Monolithic Digital IC

LB11817

Three-Phase Full-Wave Linear Drive

Preliminary

Overview

The LB11817 is a spindle motor driver for use in slimshaped FDDs that use 5 V power supply.

Functions and Features

- Three-phase full-wave linear drive
- Low saturation voltage
- Built-in digital speed control
- Start/stop circuit (active low)
- · Speed switching
- Current limiter
- Index processing circuit
- The index timing can be adjustment with a variable resistor.
- Thermal protection circuit

Package Dimensions

unit: mm

3247-SSOP36

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7.0	V
Maximum output current	I _{O max} 1	t ≤ 0.5 s	1.5	A
Maximum steady-state output current	I _{O max} 2		1.0	A
Allowable power dissipation 1	Pdmax1	Independent IC	0.6	W
Operating temperature	Topr		-20 to +80	°C
Storage temperature	Tstg		-40 to +150	°C

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		4.2 to 6.5	V

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Electrical Characteristics at Ta = 25°C, V_{CC} = 5 V

Parameter	Symbol Conditions		Ratings			Note	
	Cyrnoor	Conditions	min	typ	max	max Unit	
Current drain	Icco	S/S = 5 V (standby mode)			10	μΑ	
	I _{CC}	S/S = 0 V (normal operation)		17	25	mA	
SL bias current	I _{SL}	$V_{SL} = 0 V$			10	μA	
SL low-level input voltage	V _{SLL}		0		1.0	V	
SL high-level input voltage	V _{SLH}		3.5		V _{CC}	V	
S/S bias current	I _{S/S}			150	230	μA	
S/S low voltage	V _{S/SL}		0		0.8	V	
S/S high voltage	V _{S/SH}		3.5		V _{CC}	V	
Hall amplifier input bias current	Ι _Η				10	μA	
Common-mode input voltage range	V _h		1.5		V _{CC} – 1.0	V	
Differential input voltage range	V _{dif}		50		200	mVp-p	
Hall bias output voltage	V _{HB}	I _H = 5 mA	0.5	0.8	1.1	V	
Hall bias leakage current	I _{HBL}	S/S = 5 V			±10	μA	
Output saturation voltage	Vsat	I _O = 0.5 A sink+source		0.45	0.67	V	
Output leakage current	IOL				1.0	mA	
Current limiter	V _{lim}		0.27	0.3	0.33	V	
Control amplifier voltage gain	G _C		-9	-7	-5	dB	
Voltage gain inter-phase difference	ΔG_{C}				±1	dB	
V/I conversion source current	+		9	14	19	μA	
V/I conversion sink current	I-		-9	-14	-19	μA	
V/I conversion current ratio	+/ -		0.8	1.0	1.2		
DSC buffer input current	IDSC				1.0	μA	
FG amplifier voltage gain	G _{FG}			48		dB	*
FG offset amplifier input	V _{FG0}				±10	mV	*
FG amplifier internal reference voltage	V _{FGB}		2.2	2.5	2.8	V	
FG Schmitt hysteresis	∆Vsh			50		mV	*
Speed discriminator counts	N			1041.5			
Discriminator operating frequency	FD				1.1	MHz	*
Oscillator frequency range	Fosc				1.1	MHz	*
Index output low-level voltage	VIDL	I _O = 2 mA			0.4	V	
Index output leakage current	I _{IDL}				±10	μA	
Index amplifier common-mode input voltage range	V _{ID}		1.0		V _{CC} – 1.0	V	
Index input hysteresis	ΔV_{ID}			25		mV	
Boost voltage	VP	Ip = -5 mA	1.39	1.55	1.71	V	
Thermal protection circuit operating temperature	TSD		150	180		°C	*
Hysteresis	ΔTSD			40		°C	*

Note: * Items shown to be design target values are not measured.

Pin Assignment

Truth Table

	Source \rightarrow sink	Hall input			
		U	V	W	
1	$V \to W$	Н	Н	L	
2	$V \ \rightarrow U$	L	Н	L	
3	$W \ \rightarrow U$	L	Н	Н	
4	$W \to V$	L	L	Н	
5	$U \ \rightarrow V$	Н	L	Н	
6	$U \to W$	Н	L	L	

Index Delay Pulse Timing Chart

Pin Functions

Pin No.	Symbol	Pin voltage	Function	Equivalent circuit
1	тс		 Connection for the external capacitor used to adjust the index timing. 	
2	ID	L: 0.4 Vmax H: 4.5 Vmin	• Index output	
3	S/S	L: 1.0 Vmax H: 3.5 Vmin	• Start/stop control. This is an active-low input.	Vcc Vcc 3
4	SL	L: 1.0 Vmax H: 3.5 Vmin	• Speed switching input	Vcc Vcc 4
5	CLK	L: 0.5 Vmax H: V _{CC} – 1.0 Vmin	 Reference clock input. The threshold voltage is 1.25 V. At 1 MHz, the LB11817 supports speeds of 300 and 360 rpm. 	Vcc
6	FC		 Frequency characteristics correction. Oscillation in the current control closed- loop circuit can be stopped by inserting a capacitor between this pin and ground. 	
7	DO		Speed discriminator	Image: Constraint of the second se

Continued on next page.

Continued from preceding page.

Pin No.	Symbol	Pin voltage	Function	Equivalent circuit
8	GND		Ground This pin and pin 34 must all be connected to the frame ground.	
9	V _{CC}	4.2 to 6.5 V	 Supply voltage This voltage must be stabilized so that ripple and noise do not enter the IC. 	
10	VP	V _{CC} + 1.55 Vtyp (lp = -5 mA)	• Boosted voltage output Used as the output transistor pre-driver power supply. This boosted voltage is used when a low saturation output is provided. In all other cases this pin will be at the V _{CC} potential.	
11	RF		• Output current detection An RF resistor inserted between this pin and V_{CC} converts the output current to the voltage used for output current detection. The current limiter circuit operates by detecting the voltage on this pin.	
12 15	D2 D1		• Connections for the two diodes used by the voltage boost function.	12
13 14	B2 B1		• Boost function switching circuit outputs 1 and 2	$\begin{array}{c} & & & \\ & & & \\ & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline \\$
17 19 20	W _{OUT} V _{OUT} U _{OUT}		 W-phase output V-phase output U-phase output 	

Continued on next page.

Continued from preceding page.

Pin No.	Symbol	Pin voltage	Function	Equivalent circuit
18	PGND		Output transistor ground	
24 25 26 27 28 29	U _{IN} + U _{IN} - V _{IN} + V _{IN} - W _{IN} + W _{IN} -	1.5 Vmin V _{CC} – 1.0 Vmax	 U-phase Hall device inputs V-phase Hall device inputs W-phase Hall device inputs 	$\begin{array}{c} \hline 24 \\ \hline 26 \\ \hline \\ 28 \\ \hline \\ \hline \\ 25 \\ \hline \\ 27 \\ \hline \\ 29 \\ \hline \\ \hline \\ \\ 29 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
30	НВ	0.8 Vtyp (IH = 5 mA)	 Negative potential that provides Hall device bias current In the stopped state, this pin is set to the open state to cut off the Hall device bias current. 	
31 32 33	FGO FG+ FG-	2.5 Vtyp	 FG amplifier output FG amplifier minus input FG amplifier plus input A 2.5 V reference voltage is generated internally by the IC. 	$\begin{array}{c} & & & \\ \hline \\ \hline$
34 35	+ _		• Index inputs	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
36	VR		Index timing adjustment voltage input	

Block Diagram

Note that the values of the external components shown here are reference values and are not guaranteed to be appropriate in a given application.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1999. Specifications and information herein are subject to change without notice.