
Ordering number: EN 4945

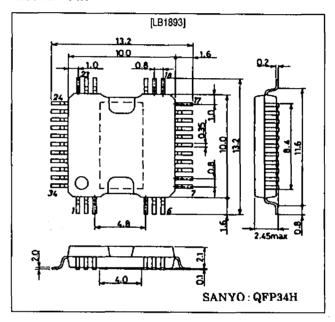
1.00

Monolithic Digital IC

Overview

The LB1893 is a 3-phase brushless motor driver for use in CD-ROM spindle motors.

,


Functions and Features

- 120° voltage linear type
- V-type control voltage
- Switchable control gain
- Control, non-feedback, and speed increment/decrement control pin built-in
- Start/Stop pin built-in
- Hall device bias built-in

Package Dimensions

Unit: mm

3206-QFP34H

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

51695TH (ID) No. 4945-1/8

1

Specifications

 ε

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} 1 max		20	v
Maximum supply voltage	V _{CC} 2 max		7.0	V
Output transistor blocking voltage	V _{O(sus)}	I _{CUT} = 20mA, design value	20	V
Output supply voltage	V _{OU, V, W}		20	v
Output current	Ιουτ		1.2	A
Allowable power dissipation	Pd max	Unmounted IC	0.77	W
Operating temperature	Topr		-20 to +75	0°
Storage temperature	Tsig		-55 to +150	°C

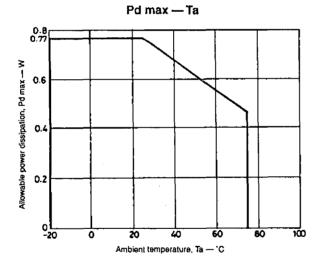
Allowable Operating Ranges at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Cupply vollage	V _{CC} 1		5 to 18	V
Supply voltage	V _{cc} 2	$V_{CC}1 \ge V_{CC}2$	4.3 to 6.5	ν
V _{Cref} pin input voltage	V _{Cret}		$V_{\rm CC} 2/2 \pm 1.0$	V
V _{NS} pin input voltage	V _{NS}		0 to V _{CC} 2/2 - 1.0	V

Electrical Characteristics at Ta = 25° C, V_{CC} 1 = 12V, V_{CC} 2 = 5V, specified test circuit

Parameter	Cumbal	Conditions		Ratings	Ratings	
Falameter	Symbol	Conditions	min	typ	max	Unit
Supply current 1	l _{cc} 1	$V_{C} = open, V_{Crel} = open, R_{L} = \infty, V_{S/S} = 5V$	-	17	30	mA
Supply current 2	I _{CC} 2	V _C = open, V _{Crel} = open	_	7.5	10.5	mA
Supply current 3	I _{CC} 3	$V_C \simeq$ open, $V_{Crel} =$ open, $R_L \simeq \infty$, $V_{S/S} \simeq 0V$	-	0.9	3	. mA
Output saturation voltage	V _{O(sat)} 1	I _{OUT} = 0.4A, sink + source	-	1.6	2.2	v
Output saturation voltage	V _{O(sat)} 2	I _{OUT} = 0.8A, sink + source	-	2.0	3.0	V
Output center voltage	Voq	V _C = 2.5V, V _{Cref} = 2.5V	5.7	6.0	6.3	v
Hall amplifier input offset voltage	V _{H offset}		5	-	+5	mV
Hall amplifier input bias current	IH bias		_	1	5	μΑ
Hall amplifier common-mode input voltage range	V _{Hch}		1.3	-	2.2	v
Hall amplifier input-output voltage gain	G _{VHO}		40	43	46	dB
Control-output drive gain 1	G _{VCD} 1	RZ1 = RZ2, GC1 = LOW, GC2 = LOW	26	29	_	dB
Control-output channel difference 1	∆G _{VC0} 1	RZ1 = RZ2, GC1 = LOW, GC2 = LOW	-1.5	_	+1.5	dB
Control-output drive gain 2	G _{VCO} 2	RZ1 = RZ2, GC1 = LOW, GC2 = HIGH	32	35	-	dB
Control-output channel difference 2	∆G _{VCO} 2	RZ1 = RZ2, GC1 = LOW, GC2 = HIGH	1.9	-	+1.9	dB
Input dead-zone voltage	V _{DZ}	RZ1 = RZ2, GC1 = LOW, GC2 = LOW	±13	±38	±55	mV
Input bias current 1	IB SERVO	V _C = 1.0V	-	-	500	nA
Input bias current 2	I _{B NS}	V _{NS} = 1.0V	-	-	500	nA

,


No. 4945-2/8

Parameter .	Symbol	Conditions		Ratings		Unit	
raiailleisi			min typ		max		
S/S pin HIGH-level voltage	V _{S/S H}	CMOS-level input.	4.0	-		V	
S/S pin LOW-level voitage	VSISL	S/S pin threshold V th = $V_{CC}2/2$	-	-	1.0	V	
Gain control 1 HIGH-level voltage	V _{GC1H} ,	CMOS-level input.	4.0	-	-	v	
Gain control 1 LOW-level voltage	V _{GC 1 L}	GC1 pin threshold Vth = 2.0V	-	-	1.0	v	
Gain control 2 HIGH-level voltage	V _{GC2 H}	CMOS-level input.	4.0	-	-	v	
Gain control 2 LOW-level voltage	V _{GC2L}	GC2 pin threshold Vth = 2.0V	-	-	1.0	v	
S/S pin input current	_{S/S}	5V input voltage		50	100	μA	
Gain controls 1 and 2 current	lac	5V input voltage		53	110	μА	
Motor output saturation voltage	V _{(sat)HFG}	$I_0 = -5mA$	-	0.24	0.5	v	
Motor output saturation blocking voltage	V _{(sus)HFG}	Design value	-	-	7	v	
Hall bias voltage	V _{H±}	$I_0 = 5 mA, R_H = 200 \Omega$	0.7	0.97	1.2	V	
CTRL pin HIGH-level voltage	V _{CTRL H}	CTRLo and CTRL1 common,	4.0	-	-	V	
CTRL pin LOW-level voltage	VCTALL	CMOS-level input. CTRL pin threshold Vth = 2.5V		-	1.0	v	
CTRL input current	ICTRL	5V input voltage	-	53	110	μA	
Thermal shutdown operating temperature	TSD	Design value	150	180	210	°C	
TSD hysteresis	ΔTSD	Design value	-"	15		°C	

LB1893

· · · · ·

Performance Characteristics

Mode Switching Truth Table

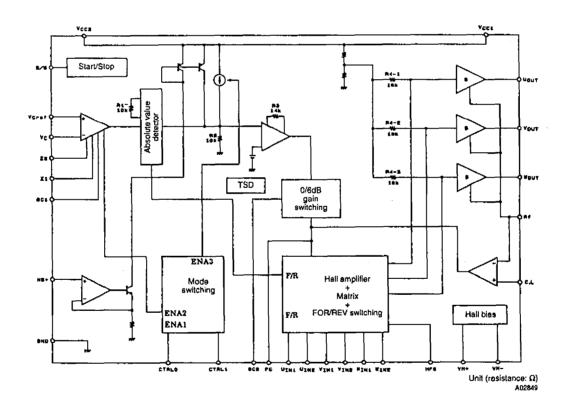
CTRL _{\$1}	CTRL1 ¹	Mode
LOW	LOW	Control
LOW	HIGH	Non-feedback
HIGH	LOW	Increment
HIGH	HIGH	Decrement

1. LOW = 0 to 1.0V, and HIGH \ge 4.0V.

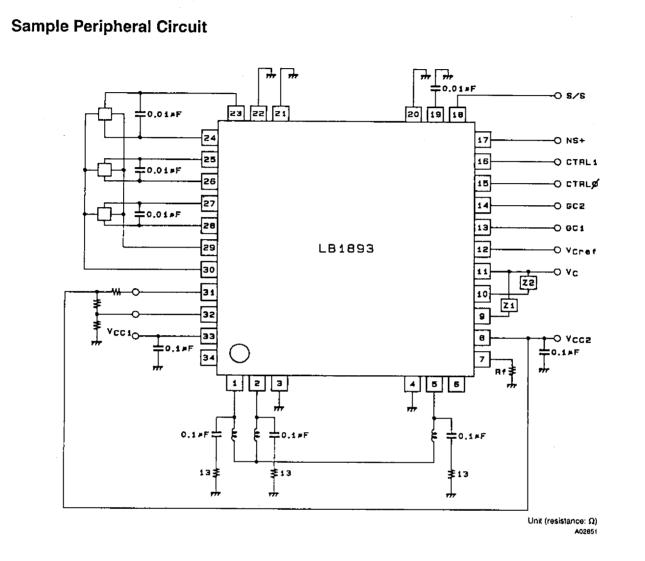
No. 4945----3/8

÷

- į

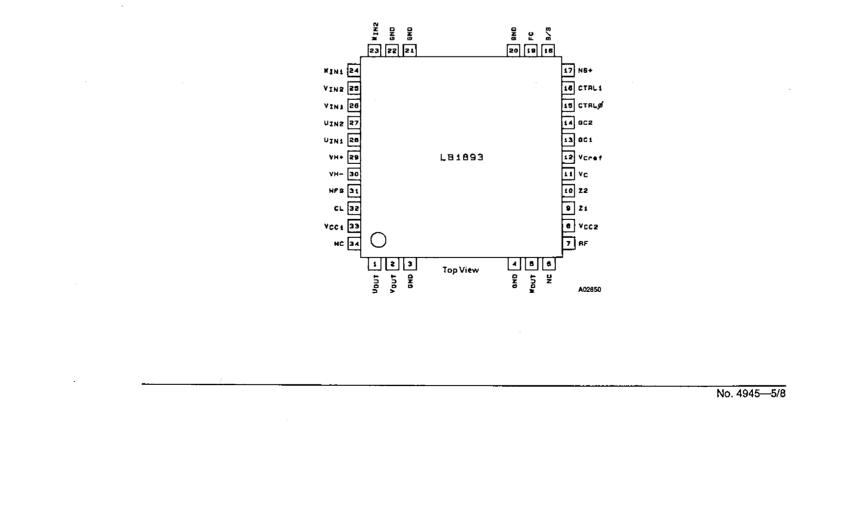

. _1

Hall Element Logic Truth Table


	Source → sink		Kall Input ¹		Forward/Reverse control ²
		ບ _{iN}	V _{IN}	W _{IN}	- Forward/Heverse control-
	W phase \rightarrow V phase	HIGH	HIGH	LOW	Forward
	V phase \rightarrow W phase		ЛІСП	LOW	Reverse
0	W phase \rightarrow U phase		1.014	1011	Forward
2	U phase W phase	HIGH	LOW	LOW	Reverse
	V phase → W phase	1.014	1.011	1101	Forward
3	W phase → V phase	LOW	LOW	HIGH	Reverse
	U phase \rightarrow V phase			1011	Forward
4	V phase → U phase	LOW	HIGH	LOW	Reverse
_	V phase → U phase		1.011		Forward
5	U phase \rightarrow V phase	HIGH	LOW	HIGH	Reverse
	U phase \rightarrow W phase				Forward
6	W phase → U phase	LOW	HIGH	HIGH	Reverse

1. An input is considered to be HIGH when $U_{IN}1 > U_{IN}2$, $V_{IN}1 > V_{IN}2$, and $W_{IN}1 > W_{IN}2$ by 0.2V or more. 2. Forward is selected when $V_C > V_{Crel}$. Reverse is selected when $V_C < V_{Crel}$.

Block Diagram



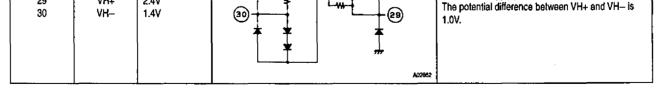
No. 4945-4/8

LB1893

Pin Assignment

•

Pin Functions


Number	Name	Pin voltage	Equivalent circuit	Function
3, 4, 20, 21	Frame GND			Frame ground. Connected to the common ground.
22	GND			Ground pin
1 2 5	U _{DUT} Vout Wout	-		Output pins. Connected to the motor.
7	Rf		OYCC2	Output transistor ground. A resistor can be connected between this pin and GND to sense the output current as a voltage drop to provide for overcurrent protection.
6, 34	NC			No connection
8	V _{cc} 2	4.3 to 6.5∨		Supply for all circults except the output stage. This supply should be kept stable to prevent noise from entering this pin.
9 10	Z1 Z2		OVCC2	First-stage amplifier gain setting impedance connection. Z1 and Z2 should be in the order of $30k\Omega$ to several hundred $k\Omega$. The gain should be in the order of 6dB.
11 12	V _C V _{Cref}	V _{CC} 2/2 ± 1.0	VCC2 VCC2 VCC2 VCC2 VCC2 SND SND A02355	V_C is the speed control pin; forward when $V_C > V_{Cref}$ and reverse when $V_C < V_{Cref}$. The output voltage is controlled by the V_C voltage. V_{Cref} determines the motor control stop voltage, and is normally set to $V_{CC}2/2$.
13 14	GC1 GC2	0 to V _{CC} 2	VCC2	Input gain control switching pin. GC1 switches the first-stage amplifier impedances Z1 and Z2. Z1 is selected when GC1 is LOW, and Z2 is selected when GC1 is HIGH. GC2 is the second-stage amplifier switching pin.

No. 4945-6/8

LB1	893
-----	-----

· · · · · ·

			LB1893	
Number	Name	Pin voltage	Equivalent circuit	Function
15 16	CTRL¢ CTRL1	0 to V _{CC} 2	VCC2 VCC2 (13)(15) MO2857	Operating mode switch pin. The mode switching truth table shows how to select control, non-feedback, and speed increment/decrement modes.
17	NS+	0 to V _{CC} 2 - 1V	AC22350	Non-feedback mode input pin. Input-output gain is approximately 14dB (GC2 = LOW) Motor stops when V _{NS} = 0V.
18	S/S	0 to V _{CC} 2		Start/Stop pin. Start when HIGH, and stop when LOW. The threshold is V _{CC} 2/2.
19	FC		(19)	Connect a capacitor between this pin and ground to reduce the input-output gain frequency response and to prevent abnormal oscillation.
23 24	W _{IN} 2 W _{IN} 1		× v _{cc} 2	W-phase Hall device input pins. Logic HIGH is represented by W _{IN} 1 > W _{IN} 2.
25 26	V _{IN} 2 V _{IN} 1	1.3 to 2.2V		V-phase Hall device input pins. Logic HIGH is represented by $V_{\rm IN}$ 1 > $V_{\rm IN}$ 2.
27 28	U _{IN} 2 U _{IN} 1			U-phase Hall device input pins. Logic HIGH is represented by U _{IN} 1 > U _{IN} 2.
29	VH+	2.4V		Hall device supply pins. The potential difference between VH+ and VH– is

No. 4945-7/8

LB1893

Number	Name	Pin voltage	Equivalent circuit	Function
31	HFG	0 to V _{CC} 2	AD2863	Hall device FG pin. The Half device waveform is converted to a pulse and used as the FG pulse.
32	CL	0 to V _{CC} 2	A22864	When the voltage on Rf pin becomes equal to the voltage on CL, the current limiter operates. The CL voltage is determined externally.
33	V _{cc} 1	5 to 18V		Oulput-stage supply pin. This supply should be kept stable to prevent noise from entering this pin.

No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

Anyone purchasing any products described or contained herein for an above-mentioned use shall:

① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:

- ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees, jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1995. Specifications and information herein are subject to change without notice.

No. 4945-8/8