easily using this IC and a receiver IC (such as the LA9520V).

Functions

[Audio Block]

- Audio input block ALC with wide AGC operating range
- Integration of passive components used for preemphasis and time constants onto the chip.
- Deviation adjustment amplifier. Adjustable from an externally applied voltage: supports an electronic variable resistor function.
- Filter: Removes unneeded high-frequency components.
- Audio VCO. PLL circuit adopted for adjustment-free operation.

[Video Block]

• Video deviation amplifier. Adjustable from an externally applied voltage: supports an electronic variable resistor function.

- Video preemphasis
- Video VCO. f0 adjustment from an externally applied voltage: supports an electronic variable resistor function.
- Filter. Removes unneeded high-frequency components.

[Driver Block]

• Mixer and driver amplifier. Features excellent highfrequency characteristics and allows addition of external data (remote control).

Package Dimensions

unit: mm

3163A-SQFP48

SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

Specifications Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		5.5	V
Allowable power dissipation	Pd max	Mounted on the specified circuit board.	450	mW
Operating temperature	Topr		-20 to +70	°C
Storage temperature	Tstg		-40 to +150	°C

Note: * Specified circuit board: $24.0 \times 25.5 \times 1.0$ mm³.

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		4.8	V
Allowable operating voltage range	V _{CC} opg		4.5 to 5.2	V

Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = 4.8 V$

Carrier frequency (Audio left channel: 4.3 MHz, right channel: 4.8 MHz, video: 11.8 MHz) Audio input frequency: 400 Hz, input level: -30 dBs,

video input: 0.5 Vpp NTSC composite video signal 0 dBs = 775 mVrms.

Parameter	Symbol	Conditions		Unit			
Faranielei	Symbol		min	typ	max	Unit	
	I _{CC} 1	No input, except for the driver current Test pins: 12, 31, and 32	43	53	63	mA	
Current drain	I _{CC} 2	No input, driver current Test pin: 24	14.5	19	23.5	mA	
	I _{CC} 3	No input, current in standby mode Test pins: 12, 31, and 32		1.0	3	mA	
[Audio Block]							
Deviation adjustment range	Vde-adj	Standard input, the control voltage for ±22.5 kHz Test pin: 45	0.1		1.25	V	
Left channel preemphasis gain	GvpL	The gain difference between 400 Hz and 10 kHz with the AGC off Test pin: 3	11.7	13.7	15.7	dB	
Right channel preemphasis gain	GvpR	The gain difference between 400 Hz and 10 kHz with the AGC off Test pin: 5	11.7	13.7	15.7	dB	
ALC output level (L)	V _{ALC} L	AGC off, Test pin: 3	-32.0	-30	-28.0	dBs	
ALC output level (R)	V _{ALC} R	AGC off, Test pin: 5	-32.0	-30	-28.0	dBs	

Parameter	Symbol	Conditions		Ratings		Unit
Falanetei	Symbol		min	typ	max	
ALC on output (L)	V _{ALON} L	AGC on, V_{IN} = –15 dBs (1 kHz), Left and right input Test pin: 3	-25.5	-22.0	-19.0	dBs
ALC on output (R)	V _{ALON} R	AGC on, V_{IN} = –15 dBs (1 kHz), Left and right input Test pin: 5	-25.5	-22.0	-19.0	dBs
ALC on output L/R deviation	V _{ALON} L/R	AGC on, $V_{\rm IN}$ = –15 dBs (1 kHz), The output difference for left and right input, Test pins: 3 and 5	-2.5	0	2.5	dB
THDL (ALCOUT)	THDL1	V _{IN} = -22 dBs (1 kHz), Test pin: 3		0.5	1.5	%
THDR (ALCOUT)	THDR1	V _{IN} = -22 dBs (1 kHz), Test pin: 5		0.5	1.5	%
THDL (ALCOUT)	THDL2	V _{IN} = -3 dBs (1 kHz), Test pin: 3		1.0	3.0	%
THDR (ALCOUT)	THDR2	$V_{IN} = -3 \text{ dBs} (1 \text{ kHz})$, Test pin: 5		1.0	3.0	%
Left channel oscillator frequency 1	f _O LN	No signal, SIG (pin 7), with a 3.579545 MHz input Test pin: 15	4.298	4.300	4.302	MHz
Right channel oscillator frequency 1	f _O RN	No signal, SIG (pin 7), with a 3.579545 MHz input Test pin: 15	4.798	4.800	4.802	MHz
Left channel oscillator frequency 2	f _O LP	No signal, SIG (pin 7), with a 4.433619 MHz input, Test pin: 15	4.298	4.300	4.302	MHz
Right channel oscillator frequency 2	f _O RP	No signal, SIG (pin 7), with a 4.433619 MHz input, Test pin: 15	4.798	4.800	4.802	MHz
Oscillator amplitude (L)	VL	Audio VCO output, Test pin: 15	150	220	300	mVpp
Oscillator amplitude (R)	VR	Audio VCO output, Test pin: 15	150	230	300	mVpp
Oscillator output R/L deviation	ΔVR/L	The R/L difference for the audio VCO outputs	-3.5	0	+3.5	dB
Left second harmonic level	2HL	No input, the level difference with the fundamental, Test pin: 15		-39		dB
Right second harmonic level	2HR	No input, the level difference with the fundamental, Test pin: 15		-39		dB
Left third harmonic level	3HL	No input, the level difference with the fundamental, Test pin: 15		-28		dB
Right third harmonic level	3HR	No input, the level difference with the fundamental, Test pin: 15		-28		dB
[Video Block]						
Carrier frequency adjustment range	Vcar-aj	No input, the pin 35 voltage when adjusted to be f0 = 11.8 MHz, Test pin: 35	0.1		1.25	Vdc
Deviation frequency adjustment range	Vdev-aj	V_{IN} = 0.5 Vpp, the pin 39 voltage when the deviation is adjusted to 2 MHz, Test pin: 39	0.1		1.25	Vdc
DC clamp level	V _{CLAMP}	No input, the voltage V36 - V37 Test pins: 36 and 37	5	80		mVdc
Preemphasis gain	GVpre	The gain difference between 10 kHz and 5 kHz Test pin: 33		12		dB
Video amplitude	Vv	No input, the 11.8 MHz oscillator level Test pin: 16	280	385	510	mVpp
Second harmonic level	2HV	No input, the level difference with the fundamental Test pin: 16		-32		dB
Third harmonic level	3HV	No input, the level difference with the fundamental Test pin: 16		-35		dB
[Mixer and Driver Block]						
AC gain	GVMD	SIG16 = 0.38 Vpp (12 MHz), Test pin: 22		6.6		dB
Frequency characteristics	FC	The gain difference between 20 MHz and 1 MHz Test pin: 22	-3.0	-0.5		dB
Second harmonic	2HMD	SIG16 = 0.38 Vpp (12 MHz), Test pin: 22		-34		dB
Third harmonic	3HMD	SIG16 = 0.38 Vpp (12 MHz), Test pin: 22		-35		dB

Parameter	Symbol	Conditions		Ratings	Unit	
Parameter	Symbol	Conditions	min	typ	max	
[Control Voltages]						
Xtal SELECT [L]	V4L	The voltage applied to pin 4 when a 4.43 MHz band crystal is used. Test pin: 4			0.4	Vdc
Xtal SELECT [H]	V4H	The voltage applied to pin 4 when a 3.58 MHz band crystal is used. Test pin: 4	1.1			Vdc
STANBY SW [L]	V14L	The voltage applied to pin 14 to perform a standby operation. Test pin: 14			0.8	Vdc
STANBY SW [H]	V14H	The voltage applied to pin 14 to clear standby. Test pin: 14	2.0			Vdc
DRIVE SW [L]	V21L	The voltage applied to pin 21 to perform a LED off operation. Test pin: 21			0.8	Vdc
DRIVE SW [H]	V21H	The voltage applied to pin 21 to perform a LED on operation. Test pin: 21	2.0			Vdc
[In Combination with a Demodulate	or] Using the I	FR-C1 (4 MHz version) Sony receiver IC				-
Audio left channel amplitude	V _{AL}	V _{IN} = -30 dBs (400 Hz) Deviation ±22.5 kHz, demodulator output		250		mVrms
Audio right channel amplitude	V _{AR}	V _{IN} = -30 dBs (400 Hz) Deviation ±22.5 kHz, demodulator output		250		mVrms
L/R output difference	VAL/R	V _{IN} = -30 dBs (400 Hz), simultaneous L/R inputs Deviation ±22.5 kHz, demodulator output	-3	0	+3	dB
Audio left channel distortion	THDLT	V _{IN} = -3 dBs (1 kHz), demodulator output		1.5		%
Audio right channel distortion	THDRT	V _{IN} = -3 dBs (1 kHz), demodulator output		1.5		%
Audio left channel noise	V _N L	No input, Rg = 3 k Ω , IHFA filter Demodulator output		-56		dBs
Audio right channel noise	V _N R	No input, Rg = 3 k Ω , IHFA filter Demodulator output		-56		dBs

Switch Position Table

*: The bias values Va, Vb, and Vc, indicate the voltage values after adjustment.

Switch position Bias Parameter No. SW4 SW7 SW14 SW16 SW21 SW41 SW46 SW48 V4 V14 V21 V45 V35 V39 Symbol 1 I_{CC}1 A А А А А А A A _ 2 I_{CC}2 A A А А А А A A ____ 3 А Α В Α А Α A А I_{CC}3 ____ _ _ ____ В в 4 А А А А А Vde-adj А ____ _ _ Va _ _ 5 GvpL А А А А А А В А _ ___ Va _ _ _ 6 Α в GvpR А А А А А A _ _ _ Va _ _ 7 V_{ALC}L Α А А А А А в A _ _ Va _ _ _ А В 8 $V_{ALC}R$ А А А А А А _ _ Va _ 9 A А А А А А В A Va VALONL _ _ _ В 10 A А А Α А А A Va V_{ALON}R _ _ ____ A А A Va 11 V_{ALON}L/R А А А А А _ _ _ _ _ 12 THDL1 А А А А А А В А Va _ _ _ _ _ 13 THDR1 Α Α А А А A в А _ _ _ Va _ _ 14 THDL2 Α Α Α Α А Α в A _ _ Va _ _ _ THDR2 А А В 15 А А А А A _ _ Va _ 16 foLN А С А А А А A А _ _ Va 17 foRN А С А А А А A А Va _ ____ ____ 18 fol P в С А А А A А Va А _ _ _ _ _ в С 19 foRP А А А А A А _ — — Va _ _ 20 VL Α Α Α Α А А Α А _ Va _ _ _ _ 21 VR Α Α Α Α А Α A Α Va _ _ _ _ _ 22 ΔVR/L А А А А А А А А Va _ _ _ _ _ 23 2HL А А А А А А А А Va 2HR 24 А А А А А А A А Va 25 3HL A А А А А А А А Va _ _ _ _ _ 26 3HR A А А А А А А А — _ _ Va — 27 Vcar-aj A А А А А А A А _ _ _ Va Vb _ 28 Vdev-aj Α А Α А Α в A А Va Vb Vc _ _ _ VCLAMP А A 29 А А А А A А _ Va Vp Vc _ _ 30 GVpre А А А А А В A А Va Vb Vc 31 А Α Vv А А А А А А Va Vb Vc 32 2HV Α Α А А в Α A А Va Vb Vc _ _ _ ЗHV В Vb 33 А А А А А А А _ Va Vc _ _ 34 GVMD А А А В А А А А Va Vb Vc _ _ _ 35 FC A А А В А А A А _ _ Va Vb Vc ____ 36 2HMD А А А в А A A А Va Vb Vc _ _ _ 37 3HMD А А А В А A A А Va Vb Vc 38 V4L С в А Α А Α А 0.4 Va Vb Vc А 39 V4H С А А A A А Va Vb Vc А А 1.1 _ 40 V14L С А Va Vb Vc А А А А А А _ 0.8 _ 41 V14H А А С А А А А А _ 2.0 Va Vb Vc 42 V21L А А А А С А А А 0.8 Va Vb Vc _ С Va V21H А А А А A А A 20 Vb Vc 43 _ _ 44 VAL А А А А А А в В Va Vb Vc 45 VAR А А А А A В в Va Vb Vc А 46 VAL/R А Α А А A в в Va Vb Vc А _ _ _ 47 THDLT А А А А А в в Va Vb Vc А _ _ _ 48 THDRT А А А А А А В В _ Va Vb Vc _ _ 49 VNL А А А А А А А А Va Vb Vc 50 Α А А A A VNR А А А Va Vb Vc _ _

Units: Vdc

Test Circuit

Pin Functions

Pin No.	Pin	Voltage	Function	Equivalent circuit
1	BNDSEL	1.2	Must be connected to ground in normal operation.	
				A13030
			Sets the external reference current.	
2	REF-R	1.25	2 Typical value (1% metal film resistor)	
			A13032	A13031
				<u>Ц</u> , у-м-ц, у-
3	ALC L OUT	V _{CC} /2	Left channel ALC monitor output	
				A-V _{REF}
				A13033
		10	Selects 3.58 or 4.43 MHz for the Xtal-IN pin.	200Ω 40kΩ
4	Xtal-SEL	1.2	Open or high: 3.58 MHz Low: 4.43 MHz	
				777 A13034
5	ALC R OUT	V _{CC} /2	Right channel ALC monitor output	
				A-V _{REF}
6	NC	_		A13035
			Crystal element connection. Alternatively, an external	60kΩ ≨
7	Xtal-IN	V _{CC} /2	fsc clock signal may be input.	
			The fsc signal must have an amplitude greater than 0.2 Vpp.	
8	A-GND	0	Audio system ground	A13036
9	A-GND	0	Audio system ground	
			Audio PLL loop filter	AVCO L
		V _{CC} /2	150kΩ	
10	LPF-L	(When PLL locked)		\sim $_{500\Omega}$ \rightarrow \sim
			(44) A13038	Charge pump
			Audio PLL loop filter	AVCO R
11	LPF-R	V _{CC} /2		
		(When PLL locked)		
			A13040	Charge pump A13039
12	OSC-V _{CC}	V _{CC}	Crystal oscillator power supply	

Pin No.	Pin	Voltage	Function	Equivalent circuit
13	CHUPC	3.2	Audio PLL loop filter capacitor charge pump time constant setting capacitor connection	
14	STBY	2.2	Sets the IC to standby mode. Open or high: normal operation Low: Standby mode operation	14 200Ω 50kΩ G S A13043
15	ARF-OUT	V _{CC} /2	Audio RF output $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	(15) VCC A13044
16	VRF-OUT	V _{CC} /2	Video RF output $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
17	NC	_		
18	MIX-IN	1.3	Drive mixer amplifier inverting input $ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & &$	
19	NC	_		
20	MIX-OUT	1.3	Drive mixer amplifier output and driver amplifier inverting input 20 470Ω MIX IN 18 A13051	20
21	DRV-SW	2.2	Sets the driver amplifier to the standby state. (LED off) Open or high: normal operation Low: Standby mode operation	200Ω 20kΩ 30kΩ (21) 20kΩ 30kΩ , , , , , , , , , , , , , , , , , , ,
22	DRV EM-OUT	0.6	Driver amplifier output stage transistor emitter (22) \rightarrow Output (Use a 22 Ω register if an LED is driven directly.) \rightarrow A13054	(22)/ A13053
23	NC	—		
24	DRV CL OUT	V _{CC}	Driver amplifier output stage transistor collector VCC When the LEDs are VCC driven directly LED (24) A13056	(24) A13055

Pin No.	Pin	Voltage	Function	Equivalent circuit
25	VRF IN	V _{CC} /2	FAMP input $ \begin{array}{c} 5.6\mu H & 470\Omega \\ \hline 25 & & & & & & \\ \hline & & & & & & & \\ & & & & & & & \\ & & & & $	(25) 1.5kΩ G S S V V V REF A13057
26	V V _{REF}	V _{CC} /2	Video system V _{CC} /2 line bypass capacitor connection The pin voltage approaches the supply voltage in standby mode. (26)	Video RF system
27	HPF OUT	V _{CC} /2	VCO + HPF output 0.29 Vpp $(27) \xrightarrow{470\Omega} 5.6\mu$ H $(27) \xrightarrow{470\Omega} (25)$ $(25) \xrightarrow{413062}$	27 340µA A13061
28	V GND	0	Video system ground	
29	V GND	0	Video system ground	
30	NC	—		
31	V V _{CC}	V _{CC}	Video V _{CC}	
32	A V _{CC}	V _{CC}	Audio V _{CC}	
33	PREEM OUT	V _{CC} /2	Video preemphasis amplifier output 33 $1k\Omega$ 34 34 34 34 75 77 55 77 43064	33 (33) (550µA A13063
34	PREEM IN	V _{CC} /2	Video preemphasis amplifier input (34) 1kΩ (33) (34) (33) (35) (35) (35) (36) (36) (37) (37) (38) (38) (39	
35	CAR ADJ	1.25	Video VCO free-running adjustment 42PIN Or EVR REG 0 to 1.24 V About 22 kΩ A13068	35 60kΩ REG 1.25V A13067
36	CLAMP C2	V _{CC} /2 +0.1	Clamp side of the sync tip clamp <u>4.7µF</u> <u>36</u> +↓ <u>37</u> A13070	36 4 V V _{REF} +0.1V (36) 4 10μA A13069

Din No.	Din	Valtaga	Function	
Pin No.	Pin	Voltage	Function	Equivalent circuit
37	CLAMP C1	V _{CC} /2	Sync tip clamp output 4.7µF (37) ↓ + (36) A13072	37
38	NC	_		All of the second se
39	V DEV ADJ	1.25	Video VCO deviation adjustment 39 42PIN Or EVR REG 0 to 1.24 V About 22 kΩ A13074	39 40kΩ 39 W V REG 1.25V A13073
40	NC			
41	V _{IN}	V _{CC} /2	Video input Reference input level: 0.5 Vpp Input impedance: 17 k Ω 10 μ F (41) + H Video signal source A13076	(41) SKΩ SKΩ SKΩ V V REF A13075
42	REG	1.25	Reference voltage supply bypass capacitor connection Discharges in standby mode.	To the driver block 42 To the band gap reference Internal REG
43	A GND	0	Audio ground	
44	A V _{REF}	V _{CC} /2	Audio system V _{CC} /2 line bypass capacitor The pin voltage approaches the V _{CC} voltage in standby mode. 44 $\pm \pm \frac{1}{277}$ $\pm \frac{1}{27}$ 41 43	Audio RF system 44 Audio AF system Audio AF system A13079
45	A DEV ADJ	1.25	Audio VCO deviation adjustment 42PIN Or EVR REG 0 to 1.24 V About 22 kΩ A13082	(45) 60kΩ (45) 60kΩ (45) V REG 1.25V A13081
46	L CH IN	V _{CC} /2	Audio left channel input Reference input level: -30 dBs Input impedance: 10 k Ω $1\mu F$ 46 $+\mu$ Audio signal source A13084	46 46 ALV _{REF} A13083

Pin No.	Pin	Voltage	Function	Equivalent circuit
47	ALC C	0.7	Audio ALC capacitor connection The attack and recovery times can be adjusted with the resistor and capacitor. (47) R R R R R R R R R R	
48	R CH IN	V _{CC} /2	Audio right channel input Reference input level: –30 dBs Input impedance: 10 kΩ 48 + H Audio signal source	48 48 48 ALV _{REF} A13087

Block Diagram

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 2000. Specifications and information herein are subject to change without notice.