LB1857M

Three-Phase Brushless Motor Driver IC

Overview

The LB1857M is a three-phase brushless motor driver IC designed for use as a camcorder capstan or drum motor driver, or as a digital audio tape player/recorder motor driver.

Features

- 120° voltage linear system
- Appropriate for portable applications, since the LB1857M reduces system power requirements by using motor voltage control for speed control.
- Built-in torque ripple compensation circuit
- Small external capacitances due to the adoption of a soft switching technique (chip capacitor).
- Built-in thermal shutdown circuit
- Built-in FG amplifier

Package Dimensions

unit: mm **3073A-MFP30S**

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
	V _{CC} 1 max		7	V
Supply voltage	V _{CC} 2 max		16	V
	V _S max		V _{CC} 2	V
Output applied voltage	V _O max		V _S +2	V
Output current	I _O max		1.5	A
Allowable power dissipation	Pd max		1.0	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +125	°C

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
	V _{CC} 1	$V_{CC}1 \leq V_{CC}2$	4.0 to 6.0	V
Supply voltage	V _{CC} 2		4 to 14	V
	Vs		Up to V _{CC} 2	V

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Electrical Characteristics at Ta = 25°C, $V_{CC}1$ = 5 V, $V_{CC}2$ = 7 V, V_S = 3 V

Demonster	Ourshall		Ratings			Linit
Parameter	Symbol	Conditions	min	typ	max	- Unit
	I _{CC} 1	V _{BR} = 5 V		4.5	6.5	mA
Supply current	I _{CC} 2	V _{BR} = 5 V		13	20	mA
	۱ _S	$V_{BR} = 5 V, R_L = \infty$		6.5	9.0	mA
Output guiescent current	Iccoq	V _{STBY} = 0 V			180	μA
Output quiescent current	I _{SOQ}	I_{SOQ} $V_{STBY} = 0 V, R_L = \infty$			150	μA
Output saturation voltage	V _{O(sat)}	I _{OUT} = 0.6 A, sink + source			2.3	V
Output TRS withstand voltage	V _{O(sus)}	I _{OUT} = 20 mA*1	16			V
Output quiescent voltage	V _{OQ}	V _{BR} = 5 V	1.4	1.5	1.6	V
Hall amplifier input offset voltage	V _{HOFFSET}	*1	-5		+5	mV
Hall amplifier common mode input voltage range	V _{HCOM}		1.4		2.8	V
Hall I/O voltage gain	GV _{HO}	Rangle = 8.2 k Ω	32.0	35.0	38.0	dB
Brake pin high level voltage	V _{BRH}		2.0			V
Brake pin low level voltage	V _{BRL}				0.8	V
Brake pin input current	I _{BRIN}				100	μA
Brake pin leakage current	I _{BRLEAK}				-30	μA
FRC pin high level voltage	V _{FRCH}		2.8			V
FRC pin low level voltage	V _{FRCL}				1.2	V
FRC pin input current	I _{FRCIN}				100	μA
FRC pin leakage current	I _{FRCLEAK}				-30	μA
Upper side residual voltage	V _{XH}	I_{OUT} = 100 mA, $V_{CC}2$ = 6 V, V_{S} = 2 V	0.32		0.49	V
Lower side residual voltage	V _{XL}	I_{OUT} = 100 mA, $V_{CC}2$ = 6 V, V_{S} = 2 V	0.39		0.48	V
Overlap level	OL	V _{CC} 2 = 6 V, V _S = 3 V	60	70	80	%
Standby on voltage	V _{STBYL}	*2	-0.2		+0.1	V
Standby off voltage	V _{STBYH}		2		5	V
Standby pin bias current	I _{STBYIN}				10	μA
Thermal protection circuit operating temperature	T _{TSD}	*1	150	180	210	°C
Thermal protection circuit hysteresis	ΔT_{TSD}	*1		15		°C
[FG amplifier]	· · ·					
Input offset voltage	V _{FG OFFSET}		-8		+8	mV
Open loop voltage gain	GV _{FG}	f = 1 kHz		60		dB
Source output saturation voltage	V _{FG OU}	$I_{O} = -2 \text{ mA}$	3.7			V
Sink output saturation voltage	V _{FG OD}	$I_{O} = 2 \text{ mA}$			1.3	V
Common mode signal exclusion ratio	CHR	R *1		80		dB
FG amplifier common mode input voltage range	V _{FG CH}		0		3.5	V
Phase margin	φM	*1		20		deg
Schmitt amplifier threshold voltage	V _{FGS SH}	$V_{FGS SH}$ $V_{FGIN}^+ = 2.5 V$, $V_{FGS SH}$ when V_{FGOUT}^2 goes from high to low 2.45 2.50 2.55		2.55	V	
Schmitt amplifier hysteresis width	V _{FGS HIS}	$V_{\text{FGIN}^+} = 2.5 \text{ V}$	20	40	60	mV

Note: 1. These are target settings, and are not measured. The overlap ratings are taken as test ratings without change.2. When the standby pin is open the IC will be in the standby state.

Pin Assignment

Block Diagram

Pin No.	Symbol	Pin voltage	Equivalent circuit	Pin function
4	Vs	≤ V _{CC} 2	·	Power supply input that determines the output amplitude. It must be set to a voltage equal or lower than V_{CC}^2 .
5	V _{CC} 2	4 to 14 V		Power supply for power amplifier systems other than motor drive transistors. Power supply pin that provides voltage for blocks other than control blocks supplied by $V_{CC}1$.
6	V _{CC} 1	4 to 6 V		Power supply that provides voltage for the Hall amplifier, the forward/reverse circuit, the FG amplifier, and the thermal shutdown circuit.
7	ST. BY	(H): 0.1 V max (L): 2.0 V min (When V _{CC} 1 is 5 V)		All circuits can be made inoperative either by connecting this pin to GND, or by leaving it open. In that state the supply current will be approximately 100 μ A. Hold at 2 V or higher during normal operation.
8	ANGLE		V _{cc} 1 V _{cc} 1	Connect a resistor between this pin and GND. Changing the value of this resistor will change the Hall input-output gain (motor waveform slope).
10 11	FG _{IN} − FG _{IN} +	0 V min 3.5 V max (When V _{CC} 1 is 5 V)	Voc1	FG signal input pin
12	FG _{OUT} 1			FG amplifier output pin

Pin Functions

Unit (resistance: Ω)

Continued on next page

LB1857M

Continued fi	rom precedir	ıg page.		Unit (resistance: Ω)
Pin No.	Symbol	Pin voltage	Equivalent circuit	Pin function
13	FG _{OUT} 2			FG Schmitt amplifier output pin
18	FRC	(H): 2.8 V min (L): 1.2 V max (When V _{CC} 1 is 5 V)	Vcc1	Pin for setting the motor to forward or reverse rotation Low level: Forward rotation (under 1.2 V: when V_{CC} 1 is 5 V) High level: Reverse rotation (over 2.8 V: when V_{CC} 1 is 5 V)
19	BR	(H): 2.0 V min (L): 0.8 V max	Vcc2	Motor brake pin Low level: Motor drive (under 0.8 V) High level: Motor brake (over 2.0 V)
20 21 22 23 24 25	W _{IN} 2 W _{IN} 1 V _{IN} 2 V _{IN} 1 U _{IN} 2 U _{IN} 1	1.4 V min 2.8 V max (When V _{CC} 1 is 5 V)	V_{cc1}	W phase Hall element input pins. Logic high is defined to be states where $W_{IN}1 > W_{IN}2$. V phase Hall element input pins. Logic high is defined to be states where $V_{IN}1 > V_{IN}2$. U phase Hall element input pins. Logic high is defined to be states where $U_{IN}1 > U_{IN}2$.
26	R _f			Output transistor GND
27 28 3	Uout Vout Wout		Vs (27) (28) (3) (3) (7) (28) (3) (7) (28) (3) (7) (28) (3) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Output pin
1, 2, 14, 15, 16, 17, 29, 30	FRAME (GND)			GND for all circuits other than output transistors.

Sample Application Circuit

Units (resistance: Ω , capacitance: F)

Logic Value Table

	Source	Input			Forward and reverse control
	Sink	U	V	W	F/RC
	W phase \rightarrow V phase	н	н	L	L
I	V phase \rightarrow W phase	п			н
2	W phase \rightarrow U phase	н	L	L	L
2	U phase \rightarrow W phase				Н
3	V phase \rightarrow W phase		L	н	L
	W phase \rightarrow V phase	L			н
4	U phase \rightarrow V phase	1	н	L	L
	V phase \rightarrow U phase				н
5	V phase \rightarrow U phase	н	L	Н	L
	U phase \rightarrow V phase				Н
6	U phase \rightarrow W phase		н	Н	L
	W phase \rightarrow U phase	L			Н

Inputs:

High: For each phase, the input 1 potential is at least 0.2 V higher than the input 2 potential. Low: For each phase, the input 1 potential is at least 0.2 V lower than the input 2 potential.

Forward/reverse control:

High: 2.8 V to $V_{CC} \mathbf{1}$

Low: 0 to 1.2 V

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March, 1998. Specifications and information herein are subject to change without notice.