

Overview

The LB8106M is a four-channel actuator driver for driving the focus coil, tracking coil, spindle motor and sled motor in portable CD players.

The LB8106M features a 3.9 V (typ) output up converter, an integrating amplifier to allow the future use of a digital servomotor for the spindle, and a battery check comparator. It supports system startup and stop functions, a selectable sled actuator driver step mode for reduced power consumption, and a defect function to improve tracking when there is a disk fault.

The LB8106M operates from a 2.0 to 4.0 V supply and is available in 44-pin QIPs.

Features

- Four H-bridge actuator drivers for the focus coil, tracking coil, spindle motor and sled motor
- On-chip 3.9 V (typ) up converter
- System startup and stop functions
- · Selectable sled actuator driver step mode
- · On-chip battery check comparator
- PWM power supply reduces power consumption, noise and the number of external components required.
- On-chip integrating amplifier for future digital spindle servomotor
- Defect function to improve tracking when there is a disk fault
- 2.0 to 4.0 V supply
- 44-pin QIP

Pin Assignment

Package Dimensions

Unit: mm

3148-QIP44MA

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Sample Application Circuit

Unit (resistance: Ω, capacitance: F)

Notes

- 1. T1 is a 2SB815, T2 is a 2SC3650, D1 and D2 are SB07-03Cs, $L1 = L2 = 30 \mu H$ and $C1 = C2 = 100 \mu F$.
- 2. Values shown are for reference only.
- 3. When using a digital spindle servomotor, connect the PWM output to IAI, set the integration constant using external components and connect AO to the spindle servomotor input.

Pin Functions

Number	Name	Equivalent circuit	Function
1	IN1		Focus actuator control input
2	IN2		Tracking actuator control input
3, 31	VOUT	· · · ·	Bridge driver outputs
4	VCD2		Up converter input
5	VCD1		Up converter input
6	DEFECT	бо ко т т т т т т т т т т т т т т т т т т т	Defect input
7	REFO		Sled drive reference voltage output
8	IAI		Integrating amplifier input
9	AO	· · · · · · · · · · · · · · · · · · ·	Inverting amplifier output
10	IAO	· · · · · · · · · · · · · · · · · · ·	Integrating amplifier output
11	OSC	· · · · · · · · · · · · · · · · · · ·	Oscillator input
12	OSCPOW		Oscillator supply output
13	UPB		Up converter npn-transistor driver output
14	SS1	₩	System startup input 1
15	S\$2		System startup input 2
16, 17, 18, 38, 39, 40	FGND		Frame ground

Number	Name	Equivalent circuit	Function
19	WP	100 kΩ 100 kΩ 100 kΩ	Microcomputer startup output
20	BO		Battery check output
21	BI	200 £1 200 £1 9 50 µА 777 777	Battery check input
22	DNB		Down converter prip-transistor driver output
23	GND		Signal ground
24	CLK	60 kΩ 60 μA 50 μA 80 kΩ 80 kΩ 80 kΩ 777 777 777	Clock input
25	VCC		2.4 V supply
26	VREF2	······································	1.2 V reference voltage
27	SLH		Sled driver startup voltage adjustment input
28	SLL		Sled driver stop voltage adjustment input
29	SLS	29 60 kΩ 50 μA 29 50 μA 177 177 177	Sled changeover input
30	VREF1		Actuator driver reference voltage input

.

Number	Name	Equivalent circuit	Function		
32	IN3		Spindle actuator control input		
33	IN4		Sled actuator control input		
34	OUT4		Negative sled actuator driver output		
35	OUT4+		Positive sled actuator driver output		
36	ОЛ.3		Negative spindle actuator driver output		
37	OUT3+		Positive spindle actuator driver output		
41	OUT2	·····	Negative tracking actuator driver output		
42	OUT2+		Positive tracking actuator driver output		
43	OUT1-		Negative focus actuator driver output		
44	OUT1+	· · · · · · · · · · · · · · · · · · ·	Positive focus actuator driver output		

Specifications

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply voltage	Voc	7.0	V
Bridge driver output current	lo	800	mA
Up converter output current	ICD	150	mA
Power dissipation	PD	800	mW
Operating temperature range	Topr	-20 to +75	°℃
Storage temperature range	Tetg	-40 to +125	°C

Recommended Operating Conditions

 $T_{a} = 25 \ ^{\circ}C$

Parameter	Symbol	Ratings	Unit
Supply voltage	Vcc	2.4	v
Supply voltage range	Vcc	2.0 to 4.0	v

Electrical Characteristics

Power supply

 V_{CC} = 2.4 V, T_{a} = 25 $^{\circ}\mathrm{C}$

Parameter	Symbol	Conditions	Ratings			11-14	
	Gynador	Conditions	min	typ	max	Unit	
Standby current consumption	lcco	SS1 and SS2 are HIGH.	-	-	10	μΑ	
Quiescent current consumption	lcca		-	18	27	mA	
Power consumption	Po		-	150	-	mW	

Up converter

 $V_{DD} = 2.4$ V, $T_a = 25$ °C

Parameter	Symbol	Symbol Conditions				
			min	typ	max	Unit
Output voltage	V _{CD}	·····	3.7	3.9	4.1	٧
npn-transistor drive current	. I _{no}		-	3.0	-	mA
Load characteritics	ΔV _{cD} /l _{cD}	<u> </u>	-	-	0.01	%/mA
Voltage characteristic	ΔVcp/Vcc		-	-	100	mV/V
Duty cycle	Duty		-	50	<u> </u>	%

Oscillator

 $V_{DD} = 2.4$ V, $T_a = 25$ °C

Parameter	Symbol	Conditions	Ratings			()14
			min	typ	max	Unit
Synchronizing signal input frequency	f _{syno}	<u> </u>	80	_	100	kHz
OSCPOW output voltage	VOSCP	<u> </u>	Vcc - 0.15	_	-	v
OSC bias current	IBOSC		-	_	-1.5	μА

H bridge

 $V_{DD} = 2.4$ V, $T_a = 25$ °C

Parameter	Symbol	Conditions		Ratings		41-14
	-	Conditions	min	typ	max	Unit
Output saturation voltage	V _{CE} (sal)	lo = 200 mA, sink + source	-	0.26	0.39	V

Actuator drivers

 $V_{DD} = 2.4$ V, $T_a = 25$ °C

Parameter	Symbol	Conditions	Ratings			
			min	typ	max	Unit
Input voltage	. V _I	VREFI = V2VCD	V _{REF1} ~ 1.0	VREFI	VREF1 + 1.0	٧
Input bias current	BOR		-	1.0	-	μA
Transmission voltage gain	GVTR		-	7.95	_	ďB
Single-channel transmission voltage gain differential	ΔG _{VTR}		-	±1.0	-	dB
Dead band input voltage	V _{dz}		- ·	-	V _{REF1} ± 100	mV
Dead band input voltage offset	Vdzoł	Positive/inverse channel	-10	0	10	mV

PWM

$V_{DD} = 2.4 V, T_a = 25 °$	V _{DD} =	Z. 4	×,	La	=	25	Ē	,
------------------------------	-------------------	-------------	----	----	---	----	---	---

Parameter	Sumbel Condition	Conditions	Ratings			Unit
raiaii#(9)	Symbol	Conditions	min	typ	max	Unit
Maximum output voltage	Vo		2.1	2.4	2.7	v
pnp-transistor drive current	lpi	See note.	-	Vout/600	_	mA
Load characteristic	ΔVo/I _{rd}		-		0.03	%/mA
Voltage characteristics	∆Vo/Vcc		-	_	50	mV/V

Note

This parameter is guaranteed by the design and is not tested.

Sled driver

 $V_{DD} = 2.4$ V, $T_a = 25$ °C

Parameter	Symbol	Conditions		Ratings		Unit
Larane/ar	Symbol		min	typ	max	Onit
Driver reference voltage	V _{REFO}		-	V _{REF1} + 0.7	-	٧

Step mode

 $V_{DD} = 2.4$ V, $T_a = 25$ °C

Parameter	Symbol	Conditions		Ratings		Unit
	Syntoon	Conditions	កាវិកា	typ	max	Unit
SLS ON voltage	V _{SLSON}		2.0	-	_	v
SLL bias current	BSLL		-	-	300	μΑ
SLH bias current	IBSLH		-	-	300	μΑ
DEFECT ON-voltage	VDEFON		2.0	-	-	, v

System startup and stop

 $V_{DD} = 2.4$ V, $T_a = 25$ °C

Parameter	Symbol	Conditions		Ratings		Unit
	зупшог	Condimona	min	typ	max	Unit
SS1 and SS2 LOW-level input voltage	V _{SSL}		-	-	V _{CC} - 1.0	v
SS1 and SS2 HIGH-level input voltage	V _{SSH}		V _{CC} - 0.5	-	-	v

Reference voltage

 $V_{DD} = 2.4 V, T_{a} = 25 °C$

Parameter	Symbol	Conditions	Ratings			Unit
	Syntasi	Conditions	min	typ	max	Offic
REFO output current	IREFO		-	-	100	μΑ
REF2 output voltage	V _{REF2}		-	1.2	-	v

1. 1. 1. 1. A. A. A.

Microcomputer startup

 V_{DD} = 2.4 V, $T_{\textrm{\tiny R}}$ = 25 °C

Parameter	Symbol	Conditions	Ratings		Unit	
	ojiikoi	Sonalitiona	min	typ	max	OIIIt
WP output voltage	V _{WP}	····	V _{CD1} - 0.5	-	-	v

Battery check

 V_{DD} = 2.4 V, T_{α} = 25 $^{\circ}C$

Parameter	Symbol	Conditions			Unit	
	Synbol	Conditions	min	typ	max	Unit
BI input bias current	leen		-	_	1.5	μA
BO output voltage	VBO	l _{BO} = 500 μA	-	-	0.3	V

Clock

 V_{DD} = 2.4 V, T_{a} = 25 $^{\circ}\text{C}$

Parameter	Symbol	Conditions		Ratings		Unit
	Synuon	Conditiona	min	typ	max	Onk
CLK input voltage	Vc⊔ĸ		2	-	-	v

Integrating amplifier

 V_{DD} = 2.4 V, T_{a} = 25 °C

Parameter	Symbol	Conditions		Ratings		1114
	Synnor	Conditions	min	typ	max	Unit nA dB dB V
Input bias current	BIAL		-	-	500	nA
First stage open loop voltage gain	Gv1	f = 1 kHz. See note.	-	55	-	dB
Second stage closed loop vollage gain	G _{V2}		-	0	-	dB
First stage output saturation voltage		1 mA source	V _{CD} - 1.3	-	-	
	Voi	1 mA sink	-	-	1.3	l v
Second stage output saturation vollage		1 mA source	Vcd - 1.3	-	-	
	V _{O2}	1 mA sink	-	-	1.3	v

Note

This parameter is guaranteed by the design and is not tested.

.

Typical Performance Characteristics

Power dissipation vs. ambient temperature

Functional Description

Focus, Tracking, Spindle and Sled Actuator Drivers

The reference voltage, V_{REF1} , from the CD player's DSP, is boosted to 3.9 V ($\frac{1}{2}V_{CD2}$). The actuator's voltage characteristic is shown in the following figure.

The V-type actuator driver, using V_{REFI} as a reference, generates a reverse polarity output. Note that there is a dead band in the range $V_I = V_{REFI} \pm 100 \text{ mV}$ (max) where V_0 remains constant. The driver also incorporates a feedback loop for accurate gain.

Sled Actuator Driver Step Mode

In normal operating mode, the sled actuator driver functions as described in the previous section. When SLS is LOW, however, the sled actuator driver is in step mode, and the drive current is reduced.

The sled actuator control input signal is obtained by integrating the tracking output. The sled actuator starts and stops when this signal crosses thresholds determined by the external resistors connected between REF1 and REFO as shown in the following figure.

The voltage characteristic of the sled actuator driver in step mode is shown in the following figure. In step mode, maximum voltage is applied to the H-bridge. Note that the control input is usually lower than V_{REFI} .

Up Converter

The up converter steps up the supply voltage for the control of each of the four actuator drivers. These drivers can also be powered externally from a supply with $V_{DD} = 3.9 \text{ V}$ (typ) and $I_0 = 150 \text{ mA}$ (max).

At system startup, the up converter operates at the free-running frequency of the built-in oscillator. The oscillator's free-running frequency is determined by the capacitor and resistor connected to OSCPOW. If $R = 30 \text{ k}\Omega$ and C = 400 pF, then the oscillator frequency is approximately 80 kHz.

After system startup, the oscillator synchronizes to the external clock, CLK. The external clock frequency must be in the range 80 to 100 kHz. Note that 88.2 kHz is the optimum frequency.

The oscillator duty cycle is limited to 50% (max), protecting the output transistor under heavy load. For

PWM Power Supply

To maximize power efficiency, the LB8106M uses a PWM power supply for the H-bridge drivers. The output voltage of the absolute value amplifier for each actuator driver is summed with an offset voltage and then applied to each H-bridge after PWM switching. If actuator operating voltages are similar and small, the actuators use a minimum of power. Also, only one inductor and capacitor are needed for all four actuator drivers.

Since the actuator drivers are linear, output noise is minimized. 2.4 V (typ) is supplied to the H-bridges and this is only prone to small variation with fluctuations in the supply voltage.

When DEFECT is HIGH, indicating the presence of a fault on the disk, or when the sled actuator driver is in step mode, the supply to each H-bridge is at maximum.

System Startup and Stop

The LB8106M can start and stop the system through connection to a microcomputer.

Setting SS1 LOW turns system power ON and sets WP HIGH. SS2 activates the key inputs and is ORed with SS1.

Setting both SS1 and SS2 HIGH, puts the power supply in standby mode.

maximum efficiency, an output transistor with a high h_{FE} and a Schottky diode are recommended.

The output characteristic of the absolute value amplifier is shown in the following figure.

 V_{co} powers the integrating amplifier, the inverting amplifier, the sled actuator driver mode change circuit and the PWM power circuit. V_{cc} powers the rest of the circuits, including the up converter, the down converter, the reference voltage regulator, the battery checker and the oscillator.

