Monolithic Digital IC

LB1674V

Brushless, Sensorless Motor Driver

Overview

The LB1674V is a small motor driver ideal for mini-cassettes, headphone stereos and micro-cassettes.

Functions and Features

- 3-phase unipolar, brushless, sensorless motor driver
- Reverse function
- Built-in speed control function (V servo)
- Built-in reference voltage (0.5 V)
- · Soft switching driver

Package Dimensions

unit : mm

3175A-SSOP24

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		5	V
Output transistor withstand voltage	Vsus		10	V
Maximum output current	Im max		0.6	A
Allowable power dissipation	Pd max	Tj = 125°C	0.4	W
Operating temperature	Topr		0 to + 80	°C
Storage temperature	Tstg		-40 to + 125	°C

Allowable Operating Range at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		1.0 to 3.5	V

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Electrical Characteristics at Ta = 25° C, V_{CC} = 1.5 V, unless otherwise noted

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply ourront	1	START pin: high		6.5	10	mA
Supply current	ICC	START pin: low		0	10	μA
Reference voltage	Vref		0.47	0.50	0.53	V
Reference-voltage characteristic	$\frac{\Delta \text{Vref}}{\text{Vref}} / \Delta \text{V}_{\text{CC}}$	$V_{CC} = 1.0 \text{ to } 3.5 \text{ V}$		1	1.5	%/V
Reference-voltage load characteristics	$\frac{\Delta Vref}{\Delta Iref}$	Iref = 0 to -50 µA	-0.2	-0.06		mV/μA
Reference-voltage temperature characteristics	$\frac{\Delta \text{Vref}}{\text{Vref}} / \Delta \text{Ta}$	$Ta = 0 \text{ to } 80^{\circ}C$		0.01		%/°C
Speed signal detection accuracy	Vsp	V _{IN} = 750 mV	140	155	170	mV
Speed signal interphase error			-5		+5	%
Speed-signal voltage characteristics	$\frac{\Delta \text{Vsp}}{\text{Vsp}} / \Delta \text{V}_{\text{CC}}$	V _{CC} = 1.0 to 3.5 V		2	3	%/V
Speed-signal temperature characteristics	$rac{\Delta V s p}{V s p}$ / $\Delta T a$	$V_{IN} = 0.75 \text{ V}, \text{ Ta} = 0 \text{ to } 80^{\circ}\text{C}$		0.05		%/°C
Current detection accuracy	V _{RI}	V_{IN} 1 = 0.3 V, V_{IN} 2 = 1.0 V, RI = 330 Ω	70	85	100	mV
Current detection ratio	KI	$V_{IN}1 = 0.3 \text{ V}, V_{IN}2 = 1 \text{ to } 1.3 \text{ V}$	0.17	0.22	0.27	
Starting pulse period	Т _S	C _S = 0.1 μF		32		ms
COM⊖ lead-in current	I _{COM} ⊖		25	35	45	μA
Output saturation voltage	Vsat	V _{CC} = 1.0 V, Im = 0.3 A		0.15	0.25	V
Logic input high-level voltage	V _H		0.9			V
Logic input low-level voltage	VL				0.3	V
TC pin lead-in current	I _{TC}		35	50	65	μA

Pin Assignment

Sample Application Circuits at V_{CC} = 1.5 V

Unit (resistance: Ω , capacitance: F)

Pin Description

Unit (resistance: Ω)

Pin	Pin		
Number	Name	Equivalent Circuit	Description
1 3 23	V W U		Motor coil connection pins
2 22 24	DW DU DV	GND (24) (2) (2)	 Power transistor base pins
4	GND		Power and signal ground
5	OSC	VCC 50,μA () 2,μA 2 k 2 k 2 k 3 k 5 k 6 nD	 Starting pulse period set pin
6	COM⊖	Vcc () 120,шА () 12	Start-up waveform detection circuit offset set pin
7	DR	20k ₩ 5 30k GND	Drive direction switch pin (normally low)
8	Vref	Э 200,µА (¥) 25,µА	Reference voltage pin (0.5 V)
9	START	(9)	 Start/stop control pin. Active-high
10	Vsp	VCC 2k 2k GND 2k	Speed signal (motor induction voltage) detector

Continued on next page.

Continued from preceding page.

Unit (resistance: Ω)

Pin Number	Pin Name	Equivalent circuit	Description
11	IN ⁺	VCC 25,JJA 11 GND ///	Speed signal error amplifier reference input pin
12	OUT	VCC 12 GND m 12 1k	Speed signal error amplifier output for motor current feedback
13	RI		Motor current detection pin
14	TC1		Motor current rising/falling time constant set pins
15	TC2		Motor current rising/falling time constant set pins
16 17 18	PW PU PV	VCC VCC VCC VCC VCC VCC VCC VCC	Current waveform generator. Internal operation measurement pins. Must be left open.

Continued on next page.

Continued from preceding page.

Unit (resistance: Ω)

Pin Number	Pin Name	Equivalent circuit	Description
19	FC		Abnormal oscillation stop pin
20	V _{CC}		Power supply
21	GND		Power and signal ground

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of August, 1996. Specifications and information herein are subject to change without notice.